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Abstract. We propose HELEN, a new code-based public-key cryptosystem whose security is based on the
hardness of the Learning from Parity with Noise problem (LPN) and the decisional minimum distance problem.
We show that the resulting cryptosystem achieves indistinguishability under chosen plaintext attacks (IND-CPA
security). Using the Fujisaki-Okamoto generic construction, HELEN achieves IND-CCA security in the random
oracle model. We further propose concrete parameters.
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1 Introduction

In this paper, we present HELEN a new public-key cryptosystem, whose security relies on the hardness of the Learning
from Parity with Noise problem (LPN) and the minimum distance problem which are both NP-hard.1

We encrypt a duplicated bit b by hiding it using a random codeword as well as a random biased noise vector. The
bits of this mask corresponds to queries to an LPN problem with hidden vector r. For decryption, the random linear
codeword is removed by multiplying the ciphertext with h. The noise is removed by majority logic decoding.

Related Work. A private-key encryption scheme named LPN-C was proposed by Gilbert, Robshaw and Seurin [15].
LPN-C was shown IND-CPA secure. The construction of HELEN presents some similarities with the trapdoor cipher
TCHo [3,11] by Aumasson et al. which similarly encrypts a message by adding some random biased noise and some
contribution from a linear code.

More closely related cryptosystems were proposed. Gentry et al. proposed an LWE-based cryptosystem [14] in
which users share a common random matrix and whose private key (resp. public key) consists in a random error
vector (resp. its syndrome). Extensions to p = 2 have been open so far. Our procedure is different from theirs in
the sense that we hide a low-parity check equation in a matrix so that this matrix looks random, whereas they
pick a totally random matrix. Similarly, Alekhnovich proposed a scheme based on the Average-nearest-codeword
conjecture [1]. Applebaum et al. proposed a scheme, which is very similar to ours but which uses sparse matrices
instead of random ones. Thus, the security reduces to the less-studied 3LIN problem instead of LPN. This problem is
similar to the LPN problem except that queries are done with vectors with exactly 3 ones instead of random vectors.
Also, the authors do not provide any concrete parameters [2]. So, to the best of our knowledge, we propose for the
first time a concrete PKC whose security is based on LPN.

2 Preliminaries

We denote the Hamming weight of a bitstring x by wt(x). We write x
U
←− D if an element x is drawn uniformly at

random in a domain D. We denote the Bernoulli distribution with parameter p by Ber(p).We write Snp the sequence of
n independent Bernoulli trials with parameter p. We write Snp (r) when we need to specify the seed r used to generate
this sequence. Given a permutation σ ∈ Sn, the group of all permutations over n elements, and given h ∈ {0, 1}

n
,

we write σ ⋆ h when we apply σ on the bits of h. Given a k × n matrix G, we write σ ⋆ G when we apply σ on the
columns of G.

The Learning from Parity with Noise (LPN) problem has been well studied both in learning theory and in
cryptography. The goal of this problem is to find out an unknown vector u, given some noisy versions of its scalar
product with some known random vector.

1 HELEN stands for Hidden Equation for Linear Encryption with Noise.
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Definition 1 (LPN Oracle). An LPN oracle Πu,p for a hidden vector u ∈ {0, 1}
k
and 0 < p < 1

2 is an oracle
returning an LPN vector, i.e., vectors of the form

〈a
U
←− {0, 1}

k
, a · u⊕ ν〉 ,

where, ν ← Ber(p).

Problem 2 (Learning from Parity with Noise Problem). The (k, p)-Learning from Parity with Noise Problem ((k, p)-
LPN) consists, given an LPN Oracle Πu,p, to recover the hidden vector u.

We say that an algorithm A (t, n, δ)-solves the (k, p)-LPN problem if A runs in time at most t, makes at most n
oracle queries and

Pr
[

u
U
←− {0, 1}k : AΠu,p(1k) = u

]

≥ δ .

The LPN problem is NP-Hard [4] and no good algorithm is known for the average case.
The LPN problem has also a decisional form. The problem is the following: let Uk+1 be an oracle returning random

k + 1-bit vectors. Then, an algorithm A (t, n, δ)-solves the (k, p)-decisional LPN problem (D-LPN) if A runs in time
at most t, makes at most n oracle queries and

∣

∣

∣
Pr

[

u
U
←− {0, 1}k : AΠu,p(1k) = 1

]

− Pr
[

AUk+1(1k) = 1
]

∣

∣

∣
≥ δ .

It is shown that D-LPN and LPN are equivalent [16,20].
The best algorithms solving the LPN problem are improvements of the BKW algorithm [6,18,12]. They have

complexity 2O(k/ log k).
In our security proof, we will also need to bound the complexity of finding a low-weight parity-check equation in

a random linear code which is the same as finding a low-weight codeword in the dual code. This problem of finding a
low-weight codeword is also called the minimum distance problem.

Problem 3 (Minimum Distance Problem). The (n, k, w)-decisional minimum distance problem is the following. Given
an (n− k)× n matrix H and given w ∈ N, w ≥ 0, is there a non-zero x ∈ F

n
2 with wt(x) ≤ w such that xHt = 0?

The computation counterpart of this problem consists in finding such an x.

Many algorithms solving this problem were developed, e.g. [17,22,7,8,9,10]. A lower-bound on its complexity is pro-
posed in [5].

