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Abstract

This thesis is at the crossing point of different fields: Quantum Magnetism which studies

the collective properties of low spin systems, Neutron Scattering a powerful technique that

enables to probe the microscopic properties of matter, and High Pressure where the use

of ultra hard materials allows discoveries in a previously unexplored range. Combining

these, we shall search for novel states in magnetic materials under extreme conditions.

The extreme conditions are the quantum spin s=1/2, the low dimensionality, the low

temperatures, and the high pressures. The material is the Shastry-Sutherland compound

SrCu2(BO3)2, a model quantum magnet which has attracted considerable interest over

the last decade.

Three main results will be presented:

1) An unusual temperature dependence observed in SrCu2(BO3)2 where the excitation

spectrum measured by inelastic neutron scattering disappears into a flat continuum at

surprisingly low temperatures. We will quantify the damping of the triplet excitations

and give a microscopic picture which involves the simultaneous presence of two triplets

in the same region for the decay to occur.

2) The tuning of SrCu2(BO3)2 out of its ‘exact dimer’ ground state by application of

hydrostatic pressure to a new gapped phase, which we identify as a ‘plaquette’ singlet.

This occurs around ∼ 18 kbar and brings a decisive experimental evidence to a long

debated question concerning the existence and the nature of the ‘intermediary phase’ in

the Shastry-Sutherland model. Increasing the pressure even further leads the compound

to order antiferromagnetically at 40 kbar with a high Neel temperature TN=118 K.

3) The study of the crystal structure of SrCu2(BO3)2 as a function of pressure and tem-
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vi ABSTRACT

perature. We will present the temperature dependence of the structure down to T=1.6 K.

It will be shown that the magnetic properties affect the structure upon entering the spin

gap regime. The crystal structure will also be solved at 37 kbar and 66 kbar. At the

higher pressure the compound is in a monoclinic phase that brings it beyond the original

Shastry-Sutherland model.

Finally this thesis also provides a brief overview of the high pressure neutron scattering

technique.



Résumé français

Cette thèse se situe au croisement de différents domaines: le magnétisme quantique qui

étudie les propriétés collectives de systèmes à petit spin, la diffusion de neutrons, une

technique puissante qui permet de sonder les propriétés microscopiques de la matière et

les hautes pressions par lesquelles, grâce à l’emploi de matériaux ultra durs, l’on peut

accéder à des domaines encore inexplorés. En les combinant, nous allons rechercher de

nouveaux états dans les matériaux magnétiques sous conditions extrêmes. Les conditions

extrêmes sont le spin quantique s=1/2, la basse dimensionalité, les basses températures et

les hautes pressions. Le composé étudié est SrCu2(BO3)2, un model d’aimant quantique,

réalisation du réseau de Shastry-Sutherland, qui a reçu un attrait considérable aucours

de cette dernière décennie.

Les trois résultats principaux qui seront présentés sont:

1) Une dépandance en température inhabituelle du SrCu2(BO3)2 où l’excitation mesurée

par diffusion inélastique de neutrons disparâıt dans un continuum sans structure à des

températures étonnament basses. Nous allons quantifier l’amortissement des triplets et

en donner une image microscopique qui implique la présence simultanée de deux triplets

dans une même région pour que l’amortissement se produise.

2) Le ‘tunning’ des couplages magnétiques du SrCu2(BO3)2 par l’application de pression

hydrostatique. L’état fondamental de dimer ‘exact’ est perdu aux alentours de ∼18 kbar

au profit d’une nouvelle phase que nous identifions comme un état singulet sur une plaque-

tte. Ce résultat apporte une contribution décisive à la question longuement débattue de

l’existence et de la nature d’une phase intermédiaire dans le model de Shastry-Sutherland.

À plus haute pression, 40 kbar, le système entre finalement dans une phase d’ordre anti-

ferromagnétique avec une haute température de Néel TN=118 K.

vii



viii RÉSUMÉ FRANÇAIS

3) L’étude de la structure cristalline du SrCu2(BO3)2 en fonction de la pression et de

la température. Nous présentrons la dependance en température de la structure jusqu’à

T=1.6 K. Les propriétés magnétiques affectent la structure dans le régime du gap de

spin. La structure cristalline est également résolue à 37 kbar and 66 kbar. À 66 kbar le

système est dans une phase monoclinique qui ne peut plus être décrite par le modèle de

Shastry-Sutherland.

Finallement cette thèse présentera également une introduction à la technique de diffusion

de neutron sous haute pression.



Chapter 1

Introduction

1.1 Quantum magnetism and frustrated magnetism

Magnetism in condensed matter is the manifestation of the interaction of electronic and

nuclear magnetic moments in bulk solid and liquid materials. Magnetism originating form

the nucleus leads to effects orders of magnitude smaller than its electronic counterpart,

and is usually studied at ultra low temperatures or by resonant technics such as Nu-

clear Magnetic Resonance. Electronic moments have two origins: the intrinsic spin and

the orbital angular momentum of the charged particle. Often, the orbital moments are

quenched due to crystal fields or can be combined with the intrinsic spin to form a total

spin angular momentum.

Magnetism in condensed matter studies these interacting spin systems. The spins in-

fluence each other, not so much trough a direct magnetic interaction, but through the

electrostatic repulsion of electrons combined with the quantum mechanical requirements,

in particular the Pauli exclusion principle. As a result, the interacting spins arrange them

selves to minimize the energy in simple or complex patterns, ranging from ferromagnets,

antiferromagnets, helixes with uncommensurate order, disordered singlets, to more exotic

crystal and resonating valence bonds states. The quantum mechanical effects are en-

hanced for small values of the spin, the archetype of quantum magnetism being the spin

s = 1/2 systems. In real materials the spin s = 1/2 systems are often realized in crystals

containing Cu2+ ions connected trough oxygen. The Cu2+ carries the s = 1/2 spin from

1



2 CHAPTER 1. INTRODUCTION

its 3d9 electronic configuration, and the oxygen orbitals provide the paths for the Cu2+

ions to interact with each other; this is known as indirect exchange interaction. These

copper oxides are also the fundamental units in high temperature superconductor (HTC

cupprates). Some less frequent realization of s = 1/2 quantum magnets are obtained with

Ti3+ or V4+ ions.

Additional interesting effects are obtained when reducing the dimensionality of the quan-

tum magnet by synthesizing materials in which the magnetic ions form well isolated planes

(2D magnets), chains (1D magnets) or ladders (’between’ 1D and 2D). As hinted by the

Mermin-Wagner theorem, thermal fluctuations in lower dimensions will prevent long range

ordering and favor disordered arrangement. Very generally speaking, 1D systems will tend

to have no magnetic long range order (LRO) even at T=0 K while in 3D systems, LRO is

often achieved at finite temperature. For 2D, the existence of LRO is strongly dependent

on the details of the lattice and the relative values of the interactions. The calculation

of the ground state energy, and of the excitation spectrum as well as the understanding

of the role of quantum fluctuations remain quite challenging. The s = 1/2 square lattice,

for instance, is strongly believed to exhibit an antiferromagnetic ground state but the

order parameter, the staggered magnetization, is reduced by about 40% compared to the

classical case [1].

The situation described above is further complicated when the individual requirements

for the magnetic couplings, as having the spins parallel or anti-parallel for ferromagnetic

or antiferromagnetic interactions, cannot be simultaneously satisfied on a given lattice ge-

ometry. The system is then said to exhibit frustration. One very simple example involves

three classical Ising spins on the corners of a triangle interacting antiferromagnetically so

that the elementary interaction tends to bring them anti-parallel to each other. At least

one of the bonds cannot be anti-parallel and is therefore frustrated, not satisfying the

local magnetic constraint. From the 8 possible spin configurations, 6 have the minimal

energy1 and are thus ground states. The high ground state degeneracy, caused by the

competition among the interactions, is an essential feature in the physics of frustrated

magnetism. The Kagome lattice, where triangles share corners but not edges, so that

1They are two possibilities for the energies: all spins pointing in the same direction (2 cases) and one

spin anti-parallel to the two others (6 cases).
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fixing the orientation of the spin in one triangle doesn’t fix it for the neighboring ones,

has infinite2 classical ground state degeneracy and is one of the most strongly frustrated

simple geometries. The Shastry-Sutherland lattice is another example in which the ex-

istence of a diagonal next-nearest neighbor interaction causes the frustration. They are

shown in Fig.1.1 together with unfrustrated topologies as the square lattice and the CaVO

(modeling CaV4O9). Frustration can also occur in 3D as for the pyrochlore lattice and

in 1D only with next nearest neighbors interactions. It is also worth mentioning that

the concept of geometrical frustration has not only been discussed in magnetism. For in-

stance, it is used in relation to structural arrangements [2] where a definition given reads

‘A local condition is unable to lead to a simple pattern for an extended system’.

  

?

a)

b)

c)

d)

e) f)

Figure 1.1: (a) Triangular, (b) Kagome, (c) Shastry-Sutherland lattices. (d) Frustrated

interaction for three antiferromagnetically coupled spins on a triangle. (e) Square, (f)

CaVO lattices. (a-c) are highly frustrated, while (e-f) are not.

The existence of frustration in a spin system very often leads to a different physics with

some peculiar behavior as for instance, the ‘order by disorder’ phenomena [3]. Another

unusual feature is the existence of ‘algebraic order’ where the correlation between the

orientation of two spins does not decay exponentially with the distance as is normally the

case in disordered systems, but decays much more slowly according to a power law. In

frustrated systems, the role of quantum fluctuations is important and since the number

2i.e. the degeneracy increases exponentially with the number of sites.
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of classical ground states is very large, it is often not possible to estimate or study the

fluctuations around all of them. Unlike the case where there is a unique classical ground

state, so that fluctuations may be expected to slightly modify it, the knowledge of the

classical spin limit is often of no help for inferring quantum properties in frustrated sys-

tems. As a result, a wide range of interesting physics is displayed by frustrated quantum

magnets and a large variety of exotic ground and excited states are found.

This thesis is devoted to the study of some particular aspects of quantum magnetism

related to the frustrated s = 1/2 Shastry-Sutherland model. We shall experimentally

study the peculiar properties of SrCu2(BO3)2, a physical realization of this model, as a

function of temperature and pressure. We will describe its finite temperature behavior,

the high pressure tuning across different quantum phases and the relationship between

the structural and the magnetic properties.

The structure of the thesis is the following:

The next two chapters will first present the theoretical model and its physical realiza-

tion (Chap. 2) as well as an introduction to the principal technics used for that research:

neutron scattering and high pressure (Chap. 3). The experimental results will then be pre-

sented : the finite temperature properties of the frustrated Shastry-Sutherland compound

SrCu2(BO3)2 (Chap. 4), The modification of the magnetic properties of SrCu2(BO3)2

through application of hydrostatic pressure (Chap. 5) and the relation between the atomic

structure and the magnetic properties in SrCu2(BO3)2 as a function of temperature and

pressure (Chap. 6).



Chapter 2

Models and materials

2.1 Models

The spin is understood as an intrinsic property of elementary particles, as is their mass or

their electrical charge. It bears some resemblance to a rotation of the particle around its

axis, hence the name ‘spin’. However the physical properties of the spin are peculiar and

often counter intuitive. They can be described mathematically by an appropriate angular

momentum quantum algebra. The spin is represented by a vectorial Hermitian operator

~S = (Sx, Sz, Sz). The three components of ~S do not commute, but they do with S2:

[Sx, Sy] = i~Sz

[Sy, Sz] = i~Sx

[Sz, Sx] = i~Sy

[S2, Sj] = 0, j = x, y, z (2.1)

so that there exists a basis |s,m〉 that diagonalizes S2 and one of the components, con-

ventionally Sz, simultaneously.

S2|s,m〉 = ~2s(s+ 1)|s,m〉

Sz|s,m〉 = ~m|s,m〉 (2.2)

5



6 CHAPTER 2. MODELS AND MATERIALS

The two quantum numbers s and m are such that s is integer or half integer and m can

range from −s to s in unit steps. s is fixed by the nature of the particle bearing the spin,

half integer for Fermions and integer for Bosons or by the rules of spin addition in the case

of composite particles. m gives the length of the spin component along a particular axis,

and it can vary to minimize the energy for a given situation. For instance electrons have

s = 1/2 and m = (−1/2 or +1/2), the corresponding states |1/2,±1/2〉 are then symbolically

represented by | ↑〉 and | ↓〉, i.e. ‘spin up’ and ‘spin down’ respectively. When filling

electronic shells in atoms ‘spin up’ and ‘spin down’ states will alternate so that electrons

can stay on the same lower energy orbital without violating Pauli’s exclusion principle,

and, in antiferromagnets, ‘spin up’ and ‘spin down’ states may alternate to minimize

the total energy as is the case on the square lattice. Finally the length of the spin

‖~S‖ =
√
S2 = ~

√
s(s+ 1) is always different from ~s the maximal length along one axis

because of the quantum fluctuations arising from the uncertainty principle. The relative

difference is maximal in the s = 1/2 case. As the spin is quantized in units of the reduced

Planck’s constant ~, it will be more convenient for most of the following to use a unit

system such that ~=1.

2.1.1 The Shastry-Sutherland Model

One basic model used in quantum magnetism is the Heisenberg model. In this model

spins are treated as three dimensional objects obeying the quantum mechanical rules for

angular momenta briefly summarized above and they couple to each other by exchange

interactions labeled J . Usually the couplings are strong only among close enough spins1

and calculations are restricted to nearest neighbors (nn) and next nearest neighbors (nnn).

For two interacting spins indexed by i and j the interaction energy is given by the product

of two spin operators ~Si~Sj and scales with the strength of the coupling Jij. The Heisenberg

model generalizes this to an arbitrary number of spins:

H =
∑
i,j

Jij ~Si~Sj (2.3)

1The extension of electronic orbitals decays exponentially at long distances.
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where H is known as the Heisenberg hamiltonian. Variants of the model are obtained

by reducing the dimensionality of the lattice where the moments are placed, the dimen-

sionality of the spins them self or by introducing anisotropies that will energetically favor

some spin orientations. Finding an exact solution for a given configuration is far from

trivial considering typical system sizes N of ∼ 1023 spins and a Hilbert space dimension of

(2s+1)N . Numerical approaches also have limitations – although powerful techniques have

been developed – especially in the case of frustrated systems where so called Monte-Carlo

algorithms fail. Exact diagonalizion allows to treat about ∼20 spins and diagonalization

with Lanczos algorithms2 taking only low energy levels into account, allows up to about

40 spins.

  

J
1

J
2

JJ'

a)

b)

Figure 2.1: (a) A J1-J2 zigzag chain topologically equivalent to the Majumdar-Ghosh

model when J1=2J2. The green ellipse indicates one of the two possible singlet ground

states, the other one being obtained by forming the singlet on the remaining J1 bonds.

(b) The Shastry-Sutherland lattice with intra-dimer coupling J (bold line) and frustrated

inter-dimer coupling J ′ (thin line). For J ′/J ≤∼ 0.7 the ground state is obtained when

forming singlets on all diagonal bonds.

