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Thermal diffusivity of snow is an important thermodynamic property associated with key hydrological
phenomena such as snow melt and heat and water vapor exchange with the atmosphere. Direct determi-
nation of snow thermal diffusivity requires coupled point measurements of thermal conductivity and
density, which continually change due to snow metamorphism. Traditional methods for determining
these two quantities are generally limited by temporal resolution. In this study we present a method
to determine the thermal diffusivity of snow with high temporal resolution using snow temperature pro-
file measurements. High resolution (between 2.5 and 10 cm at 1 min) temperature measurements from
the seasonal snow pack at the Plaine-Morte glacier in Switzerland are used as initial conditions and Neu-
mann (heat flux) boundary conditions to numerically solve the one-dimensional heat equation and iter-
atively optimize for thermal diffusivity. The implementation of Neumann boundary conditions and a t-
test, ensuring statistical significance between solutions of varied thermal diffusivity, are important to
help constrain thermal diffusivity such that spurious high and low values as seen with Dirichlet (temper-
ature) boundary conditions are reduced. The results show that time resolved thermal diffusivity can be
determined from temperature measurements of seasonal snow and support density-based empirical
parameterizations for thermal conductivity.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction undergoes morphological changes in grain size and shape, density,
Snow thermal diffusivity is an important thermodynamic prop-
erty in snow hydrology because it regulates heat diffusion in the
snow as defined by the heat equation [1]. Hence, it is an important
parameter for understanding heat transfer and predicting snow-
melt [2], and is therefore applicable to water resources manage-
ment activities such as agriculture, hydropower and municipal
water usages [3]. Furthermore, thermal diffusivity can be useful
in improved prediction of snowmelt timing and streamflow dis-
charge because typical snowmelt models are tuned to air temper-
ature, and therefore, lack a full physical basis [4]. Heat transfer in
snow occurs by conduction through the ice matrix, by conduction
through air-filled pore spaces, by latent heat exchanges of water
vapor (condensation and sublimation) [3] and by radiative heating
[5,3,6]. In addition, convection [7–9] and wind pumping [10,11]
can also play a role. However, these mechanisms are less well
understood. Better temporal resolution in heat transfer studies
may allow for improved understanding of these mechanisms be-
cause they occur at relatively short time scales.

Snow is a porous medium whose physical properties evolve in
time, and therefore can be difficult to characterize. It continuously
ll rights reserved.
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and bonding due to metamorphism, all of which affect the snow
thermal properties [3]. Thermal conductivity of snow is also aniso-
tropic, having different values in horizontal and vertical directions
[12]. A better understanding of heat transfer processes in snow and
their natural impacts requires a better understanding of how ther-
mophysical properties vary in time [13]. Due to the labor intensity
of some measurement techniques, such as the excavation of snow
pits, the potential temporal and spatial resolution of snow property
measurements is limited. Furthermore, some measurement tech-
niques might actually alter the snow properties being measured
by disrupting its structure [14].

Direct determination of thermal diffusivity requires measure-
ments (either in situ or in extracted samples) of two quantities:
thermal conductivity and snow density. Generally, density mea-
surements require snow pit excavation and gravimetric analysis
of individual samples from varying depths. Therefore, snow den-
sity measurements with high temporal resolution are difficult to
obtain. For thermal conductivity, several techniques exist which
vary greatly in cost, ease of implementation, accuracy and spatial
and temporal resolution. Some of these methods are described in
Section 2, and a more rigorous summary and critique of several
of the techniques was presented by Sturm et al. [15]. Many of these
methods require specialized, relatively expensive equipment in
addition to requiring substantial effort to obtain measurements
at high spatial and temporal resolution.
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An alternative approach is to measure snow temperatures and
invert the heat equation to obtain the thermal conductivity or ther-
mal diffusivity of snow. The major advantages of this approach are
that temperature is relatively inexpensive to measure and can pro-
vide many more options for spatial and temporal resolution. As an
example of the inversion approach, Brandt and Warren [16] suc-
cessfully used a one-dimensional vertical finite difference scheme
with Dirichlet boundary conditions (specifying temperature in
time) and a stationary density profile to optimize for thermal
conductivity of snow at the South Pole. However, the Brandt and
Warren [16] study is not representative of ephemeral, seasonal
snow packs of hydrological importance because the diurnal solar
forcing was atypical (polar night for 6 months) and snow temper-
atures were extremely low (6�40 �C). In relatively warm snow-
packs latent heat transfer can account for a significant portion of
the overall heat transfer [15]. Due to these complications, it was
unclear that the method used by Brandt and Warren [16] could
be successful for relatively warm snowpacks with the strong diur-
nal forcing experienced by seasonal snow.