3 The Cryptosystem

We show how to encrypt one single bit b. The scheme can easily be extended to multiple bits using an error-correcting
code. Our message space isM = {0, 1}. We denote the cryptosystem by HELEN.

HELEN uses the following parameters which are described below: n, k, p, w, c, and H. We encode first our message
bit b with a binary [n, 1]-error-correcting code C1, for n ∈ N. The goal of this code is to be able to recover b when errors
occur. Let c ∈ {0, 1}n be the generating matrix of this code (in fact it is a vector). We encode b as b · c. This message
is hidden by a random codeword from a random binary linear [n, k]-code C2 which has a low-weight parity-check
equation h ∈ {0, 1}n and a generator matrix G ∈ {0, 1}k×n. The parameter k ∈ N determines the dimension of the
codeword space in C2 and needs to be tuned so that the system has the required security. The parity-check equation
h will be the private key of our system while G will be the public key. Since h is a parity check equation of the code
generated by G, we have h · Gt = 0. We denote the weight of h by w and the set of all possible h by H. We require
H to verify the following property: there should exist a subgroup P of Sn such that for any σ ∈ P and any h ∈ H,
σ ⋆h ∈ H. The group P defines a group action on the set H. We require P to be a transitive group action, i.e, for any
two h, h′ ∈ H, there exists a σ ∈ P such that σ ⋆ h = h′. We require also that h · ct = 1 for all h ∈ H. As an example,
H can be the set of all vectors of odd weight w and dimension n and c = (1, . . . , 1).

3.1 Encryption

A bit b ∈ M is encrypted as BEnc(G, b; r1‖r2) = b · c ⊕ r1G ⊕ ν, where c is the generator vector for C1, G is the
generator matrix for C2, r1 ∈ {0, 1}

k is random and ν := Snp (r2), i.e., it is the n first bits generated by the source Sp
with random seed r2. The ciphertext space is, thus, C = {0, 1}n. The complexity of encryption is O (kn).
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3.2 Decryption

We define b′ := BDec(h, y) = h · yt. Thus, given a ciphertext y ∈ {0, 1}n, we recover the original message by first
removing the noise due to C2. This is done by applying h on y since h · Gt = 0. Hence, h · yt = (h · ct · bt) ⊕ ν′, for
ν′ := h · νt a noise with

Pr[ν′ = 1] =
1− (1− 2p)w

2
=: Perror .

So BDec(j,BEnc(G, b)) = b with probability 1+(1−2p)w

2 . This implements a BSC with parameter Perror.

Note that it is necessary that h · ct = 1 for all vector h ∈ H if one wants to be able to recover b. When H includes
all vectors of weight w, this condition is equivalent to setting c to the all-one vector and w to an odd number. Note
that the complexity of decryption is O (n).

3.3 Key Generation

We need now to generate a code that is indistinguishable from a random code but that contains a known secret
parity-check equation h of low weight. Let w be the required weight of h and let H be the set of all possible private
keys. We propose the following key generation scheme.

1. Draw a random vector h of length n in the set H. This vector will be the private key.

2. Let 0 < u ≤ n be any index of h such that hi = 1 , e.g., max {i : hi = 1}.

3. Let gij ← Ber( 12 ), for 1 ≤ i ≤ k and 1 ≤ j ≤ n, j 6= u.

4. Let giu =
∑

1≤j≤n
j 6=u

gij for 1 ≤ i ≤ k, where the sum is taken over F2.

5. Return the matrix G := [gij ]1≤i≤k

1≤j≤n

and the vector h.

The resulting public key size is k × n bits, since we have to store the matrix G. The private key is w log n bits long.
The key generation complexity is O (k × n).

3.4 Security

We will reduce the semantic security of our scheme to the LPN problem and the low-weight codeword problem when
H contains all the vectors of weight w.

Theorem 4. Let ε0 := (#H−1)(#H+2)
2k+1 . If the (n, k, w)-decisional minimum distance problem is (t1, ε1)-computationally

unsolvable, and if the (k, p)-decisional LPN problem is (t2, ε2)-hard, then there exists a constant τ such that our cryp-
tosystem is (min{t1, t2 − τkn}, 2(ε0 + ε1 + ε2)) -IND-CPA-secure .

The scheme can easily be made IND-CCA-secure using standard techniques [13].

4 Selection of Parameters

To compare different parameters, we will normalize them with the capacity of a binary symmetric channel (BSC) with
parameter Perror. Recall that the capacity of the BSC is C := 1−H2(Perror) with H2(p) := −p log(p)−(1−p) log(1−p).
We normalize by this factor, since we know that such a rate is achievable by the channel coding theorem. This gives
us a good way of comparing the parameters.

We propose two sets of parameters. Some which minimizes the n/C ratio to minimize the number of transmitted
bits and some with a smaller kn/C ratio to minimize the encryption/decryption complexity. We give in Table 1
concrete parameters for different security parameters λ. We believe that breaking our scheme requires a complexity
of O

(

2λ
)

.

We also computed asymptotic parameters for our system.

k = Θ
(

λ2
)

n = Θ
(

λ4
)

w = Θ (λ) p = Θ (1/λ) .
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Table 1. Parameters for our cryptosystem

λ k n w p kn n/C kn/C

64 4 500 18 000 33 0.01 226.3 216.4 228.6

64 2 200 16 000 23 0.02 225.0 217.1 228.2

80 5 600 28 000 35 0.01 227.2 217.2 229.7

80 2 800 27 000 25 0.02 226.2 218.1 229.6
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