They are a few cases however where it is possible to calculate at least the ground state

exactly. An early example was pointed out by Majumdar and Ghosh [4] in 1D for a

2These take into account the sparse nature of the Hamiltonian matrix, to search for extreme eigenval-

ues.
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spin chain connected by J1 (nn) and J2 (nnn) interactions. When J2/J1 = 0.5 the ground

state is a valence bond crystal, a product of singlets braking the translational symmetry of

the lattice. Shastry and Sutherland [5] with the model bearing their name gave another

example3 in 2D. The particular features of that model combined with the existence of

a physical realization, SrCu2(BO3)2, have since triggered considerable research efforts

from both theorists and experimentalists. The Majumdar-Gosh and Shastry-Sutherland

lattices are displayed in Fig.2.1.

H = J
∑
nn

~Si~Sj + J ′
∑
nnn

~Si~Sj (2.4)

Starting from s = 1/2 spins sitting on a square lattice and adding diagonal bonds as

indicted on Fig.2.1 b, one obtains the Shastry-Sutherland lattice, an orthogonal network

of dimers connected by nn intra-dimer coupling J and nnn dimer-dimer coupling4 J ′

described by the Hamiltonian in Eq.2.4. The nnn couplings induce the frustration. A

product of singlets on the dimers (Eq.2.5) is always an eigenstate. The nnn couplings

connect a spin to both ends of a dimer, and the matrix elements corresponding to nnn

cancel out in the Hamiltonian. Shastry and Sutherland have further shown that for

coupling ratios up to α ≡ J ′

J
= 0.5 this eigenstate is actually the ground state.

|Ψ〉 =
∏ 1√

2
(| ↑↓〉 − | ↓↑〉) (2.5)

Beyond α = 0.5, the ground state cannot be obtained analytically, but numerical calcu-

lations have shown that the singlet product remains the ground state up to α ≤∼ 0.7

[7]. Antiferomagnetic (AFM) order is expected at large α since the Shastry-Sutherland

lattice then tends to the square lattice. Numerical calculations indeed showed AFM or-

dering already for ∼ 0.9 ≤ α. The exact value of the transition points are subject to

some variation in literature, and the nature of the phase for ∼ 0.7 ≤ α ≤∼ 0.9 known

3One important difference between the Majumdar-Gosh and the Shastry-Sutherland models is that the

first one has a degenerate ground state braking the translational symmetry, while the Shastry-Sutherland

model has a unique ground state that does not brake the translational symmetry.
4In the original Shastry-Sutherland model the nn and nnn are reverted, we use here J for the intra-

dimer coupling, regardless of the distance.
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Figure 2.2: Proposed phased diagram for the Shastry-Sutherland model with inter-layer

coupling J ′′. The circles are estimated couplings for SrCu2(BO3)2. Reproduced from [6]

as the intermediary phase has lead to some debate among theorists. The main proposi-

tions — helical order, resonating valence bond plaquette, crystal valence bond plaquette,

columnar dimer state, and no intermediary phase at all thus a direct transition from the

singlet ground state to the AFM order — are summarized in Table 2.1 together with the

corresponding calculation technique and the critical α values. A pictorial representation

of some proposed intermediary phases is shown in Fig.2.3. Some of these results will be

discussed in more details in Chap. 5 in relation to the pressure tuning of SrCu2(BO3)2

across the Shastry-Sutherland phase diagram. It is also worth noting that for small values

of the 3D interlayer couplings J ′′, the 2D results discussed above still hold. A possible

phase diagram is shown in Fig.2.2.

Beside the existence of a possible intermediary phase, the Shastry-Sutherland model dis-

plays other interesting and sometimes unique properties:

1) Existence of a spin gap to very localized triplet excitations. The quasi-dispersionless

nature of the excitations is unusual for extended systems. It is a consequence of the frus-

tration that prevents triplets from hopping around once created, except through processes

starting only at the sixth order in perturbation theory [7].

2) Correlated hopping: as the one-particle hopping is strongly suppressed by frustration,

two-particle hopping plays an unusually important role on the Shastry-Sutherland lattice,

in particular it is used to describe the properties of the bound triplet excitations. We
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Main method αc1 αc2 Intermediate phase

Variational method [5] 0.5 - -

Schwinger boson mean field [8] 0.6 0.9 Helical order

Exact diagonalization (20 sites) [9] 0.70(1) - -

Ising expansion [10] 0.691(6) - -

Dimer expansion [11] 0.697(2) - -

Plaquette expansion [12] 0.677(2) 0.86 Plaquette singlet

Series expansion [13] 0.69 0.83 or - Columnar or -

Exact diagonalization (32 sites) [14] 0.67 ≥0.71 Plaquette singlet

Table 2.1: Summary of theoretical results for the intermediary phase, with transition

points αc1 (dimer-intermediary) and αc2 (intermediary-AFM). Adapted from [7].

actually discovered that the softening of the bound-state upon application of hydrostatic

pressure may be at the origin of the formation of the intermediary phase in SrCu2(BO3)2,

and that the presence of two triplets in the vicinity of each other plays an important role

in the finite temperature properties of SrCu2(BO3)2.

3) Magnetization plateaus: one of the most remarkable properties of the Shastry-Sutherland

model is the existence of magnetization plateaus caused by the crystallization of triplets at

certain fractional values of the saturation magnetization. These plateaus have indeed been

observed in the real material SrCu2(BO3)2, except for the 1/2 plateau that requires too

large magnetic field. They are shown in Fig.2.4 together with possible associated triplet

superstructures. They constitute the first evidence of ground states braking the original

Hamiltonian symmetry. The understanding of the physics of magnetization plateaus is

an important ongoing theoretical and experimental research topic [15, 16].

4) Supersolid and superfluid phases: considering the triplets and the m=1 two-triplet

bounds states as bosonic particles, the existence of superfluid phases at non-plateau mag-

netization has been proposed [18, 19]. Furthermore these phases may coexist with the

crystalline triplet ordering in the vicinity of the magnetization plateaus and thus form a

supersolid state: one fraction of the triplets stays localized on a superlattice while the

rest condense into a superfluid.
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a)

c) d)

b)

Figure 2.3: Pictorial representation of proposed intermediary phases for the Shastry-

Sutherland model. (a) Dimer singlets. (b) Helical order [8]. (c) Columnar dimers [13].

(d) One of the two degenerate ground states for a plaquette valence bond crystal [14].

The thick lines connect the spins involved in the dimer or quadrumer singlets.

5) Superconductivity upon doping: several studies find a rich phase diagram for the

Shastry-Sutherland model upon doping, including different superconducting phases [20,

21, 22].
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a

b

Figure 2.4: Magnetization plateaus. (a) Experimental observation of magnetization

plateaus as function of temperature. Reproduced from [17]. (b) Numerical calculation of

the magnetization curve using an effective hard-core boson model, and possible triplets

(full bonds) superstructures. Reproduced from [7].
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2.2 Materials

2.2.1 SrCu2(BO3)2

Figure 2.5: Single crystal of SrCu2(BO3)2 grown by traveling solvent floating zone tech-

nique at PSI. The single crystalline part at the top of growth (right on the figure) is

several centimeters long. For neutron scattering studies natural boron was replaced by

the 11B isotope.

Crystal structure

Some 20 years after the theoretical model by Shastry and Sutherland it was discovered [23]

that a previously synthesized material [24] SrCu2(BO3)2 is a topological realization of the

model (Fig.2.6). At ambient conditions SrCu2(BO3)2 crystalizes in the tetragonal space

group I4̄2m with lattice constants a = b = 8.99 Å, c = 6.45 Å. Each Cu2+ is connected to

its unique Cu2+ nearest neighbor by two oxygens and to its four next nearest neighbors

by planar BO3 groups. The nn distance is ∼2.9 Å and nnn distance ∼5.1 Å. The nn

Cu2+ form a structural and magnetic dimer unit and the dimers themselves form an

orthogonal network. The slightly buckled magnetic plane containing the Cu2+ ions is

normal to the crystallographic [001] direction. These magnetic planes are well isolated

form each other by intercalated Sr layers. The dimers are oriented along [110] and [-

110]. Each dimer sits in a mirror plane that passes through to center of its orthogonal

neighbor. Cu, B, and one O are on special positions and have eight equivalents in the
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Figure 2.6: Left: view of the magnetic plane of SrCu2(BO3)2. Right: topologically corre-

sponding lattice of the Shastry-Sutherland model.

body centered conventional cell. Sr is on a higher symmetry position and has only four

equivalents, while the other O is on a general position with the maximal multiplicity

of sixteen. The conventional unit cell thus contains four dimers on two different layers,

with alternating orientations (Fig.2.7). As temperature is raised above ambient, Sparta

et al. [25] discovered a structural transition at T=395 K to a higher symmetry phase

with tetragonal space group I4/mcm where the buckling disappears and the magnetic

plane becomes a mirror plane. No phase transitions have been detected upon cooling to

low temperature, but our work (Chap. 6) and the work of others [26, 27] show notable

structural changes (lattice constant, nn distance, thermal expansion coefficient, Cu-O-Cu

angles, etc) that are likely to be related to spin gap regime below 35 K, all these however

not changing the I4̄2m symmetry in a noticeable manner. At high pressure and ambient

temperature Loa et al. [28] discovered a transition to a monoclinic phase at 47 kbar and

to another unidentified phase at 150 kbar. We extended these results with combined low

temperature and high pressure measurements to obtain a complete P-T phase diagram,

showing structural and magnetic transitions (see Chap. 5 and 6).
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H

K

Figure 2.7: Projected view of the Cu positions in the unit cell. There are two different

magnetic Cu layers represented by circles and squares. The lower layer (circle) has a

height in the c-direction of ∼ 0.25 and the upper layer (square) of ∼ 0.75.

Relation with the Shastry-Sutherland model and magnetic properties

As seen from the crystal structure, the s = 1/2 Cu2+ ions form an orthogonal dimer network

that can be mapped topologically to the Shastry-Sutherland model. In the real material

small interlayer couplings are present. However this does not influence the exactness of

the singlet ground state [6, 7]. It is therefore correct to assume that to a large extent

the magnetic properties of SrCu2(BO3)2 are well described by the Shastry-Sutherland

model. Early susceptibility measurements showed a gapped behavior and a non-magnetic

ground state [29, 23]. The compound was latter investigated by numerous experimental

techniques including ESR [30, 31, 32], INS [33, 34, 35], µSr [36, 37], specific heat [38, 17],

sound wave measurements [39, 40], Raman spectroscopy [41, 42, 28], NMR [43, 15, 44],

(see Ref.[45] for an experimental review). The singlet ground state is separated from

an excited triplet state by a 35 K (3 meV) gap. This triplet state exhibits the unusual

property of being almost dispersionless, which is understood in terms of the frustration in

the Shastry-Sutherland model that prevents triplets from hopping. The frustration leads

the strongly correlated network of s = 1/2 ions to behave in a first approximation as iso-

lated dimers. However, the isolated dimer model while a good starting point to estimate

properties of SrCu2(BO3)2, cannot explain most of its interesting features which origi-

nate from the strong interaction between the dimers. A precise modeling of SrCu2(BO3)2
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has to take into account not only the J ′′ interlayer coupling5 but also the anisotropic

Dzyaloshinskii-Moriya (DM) interactions that are needed to explain high-resolution mea-

surements [46, 47]. The triplet gapped excitation observed by high resolution INS is

actually split into three components separated by about 0.2 meV and having different

Q-dependent intensities [34, 35]. ESR – which intrinsically is a high resolution technique

compared to INS – shows two distinct excitations due to different selection rules [7, 46].

This Q-dependent DM splitting is thus the main source for the small dispersion observed

in lower resolution INS experiments. Among higher energy states, a two-triplet bound

state is observed at ∼5 meV. The two triplets, by binding together, manage to reduce

their total energy by about 1 meV. Similarly the ∼9 meV excitation observed by INS,

has been described as a multi-triplet excitation [7, 33]. The value of coupling parameters

in SrCu2(BO3)2 has been subject to some variation in the literature, the dispersionless

nature of the gap preventing simple fitting of the INS dispersion curve. Miyahara and

Ueda [7] proposed J=84 K, J ′=54 K, J ′′=8 K (J ′/J=0.635 , J ′′/J= 0.09) as the optimal

set of parameters from fits to the susceptibility.

A major interest in the magnetic properties of SrCu2(BO3)2 comes from the magneti-

zation plateaus observed at fractional values of the saturation magnetization (Fig.2.4).

These commensurate states arise from the reduction of the triplets kinetic energy due

to the peculiar frustrated orthogonal geometry. More than ten years after the discovery,

the full understanding of the magnetization process of SrCu2(BO3)2 is still a hot topic.

The challenging experimental conditions, requiring a combination of high fields and sub-

kelvin temperatures, make the lowest plateau (1/8 at 28 T) the most studied while the

predicted 1/2 plateau has not been observed yet due to the field above 70 T needed.

The existence of a spin-gap, the unusual nature of the excitations, the mapping to the

Shastry-Sutherland model and the magnetization plateaus have made this compound a

model quantum magnet for experimental and theoretical studies.

5Strictly speaking the symmetry would imply two non-equivalent major interlayer couplings due to

the buckling of the magnetic plane, however this is unimportant for the magnetic properties [7].
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2.2.2 Other Shastry-Sutherland compounds

SrCu2(BO3)2 is the only known realization of the Shastry-Sutherland model with a real

s = 1/2 spin. However, there are other materials whose magnetic ions can be mapped to

the Shastry-Sutherland network: RB4, R2BaPdO5 [48] (R=rare earth), Nd2BaZnO5 [49],

Yb2Pt2Pb [50]. Most of these order antiferromagnetically at low temperature, the choice

of the R ion being important as is usually the case in rear earth magnetism. Helical

structures are suggested for TbB4 [51] and GaB4 [52]. RB4 with R=Tb [51], Dy [53],

Er [54], Tm [55] also exhibit plateaus in their magnetization curves [56] as is the case

for SrCu2(BO3)2. On the other hand they are notable differences: RB4 compounds are

good metals while SrCu2(BO3)2 is an insulator. The 3d transition metal and 4f rare

earth magnetism also involve different hierarchies in the strength of spin-orbit and crystal

fields, so that one should remain careful when drawing parallels to SrCu2(BO3)2, and

these materials constitute a subject of study by their own right.
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Chapter 3

Methods

3.1 Neutron scattering

Neutron scattering is one of the most powerful technics available for the study of con-

densed matter in particular for the study of magnetism. It enables to probe the micro-

scopic properties of materials, as opposed to the macroscopic ones measured by more

common technics as magnetic susceptibility, magnetization, and specific heat to cite a

few. On the other hand unlike the previous, neutron scattering requires large facilities,

not routinely available at universities or institutes, which implies obtaining measurement

time (beam time) through proposals where the scientific objectives and technical feasibil-

ity of the experiment are judged. The beam time demand largely exceeding the facilities

capacity (overload factor of ∼2 to 3) it results in relatively long idle time between different

experiments making the research quite different from home based research at university

institutes. The neutron sources are essentially of two types: 1) nuclear reactors with com-

pact core, where neutrons are produced trough controlled fission of 235U, and 2) spallation

sources, where an accelerated proton beam hits a heavy target producing an ’evaporation’

of neutrons. Reactors usually produce steady flow of neutrons while spallation sources are

pulsed1. The neutrons produced by the source initially have MeV energies and are slowed

down by collisions in a moderator, such as heavy water, to a thermal (300 K, 26 meV)

or cold (25 K, 2.2 meV) energy range useful for condensed matter studies. They are a

1SINQ the Swiss spallation source has the particularity of being quasi-continuous.