For the present study the inversion approach of Brandt and
Warren [16] was extended to determine thermal diffusivity for
seasonal snow with the addition of two key steps. First, Neumann
boundary conditions (specifying heat flux in time, as determined
by the temperature measurements) must be used for the simula-
tion so the predicted temperatures are not artificially constrained,
and second, a statistical test is integrated into the analysis to deter-
mine when there is sufficient information within the temperature
profiles to converge to a unique solution. In this paper this new ap-
proach was used to find the thermal diffusivity for seasonal snow
on the Plaine-Morte glacier, an important water reservoir in the
Bernese Alps of Switzerland. High resolution (between 2.5 and
10 cm at 1 min) temperature measurements were used as initial
and boundary conditions to numerically solve the one-dimensional
heat equation, and iteratively optimize for thermal diffusivity. The
temperature measurement probe used in this study is relatively
inexpensive, easy to install and allows for monitoring throughout
a season. Section 2 of this paper discusses and compares some of
the existing techniques to obtain the thermal diffusivity of snow.
In Section 3, the experiment site and temperature measurement
techniques are described. The proposed method to determine
time-resolved thermal diffusivity of seasonal snow is presented
in Section 4. Finally, the results and error analyses are presented
and discussed along with recommendations for subsequent uses
of the new measurement probe and methods for determining ther-
mal diffusivity.
2. Thermal diffusivity and measurement techniques

Thermal diffusivity is a combination of the thermal properties
of a medium which govern the heat diffusion rate through that
medium according to the heat equation

@T
@t
¼ a

@2T
@z2 ; ð1Þ

where a is the thermal diffusivity, T is temperature, z is distance (in
our case vertical depth) and t is time [1]. The thermal diffusivity is
defined as

a ¼ j
qCp

; ð2Þ

where j is the thermal conductivity, q is the density and Cp is the
specific heat capacity. Since snow is a porous media comprised of
ice matrices and air-filled pores, its thermal properties are generally
described as being effective values at averaged macro scales [17,3].
Throughout this paper thermal properties are to be considered their
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effective values in the vertical component, considering snow’s
anisotropy. Heat conduction through the solid ice matrix is the
dominant heat transfer mechanism because the thermal conductiv-
ity of ice is approximately two orders of magnitude greater than
that of air [3]. Accordingly, snow microstructure, grain size, shape
and intergranular bonding, strongly influence the thermal conduc-
tivity [13]. In addition, latent heat transfer can also play a signifi-
cant role in relatively warm snow [3]. However, latent heat
transfer is also a diffusive mechanism which occurs along a temper-
ature gradient, so its effects can be naturally lumped into an effec-
tive thermal diffusivity [18,15,17,3].

Several techniques exist for measuring thermal conductivity.
One such method is to use a heated plate to study the steady-state
heat flow across an extracted block of snow [19]. Once at equilib-
rium, the temperature gradient across the sample block is used to
calculate the thermal conductivity. Since the snow sample is
heated from one end, care must be taken to insulate the edges such
that the heat transfer occurs only across the sample [19,15]. In
addition, the imposed temperature gradient may cause the snow
sample to undergo metamorphism [15]. Another highly technical
approach for determining thermal conductivity is based on micro-
structure tomography (e.g. [20,12]). This methodology uses tomo-
graphic 3D images of snow microstructure and the steady-state
heat transport equation to determine the effective thermal conduc-
tivity by separating the heat transfer over the ice matrix and pore
spaces for a volumetric snow sample [12]. Beyond the specialized
equipment necessary for these types of analyses, the methods are
relatively labor intensive and require careful extraction and stor-
age of snow samples. Hence, obtaining measurements with high
spatial and temporal resolution with this approach is impractical.

Another approach for measuring thermal conductivity uses the
transient heat transfer resulting from an unsteady heat input (and
often the subsequent cooling) [21,22]. Sturm et al. [15] describe
some of the various instrument configurations that have been used
with the transient heat transfer approach, and mention that needle
probe or point heat source configurations are ideal because they
are less likely to disturb the snow. Generally, the needle probe con-
sists of a thin needle of which one end is heated and the other end
monitors the temperature change between the two sections. In
concept, the analytical solution for heat diffusion in an infinite wire
predicts that the temperature change over the needle is linearly re-
lated to the natural log of time, and the thermal conductivity is
proportional to the slope of this line [23]. These heat probes have
been used in cold chambers [24,25], inserted into walls of snow
pits [24,22,15], and naturally covered by snow fall [23]. The tran-
sient heat probe method for determining thermal conductivity pro-
vides more flexibility in terms of spatial and temporal resolution
than the steady-state method. The needle probes, though small,
may still significantly alter the snow structure [14], and Calonne
et al. [12] show that thermal conductivities determined by the nee-
dle probe methods are systematically lower than those determined
by other methods.