19
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few dozens neutron scattering facilities world wide including important ones in western

Europe such as ILL and LLB (France), FRM2 and HMI (Germany), SINQ (Switzerland)

and ISIS (UK). The neutron scattering experiments for the work presented here have been

performed at SINQ, ILL, and FRM2.

ILL with a 60 MW nuclear reactor produces a record flux of 1.5 · 1015 [57] neutrons per

second and cm2 in the moderator. FRM2 and SINQ respectively produce 8 · 1014 and

1014 neutrons cm2 s−1 [58, 59]. The final flux at the sample depends on the nature of the

source, the distance between the source and the instrument, the quality of the neutron

guide, and finally the experimental conditions such as the choice of wavelength and filters.

Cold triple axis instrument IN14 at ILL, for instance, has 1.6 · 107 neutrons cm2 s−1 at a

wavelength λ = 4.04 Å [60] while the thermal triple axis IN8 has a flux of 2 · 108 neutrons

cm2 s−1 at λ = 2.36 Å [61].

  

k
i
,E

i

k
f
,E

f

k
i
,E

i

q=k
i
-k
f

∆E=E
i
-E

f

sample

2θ

Figure 3.1: Definition of the scattering geometry: the incoming neutron with energy Ei

and wave vector ~ki exits the sample after scattering at an angle 2θ with energy Ef and

wave vector ~kf . The energy and wave vector transfer are given by ~Q and ∆E.

For magnetic studies results obtained by neutron scattering are often decisive for the

characterization of the sample properties. For instance while bulk measurement can tell if

a sample is metallic or insulating, magnetic or non-magnetic and assign it to more specific

categories, information on the relevant magnetic interactions, the values of the couplings,

the involved exchange paths, the orientation of the spins and the excitation spectrum

above the ground state is more directly gained by neutron scattering experiments. As an

example, in the case of SrCu2(BO3)2 bulk measurements combined with crystallographic

information, indicated clearly an interesting non-magnetic insulator, with a gap from

probably a singlet state to higher excited triplet levels. INS allows to measure directly

the 35K gap (the value ∼ 19 K was underestimated by early susceptibility fits [23]), to

discover the excitation spectrum is dispersionless and that there are multi-triplet bound
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states at higher energy.

3.1.1 Neutron scattering cross section

The basic idea behind neutron scattering is the process represented in Fig.3.1. One

neutron originating from the source (or monochromated to the desired energy Ei) hits the

target sample and is scattered in some direction defined by an angle 2θ. The measurement

of that direction as well as the measurement of the final neutron energy provides all

the information on the scattering process. The wave vector ~k, momentum ~p, mass mn,

velocity v, wavelength λ, frequency ν, angular frequency ω and conventional equivalent

temperature T of the neutron are related to its energy E trough the usual formulae that

apply for massive particles:

E = hν = ~ω =
1

2
mnv

2 =
p2

2mn

=
h2

λ2

1

2mn

=
~2k2

2mn

= kbT (3.1)

where kb, h and ~ are the Boltzmann, Planck and reduced Planck constant (h/2π) respec-

tively. The formalism of neutron scattering has been treated in several books [62, 63, 64],

its central item being the calculation of the different cross sections. The following gives a

short description of the different types of scattering processes and the result for the cor-

responding cross section. Considering an incoming neutron flux at the sample Ψ given in

number of neutrons per second per surface unit, where the surface is taken perpendicular

to the neutron beam, the scattering cross section is defined by:

σ =
Ns

Ψ
(3.2)

with Ns the number of neutrons scattered per second by the system. σ has units of area

and is of the order of 10−28m2 ≡1 barn. The differential cross section is used to count

neutrons scattered in a specific direction defined by a solid angle dΩ originating from the

sample:

dσ

dΩ
=
NdΩ
s

ΨdΩ
(3.3)
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where NdΩ
s is the number of neutrons scattered per second by the system into the solid

angle dΩ. Finally, the the partial differential cross section is the relevant quantity when

the energy of the neutron is analyzed (we assume here constant initial energy Ei and

variable final energy Ef ):

d2σ

dΩdEf
=

N
dΩdEf
s

ΨdΩdEf
(3.4)

with N
dΩdEf
s the number of neutrons scattered per second into the solid angle dΩ with

final energy between Ef and Ef + dEf . These three quantities are related by

σ =

∫
dσ

dΩ
dΩ =

∫∫
d2σ

dΩdEf
dΩdEf . (3.5)

Describing the interaction between the neutron and the sample by an operator Û, the dif-

ferential cross section dσ
dΩ

can be derived from a basic quantum mechanical result, Fermi’s

golden rule, giving the probability of transition between an initial state |Ψi〉 and a final

state |Ψf〉:

dσ

dΩ
=
kf
ki

(
mn

2π~2
)2|〈Ψf |Û|Ψi〉|2 (3.6)

The partial differential cross section is obtained by multiplying the previous result by a

Dirac function to account for energy conservation:

d2σ

dΩdEf
=
kf
ki

(
mn

2π~2
)2|〈Ψf |Û|Ψi〉|2 · δ(E + Ei − Ef ) (3.7)

There are two major types of interactions between the neutron and the sample: nuclear

and magnetic. The operator Û will turn out to be approximated by a very simple ex-

pression for nuclear interactions, while it takes a more complicated form for magnetic

interactions. There are also two major types of scattering processes to be distinguished:

elastic and inelastic. The former provides information on the structure by measuring the

angles at which neutrons are diffracted after collisions with the probe, the latter reveals

the excitations by measurement of the energy the neutron has exchange with the sample.
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The following four categories can thus be distinguished:

1) Elastic nuclear scattering. The neutron interacts with the nuclei of atoms on

very short scales (∼ 10−5Å) through nuclear forces. The wavelength of thermal neutrons

(∼2 Å) being orders of magnitude larger than the interaction range, the individual scat-

tering processes are essentially isotropic, so that the incoming neutron can be viewed as

plane wave and the scattered neutron as a spherical wave with the scattering strength

strongly isotope and nuclear-spin dependent. When these nuclei form a symmetric ar-

rangement with interatomic distances comparable to the neutron’s wavelength (which is

usually the case) a coherent diffraction pattern (Bragg peaks) emerges from which the

original structural configuration can be recomputed. The presence of different isotopes

and nuclear spins additionally leads to an incoherent scattering that adds as a background

to the coherent diffraction pattern. The main technique however to obtain structural in-

formation remains X-ray diffraction. While there are number of similarities with neutron

diffraction, X-rays have some decisive advantages: very high flux, small beam size i.e.

small sample can be used, and X-ray sources are more commonly available than neutron

sources. On the other hand, the X-ray cross section increases as a function of the atomic

number while the neutron cross section varies essentially ‘randomly’ among elements and

isotopes. Neutrons thus become useful when it comes to detecting light elements, differ-

entiate isotopes, and also for probing the inner part of a sample.

Given the very short range of nuclear interactions, the operator Û can be approximated

by the Fermi pseudo-potential:

Û(~r) =
2π~2

mn

∑
j

bjδ(~r − ~Rj) (3.8)

where ~r is the spatial position at which the interaction is evaluated, ~Rj the position of

the jth nucleus in the sample and bj is known at the scattering length for this nucleus.

bj reflects the ability to scatter neutron for a particular isotope and its values have been

experimentally measured for almost all elements and can easily be found in specialized
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tables [65]. The spacial Dirac function ensures the nuclear interaction is only effective at

the nuclei positions.

We now consider nuclei in a crystal so that they are spatially arranged on a regular lattice

comprising N unit cells of volume V0 described by reciprocal lattice vectors ~τ . Equations

3.8 and 3.6 combine to give

dσ

dΩ
=
N

V0

(2π)3e−2W |FN( ~Q)|2
∑
τ

δ( ~Q− ~τ). (3.9)

This is the fundamental equation for elastic neutron scattering. The Debye-Waller factor

e−2W accounts for small displacement of nuclei around their equilibrium position. Equa-

tion (3.9) contains the usual Bragg diffraction law2: nλ = 2dsin(θ) through the condition

that the neutron’s wave vector transfer ~Q must equal a reciprocal lattice vector: ~Q = ~τ . It

further provides the intensity of each Bragg reflection through the structure factor FN( ~Q),

FN( ~Q) =
∑
l

ble
i ~Q·~dl (3.10)

where the sum is taken over one unit cell on all the nuclei at relative positions ~dl. In the

neutron diffraction pattern, the position of the Bragg peaks ( ~Q = ~τ) gives the information

on the unit cell — the structural periodicity of the sample — while the relative intensities

of these peaks (Eq.3.10) give the information on the position of the atoms inside the unit

cell.

2) Inelastic nuclear scattering. Through the same type of interaction the neutron can

also gain or loose energy in the sample. This energy comes from the absorption or creation

of lattice excitations: phonons. The value of the mass of the neutron mn, trough relations

(3.1), makes this particle an excellent probe for collective low energies excitations of∼meV

order involving ∼Å distances. Thermal neutrons with energies ∼20 meV comparable to

phonon are thus commonly used to study the different lattice vibration modes and map

their dispersion E(~q). Thanks to recent instrumentation progress, phonons can also be

measured by inelastic X-ray scattering but then require very high relative resolution in

2Where d is the spacing between atomic planes and n an integer.
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order to detect energy transfers of ∼10 meV when the initial X-ray energies are several

keV.

The cross section for inelastic nuclear scattering can be developed into terms describing

multiple phonon creation or annihilation processes. We only mention here the form taken

by the coherent one-phonon cross section for atoms of mass M and scattering length b.

d2σ

dΩdEf
=
kf
ki
b2(

4π3

V0M
)e−2W

∑
s,q

[ ~Q · ~es(~q)]2
Es(~q)

·

{(ns + 1)δ(E − Es(~q))
∑
τ

δ( ~Q− ~q − ~τ)+

nsδ(E + Es(~q))
∑
τ

δ( ~Q+ ~q − ~τ)}

(3.11)

where ~es is the polarization vector of the phonon with index s=(1,2,3), and ns the Bose

factor reflecting the relative probabilities of creation and annihilation processes as function

of temperature:

ns =
1

e
Es(~q)
kbT − 1

. (3.12)

The second line in (3.11) represents the creation of a phonon and the third line its anni-

hilation. At T=0 K, only creation is possible as ns = 0.

3) Elastic magnetic scattering. The neutron having a magnetic moment3 ~µn

µn = −γµc = −9.66 · 10−27J/T, µb = 9.274 · 10−24J/T (3.13)

where µc is the nuclear magneton, µb the Bohr magneton and γ = 1.913 the gyromagnetic

ratio of the neutron, it interacts with the magnetic moments of the nuclei and of the elec-

tron via dipole-dipole interaction. We consider here only the electronic case. The electron

cloud extending to distances comparable to the neutron’s wavelength, the scattering is no

longer isotropic and a form factor has to be considered (Eq.3.16). In neutron experiments,

3The negative sign indicates that for the neutron the magnetic moment is antiparallel to the angular

moment, unlike the case of protons where they are parallel.
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this reflects in intensity disappearing at large wave numbers Q. The electronic moments

involved come from the unpaired electrons in the target sample. For instance, Cu2+ has

3d9 electronic configuration missing one electron to form a full shell and is left with an

unpaired spin s = 1/2. The magnetic moment is proportional to the spin with a propor-

tionality factor gµb, the precise value of g ' 2 depending on the particular compound.

Neutron elastic magnetic scattering provides then the information on the orientation of

the moments and thus the magnetic structure of the material. Similar to nuclear Bragg

peaks, magnetic Bragg peaks will be observed with intensities often comparable to the

nuclear reflections. A typical example is given when a transition occurs upon cooling

from a disordered magnetic phase to an ordered antiferromagnet. In many such cases the

magnetic structure has a unit cell with double size compared to the structural unit cell.

This will reflect in Bragg peaks suddenly appearing in the reflection pattern at positions

forbidden by the structural symmetry.

The interaction potential for magnetic scattering between one neutron and one electron

is given by

Û = −µ̂n

[
~rot(

µ̂e × ~R

R3
)− e

mec

p̂e × ~R

R3

]
(3.14)

where µ̂n and µ̂e, are the operators associated to the magnetic moment of the neutron and

of the electron respectively, p̂e the momentum operator of the electron, me its mass and

~R the distance between the neutron and the electron. The quantity inside the brackets in

(3.14) represents the magnetic field produced by the electron at the neutron’s position.

The first term inside the bracket is the dipole-dipole interaction arising from the electron’s

spin, while the second term comes from the electron’s orbital motion. In the following

we neglect the orbital motion and consider ‘spin-only’ scattering. The magnetic moment

operators for the neutron and the electron relate to the spin of these particles through:

µ̂n = −γµcσ̂ (3.15)

µ̂e = −gµb~S

with σ̂ the Pauli operator for the neutron spin. The magnetic form factor f( ~Q) is given
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by the Fourier transform of the normalized unpaired spin density ρs(~r):

f( ~Q) =

∫
ρs(~r)e

i ~Q·~rd~r. (3.16)

The elastic magnetic cross-section from a magnetically ordered material containing NM

magnetic unit cells of volume V0M takes a form similar to (3.9):

dσ

dΩ
=
NM

V0M

(2π)3(γr0)2(
g

2
f(Q))2e−2W |FM( ~Q)|2

∑
~τM

δ( ~Q− ~τM). (3.17)

The sum is now taken over the reciprocal vectors ~τM of the magnetic unit cell and r0 is

the classical electron radius. The magnetic Bragg reflections obey the condition ~Q = ~τM

and their relative intensities –apart from the form factor f( ~Q)– is given by the magnetic

structure factor FM( ~Q):

FM( ~Q) =
∑
l

S⊥dl
ei
~Q·~dl . (3.18)

One important difference with elastic nuclear scattering is that neutrons can only probe

the spin component S⊥ perpendicular to ~Q.

4) Inelastic magnetic scattering. This is the magnetic counterpart to inelastic nuclear

scattering. Not only the neutron can probe the static arrangement of the spins it can also

probe their dynamics. In particular magnons, the magnetic analogue to phonons, are the

collective excitations of the spin system. Inelastic magnetic scattering directly measures

these as a function of energy and momentum. This technique is at the heart of the present

thesis. The cross section is given by

d2σ

dΩdEf
= (γr0)2(

g

2
f( ~Q))2e−2W

∑
α,β

(δα,β −
QαQβ

Q2
)Sα,β( ~Q,E), (3.19)

with the dynamical structure factor S( ~Q,E) useful to express the cross section has been

introduced:
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Sα,β( ~Q,E) =
∑
a,b

ei
~Q·(~Ra−~Rb)

∑
λi,λf

p(λi)〈λi|Sαa |λf〉〈λf |Sβb |λi〉δ(E + Ei − Ef ). (3.20)

a and b label the positions ~Ra and ~Rb of the spins Sa and Sb, α and β are the three

spatial directions (x,y,z), λi and λf the initial and final states and p(λi) the occupation

probability of the state λi. S( ~Q,E = ~ω) is related to the imaginary part of the magnetic

susceptibility through the fluctuation dissipation theorem:

S( ~Q, ω) =
1

1− e−~ω/kbT
Imχ( ~Q, ω). (3.21)

Imχ( ~Q, ω) itself is connected to the real part of the susceptibility by the Kramers-Kronig

relations:

Imχ( ~Q, ω) = − 1

π
P

∫ ∞

−∞

Reχ( ~Q, ω′)

ω′ − ω dω′ = −2ω

π
P

∫ ∞

0

Reχ( ~Q, ω′)

ω′2 − ω2
dω′ (3.22)

Reχ( ~Q, ω) =
1

π
P

∫ ∞

−∞

Imχ( ~Q, ω′)

ω′ − ω dω′ =
2

π
P

∫ ∞

0

ω′
Imχ( ~Q, ω′)

ω′2 − ω2
dω′ (3.23)

where P is the principle part of the integral and the second equalities follow from Imχ( ~Q, ω)

and Reχ( ~Q, ω) being odd and even functions respectively. Finally, S(Q,ω) also satisfies

the detailed balance condition:

S(− ~Q,−ω) = e−~ω/kbTS( ~Q, ω) = S( ~Q,−ω), (3.24)

the last equality being realized only when an inversion symmetry is present.

3.1.2 Neutron scattering instruments

As seen in the previous section, the structural and magnetic excitations in a sample can

directly be probed by neutrons. However, given that the detection of neutrons involves

∼MeV energies while the energy transfers with the sample are of the meV order, special

strategies need to be implemented. The main two are: triple axis and time of flight
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measurements, and both enable to measure the change in energy and momentum of the

neutron.

Figure 3.2: Schematic view of the triple axis instrument TASP at SINQ PSI. Reproduce

from [59].

The name triple axis comes from the three axis of rotation the instrument possesses:

monochomator, sample table and analyzer. From the neutron beam emitted by the source,

the monochromator rotation selects the desired incoming wavelength, by Bragg reflections

from a crystal4. Neutrons exiting the monochromator hit the sample with a defined

momentum ~ki and energy Ei. The sample table rotation allows to orient crystal samples

relative to the incoming beam. The analyzer placed at an angle 2θ (Fig. 3.1) selects by

Bragg reflections the outgoing neutrons having the desired final energy, and reflects them

towards the detector where they are counted. The scattering process (Ei, ~ki → ~kfEf )

is thus entirely defined by the experimental geometry. Filters such as Be or BeO are

placed on the neutron path to cut higher harmonics of the Bragg diffraction, and the

analyzer and monochormator crystals can be bent to obtain higher flux at the sample at

the expense of a loss in resolution. A typical layout of a triple axis instrument is given in

Fig.3.2.

An alternative method to triple axis is the time of flight technique. The incoming neutrons

reach the sample in pulses after passing through a chopper. For inelastic experiments they

are additionally monochromatized before reaching the sample. The time at which they

4Typically Si, Ge or PG (pyrolytic graphite).
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Figure 3.3: Schematic view of the time of flight instrument FOCUS at SINQ PSI. Re-

produce from [59].

reach the detector is recorded allowing to compute their velocity hence their energy. This

technique is particulary useful at spallation sources, where the neutrons are produced in

pulses, so that the incoming neutron beam is not ‘wasted’ during the chopping process.

Time of fight instruments typically have a collection of detectors covering a large angular

region (Fig.3.3) thus allowing to map a large ( ~Q,E) range, but provide less flexibility

than the triple axis instruments. The final choice between the two eventually depends

on the particular experiment and the sample environment. Single crystal spectroscopy is

more often performed on triple axis.

Powder diffraction is performed on dedicated diffractometers, like HRPT at SINQ. The

neutron beam is monochromatized in a way similar to triple axis, but the analyzer stage

is removed. The sample rotation, in principle not needed for isotropic powders, is still

implemented in order to average for possible texture effects. The detector covers a large

angular region to collect a maximum of Bragg reflections, and can be oscillated to average

over its efficiency. In the case of HRPT oscillating radial collimators (mylar-Gd-O) have

been added to remove Bragg peaks from the sample environment, this enabled us to solve

the structure of SrCu2(BO3)2 under pressure with the Paris-Edinburgh press.
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3.2 High pressure in neutron scattering

SrCu2(BO3)2 with estimated coupling J ′/J = 0.635 is close to both the quantum phase

transition to the plaquette and the AFM order phase. This is to say that relatively small

changes in the structure could bring the material to enter a new phase. They are essen-

tially two ways by which one can ‘tune’ a magnet across its parameter space:

1) Chemical substitution, i.e. replacing totally or partially some of the original atoms

by other atoms in order to slightly modify the crystalline arrangement, so that the mag-

netic coupling paths are affected. These modifications should, in principle, not change

the original structural symmetry. In many cases this has proven to be possible and even

continuous substitution rates of one element by another have been achieved. In the case

of SrCu2(BO3)2 this has proven to be a difficult task with only marginal substitution rates

achievable [66], except on the Sr position [67].

2) Application of pressure to the original sample so that by reduction of the unit cell

size, the magnetic exchange paths are modified. A part from the technical difficulties

involved by any type of high pressure study, this is the favored tool for tuning a magnet

across quantum phase transitions without using an external magnetic field.

Historically the development of high pressure technics made tremendous progress trough

the achievements of Percy Bridgmann around the beginning of the 20th century. By his

new sealing technics the maximal pressures increased from ∼1 kbar to ∼ 20 kbar [68, 69].

Opposed anvils cells and later diamond opposed anvils cell (DAC) allowed the pressure

range to be further increased [69, 70]. For instance ∼100 kbar can be reached with WC

or BN anvils on the Paris-Edinburgh press (PE) adapted to neutron scattering [71] and

the megabar (1000 kbar) range in certain applications of the DAC [72]. Even higher

(500’000 kbar! [69]) out of equilibrium pressures are possible for short times in shock ex-

periments. Nevertheless high-pressure measurement constitute an experimental challenge.
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The choice of the pressure cell and pressure transmitting medium5, has to be consid-

ered, from the specificities of the measurement. To cite a few: sample size, magnetic vs

non magnetic material, transparent material for light, X-rays or neutrons, operational

temperature range, cooling and warming time, expected signal to pressure cell induced

background, etc. In the case of neutron scattering, Table 3.1 gives a review of existing

devices with estimates of the maximal pressure and sample size. Except for the single

crystal gems, the constituents should be understood in the sense of alloys with certain

mixing rates and special thermal treatment. In general also, pressure cells are build in rel-

atively small numbers and performance may vary within a generic type. Figure 3.4 shows

the high-pressure neutron scattering possibilities at the spallation source ISIS (UK) as

for 2002 [70]. In the lower pressure range p≤12 kbar, allowing cm3 sample volume, the

preferred materials are: TiZr and Al. Ti and Zr have opposite sign scattering lengths

(-3.44 and 7.16 fm resp.) which, combined to their atomic masses (47.87 and 91.22 resp.),

gives a zero coherent scattering when the two elements are mixed at about 50-50% mass

ratio. This is particularly useful for diffraction studies as no additional Bragg peaks are

produced by the pressure cell. Ti however possesses non negligible absorbtion cross section

(6 barn), which limits the thickness of the pressure cell walls and its incoherent scattering

cross section (2.9 barn) produces a constant background, that may not be acceptable for

inelastic measurements with weak intensities. In this case, Al with small incoherent scat-

tering (0.008 barn) and absorbtion (0.23 barn) is preferred. As a general rule, for weak

intensities, as in INS, one will favor having all the pressure cell signal located at partic-

ular Q positions away from the region of interest, while for strong intensities and large

Q-range studies, as in diffraction, distributing the background is preferable. Our first

measurements under pressure on SrCu2(BO3)2 were limited to 12 kbar. They showed a

reduction of the spin gap, indicating the systems was getting closer to the quantum phase

transition. However it was clear that 12 kbar was not enough, and a new high pressure

cell, named HPCAL17, was developed in collaboration with R. Sadikov from the Institute

of High Pressure Physics in Toitsk, Russia. This cell improved the existing possibilities

5This is usually a liquid or a gas that will allow the pressure to be transmitted to the sample under

hydrostatic conditions. Some times soft solids are also used as was the case in our low temperature

Paris-Edinburgh press experiments.
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P max type material application max. sample size

5 [73] Hydraulic oil Steel - Sapphire SANS 1.3 cm3

5 [74] Gas loaded Al or TiZr INS / Diffraction ∼ 2 cm3

7-12 [70, 75] Piston-cylinder Al or TiZr INS / Diffraction 1.1 cm3

17 Piston-cylinder Al - Steel INS / Diffraction 1.1 cm3

HPCAL 17

20 [76] Piston-cylinder CuBe Diffraction 0.2 cm3

25 [77] Piston-cylinder NiCrAl - CuBe Diffraction 0.2 cm3

25 [78, 70] Piston-cylinder Al2O3 - Steel Diffraction /INS 0.1 cm3

McWhan

100-200 [71] Opposed anvils WC or BN Diffraction / INS 10-30 mm3

Paris-Edinburgh

200 [79, 80] Cubic anvils WC Diffraction 10 mm3

100 [81, 82] Opposed anvils Sapphire Diffraction + field 1 mm3

500 [81, 82] Opposed anvils Diamond Diffraction + field 0.001-0.01 mm3

DAC

Table 3.1: An overview of the current possibilities in high pressure neutron scattering,

with approximative maximal pressure and sample size. The last two entries are found

a the LLB laboratory in Sacley near Paris, on a dedicated diffractometer G6-1. Thanks

to the small size of the gem cells, combined pressure and magnetic field experiments are

possible.
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Figure 3.4: Pressure facilities available at ISIS in 2002. Reproduced from [70].

of INS with cm3 samples to 17 kbar, and is thus a major achievement on its own. The

cell is composed of Al and is reinforced by a thin steel inset. The inset is pre-compressed

to enhance its mechanical strength. The different parts of the cell are shown in Fig.3.6.

We used and tested different FluorinertTM as pressure transmitting liquid: FluorinertTM

FC87 - FC85 at 1:1 volume mixing on IN14 and FluorinertTM FC77 on Panda. The

maximal low temperature (1.5 K) pressure of 16.5 kbar was obtained during a test mea-

surement at SINQ with a FC75-FC77 1:1 volume mixing and short (∼4.5 cm) Teflon cans

as sample container. This particular Fluorinert mixing has the advantage of not loosing

pressure upon cooling after the cell is loaded to the maximal pressure, whereas we expe-

rienced pressure loss with FC87-FC85 1:1. For ambient temperature measurement FC87

and FC84-FC87 1:1 should still be preferred as they have higher hydrostatic limits, resp.

22 and 23 kbar, than FC75-FC77 1:1 (16 kbar) or FC75 (15 kbar) [83]. FC87 however



3.2. HIGH PRESSURE IN NEUTRON SCATTERING 35

is no longer produced [84] and one has to rely on the existing stocks. The short teflon

cans produce less friction than longer cans and than Pb cans. Teflon cannot by used to

determine the pressure as it can be done with Pb [75], and one has to add a reference, for

instance NaCl, for pressure determination6. HPCAL17 enabled us to obtain high quality

a b

Figure 3.5: High pressure cells: (a) Schematic of the McWhan cell. (b) Schematic of the

Paris-Edinburgh press. Reproduced from [70].

INS data for SrCu2(BO3)2, the study of the new quantum phase however required even

higher pressures and was made possible using a McWhan cell [78] at the cost of massive

loss in sample mass (from 3g to 0.2g). The McWhan cell developed in the 70‘s has an

alumina (Al2O3) bi-cone core through which Tungsten carbide (WC) pistons compress the

sample. The alumina core it-self is compressed radially by the compression rings (Fig.3.5

a). We used FluorinertTM FC84-FC87 1:1 as pressure transmitting medium and were able

to reach 21.5 kbar at 0.5 K. The Paris-Edinburgh press [71] allows to reach pressures

above 100 kbar. It uses an opposed anvil technic similar to DAC but with much larger

6This is done directly on the neutron instrument by measuring the shift in lattice constant of the

reference.
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sample space as is often required in neutron scattering experiments. Compared to piston

clamp cells it offers the advantageous possibility of changing the pressure directly on the

instrument. We used Boron nitride (BN) anvils for powder diffraction experiments. These

provide a direct collimation of the neutron beam on the sample thanks to the huge ab-

sorption cross section of Boron. To hold the radial forces a TiZr gasket is placed around

the sample container and we used deuterated methanol-ethanol at 4:1 volume as pres-

sure transmitting medium. For single crystal experiments, the Paris-Edinburgh press was

cooled down to 3.5 K using a close cycle cryostat, and pressure could usually be changed

around 100 K. The toroidal anvils made of WC were specially manufactured to obtain

large aperture angles [85] useful when tilting the single crystal. The sample is placed in

a CuBe ring inserted in Pb matrix acting as pressure transmitting medium and hold by

an Al gasket. For low temperature experiments, the pressure is transmitted to the anvils

by a He capillary as hydraulic oil cannot be used. The Paris-Edinburgh press can also be

used with sintered diamond anvils to reach 300 kbar [70].
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Figure 3.6: New pressure cell: HPCAL 17. Components: (1, 11): top and bottom clamp

screws. (2, 9): top and bottom pre-compression screws. (3, 10): top and bottom piston

holders. (4, 8) top and bottom inner pistons. 5: steel inset. 6: Al inset. 7 Al outer wall.

(12, 13): push pistons. 14: Inset pre-compression push piston.
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Chapter 4

Unusual temperature damping in

SrCu2(BO3)2

This chapter presents our results on the temperature dependence of the gapped excitation

in SrCu2(BO3)2. The excitation, measured by INS, shows a peculiar behavior: although

the spin gap is 35 K the peak intensity is strongly suppressed above 5 K and disappears

into a flat continuum around 15 K. Our INS study on powder and single crystals as a

function of ~Q and magnetic field shows that, while the peak intensity rapidly decreases

as function of the temperature, the integrated spectral weight can still be matched to an

isolated dimer model up to 10 K. An analysis using damped harmonic oscillators shows

that the line shape can be modeled with a two component damping process: one mode

remains resolution sharp while the second broadens and their intensities are exchanged

as T increases. The energies, intensities and damping widths are determined and the

underlying physics discussed.

4.1 Time of flight measurements on SrCu2(BO3)2 pow-

der

A time of flight INS measurement was performed on the FOCUS spectrometer (see Fig.3.3)

located at the Swiss spallation source SINQ at PSI. FOCUS was operated with incoming

39
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energy monochromatized to 7 meV between the disk chopper and the Fermi chopper,

and with 3 detector banks covering a large angular range from 10 to 130 degrees in 2θ.

The powder SrCu2(BO3)2 sample of 12 g was placed in a 12 mm diameter aluminium

holder. TOF spectra were taken at 2, 6.25, 7.5, 10, 15 and 20 K and an empty aluminium

can measurement at low temperature was used for background subtraction (signal to

background ratio =12 on the 2 K peak). Figure 4.1 presents the temperature dependence

of the excitation spectrum up to 5.5 meV and shows the singlet-triplet gap and the two

bound triplet excitation around 3 and 5 meV respectively. Although the spin-gap is ∼35 K

(∼3 meV) the observed Q-integrated excitation starts to be strongly suppressed above

5 K and turns into a flat continuum around 15 K. It can also be seen from Fig.4.1 that the

excitation broadens as the peak intensity reduces, and its center slightly moves towards

higher energies.