Empirical parameterizations, which relate the thermal conduc-
tivity to the snow density, have also been proposed. Sturm et al.
[15] presented a parameterization based on a comprehensive com-
pilation of snow density and thermal conductivity measurements
from several techniques and studies. Other empirical, density-
based parameterizations have also been proposed by Calonne
et al. [12] (determined from tomographical, heated plate, and the
needle probe techniques), Aggarwal et al. [26] (determined by
the needle probe technique), and Yen [27] (determined from a
compilation of unnumbered investigations). All of these parame-
terizations have a wide range of scatter, usually attributed to the
differences in snow microstructure and bonding that can occur
for a given snow density. Furthermore, these parameterizations
require knowledge of the snow densities which, as mentioned
nal snow determined from temperature profiles. Adv Water Resour (2012),
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previously, are dynamic and difficult to monitor with high tempo-
ral resolution. Often these types of parameterizations are used in
various heat and mass transfer models for snow. Some examples
are a catchment-scale snowmelt model [2], a glacier mass balance
model [28], a climatological atmospheric warming study using
englacial temperatures [29], in a near-surface model to be used
by backcountry avalanche forecasters [30], and for comparison
with a micro-structure based snow cover model [31].

Other methods that use snow temperature profiles to deter-
mine thermal diffusivity include spectral or analytical techniques.
The spectral method tracks the amplitude ratio and phase shift of
the diurnal temperature signal as it propagates into the snowpack
[32]. This method is ideally applied over several diurnal cycles in a
stationary medium and hence, is not well suited to snow because it
cannot account for the transient features of the snowpack. Another
inversion approach might be to use the existing analytical solu-
tions to the initial boundary value problem that can be found in
chapter 3 of Carlslaw and Jaeger [1]. This was the initial approach
used in the present study, but it was found that the analytical solu-
tion (not shown herein) was more computationally expensive to
evaluate and numerically unstable (Gibb’s ringing near the bound-
aries) than numerical solutions to the heat equation.

The method proposed here to determine thermal diffusivity of
seasonal snow with high temporal resolution is a numerical inver-
sion of the heat equation. As mentioned previously, Brandt and
Warren [16] successfully used a one-dimensional vertical finite dif-
ference scheme with Dirichlet boundary conditions to optimize for
effective thermal conductivity from temperature measurements
obtained at the South Pole. They used a density profile determined
from a linear fit of densities measured in two snow pits separated
in time by nearly one year (January 1992 and December 1992).
Brandt and Warren [16] calculate thermal conductivity on
15 min intervals, and report 9-day averages with error bars repre-
senting conductivities with ±10% relative error.

Although Brandt and Warren [16] have shown that on average,
this type of method can successfully determine thermal conductiv-
ity for relatively cold snowpacks with little diurnal forcing, it is un-
clear that the method would be successful for typical seasonal
snow packs. Reusser and Zehe [33] used the same method as
Brandt and Warren [16], and applied it to temperature measure-
ments of seasonal snow in the eastern Ore Mountains near the
Czech-German boarder. They used a constant snow density and as-
sumed thermal diffusivity to be constant over periods of 1 day or
5 days. In this case, although the snow itself and the environmental
conditions were seasonal, the application of the method was not
representative of the morphological variations associated with sea-
sonal snow. Furthermore, Reusser and Zehe [33] present only one
result for thermal diffusivity, a ¼ 5� 10�7 m2 s�1 and reported
that 71% of the computed thermal diffusivity values were above
an upper limit of a ¼ 1� 10�6 m2 s�1, the approximate thermal
diffusivity of ice. Zhang and Osterkamp [34] presented a method
which addresses this seemingly common artifact of spuriously
high thermal diffusivities resulting from inversion methods. They
proposed a finite difference method that retains higher order terms
and thus requires at least five vertically aligned temperature mea-
surements. Using this method as well as the standard finite differ-
ence method (neglecting higher order terms) both with Dirichlet
boundary conditions, they determined thermal diffusivity from
synthetic temperature profiles for permafrost and the soil active
layer. Their comparison of these two methods showed that retain-
ing higher order terms eliminated the spurious values that arose
from the standard finite difference method. However, they also
concluded that if higher order terms are retained, the temperature
measurements used in the inversion must be much more accurate
(as high as two orders of magnitude more depending on the spatial
and temporal discretization [34]). Hence, this method may be
Please cite this article in press as: Oldroyd HJ et al. Thermal diffusivity of seaso
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impractical for use with field measurements. The present study
proposes a similar heat equation inversion method for determining
the thermal diffusivity of seasonal snow. However, we propose a
method that naturally constrains the model such the spurious val-
ues of unrealistically high thermal diffusivity (as seen by Reusser
and Zehe [33]) are reduced through the use of Neumann (heat flux)
boundary conditions.
3. Experimental set-up