Figure 4.1: Q-integrated spectrum as function of temperature for a SrCu2(BO3)2 powder

sample.

So far the temperature dependence of the gap excitation has been discussed mostly in

terms of the reduction of peak intensity [33, 34, 86]. Gaussian fits to the spectrum show

a dramatic decrease of the peak intensity and an increase of the ‘background’ (Fig.4.2

left). In fact not only the peak intensity is reduced, but the system undergoes a damping

mechanism, with the excitation broadening around its central energy. Little has been

proposed so far for the understanding of the integrated intensity and for the damping

itself. Haravifard et al [66] however observed that the substitution of s = 1/2 Cu2+ ions by

non magnetic Mg2+ resulted in an increase in damping widths. The correct determination
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of the total integrated intensity is hindered by the issue of the integration range, as for

low energies the damped excitation merges with the much more intense elastic line while

at high energies, it merges with the two-triplet excitation around 4.2 meV. Figure 4.2 left

(triangle symbols) shows the integrated magnetic intensity in the 0.5-4.2 meV range. The

measured INS excitation is proportional to the number of singlets in the system (Fig.A.1),

however when T increases the intensity scattered into this energy range departs from the

isolated dimer singlet population (black line). The integrated intensity lyes mostly below

the dimer line indicating damping also occurs outside of this integration range. At higher

temperatures (15-20 K) higher energies excitations are being damped into the 0.5-4.2 meV

range and new low energy transitions between thermally populated states become possible,

which explains the smaller decrease of the integrated intensity. Figure 4.2 right shows

an interesting behavior of the partial integral (i.e. integrated intensity as function of the

upper integration limit). It demonstrates the intensity is damped symmetrically to the

higher and lower energy sides as the same spectral weight is recovered for all temperatures

at the gap energy. This behavior is robust upon lowering the integration limit and the

unique crossing point converges towards the gap energy.

The broadening is clearly of magnetic origin, the non-magnetic background (remaining

after the empty can subtraction) is obtained from the base temperature spectrum outside

the almost resolution limited 3 meV peak. Its magnetic nature is further assessed by the

Q-energy maps in Fig.4.3 and Q-cuts at different energies in Fig.4.4. At 2 K the Q-cut on

the gap excitation, E=2.8-3.2 meV (blue circles), shows a maximum around Q = 1.1 Å−1

corresponding to the SrCu2(BO3)2 dimer structure factor, followed by a decrease at higher

Q corresponding to the magnetic form factor of the Cu ion. Outside the peak region for

E=3.8-4.2 meV and E=1.5-2.2meV (open green symbols), the Q dependence is different:

essentially flat except for some intensity around Q = 2 Å−1 which is due to a Bragg peak.

The cuts at energies higher (E=3.8-4.2 meV) and lower (E=1.5-2.2 meV) than the gap

are similar and have been combined. This base temperature non-magnetic background is

assumed to be energy and temperature independent and is thus subtracted from all the

other cuts giving the blue and full green symbols in Fig.4.4. It can clearly be seen that as

T increases the off center cut acquires more structure and eventually becomes identical to

the central energy cut at 15 and 20 K. However, although they share the similar general
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Figure 4.2: Integrated and peak intensity as function of temperature for a SrCu2(BO3)2

powder sample. Left: Peak intensity with varying background (in same unit as the peak)

from Gaussian fits, and integrated intensity in the 0.5-4.2 meV range, color lines are

guides to the eye. The black line is a ∆=35 K isolated dimer singlet population. Right:

Partial integral of the measured intensity: integrated intensity from 0.5 meV as function

of the upper integration limit

.

feature of a maximum and a decrease at larger Q, the Q dependent shape of the magnetic

signal at 15-20 K is different from the 2 K base temperature and the maximum has shifted

to lower Q.

4.2 Damped Harmonic oscillator

To further analyze the spectrum a theoretical line shape is needed. Although there is

no general result for intrinsical line shapes at finite temperature, one often uses a simple

Lorentzian form, corresponding to the Fourrier transform of an exponential decay for

the excitation’s life-time. The simple Lorentzian however does not satisfy the required

detailed balance rule (3.24) and does not imply an odd imaginary part for the susceptibility

(3.21 and 3.22). The slightly more sophisticated damped harmonic oscillator (DHO) form

obtained from linear response theory has the advantage to fulfill both requirements. It

has been first discussed for the finite temperature line shape of phonons in solids and
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Figure 4.3: Q-energy color maps as function of temperature for a SrCu2(BO3)2 powder

sample.

phonon-like excitations in liquids and the discussion applies also to magnons [63, 87].

We give two equivalent formulations of the dynamical structure factor S( ~Q, ω) to which

the INS signal is proportional (see Eq.3.19). While the first one is commonly used, the

second more clearly shows that it consists of the difference of two Lorentzians weighted

by the detailed balance1 factor so that it simultaneously satisfies the two requirements

mentioned above. The DHO tends to two Dirac functions at +ω0 and −ω0 for vanishing

damping widths.

S( ~Q, ω) =
F ( ~Q)

π

[n(ω) + 1]4ωΓ

(ω2 − Ω2
0)2 + 4ω2Γ2

(4.1)

S( ~Q, ω) =
[n(ω) + 1]F ( ~Q)

ω0π
× [

Γ

(ω − ω0)2 + Γ2
− Γ

(ω + ω0)2 + Γ2
] (4.2)

1Also called Bose factor and having the following property: n(ω) + 1 = −n(−ω)
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with

Ω2
0 = ω2

0 + Γ2, n(ω) =
1

e
ω
T − 1

(4.3)

ω0 is the undamped excitation energy, Γ the DHO half width, n(ω) the detailed balance

factor, and F ( ~Q) accounts for the Q-dependence of the intensity. In the case of magnetic

excitations F ( ~Q) is the real part of the susceptibility Reχ( ~Q). For simplicity, we use

~ and kb =1. For data analysis, the DHO is convolved with a Gaussian to account for

the instrumental resolution. The integrated intensity, ω0 and Γ are the fit parameters.

It should be noted that in the low temperature range ≤ 10 K, and for the damping

widths we finally obtained, results only negligibly depart from a Lorentzian convoluted

to a Gaussian, i.e. from a Voigt function with half Lorentzian width Γ.

4.3 High field triple axis measurements on single crys-

tals

Having fixed the line shape, Q-dependent single crystal data are needed to understand the

damping mechanism. The situation is complicated by the fact that the triplet excitation is
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slightly split (∼0.2 meV) by DM interactions at zero field, and the different branches could

in principle have different damping, as one could think of the Sz = ±1 modes relieving

next-nearest neighbor frustration in a different manner than the Sz = 0 mode. They

are essentially three ways to study the triplet modes individually: 1) apply a magnetic

field in order to separate the Zeeman split modes, 2) use very high resolution neutron

scattering at zero field (at the cost of intensity), 3) use polarized neutrons to separate

the central mode from the two others [88] (also at the cost of intensity). We performed

the first two options which enabled us to extract a model for the temperature damping

of SrCu2(BO3)2.
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Figure 4.5: SrCu2(BO3)2 Single Crystal: Excitation spectrum at various fields, temper-

atures and Q points. The inset in (a) shows the Zeeman splitting for Q=(1.5,0.5,0).

High field INS measurements where taken at the FRM2 research reactor in Garching

(Germany) on the triple axis instrument PANDA with a 3 g single crystal mounted in a

15 T cryomagnet with a and b axes in the scattering plane and H//c. The instrument
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was operated at fixed kf=1.55 Å−1 with double focusing monochromator and horizontally

focusing analyzer. Figure 4.5 shows the raw spectra obtained on Panda. At 8 T the three

modes are sufficiently separated to clearly observe individual damping. At Q=(1.5,0.5,0)

the triplet intensity is high and the multi-triplet states are reduced in intensity and higher

in energy [35, 89] so that their influence is minimal on the one triplet spectrum. At

Q=(2,0,0), due to DM interactions, the upper and lower triplets further split into two

branches each, with the upper mode merging into the bound triplet above 6 K. At 12 T

the upper triplet mode also mixes with the lower modes of the s=1 bound state, making

a clean analysis difficult. We shall thus use the Q=(1.5,0.5,0) data at 8 T to fix the

temperature damping model for SrCu2(BO3)2. It can first be seen (Fig.4.5 a) that there

is no redistribution of spectral weight among the triplets when field is applied as was

observed for Q=(1.5,0,0) in Ref. [90]. The second observation is that no major changes

in damping occur among the three triplet branches.

Several fitting procedures based on DHO line shapes were implemented to explain the

experimental data. The fit parameters were fixed step by step to obtain the simplest

model yielding satisfactory fits. The final result uses two DHO for each mode and is

shown in Fig. 4.6 (red line) where it is compared to a single DHO broadening (black line).

While fitting the three modes with one DHO each works for the lower temperatures, it

clearly fails at 7 and 8 K. We thus implemented a two component –sharp and broad–

DHO damping for each mode. It turns out, over the studied temperature range, that

the sharp component remains resolution limited Γ = 0. The total integrated intensity

(the sum of the broad and sharp components) is essentially constant and can be matched,

within error bars, to the isolated singlet dimer population. The ratios sharp to broad

intensities for each triplet mode are found to be similar and are correlated in the final fit.

The Γ for each modes are left uncorrelated, the shift in energy could influence their value.

The ω0 shifts are correlated. Once the base temperature spectrum is fitted, the remaining

temperature dependent fit parameters are thus: {IS1, ωS1
0 , ΓB1, ΓB2, ΓB3}, where I is the

integrated intensity. The superscripts S and B refer to sharp and broad components and

the numbers 1, 2, 3 to the lower, middle and upper triplet respectively.

The fit results are summarized in Fig.4.7. The excitations are not only damped but slightly
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Figure 4.6: SrCu2(BO3)2 Single Crystal temperature depenence. Fits to the excitation

spectrum at H=8 T, Q=(1.5,0.5,0): The black line assumes a single component DHO

damping. The red line is the fit result with our two component model (see text). Dashed

lines are the resolution limited sharp (green) and broad (orange) components.

shift to higher energies as observed in the powder sample. The integrated intensity of the

sharp component quickly drops to zero while the broad intensity increases. There is in

fact, as a function of temperature, a remarkable exchange of spectral weight between

the two components with a cross-over at 5.5 K. At 8 K the sharp component has almost

completely vanished. The measured integrated intensity over a finite range (0.5 to 4.2meV

for instance) decreases faster than the fitted value indicating that the damping involves

a large energy range as can be expected from a Lorentzian form. The damping widths

Γ of the upper and middle triplets are similar while the lowest is sharper indicating the

damping is not simply governed by the individual triplet energies.

We shall now apply the same model to zero field data at different Q points.
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Figure 4.7: Fit parameters for the two component damping model at 8 T, Q=(1.5,0.5,0).

Open (close) symbols in (b) refer to the broad (sharp) component. The dashed line is the

isolated singlet population at 8 T. In (c) the LM, CM, UM, are the lower, middle, and

upper triplet modes respectively. Full lines are obtained by fitting the parameters to a

sigmoidal function of type 1/(1 + e−a(T−c)).

4.4 Triple axis measurements at zero field

Zero field measurements (Fig.4.8) were performed on the triple axis instrument TASP

at SINQ. TASP was operated at fixed kf=1.2 Å−1 with coaligned single crystals. The

measurement for Q=(1.5,0.5,0) had the a and b axes in the scattering plane while for

Q=(1.5,0,0) and Q=(2,0,0) the a and c axes were the scattering plane. The total sample

mass was 8 g, and the achieved energy resolution 0.18 meV at E=3 meV. At zero field the

three triplets are slightly split (∼0.2 meV) because of DM anisotropies, and their relative

intensities vary with Q [90, 34, 35]. At Q=(1.5,0,0) and Q=(2,0,0) we observe a double
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Figure 4.8: SrCu2(BO3)2 Single Crystal temperature dependence at zero field. Excitation

spectrum for Q=(1.5,0.5,0), Q=(2,0,0) and Q=(1.5,0,0).

and a triple peak structure respectively while at Q=(1.5,0.5,0) the excitation is essentially

a single peak in accordance with previous work [35]. We apply the model derived above to

fit the zero field data: each DM split mode is fitted by two DHO, one remaining resolution

sharp. The intensity ratios of the two components are correlated and the total intensity

is matched to the isolated singlet population. The ω0 shifts are correlated. The Γ are

this time also correlated as the triplets are on the same energy scale, and it would be

extremely difficult to assign a difference in broadening to one specific peak when they

are so close. After fitting the base temperature spectrum, the remaining set of variable

parameter is thus: {IS1, ωS1
0 , ΓB1 } where the number 1 refers to the first DM split mode.

As shown in Fig.4.9 and 4.10 our damping model, obtained from Q=(1.5,0.5,0) H=8 T

measurement, matches the zero field data very well. It can also be directly applied to the

other two Q points, although these have a different intrinsic triplet structure. A single

DHO broadening again fails to fit the data as shown by the black line in Fig.4.9.

The results of fits are summarized in Fig.4.11 a-c. The damping width and the shift in
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Figure 4.9: Fits to the excitation spectrum at H=0 T, Q=(1.5,0.5,0): The black line

assumes a single component DHO damping. The red line is the fit result with our two

component model. Dashed lines are the resolution limited sharp (green) and broad (or-

ange) components.

energy appear to be slightly larger for Q=(2,0,0). The integrated intensities on the other

hand remarkably lye on top of each other for the three Q points with a cross-over at 6.8 K.

Upon comparing 0 and 8 T results in Fig.4.11 d-f, one notices an increase in the energy

shift as function of field and a reduction of the cross-over temperature for the sharp and

broad components of about 0.15 K/T.
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Figure 4.10: Fits to the excitation spectrum at H=0 T. Upper panel (a1-f1): Q=(2,0,0).

Lower panel (a2-f2): Q=(1.5,0,0). The red line is the fit result with our two component

model. Dashed lines are the resolution limited sharp (green) and broad (orange) compo-

nents. For Q=(1.5,0,0) the bump around 3.5 meV is a temperature independent spurious

background peak already present at 1.5 K.
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Figure 4.11: Fit parameters as a function of Q (Left) and field (right). Open (close)

symbols in (b,e) refer to the broad (sharp) components. The dashed line is the isolated

singlet population at 0 T. In (f) the LM, CM, UM, are the lower, middle, and upper triplet

modes respectively. Full lines are guides to the eye obtained by fitting the parameters to

a sigmoidal function of type 1/(1 + e−a(T−c)).
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4.5 A phenomenological model for the temperature

damping

The model derived for the finite temperature damping in SrCu2(BO3)2 is robust, as it

describes field and zero field data at various Q points. The line shape of the excitation

spectrum can be modeled by a mechanism with two components. The first one involves

undamped triplets, that remain with a well defined (sharp) energy. This type of triplet

excitation is rapidly suppressed when increasing temperature, and even more rapidly in

the presence of a magnetic field. The second type of triplet excitation decays quickly

with characteristic damping widths increasing with temperature. The total integrated

intensity does not vary much in the 0-10 K temperature range and can be matched to an

isolated singlet population. However, while at base temperature the triplet excitations

are all sharp, above ∼10 K they all decay, and an exchange in the probability ratio

of the two processes occurs in between. This implies that the presence of a very small

percentage of thermally excited triplets strongly modifies the thermodynamical properties

in SrCu2(BO3)2. This is somehow reminiscent of the correlated hoping where an isolated

triplet cannot move on the Shastry-Sutherland lattice2, while the presence of another

triplet in the vicinity will allow it to hop to neighboring sites.