A field experiment was performed at the Plaine-Morte glacier,
located in the Bernese Alps of Switzerland (46.3863� N, 7.5178�
E, 2750 m elevation) from 29 January to 4 March 2008. The glacier
is approximately 2 km wide, 5 km long and essentially flat, provid-
ing a relatively horizontally homogeneous snow field and atmo-
spheric fetch.

To obtain vertical profiles of temperature within the seasonal
snow on the glacier, a 2 m long, white (to reduce radiative effects)
Polyamide 6 (PA6) pole was equipped with type-T (±1 �C) thermo-
couples at 25 mm spacing prior to deployment. Thin circular
grooves were machined into the pole so that when mounted, the
thermocouples were flush with the surface of the pole (see the de-
tail photo in Fig. 1). The measurement junction of each thermocou-
ple is more than 10 cm from the point at which the wire emerges
from the sensor core to assure accurate representation of the snow
temperature. This pole will be referred to as the TCT probe for the
remainder of the paper. The TCT probe was connected to a data log-
ger (Campbell Scientific CR10X) by means of a 25 channel, solid-
state multiplexer (Campbell Scientific AM25T). Since the number
of thermocouples sampled was limited by the number of multi-
plexer channels, sampled thermocouple spacing varied between
40 cm and 2.5 cm, and selection was made with the intent of hav-
ing higher resolution temperature measurements near the snow
surface throughout the season (maximum spacing for those used
in the analysis was 5 cm). The positive horizontal grid lines in
Figs. 1 and 2 show the locations of the sampled thermocouples. Ini-
tially, the TCT probe was inserted vertically with the bottom 1 m in
the snow, leaving 1 m above to measure subsequent snow accumu-
lation. To maximize contact between the TCT probe and the snow,
the TCT probe was firmly inserted with one smooth motion. Ther-
mocouple temperatures were sampled every 1 min.

In addition, a meteorological measurement station was erected
at the site. Among the instruments sampled each 1 min were air
temperature and relative humidity (Rotronic MP100A), snow
height (Campbell Scientific SR50, acoustic range finder) and snow
surface temperature (Apogee Instruments IRTS-P, infrared thermo-
couple sensor). On six occasions during the experiment, snow pits
were dug and density profiles were measured by weighing samples
of a known volume (100 cm3) with a standard SLF-Davos snow
density kit. The vertical extent of the snow volume sampler is
3 cm and the snow density was sampled every 5 cm in depth.
Fig. 2 shows the density evolution for the upper snowpack as well
as snow height relative to the TCT probe. For all analyses we im-
posed a coordinate system defined by the TCT probe position.
Hence, the matter below the vertical zero is the lower portion of
the snowpack that the TCT probe does not reach, but where density
measurements were made during the first snow pit excavation.

The acoustic range finder was located a few meters from the
TCT probe and hence, could have reported slightly different snow
height than what existed at the TCT probe location. Therefore,
the snow height was also determined by inspection of the snow
temperature profiles in a manner similar to the methods of Reusser
and Zehe [33]. Fig. 1 presents an example of a 24-h period of snow
temperature profiles. Profiles are used to determine the level of the
snow surface by visual inspections over a 12 or 24-h cycle for
nal snow determined from temperature profiles. Adv Water Resour (2012),
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Fig. 1. An example of a 24-h period of snow temperature measurements for the 12th and 13th of February 2008. The horizontal grid lines indicate the relative locations of the
sampled thermocouples, which are also indicated in the TCT probe schematic. The inset figure shows a detail photo of the TCT probe.
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Fig. 2. Density evolution and snow height throughout the experiment. Gravimetric density was measured every 5 cm in depth. Since the snow depth changes over the season,
a convenient coordinate system is that of the TCT probe with z = 0 m at bottom of the probe. The horizontal grid lines indicate the relative locations of the thermocouples
which were sampled throughout the experiment, with the exception of z = �0.5 m that was included for spatial referencing of the first snow pit.
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periods of no or minor precipitation. Snow has an insulating effect
such that the temperature signals in the snow lag the thermal
forcing at the surface and temperatures in the air are much more
rapidly mixed. The surface is located near the sensor point where
the ensemble of profiles over the considered period shows the
most pronounced changes in gradient (kinks). Since this study
required an approximate estimate of snow height (we only use
thermocouples at least 10 cm below the snow surface), this snow
height estimation method was sufficient.
Please cite this article in press as: Oldroyd HJ et al. Thermal diffusivity of seaso
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4. Methodology