The decay mechanism can be modeled by thinking of a simultaneous presence of triplets

on the lattice. We consider first the following process: a triplet excitation created by

the neutron will remain well defined when no other triplets are present, but will decay if

thermally excited triplets are present nearby. This will account for the broad and sharp

components of the spectra. The triplet densities involved are very low: at 6.8 K, the

crossover temperature for the broad and sharp damping, a ∆=35 K isolated dimer has a

triplet density of about only 2% (see Appendix A) and this is enough to end up with the

same probability for a triplet decaying or remaining sharp. At 10 K, the triplet density

is about 9% and all triplets decay. The low triplet density in turn would imply that one

triplet can ‘feel’ the presence of another triplet at an extended distance. To be more

quantitative we use the 2D Shastry-Sutherland lattice, which has two dimers per unit

2Except by unlikely processes starting at 6th order in perturbation, while correlated hopping already

starts at 2nd order [7] and is the main source for the triplet motion.
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cell, and compute the temperature dependent probability for having (and not having) a

thermal triplet within a spacial range extending to Nu unit cells around a given dimer:

The probability of having only singlets in these Nu unit cells is:

Ps(T ) = ns(T )2Nu (4.4)

with ns(T ) the singlet density. The second probability to compute corresponds to having

a singlet on the given dimer – so that it can be excited by the neutron – and at least one

triplet on 2Nu−1 remaining dimers:

Pt(T ) = ns(T )− ns(T )2Nu = ns(T )− Ps(T ). (4.5)

Ps(T ) accounts for the sharp component, as the neutron excited triplet is created in a

region where no thermal triplets are present and thus remains sharp. Pt(T ) accounts for

the broad component as the neutron excited triplet is created in a region where there are

thermal triplets causing its decay. This microscopic phenomenological model matches the

experimental temperature dependence of the broad and sharp intensities very well for a

number of unit cells Nu of about 21 (Fig. 4.12).
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Figure 4.12: Left: Fit of broad (close symbols) and sharp (open symbols) damping intensi-

ties at 0 and 8 T Q=(1.5,0.5,0). The lines are the probabilities Ps(T ) and Pt(T ) discussed

in the text for Nu=21 and ∆=35 K. Right: Sketch of the situation. The neutron excites

a dimer to a the triplet state (red bond) in the presence of a thermal triplet (red bond)

within about two unit cells (dashed blue) in each direction.

The simple calculation above offers a scale for how far the triplet inducing the decay can

be: about 2 unit cells in each directions. This value also matches 8 T data without any
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further modification, the shift to lower temperatures being accounted for by the different

value ns(T ) takes in the presence of the field.

Alternatively the situation can be viewed considering that the presence of a triplet po-

larizes the neighboring dimers not leaving them in an exact singlet state. This ‘triplon’

extends over several dimers. If a neutron hits a singlet –creating a triplon– in a region

far away from any thermal triplons a sharp excitation results. If the singlet is in the

vicinity of a thermal triplon the excitation decays. The mathematical formulation of the

probabilities is the same as before, and the interaction range is now understood as the

distance between the triplons. Considering a 2D isotropic case, the 21 unit cell area found

above corresponds to a triplon center to center distance of 2.6 lattice units (23 Å). We

model the decay to occur when the two triplons overlap, so that their radius is 1.3 lattice

units and they thus extend over an area of ∼5 unit cells (Fig. 4.13).

Figure 4.13: Two triplets (red bonds) polarize the neighboring singlets (black bonds)

to create triplons whose extensions are given by the red circles. The decay is modeled

to occur when the triplons overlap. The dashed blue lines indicate unit cells in the 2D

Shastry-Sutherland lattice.

The results by Haravifard et al [66] for a doped SrCu2−xMgx(BO3)2 single crystal indi-

cate that the introduction of a small percentage (x=2.5%) of non-magnetic impurities on

the lattice increases the damping widths and causes them to remain finite even at base
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temperature. This could indicate that a spin vacancy polarizes the neighboring singlets

in an even more dramatic manner than the presence of a triplet.

4.6 Conclusion on the temperature dependence of

SrCu2(BO3)2

In conclusion we have measured the excitation spectrum on SrCu2(BO3)2 at finite tem-

peratures by INS. The peak intensity of the 3 meV (35 K) excitation rapidly reduces and

the excitation spectrum is flat already at 15 K. The integrated intensity however remains

close to the one expected for a isolated dimer with a 35 K gap. The temperature depen-

dent damping can be modeled by the sum of two DHO for each triplet mode, whereas a

single DHO fails. One DHO remains resolution limited and corresponds to triplets not de-

caying. The second DHO broadens and corresponds to decaying triplets. As temperature

increases the decay process becomes dominant. With a phenomenological microscopic

model we can describe the situation as resulting from an interaction between two triplons

which extend over the neighboring unit cells. The application of an external magnetic

field accelerates the damping process and can simply be understood by the modification

of the singlet-triplet densities.

Finally it is instructive to have a look at the low temperature (T≤∼10 K) structure of

SrCu2(BO3)2. It appears that some structural properties of SrCu2(BO3)2 are modified in

two steps in that temperature range, very similarly to the change in damping regime we

find around ∼6.8 K. Figure 4.14 shows the change in lattice constant and in linear expan-

sion coefficient as function of temperature. As we shall see in Chap. 6 the lattice constants

of SrCu2(BO3)2 are clearly affected upon entering the spin gap regime at T∼35 K with

an unusual increase in the unit cell volume. Around 7 K another puzzling behavior is

observed with an abrupt change in slope of the linear expansion coefficient, reflected also

in the temperature dependence of the lattice constants. It is very likely that at such low

temperatures, it is the magnetic properties drive these structural effects. The change of

slope in the linear expansion coefficient may thus well be related to the decay of triplets:

the a axis lattice constant initially decreases quickly upon adding triplets up to ∼7 K
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where the triplets have significant probabilities to decay which reduces the decrease of

the lattice constant.

d

Figure 4.14: Structural modification in SrCu2(BO3)2 below 10 K. (a-c) a-axis, c-axis and

unit cell volume resp. Reproduced from [26]. (d) Linear expansion coefficient as function

of field. Reproduced from [91].
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Chapter 5

Pressure induced quantum phases in

SrCu2(BO3)2

We present here inelastic neutron scattering (INS) results demonstrating that the Shastry-

Sutherland compound SrCu2(BO3)2 can be tuned out of the exactly solvable singlet dimer

ground state by application of hydrostatic pressure to a new disordered phase. The INS

measurements are complemented by magnetic susceptibility up to 10 kbar and the crit-

ical pressure for the quantum phase transition is estimated around 18 kbar. The new

discovered phase corresponds to the long sought after intermediary phase of the Shastry-

Sutherland model and is identified as a plaquette phase. Elastic neutron scattering and

X-ray diffraction at higher pressures show that SrCu2(BO3)2 eventually enters Neel long

range order above 40 kbar, just before a structural monoclinic transition. INS experiments

where performed on the triple axis instruments TASP at SINQ (Villigen-PSI, Switzer-

land), PANDA at FRM2 (Garching, Germany) and IN14 at ILL (Grenoble, France) using

different pressure cells, instrument configurations and cryostats. The setups used are

summarized in Table 5.1 together with those used for the elastic neutron experiments

performed on IN8 at ILL and the synchrotron X-ray diffraction measurement at beamline

ID9b of ESRF (Grenoble).

59
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Setup Instrument Sample Pressure Scattering kf Base T

mass [g] cell plane Å−1 [K]

1 TASP+ 3 HPCAL12 (1,2,0)-(0,0,1) 1.3 1.5

2 PANDA+ 3 HPCAL17 (1,0,0)-(0,0,1) 1.5 1.5

3 IN14+ 3 HPCAL17 (1,0,0)-(0,0,1) 1.3 2

4 IN14+ 0.2 McWhan (1,0,0)-(0,0,1) 1.5 2

5 IN14+ 0.2 McWhan (1,0,0)-(0,0,1) 1.5 0.5

6 IN8∗ 0.1 P-E (1,1,0)-(0,0,1) 2.66 3.5

7 IN8∗ 0.1 P-E (1,0,0)-(0,1,0) 2.66 3.5

8 ID9b∗∗ ∼ 10−6 DAC (1,0,0)-(0,1,0) 15.148 ∼25

Table 5.1: The different setups used for high pressure spectroscopy measurements. (+)

INS: Instruments where operated with horizontally focused analyser. Tasp and IN14 have

vertically focusing monochromator and Panda a double focusing monochromator. Base

temperature of 0.5 K is achieved with a 3He cryostat in setup 5. Pressure is determined by

the shift in lattice parameter of a Pb or NaCl reference to 0.7 kbar accuracy. (∗) Neutron

diffraction: IN8 is operated with two PG filters and flat analyser. The Paris-Edimburg

press (P-E) is cooled down to 3.5 K with a closed cycle displex. Pressure is determined

trough the lattice constant of the lead matrix containing the sample. (∗∗) Synchrotron

X-ray diffraction with diamond anvil cell (DAC) and He cryostat. Pressure is calibrated

by the Ruby fluoresence method.

5.1 Previous experimental and theoretical results

Before presenting our results, we review some of the previous theoretical work related

to the intermediary phase of the Shastry-Sutherland model and experimental results on

SrCu2(BO3)2 under pressure.

The possible existence of an intermediary phase in the Shastry-Sutherland model and its

nature have been discussed in Section 2.1.1. We point out here the work by Takushima

et al [92] indicating the existence of two different low energy triplet excitations in the

intermediary RVB plaquette-like phase obtained in their model (Fig.5.1 a). The nature of
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these is understood in connection to the 1D orthogonal dimer chain where they correspond

to a dispersionless four fold degenerate state leaving two diagonal spins free on a plaquette

for the lower in energy and to a triplet excitation breaking a singlet on a plaquette for

the higher (Fig.5.1 b). These two excitations are calculated to cross over at α ∼0.76

in the 2D system before the plaquette gap goes soft at α=0.86. Figure 5.1 c shows the

results by Al Hajj and Malrieu [93] for columnar plaquette block energy calculated by a

‘renormalized excitonic method’ (REM) and Fig.5.1 d the results by Koga et al obtained

by plaquette expansion calculation [12] suggesting the existence of a gapped plaquette like

phase. These theoretical works give a quantitative value for the excitation energy in the

dimer and the intermediary phase and shall be compared to our experimental findings.

On the experimental side, in parallel to the neutron work presented in this thesis, several

other experiments have been reported. Magnetic susceptibility [94] and ESR [95] to

moderate pressures (p≤12 kbar) indicate a softening of the gap. The combined effect of

pressure and field was also measured by susceptibility and NMR [44]. In the latter case

magnetic order occurring at 24 kbar and 7 T on a fraction of the dimers was proposed. The

main results are show in Fig.5.2. From the structural point of view, at room temperature,

a transition from the ambient I4̄2M tetragonal space group to monoclinic was observed

at 47 kbar and a second transition to an unidentified phase at ∼ 150 kbar [28].

5.2 Magnetic susceptibility up to 10 kbar.

Magnetic susceptibility up to 10 kbar was measured in a SQUID by collaborators in

the U.K.1. Given that the magnetic signal of the pressure cell is by far larger than

the signal from the sample, such measurements require accurate background subtraction.

Figure 5.3 shows final results. The susceptibility peak shifts to lower temperatures, as

pressure increases suggesting a reduction of the spin gap in accordance with the results of

Fig.5.2. We performed quantitative fits of χ(p, T ) by 20 sites exact diagonalization2 which

allowed us to quantify the gap reduction and to extract the pressure dependence of the

individual couplings J and J ′. Both couplings decrease linearly up to 10 kbar. Since these

1Ch. Rüegg, Ch. Panagopoulos, S. S. Saxena, M. Ellerby and A. Magee.
2The exact diagonalization data have been computed by A. Läuchli.
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Figure 5.1: Excitation energies in the dimer and plaquette phases. (a) 2D Shastry-

Sutherland model and (b) 1D orthogonal dimer chain. The full line is the singlet-triplet

gap in the dimer phase, the dotted line a triplet excitation on the plaquette and the

dashed line the four fold degenerate state discussed in the text. Reproduced from [92].

(c) The REM gap (full line) and columnar plaquette block energies (circles) compared

to a dimer expansion calculation (dashed line) [10] and plaquette expansion (squares)

[12]. Reproduced from [93]. (d) Dimer expansion calculation (full line) [10] and plaquette

expansion (symbols) as in (c) with error bars on the symbols. Reproduced from [12].

pressures correspond to small displacement of the atomic positions, it seems reasonable

to extrapolate the linear dependence to higher pressures. Since J has the larger slope,

α increases with pressure, consistent with the system getting closer to the first quantum

critical point. After presentation of the INS measurements in the next sections, we shall

compare and combine the results form these two techniques to obtain the phase diagram

of SrCu2(BO3)2. The extraction of α(p) (Fig.5.3 right) by magnetic susceptibility will

also enable to compare experimental INS results given as a function of pressure to the

theoretical calculations given as a function of α.
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ba

dc

Figure 5.2: Measurements of SrCu2(BO3)2 under pressure. (a) and (b) Magnetic sus-

ceptibility, showing a possible kink in (b) at 16 kbar and 5 T. Reproduced from [94] and

[44]. (c) Possible magnetic ordering at 24 kbar and 7 T, observed by NMR. The shaded

regions indicate magnetic dimers. Reproduced from [44]. (d) Spin gap extracted by ESR.

Reproduced from [95].

5.3 Inelastic neutron scattering up to 22 kbar

We measured the excitation spectrum of SrCu2(BO3)2 with setup 1 (Table 5.1) on the

triple axis intrument TASP. 12 kbar was about the limit, at the time, for high pressure

INS with a sample volume of the order of 1 cm3. Figure 5.4 shows the first results we

obtained by application of hydrostatic pressure on SrCu2(BO3)2. The spin gap is reduced

in energy from ambient ∼ 3 meV to ∼ 2.2 meV at 12 kbar. The analysis of the dispersion

and structure factor Fig.5.5 demonstrates the system remains in the original dimer phase,

with a reduced energy scale. The dispersion only slightly increases with pressure, which

could be understood by the increase of α [10]. The fact that the gap energy reduces upon



64 CHAPTER 5. PRESSURE INDUCED QUANTUM PHASES IN SrCu2(BO3)2

5 10 35 100 300
0

5

10

15

Temperature [K]

χ
[1

0−
4

em
u]

 

 

 0   kbar
4.5 kbar
 8   kbar

40

60

80

E
ne

rg
y 

[K
]

 

 

J
J’
α

0 10 20 30
0.6

0.65

0.7

0.75

0.8

p [kbar]

α

Figure 5.3: Left: Magnetic susceptibility of SrCu2(BO3)2 under pressure (log scale), full

line are fits to 20 sites exact diagonalization data. Right: the extracted pressure depen-

dence of nearest neighbor coupling J , the next nearest neighbor coupling J ′, and of the

ratio α = J ′/J with linear fits for J and J ′ (full lines) extrapolated above 10 kbar (dashed

lines).

application of pressure is a sign that pressure brings the system closer to the quantum

phase transition. The ground state should at the latest be modified when the excited

triplet goes completely soft. It is also very possible that the quantum phase transition will

take place before the the gap energy vanishes as proposed in the scenarios of Section 5.1,

where a first order transition to the intermediary phase is expected before the dimer gap

closes. The measurement also shows that pressure softens the three quasi-degenerated

triplet modes [46] alike. This is different to the application of a magnetic field, which

Zeeman splits the three modes, reducing the energy of the lower one only. One notices

the intensity of the excitation is strongly reduced, which is likely to relate to the reduction

of the gap energy. Knowing the unusual temperature dependence of SrCu2(BO3)2 (see

previous chapter) where the peak intensity of the INS excitation is reduced by half around

6 K for a 3 meV gap, it is possible that for a smaller value of the gap the damping of

triplets is already important around 1.5 K.