This study used the measured temperature profiles to deter-
mine thermal diffusivity of snow by inverting the heat equation
(Eq. 1). More specifically, the heat equation was numerically solved
in time and space given measured initial and boundary conditions
for a range of thermal diffusivities. This was done iteratively,
narrowing the range of effective thermal diffusivities until the
RMS error between the measured and predicted temperatures
nal snow determined from temperature profiles. Adv Water Resour (2012),
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was minimized. A flow chart describing the optimization routine is
presented in Fig. 3.

The spatial domain, or specific thermocouple locations used for
the modeled temperature predictions, was chosen with some com-
peting considerations. This method determines a bulk thermal dif-
fusivity over the domain simulated and so in principle, the extent
of the domain should be minimized. However, having a larger
number of temperature measurements in the domain allows for
a better description of the physics (especially where large gradi-
ents and high degrees of curvature exist), and it provides more test
points for comparing the respective RMS errors when optimizing
for thermal diffusivity. The results presented herein were deter-
mined for a domain of seven internal measurement points between
the top and bottom boundaries of the domain. On average the
internal domain size was 25 cm and the changes in snow density
over this depth range were small. The top boundary was chosen
such that it is at least 10 cm below the snow surface to avoid re-
gions where solar radiation may introduce non-linear effects to
the heat transfer [5,6].

The temporal domain used to simulate temperatures was
30 min. Hence for each time step (every one minute) where ther-
mal diffusivity is assigned, the RMS error is computed from the dif-
ference between the measured and predicted temperatures from
15 min into the past and future. Although the results are obtained
for each one-minute time step, the temporal resolution of the re-
sults is 30 min. Increasing the temporal domain naturally reduces
the variation in the results; of course it also reduces the temporal
resolution. In short, we solve for the bulk thermal diffusivity in the
layer defined by the spatial domain as a function of time.

To test the robustness of the method, the search range for ther-
mal diffusivity on the first iteration was wide and coarse, testing 30
values between 1� 10�9 m2 s�1 and 1� 10�1 m2 s�1. For each sub-
sequent iteration, the search range was narrowed to test 20 values
Fig. 3. Flow chart of the method to determine thermal diffusivity, a, from temperatu
optimization fails the t-test, and (c) a time step with successful optimization.

Please cite this article in press as: Oldroyd HJ et al. Thermal diffusivity of seaso
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between 2 points on both sides of the value of thermal diffusivity
with the lowest RMS error from the previous iteration. Iterations
continued until the RMS error was changed by no more than
1� 10�4 and the value of effective thermal diffusivity that best
represents the physical processes described by the heat equation
was subsequently assigned. Fig. 3(c) contains an example of the fi-
nal iteration for a single time step showing a clear, sharp RMS min-
imum associated with a particular thermal diffusivity.

The numerical predictions of temperature, or modeled temper-
atures, were determined by using MATLAB’s partial differential
equation (PDE) solver, pdepe, to solve the heat equation. This func-
tion solves a system of ordinary differential equations (ODEs), inte-
grated in time, that result from the spatial discretization of the
original PDE [35]. The initial condition was the first measured tem-
perature profile in each 30-min time segment, linearly interpolated
to a profile with twice the original resolution (from 7 original mea-
surement points to 14 points in the profile). Prior to calculation of
the RMS error, simulated temperatures were interpolated back to
the original spatial resolution of the measurements.

Neumann (heat flux) boundary conditions were used at the top
and bottom of the domain. The Fourier heat fluxes at the bound-
aries were determined using finite differences of the temperature
nodes on the internal boundaries and the adjacent external tem-
perature nodes to calculate the respective temperature gradients,
as shown in Fig. 4. All temperatures used are temperatures within
the snowpack, not air or surface temperatures. Neumann boundary
conditions are critical to this method because they increase the
model’s sensitivity to thermal diffusivity, constraining it such that
spurious spikes of unrealistically high thermal diffusivity are re-
duced. This is achieved naturally since the simulated temperature
profiles are not artificially constrained at the endpoints as is in the
case of Dirichlet type boundary conditions. Since the solution is
unconstrained, the trivial, steady-state solution of the heat
re measurements. Inset figures include (b) an example of a time step when the

nal snow determined from temperature profiles. Adv Water Resour (2012),
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Fig. 4. Schematic of the initial-boundary value problem used to predict temperature in space and time for the time step shown. It shows the 7 internal thermocouples used
for the time step and the two thermocouples at each edge of the domain used to determine the Neumann (heat flux) boundary conditions. The inset figure shows a two-day
time series of the 7 internal thermocouples used for this period.
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equation is excluded and consequently, the spuriously high values
of diffusivity reported in other studies are avoided. The use of Neu-
mann boundary conditions requires at least three measurements
in the temperature profiles.

A further constraint on the model was applied for each time
step by implementing a t-test on the initial search range for effec-
tive thermal diffusivity (the first optimization iteration). The t-test
ensures that the RMS error associated with the minimum is statis-
tically different from at least three of the four surrounding points
(for example, when plotting RMS error versus thermal diffusivity).
This step tends to eliminate spurious points of unrealistically low
diffusivity by eliminating scenarios when optimization is at-
tempted over a ‘‘flat’’ searching range, where no statistically clear
minimum exists. Fig. 3(b) contains an example of a time step when
the t-test indicated statistical insignificance, and thermal diffusiv-
ity was indeterminate.

5. Results and discussion

Time-resolved thermal diffusivities of seasonal snow deter-
mined from methods described in Section 4 are presented in
Fig. 5 along with a line indicating the overall median value
(a ¼ 2:5� 10�7) of thermal diffusivity. The overall mean value of
thermal diffusivity (a ¼ 3:9� 10�7) is slightly higher. The results
are shown with the density-based, empirical parameterizations
for thermal conductivity [W m�1 K�1] of Sturm et al. [15],

jeffStu ¼0:138�1:01qþ3:233q2 f0:156 g cm�3
6q60:6 g cm�3g

jeffStu ¼0:023þ0:234q fq<0:156 g cm�3g;
ð3Þ
Please cite this article in press as: Oldroyd HJ et al. Thermal diffusivity of seaso
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Calonne et al. [12],

jeffCal
¼ 2:5� 10�6q2 � 1:23� 10�4qþ 0:024 fq ½kg m�3�g; ð4Þ

Aggarwal et al. [26]

jeffAgg
¼ 0:00395þ 0:00084q� 1:7756� 10�6 q2

þ 3:80635� 10�9 q3 fq ½kg m�3�g; ð5Þ

and Yen [27]

jeffYen ¼ 2:22362q1:885 fq ½Mg m�3�g: ð6Þ

The densities that were measured during the six snow pit excava-
tions and the specific heat of ice, Cp ¼ 2090 J kg�1 K�1, were used
to calculate the parameterized thermal diffusivities according to
the above equations for thermal conductivity. In addition, indicators
of the approximate 95% confidence interval from Sturm et al. [15]
density-based parameterization are also shown.

There is a high degree of variability in the thermal diffusivity
time series. Despite the variability, the majority of the results are
comparable to the density-based empirical parameterizations,
and are within the bounds of the 95% confidence interval reported
in Sturm et al. [15] parameterizations. Furthermore, only 3.8% of
the thermal diffusivities are above a ¼ 1� 10�6 m2 s�1, the
approximate thermal diffusivity of ice used as a theoretical upper
limit by Reusser and Zehe [33]. Recall Reusser and Zehe [33] used
a similar inversion technique, but with Dirichlet boundary condi-
tions, and reported 71% of their thermal diffusivities above this
limit. To quantify the improvement that imposing Neumann
boundary conditions brought to the results, we also performed
an inversion imposing Dirichlet boundary conditions. In the
nal snow determined from temperature profiles. Adv Water Resour (2012),
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Dirichlet case for the same temperature measurements, 17% were
above a ¼ 1� 10�6 m2s�1, and the diffusivity values were spread
over a range of 10 orders of magnitude. Hence using Neumann
boundary conditions provides a significant improvement to
numerical inversion techniques for determining thermal diffusivity
from temperature measurements with no extra computational
expense.