The conclusion of this first experiment is thus that pressure may bring the system to

the quantum phase transition, but that higher pressures than the (at the time) available

12 kbar are needed. Besides, given the reduction in peak intensity, the observation of

the bound-states (or even of the gap at higher pressures) will only be achievable on
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Figure 5.4: INS energy scans on TASP at different Q points and pressures. (a-c) Out of

plane dependence. (d-f) In plane dependence. T=1.5 K, kf=1.3 Å−1.

instruments with higher flux like IN14 or Panda.

To further increase the pressure range a new large volume aluminium-steel piston cylinder

cell reaching 17 kbar (HPCAL17) was developed (see Chap. 4). It was used on the triple

axis instruments Panda and IN14 with setups 2 and 3. Even higher pressures can only

be explored with much reduced sample size and the range 16-22 kbar was studied with a

McWhan cell on IN14 with setups 4 and 5.

Figure 5.6 shows energy scans performed on Panda with the HPCAL17 pressure cell.

Both the gap and the bound triplet can be observed. The measured gap ∆ is consistent

with the results of Fig 5.4, and the bound triplet energy is also reduced by application of

pressure. The structure factor at the three pressures remains identical as shown by the

Q scans in Fig.5.7, indicating the dimer phase still survives at 14.5 kbar.

Figure 5.8 shows high quality energy scans performed on IN14 with the same pressure cell.

As observed in the first experiment both the gap energy and intensity strongly reduce upon

application of pressure. No out of plane dependence is observed, although in SrCu2(BO3)2

the c-axis is softer resulting in reduced interlayer distances at high pressures [28]. Com-
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Figure 5.5: Structure factor (top) and dispersion (bottom), obtained by Gaussian fits to

the spectra of Fig.5.4. Intensities are normalized. Lines are guides to the eye.

bining the different results in Fig.5.9, it can be seen that in the pressure range 0-15 kbar,

the softening is linear with a slope of 0.075(5) meV/kbar and is essentially Q-independent,

with no signs of a new quantum phase. Interestingly however, the triplet binding energy,

δ = 2∆−EBT=1.19(2) meV remains pressure independent, so that the bound triplet en-

ergy EBT softens twice as fast 0.143(7) meV/kbar. The pressure dependent gap obtained

through the Q=0 expansion of Ref. [13] from the susceptibility couplings ∆(Jχ(p), J ′χ(p))

is in very good agreement with the direct INS gap measurement ∆Q(p). To take into

account the small Q-dependence of ∆Q, we consider ∆Q(p) = ∆(Jχ(p), J ′χ(p)) + DQ(p),

where the dispersion factor DQ is of the order of 2 K. When extrapolating ∆Q(p) to higher

pressures, the gap would close around 31 kbar for Q=(2,0,L) (lines in Fig.5.9). However

the two triplet bound state (BT) would go soft before ∆, around 27 kbar, with BT be-

coming energetically favorable around 20 kbar when considering the finite dispersion. At

this crossover a cascade mechanism could trigger the transition to a new quantum phase,

much differently than a direct AFM ordering upon closure of the gap, and be at the origin

of the existence of the intermediary phase.

The instability of the bound state has been discussed in Ref. [96] where the gap is calcu-

lated to close at α '0.7 and one of the s=1 bound states at α '0.63 with the crossover

between the one and two triplet energies taking place just before. Our experimental
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Figure 5.6: INS energy scans on PANDA at different Q points and pressures. Data is

shifted on the y-axis for clarity (+50 and +100 for 12 and 14.5 kbar resp.). Solid lines

are Gaussian fits. T=1.5 K, kf=1.5 Å−1.

results indicate a higher α value (0.685) for the crossover and no acceleration of BT soft-

ening in the 0≤p≤15 kbar where it was possible to observe it. Using setups 4 and 5

we discovered the first evidence of SrCu2(BO3)2 entering a new quantum phase between

16 and 21.5 kbar, as a discontinuity in the gap softening occurs. The spectra at these

two pressures for Q=(1.5,0,1) (Fig.5.10) and (2,0,0) (Fig.5.11 a) look extremely similar

with ∆ '2 meV unchanged, while the shift in lattice parameters of the sample and of

the NaCl reference definitely indicate an increased pressure. The observation of such a

discontinuity in the gap softening could correspond to the calculations of Fig.5.1 where

the intermediary plaquette phase is gapped. The fact that the gap energies at 16 and

21.5 kbar are identical could simply be accidental given that they are, a priori, expected

to be close on both sides of the critical point. The structure factor, measured by a Q

scan along (H,0,1), is however also identical to the ambient pressure singlet-triplet struc-

ture factor of SrCu2(BO3)2. We shall see that this can be understood in terms of a new

plaquette phase where we calculate that one of the excited states is actually expected to

display such a structure factor. The transition to a new quantum phase is further proven

by a new type of excitation suddenly appearing at the higher pressure (Fig.5.10 c and

5.11 c-d). It is clearly visible around 1 meV for Q=(1,0,1), (-1,0,1) and (1,0,1.5) at 0.5 K
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Figure 5.7: Structure factor at different pressure. Combined constant energy scans

at resp. 2.4-2.5 meV (10 kbar), 2.1-2.2 meV (12 kbar),and 1.95-2.00-2.05-2.10 meV

(14.5 kbar).

and is not observed at 15 K, which indicates a magnetic origin. We label the new low

energy excitation LE and keep the ∆ label for the 2 meV excitation. The high pressure

spectra at different Q points are shown in Fig.5.11 where one can notice that no change in

intensity occurs for ∆ between 2 K and 0.5 K. The dispersion and structure factor of these

two excitations are shown in Fig.5.12. LE is more dispersive than ∆: ∼0.5 meV in the

measured Q-range. It also has a completely different structure factor strongly peaking

at Q=(1,0,1). ∆, consistent with the Q-scan of Fig.5.10, is indistinguishable from the

singlet-triplet gap in the dimer phase.

To summarize the experimental results up to 21.5 kbar, ∆, BT and LE are plotted as a

function of pressure in Fig.5.13 for some Q points. It can be seen that the gap softening

in the 0-15 kbar range is suddenly interrupted at higher pressure, and that LE has a

lower energy than the extrapolated dimer phase triplet excitation. ∆ on the other hand

is higher than the expected dimer gap at 21.5 kbar. It is thus clear that above a certain

critical pressure in the 16-21.5 kbar interval, the spectrum is strongly modified, reflecting

a new ground state in the system. Since we have no other experimental data points in

the 16-21.5 kbar interval, we can only notice that it corresponds to the low range of the

calculated critical α in the Shastry-Sutherland model. For instance, αc=0.67 as calculated

in Ref. [14] would correspond to a critical pressure pc=18.3 kbar indicated by the dashed

vertical line.
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Figure 5.8: INS energy scans on IN14 at different Q points and pressures. in (a-b) the

solid lines are Gaussian fits. (c-d) show the out of plane Q-dependence of the spectrum.

T=2 K, kf=1.3 Å−1.
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Figure 5.9: Summary of the pressure dependence of the gap and BT energies as a function

of pressure up to 15 kbar. Data are for L=0 and L=1 which have been combined. The

full line is the combined fit of INS and magnetic susceptibility ∆(Jχ(p), J ′χ(p)) +D20L(p)

discussed in the text and the dashed line its extrapolation to higher pressures. The

vertical dashed line is a possible quantum critical point [14] corresponding to α=0.67 ↔
p=18.3 kbar.
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Figure 5.10: (a) Energy scans at 0, 16 and 21.5 kbar measured on IN14, setup 4,

T=2 K. (b) Q-scan on the peak maxima at ambient pressure (E∼3 meV) and 21.5 kbar

(E∼2 meV), setups 4 and 5. (c) Energy scan at Q=(1,0,1) at 21.5 kbar as a function of

temperature, setup 5.
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Figure 5.11: INS energy scans on IN14 at different Q points, pressures and temperatures.

(a) Pressure dependence of ∆. (b) Temperature dependence of ∆. (c-d) New low energy

feature LE visible at Q=(1,0,1.5) and Q=(1.25,0,1), note that for the latest both ∆ and

LE have intensity.
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Figure 5.12: Dispersion (top) and structure factor (bottom) of ∆ and LE at 21.5 kbar

obtained by Gaussian fits to the energy scans. The full line are scaled dispersion and

structure factor of the singlet-triplet gap at ambient pressure for (H,0,0) extracted and

adapted from Ref. [35].
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Figure 5.13: Summary of the pressure dependence of the gap and BT energies as a

function of pressure up to 21.5 kbar. Lines and symbols are identical to Fig.5.9. The ?

indicates LE for Q=(1,0,1).
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5.4 Identification of the new phase
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Figure 5.14: Left: Plaquette in the SrCu2(BO3)2 geometry. The two red plaquettes

are used to compute the structure factor, the unit cells are indicated by the dashed

lines. Right: (Top) Structure factor of the triplet excitation in the plaquette. (Bottom)

Structure factor of the quadruplet identical to the structure factor of two dimers.

We have considered different possibilities for the new discovered phase including a mixed

dimer and plaquette state. Since ∆ is reminiscent of the dimer gap, a mixed phase

could possibly explain the experimental observation and such phases (mixed columnar and

plaquette dimers) have recently been pointed out by theoretical works in some quantum

dimer model [97]. However the existence of a mixed phase has never been suggested for

the Shastry-Sutherland model to our knowledge. We finally find that the simplest physical

interpretation of the new high pressure phase in SrCu2(BO3)2 is a plaquette phase on the

plaquettes containing a diagonal bond. The study of the excitation spectrum and structure

factor of the isolated plaquette is detailed in Appendix B. The ground state is a s=0

singlet and there is a triplet excited state and a four-fold degenerate state corresponding

to a singlet on the diagonal plus two free spins. The triplet state has a structure factor

peaking around Q=(1,0) in the 2D geometry of SrCu2(BO3)2 and the quadruplet3 has

a structure factor identical of to that of an isolated dimer on the diagonal bond. The

isolated plaquette with diagonal bond thus displays the main characteristics of the new

3Only the transitions to the three s=1 states of the quadruplet can be observed by INS, not the forth

one that is a transition between two s=0 states and is thus forbidden in spin-only magnetic scattering.
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high pressure phase:

1) a non-magnetic gapped ground state

2) a low energy triplet with structure factor peaking at Q=(1,0)

3) an other low energy excitation with structure factor identical to the singlet-triplet in

the exact dimer phase.
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α
c
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Figure 5.15: Experimentally determined excitation energies in SrCu2(BO3)2 compared to

theoretical predictions. The color symbols are our experimental results defined as before.

The dotted lines are calculation form Ref. [92] for the low lying triplet excitations in a

plaquette state, and the black squares are the columnar plaquette block energies from Ref

[93] (see Fig.x5.1).

To analyze the extended system, we plot in Fig.5.15 the energy E/J vs α which enables

a direct comparison between our results and the calculations for the low and high energy

plaquette triplets [92], and columnar plaquette energy [93]. We find first that the series

expansion for the gap as a function α [10] (black line) that we use to compute the gap from

the susceptibility fits, matches the direct INS measured gap quite well in the dimer phase.

Beyond the quantum critical point, there is qualitative agreement for the energy scales,

in particular the energy of LE is close to the expected low energy plaquette excitation

of Takushima et al [92]. In their work the two excitations are understood in connection

to the 1D orthogonal dimer chain where they correspond to a state leaving two diagonal

spins free on a plaquette for the lower in energy and to a triplet excitation braking a sin-

glet on a plaquette for the higher. Our experimental results indicate however that the low

energy excitation is more dispersive than the high energy feature, which is the opposite
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of what they obtain. The calculation of Takushima et al is thus likely4 to correspond to

our experimental observation provided the two low energy states are inverted.

Finally our results could also explain the magnetic ordering proposed by NMR measure-

ment at 24 kbar and 7 T: the new spin s=1 excitation LE being low in energy (0.5 meV),

a 7 T field is sufficient to close it and to obtain a magnetic ground state.

5.5 Neutron and X-ray diffraction
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Figure 5.16: High pressure magnetic Bragg peak in SrCu2(BO3)2 . (a) Nuclear forbidden

Q=(1,0,0) peak at 39 and 40 kbar, from neutron diffraction. (b) Temperature dependence

of the Q=(1,0,0) peak intensity. Full line is a power law fit giving a critical exponent of

0.43. (c) Relative intensity (log scale) of Q=(2,0,0) and Q=(1,0,0) at 40 kbar 4 K form

neutron diffraction. Setups 6 and 7. (d) Same reflections from X-ray diffraction at 42 kbar

34 K, setup 8.

We now turn to the higher pressure range 20≤p≤60 kbar in which SrCu2(BO3)2 eventually

enters an antiferromagnetic ordered phase. Elastic neutron diffraction was performed

in the opposed anvils Paris-Edinburgh press on the thermal triple axis instrument IN8

4The structure factors are not given in the article.
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operated with setups 6 and 7 (see Table 5.1). At 40 kbar and 118 K a new type of Bragg

reflections suddenly appears (Fig.5.16). These are Q=(1,0,0) type peaks (H+K+L=odd)

that are nuclear forbidden from the centering of the I4̄2M space group. The intensity

of the forbidden reflections smoothly increases upon cooling to reach its maximum at

low T. The relative (2,0,0) to (1,0,0) peak intensity is about ∼200. In contrast these

peaks appear abruptly as a function of pressure as they where not observed at 36, 38 nor

39 kbar down to 4 K. The transition is fully reversible upon temperature increase and no

significant hysteresis is observed. At higher pressures the transition temperature is hardly

modified: 123 K at 55 kbar. At 47 kbar and ambient temperature Loa et al [28] have

observed a structural monoclinic distortion. It is however clear for two reasons that the

new Bragg peaks we describe are not directly related to this distortion: 1) they appear at

lower pressure and the transition temperature remains below ambient at pressures both

higher and lower then 47 kbar, 2) the monoclinic transition would not result in these new

reflections but rather in the splitting of allowed peaks into non equivalent reflections.