The extreme values of thermal diffusivity in Fig. 5 and the rapid
rate of change toward these extremities are not likely representa-
tive of physical changes in the thermal properties of the snow. To
better understand this variability, additional analyzes were under-
taken for a segment of the temperature data between 22 and 28
February 2008. The first such analysis explores the influence of
the spatial domain to determine if it was too large to be character-
ized by a single value of thermal diffusivity for each time step. To
address question of domain size, we use the same methodology to
determine thermal diffusivity, but in a tri-layered scheme by divid-
ing the original domain into three smaller domains of three tem-
perature measurements each: top, middle and bottom. Recall
that the thermal diffusivities reported in Fig. 5 were determined
using an internal domain of 7 consecutive thermocouples (starting
from 10 cm below the surface and increasing in depth). Fig. 6 show
how the thermal diffusivities from the tri-layered scheme compare
to those determined over the larger domain. The correlation plots
(Figs. 6) show that the temperature signal in the top portion of
the domain strongly influences the thermal diffusivity determined
over the full domain because temperatures closer to the surface
experience more change in time and exhibit higher gradients. All
subdomains also show high degrees of variability and hence, the
size of the spatial domain had little influence on the variations in
the results. The tri-layer analysis also shows a trend of increasing
thermal diffusivity with snow depth, which may be expected since
thermal conductivity generally increases with snow density and
density generally increases with snow depth.

The second analysis explores the possibility that uncertainty in
the temperature measurements (type-T thermocouples: ±1 �C)
contributes to the high variability of the determined thermal
diffusivities. Since this method depends on the relative accuracy
Please cite this article in press as: Oldroyd HJ et al. Thermal diffusivity of seaso
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between temperature measurements (e.g. @T=@t and @2T=@z2 in
the heat equation), it makes sense to assess the effects of noise
in the temperature measurements. This was done using the same
method and domain used to obtain the results in Fig. 5, but by add-
ing three different levels of Gaussian noise to the temperature
measurements, indicated by the standard deviation of the noise,
r: r = 0.25 �C (DTerror;max � 1 �C), r = 0.33 �C and r = 0.70 �C. Fig. 7
shows that noise in the temperature signal has little change in
the degree of variability of the results. However, this analysis
shows that noise in the temperature signal tends to cause an in-
crease in the resulting thermal diffusivity. This is likely due to
the need for increased diffusion to smooth out the noise in the
temperature signal.

The third analysis explores the method’s sensitivity to spatial
discretization (or spatial resolution of temperature measurements)
by using the same spatial domain size, but solving with half of the
thermocouples used in the original results. Fig. 8 shows that
decreasing the spatial discretization of the temperature measure-
ments greatly increases the estimated thermal diffusivity, by al-
most two orders of magnitude in this case. Under-resolving the
temperature profile leads to the underestimation of the curvature
in the temperature profiles. Since the curvature is described math-
ematically by the @2T=@z2 term in the heat Eq. (1), the thermal dif-
fusivity must increase to balance the equation. Decreasing the
spatial resolution also increases the chances of excluding the peak
in the temperature profile (refer to Fig. 1). This analysis also shows
that decreasing the spatial resolution also tends to slightly increase
the range of variability of the results, but not to the degree to ex-
plain the variability in Fig. 5.

The final study explores the temporal domain used to generate
the modeled temperatures. First, spectral analysis was performed
on the time series of thermal diffusivity presented in Fig. 5. It
showed timescales smaller than 30 min exhibit characteristics that
are typically attributed to noise, thus larger time domains should
tend to smooth variations. Sharp spectral filtering at the 30 min
time scale made almost no difference in the thermal diffusivity
time series (data not shown). We also performed test cases of 2,
3, 6 and 12-h temporal domains for which the variations in the
nal snow determined from temperature profiles. Adv Water Resour (2012),
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Fig. 6. Results of the domain size analysis carried out for measurements from 22 to 28 February 2008. (a) Comparison of the PDFs for thermal diffusivity obtained using the
full (7-point) spatial domain and three sublayers (3-point domains each) within the full domain. (b) Correlation of thermal diffusivity from the full domain and the top layer
of the domain, (c) the middle layer of the domain and (d) the bottom layer of the domain.
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resulting thermal diffusivities progressively decreased. However,
the spikes and dips seen in Fig. 5 that approach �1� 10�6 and
�1� 10�8 persisted. By reducing the small-scale temporal variabil-
ity in these test cases, we were able to match the persistent ex-
tremes to times when the curvature in the temperature profiles
switches concavity. Over a typical diurnal cycle, this occurs twice
as the uppermost thermocouples, which show greater daily tem-
perature change than those below it, switch from colder than those
below to a warmer than those below, or visa versa (refer to Fig. 1
and inset of Fig. 4). This method appears incapable of solving for
thermal diffusivities during these time periods, at least for tempo-
ral domains up to 12 h.

Excluding the extreme values of thermal diffusivity produced
when the temperature profiles switch concavity, the small scale
temporal variations in thermal diffusivity could not be attributed
(to the ability that the available information affords) to error in
the temperature measurements, discretization error or to bulk
layer approximations. This level of variability on 30 min time
scales is not likely representative of time scales associated with
changes of snow microstructure. The possibilities that this type
of variability can be explained by non-diffusive forms of heat
transfer such as wind pumping, convection, or radiation, remain
Please cite this article in press as: Oldroyd HJ et al. Thermal diffusivity of seaso
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open questions for future research. Since this method allows for
high temporal resolution, it may prove useful in such studies, as
well as studies regarding the expected temporal changes of ther-
mal properties of snow.

A key outcome of these analyses is that the spatial resolution of
the temperature measurements (or model discretization) has a
greater effect on the resulting thermal diffusivities than noise in
the temperature measurements. Hence, for future use of inver-
sion-type techniques researchers should maximize the spatial res-
olution of the temperature measurements, as it will aid in
adequately describing the curvature in the temperature profile
and in capturing the peaks in the temperature profiles. In addition,
high spatial resolution in the temperature measurements will pro-
vide more options for determining thermal diffusivity in various
layers of the snowpack.

Use of this methodology to study the spatial variability of ther-
mal diffusivity in large scale settings (for example, on the hydro-
logic catchment scale) is feasible. The proposed measurement
technique, the TCT probe, was suitable, but not without flaws.
For example, a snow temperature measurement technique which
can guarantee no disruption to the surrounding snow, no addi-
tional heat conduction (through the poles or wires) and that the
nal snow determined from temperature profiles. Adv Water Resour (2012),
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measurements remain at a fixed location, could potentially im-
prove this type of technique, as well as other studies where snow
temperatures are measured. However, since our results compare
well to widely-used, density-based parameterizations we believe
these factors had little effect on our results.
6. Conclusions

Thermal diffusivity is an important thermophysical property
that governs the heat transfer in snow. We have proposed a tech-
nique to obtain thermal diffusivity with high spatial and temporal
resolution. The method uses temperature measurements for the
initial condition and Neumann (heat flux) boundary conditions,
and numerically solves the heat equation to iteratively optimize
Please cite this article in press as: Oldroyd HJ et al. Thermal diffusivity of seaso
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for thermal diffusivity. We found that using Neumann boundary
conditions reduces the seemingly common problem of spurious,
unrealistically high values of thermal diffusivity that arise when
Dirichlet boundary conditions are used. Since the Neumann
boundary conditions impose a flux instead of a temperature (as
in Dirichlet boundary conditions), the modeled temperatures are
not artificially constrained at the boundaries. This provided a sig-
nificant improvement over the results using Dirichlet boundary
conditions, in which thermal diffusivities were spread over 10 or-
ders of magnitude. In addition, the new method imposes a statisti-
cal t-test ensuring the measured temperature profiles contain
enough information such that the optimal thermal diffusivity is
unique. An added consequence of including the t-test is that spuri-
ously low values of thermal diffusivity are reduced.

The majority of the resulting thermal diffusivities compare well
to published density-based empirical parameterizations. However,
during time periods where the temperature profiles switch concav-
ity this method behaves poorly and produces unreasonably high/
low results. With the exception of these spikes/dips, variability at
30 min time scales may indicate the presence of non-diffusive heat
transfer processes such as wind pumping or convection. This meth-
od could assist in future studies of these phenomena. Using longer
time intervals for the predicted temperatures naturally smooths
out some of the variation in the results. However, heat transfer
mechanisms and effects due to changes in the snow structure that
occur on shorter time scales will be damped out.

An important result of this study is that high spatial resolution
in the temperature measurements (leading to denser discretization
in the model) appears to be the most significant parameter in using
this method (and most likely other inversion methods) to estimate
thermal diffusivity. Lower spatial resolution will tend to result in
an erroneously higher thermal diffusivity to compensate for the re-
duced curvature in the temperature profiles. In general, research-
ers should be aware of this sensitivity for future uses of
inversion techniques.
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