Figure 5.17: Neel order in SrCu2(BO3)2 at high pressure. Left: View of the two Cu2+

layers in SrCu2(BO3)2. Squares (circles) represent the ions in the upper (lower) layer. Full

symbols are spin up and empty symbols spin down. Right corresponding Neel order on

the extended Shastry-Sutherland lattice (the absolute orientation of the spins is chosen

arbitrarily).

The magnetic nature of these Bragg reflections was checked in a high pressure diamond

anvil cell synchrotron measurement on beamline ID9b at ESRF using setup 8. No peaks

of the (1,0,0) type were observed at any pressure or temperature in the 0-180 kbar and

300-25 K range. This is a clear sign for the magnetic origin of these reflections since X-rays
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are only sensitive to structural order whereas neutrons are sensitive to both structural

and magnetic order. The (1,0,0) peaks can be understood as simple Neel order with a

magnetic cell of the same size as the conventional chemical cell. The extinction of (1,0,0)

peaks due to body centering (I symmetry) does not apply in the magnetic cell, where they

are two types of inequivalent Cu ions with spin up and down. Figure 5.17 left shows the

projection along the c-axis of the Neel ordered magnetic cell. It contains two magnetic

layers (circles and squares), within which orthogonal dimers have opposite spin orientation

(full and open symbols). This ordering corresponds to the expected AFM long range order

on the Shastry-Sutherland lattice (Section 2.1.1). The strong antiferromagnetic coupling

J , cannot prevent the two spins within one dimer to be ferromagnetically aligned for

large enough values of α. The magnetic ordering is thus the same as for the simple

square lattice (J=0) Neel order. The absolute orientation of the spins could not be fully

obtained. However, considering the tetragonal symmetry of SrCu2(BO3)2 and the fact

that the neutron can only probe the component of the magnetic moment perpendicular

to Q, two types of high symmetry orientations are possible: one with spins pointing out of

the magnetic plane along [0,0,±1] and the other one with spins pointing in-plane along one

of the diagonals [±1,±1,0]. The monoclinic distortion could be traced down as a function

pressure and temperature and magnetic ordering is observed both in the tetragonal and

monoclinic regions. Due to the reduction of symmetry in the monoclinic phase one could

expect the orientation of the spins to be different in that structural phase. We also note

here, that beyond the monoclinic distortion the dimers are not constrained by symmetry

to remain orthogonal and the system is no longer described by the Shastry-Sutherland

model. The structural part of this study shall be presented in the next chapiter.

5.6 Conclusion on the pressure induced quantum phases

in SrCu2(BO3)2

In summary the combination of INS, X-ray and neutron diffraction, and magnetic sus-

ceptibility measurements enabled us to identify the pressure induced quantum phases in

SrCu2(BO3)2. The dimer phase survives up to 18(±2) kbar. Beyond that, SrCu2(BO3)2
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enters a new non magnetic gapped phase which corresponds to the formation of a pla-

quette ground state on the plaquettes containing a diagonal bond. The extraction of the

coupling parameters by fits to magnetic susceptibility shows that the increase of pressure

implies an increase of α and that the critical pressure is close to the calculated critical

coupling ratio. As pressure is increased further, the plaquette gap may eventually close

and the system is observed to orders antiferromagnetically at 40 kbar with a high Neel

temperature of 118 K. Shortly after the magnetic ordering, pressure produces a struc-

tural monoclinic distortion which relives the next nearest neighbor frustration bringing

SrCu2(BO3)2 beyond the original orthogonal dimer Shastry-Sutherland model.

Figure 5.18: Experimental p−T phase diagram of SrCu2(BO3)2 . ◦, M, ? are ∆Q=(2,0,L),

BTQ=(2,0,L) and LEQ=(1,0,1) respectively. The dimer phase is indicated in blue, the pla-

quette phase in red with indicative plaquette gap ∆ energy. The transition between these

two phases happens in the shadowed region around 18 kbar. AFM order in green. Large

full (small empty) squares indicate where Q=(1,0,0) peaks are (are not) observed. They

are also observed continuously on the full quasi-vertical line at 40 kbar.

We finally present the p-T phase diagram summarizing our results in Fig.5.18. Dotted

lines indicate not sharp transitions, but the gap energy in the dimer and plaquette phases.

For the latter, the line is only indicative and follows the theoretical plaquette gap calcu-

lation of Ref. [12]. The full vertical line at 18.3 kbar is the first order transition between

the two disordered phases assuming αc=0.67. The quasi-vertical line at 40 kbar indicates

the magnetic ordering transition. The (1,0,0) peaks are continuously seen along this line.
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The magenta full line is the structural transition from the tetragonal to the monoclinic

phase.
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Chapter 6

Crystallographic study of

SrCu2(BO3)2

This chapter presents the structural study of SrCu2(BO3)2 as function of pressure and

temperature. The crystal structure is resolved by neutron powder diffraction at 1.6 K, at

ambient pressure, and at 37 and 66 kbar, ambient temperature. At 66 kbar SrCu2(BO3)2

is found to crystalize in the C2 monoclinic space group, where it cannot be topologi-

cally mapped to the Shastry-Sutherland model any longer. The monoclinic distortion is

extracted as function of pressure and temperature by single crystal and powder X-ray

diffraction. The neutron powder diffraction experiments were performed on the HRPT

diffractometer at SINQ (Villigen) and X-ray diffraction at the synchrotron beam line ID9b

of ESRF (Grenoble).

6.1 Temperature dependance of the crystal lattice

The ambient condition crystal structure of SrCu2(BO3)2 has been solved in the early 90’s

[24] before the compound was discovered to be a realization of the Shastry-Sutherland

model [23]. SrCu2(BO3)2 crystalizes in the tetragonal I4̄2m space group and it was later

found that above 395 K a structural transition to the higher symmetry I4/mcm group

occurs [25]. The low temperature structure however has remained unsolved until very

recently and it was unclear whether or not another structural transition takes place upon

81
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cooling. In 2009 Vecchini et al. [26] published the 2 K structure of SrCu2(BO3)2 and

observed important changes upon entering the sin gap regime (T'35 K). The I4̄2m sym-

metry however is not modified. The results we present here are consistent with their study

and show effects of spin-lattice coupling in SrCu2(BO3)2 at low temperatures.

The powder pattern were taken on HRPT operated at λ=1.89 Åwith oscillation of the

He cryostat to reduce the effects of texture. The SrCu2(BO3)2 powder contains some

impurity phases identified as CuO and Sr(B2O4). Figure 6.1 presents a typical diffraction

pattern corresponding to an exposition time of about half an our and refined using Rietveld

method with Fullprof [98].

Figure 6.1: Diffraction pattern of SrCu2(BO3)2 at 78 K. The red points are experimental

data and the black line the refinement fit. Green markers are the Bragg peak position

of the main and the two impurity phases. The blue line on the bottom is the difference

between the fit and the experimental data. (Bragg R-factor(%): 4.47).

The temperature dependent refinement allows to extract the lattice constants of SrCu2(BO3)2

with good accuracy. It can be seen in Fig.6.2 that the unit cell volume initially reduces

upon cooling. Quite unusual however is the sudden increase of volume below '35 K. This

is manifested by a negative thermal expansion for the a and b axis (magnetic plane) while

the c axis eventually contracts at a slightly lower temperature.
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Figure 6.2: Temperature dependence of the crystal structure of SrCu2(BO3)2. (a) Unit

cell volume. (b) a-axis (the b-axis is identical by tetragonal symmetry). (c) c-axis. (d)

Cu–Cu nearest neighbor distance (intra-dimer). (e) Cu–Cu next nearest neighbor distance

(inter-dimer). (f) Cu–O–Cu angle.

The length of the magnetic Cu–Cu dimer increases in the spin gap regime together with

the Cu–O–Cu angle. This suggests by Goodenough-Kanamori rules an increase of the

coupling integral J . The next nearest neighbor distance on the other hand slightly reduces.

Because of the shrinking of the c-axis the interlayer exchange J ′′ is likely to be enhanced.

Figure 6.3 presents the structural refinement at T=1.6 K. The position of the atoms and

the statistical deviations are given in Table 6.1. Although many structural effects related

to the spin-lattice coupling take place at low temperature, the powder spectrum can still

be fitted to the I4̄2m space group. The results we obtain are consistent with those of

Ref.[26].
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Figure 6.3: Diffraction pattern of SrCu2(BO3)2 at 1.6 K. The red points are experimental

data and the black line the refinement fit. The blue line on the bottom is the difference

between the fit and the experimental data. (Bragg R-factor(%): 3.42).

atom Wyckoff pos. x/a y/b z/c

Sr 4c 0 0.5 0

Cu 8i 0.11493(14) 0.11493(14) 0.29118(38)

B 8i 0.29524(19) 0.29524(19) 0.23940(38)

O1 8i 0.39994(21) 0.39994(21) 0.19982(54)

O2 16j 0.32900(16) 0.14657(23) 0.25680(65)

Table 6.1: Atomic position in SrCu2(BO3)2 at T=1.6 K. The numbers in parenthesis

give the statistical error. a=b=8.98734(5) Å, c=6.64155(6) Å. (The room temperature

structure is given in Ref.[24])
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6.2 High pressure crystal structure

The results obtained in Chap. 5 show that pressure affects the magnetic properties of

SrCu2(BO3)2 by tuning its magnetic exchange parameters, making it enter a plaquette

phase between ∼18 and 40 bar and order antiferromagnetically above that pressure. We

shall now see how these magnetic properties relate to the high pressure crystal structure.

High pressure neutron powder diffraction is challenging given the small sample sizes and

the large sample environment. The structures cannot be resolved as accurately as at

ambient conditions. This is particularly true for low symmetry phases such as monoclinic

or even tetragonal where the total intensity is scattered among many small Bragg peaks.

In the case of SrCu2(BO3)2, no high pressure structure has been published so far. Loa

  

Figure 6.4: Paris-Edinburgh press on the HRPT diffractometer at SINQ PSI (Villigen).

et al. [28] observed by X-ray diffraction and Raman spectroscopy a monoclinic distortion

at 47 kbar and another structural transition at 150 kbar, the two new phases however

were not resolved. Thanks to the recent developments in high pressure neutron scattering

at SINQ, we could obtain refinable powder patterns. The measurements were performed

on the HRPT diffractometer (λ=1.89 Å) with a Paris-Edinburgh press, using deuterated

methanol-ethanol 4:1 as pressure medium, boron nitride anvils, and titanium zirconium
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gaskets. The anvils provide an intrinsic collimation of the neutron beam trough the large

absorption of Boron. Titanium and zirconium with opposed scattering lengths produce

no additional Bragg peaks in the diffraction pattern. Furthermore oscillating radial colli-

mators (mylar-Gd-O) where placed on the spectrometer to eliminate the remaining Bragg

reflections from the sample environment. Pressure is determined by the lattice constant

of the sample following the equation of state for SrCu2(BO3)2 published in Ref. [28].

Figure 6.4 shows a picture of the setup we used, and Fig.6.5 the refined powder pat-

tern measured at 37 kbar. The atomic positions are given in Table 6.2. The impurity

phases coming from the sample environment contribute less than 1% after background

subtraction.

Figure 6.5: Diffraction pattern of SrCu2(BO3)2 at 37 kbar. The red points are exper-

imental data and the black line the refinement fit. The blue line on the bottom is the

difference between the fit and the experimental data. (Bragg R-factor(%): 25.3).

The refinement indicates that SrCu2(BO3)2 can still be assigned to the tetragonal I4̄2m

space group at 37 kbar, suggesting no structural phase transition takes place at ambient

temperature before the monoclinic distortion. The unit cell mostly contracts along the

c-axis due to the layered structure of the compound. The dimer length is shortened form

ambient 2.91 to 2.88 Å. The Cu–O–Cu angle reduces accordingly from 98 to ∼95 degrees
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atom Wyckoff pos. x/a y/b z/c

Sr 4c 0 0.5 0

Cu 8i 0.1138(13) 0.1138(13) 0.2941(29)

B 8i 0.3013(12) 0.3013(12) 0.2671(45)

O1 8i 0.3985(17) 0.3985(17) 0.2608(62)

O2 16j 0.3206(14) 0.1474(14) 0.2497(43)

Table 6.2: Atomic position in SrCu2(BO3)2 at p=37 kbar, T=300K. The numbers in

parenthesis give the statistical error. a=b=8.94988(31) Å, c=6.33943(46) Å.

which is consistent with the decrease of J obtained by fits to the susceptibility. The

experimental evidences of Chap. 5 suggest that J is still antiferromagnetic. Similar to

what happens as function of temperature, the nnn distance (5.126 Å) is hardly modified.

This can be related to the presence of a rigid BO3 group on the nnn path. The shortest

interlayer Cu–Cu distance at 37 kbar is 3.31 Åto be compared with 3.59 Åat ambient

conditions, which may indicate that pressure enhances 3D effects in the compound. How-

ever due to the absence of a strong magnetic coupling path, even short Cu–Cu interlayer

distances should not result in a large J ′′.

We now turn to the monoclinic phase that appears above 47 kbar [28]. Figure 6.6 shows

the refined diffraction pattern at 66 kbar. The pattern cannot be assigned to a tetragonal

space group any longer, and a clear splitting of Bragg peaks is observed. We find a solution

in the C2 subgroup of I4̄2m. Sr, Cu, B, and O1 split into two non equivalent positions in

C2 and O2 into four. The two Sr atoms are on special positions with multiplicity 2 while

all other atoms are on a general position. The mirror planes passing trough the dimers in

I4̄2m are lost in C2. As a result there is no crystallographic symmetry which maintains

the dimers orthogonal, nor the four next nearest neighbor coupling J ′ equivalent. The

nearest neighbor intra-dimer coupling J on the other hand remains unique in C2. The

atomic positions of our refinement are given in Table 6.3. A soft constrain of 1.37±0.3 Åon

the B-O distance has been implemented in the fit in order to maintain reasonable BO3

units.

We choose the conventional setting with unique b-axis for the C2 space group. The
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transformation matrix to the new basis is given by

P =


−1 0 1

0 1 0

−1 0 0

 (6.1)

and the new Miller indices in C2 (HC ,KC ,LC) are related to the old I4̄2m indices (H,K,L)

by (HC=−H−L,KC=K,LC=H). The unit cell at 66 kbar, a=10.32, b=8.92, c=8.90 Å,

β=143.5◦ corresponds in the old setting to a=8.90, b=8.92, c=6.17 Åand a monoclinic

angle β=95.6◦.

Figure 6.6: Diffraction pattern of SrCu2(BO3)2 at 66 kbar. The red points are exper-

imental data and the black line the refinement fit. The blue line on the bottom is the

difference between the fit and the experimental data. (Bragg R-factor(%): 29.7).

Figure 6.7 provides a view of the magnetic plane and of the layered structure of SrCu2(BO3)2

at 37 kbar at 66 kbar. The first observation regarding the structure beyond the mono-

clinic distortion is that the dimers although not constrained by symmetry, remain close

to orthogonal. The dimer length is reduced to 2.76 Å. The Cu2O2 dimer unit is distorted

and the are two different Cu–O–Cu angles: 93◦ and 83◦. The precise value of these angles

depends on the B–O distances which had to be constrained in the fit. The before unique

next nearest neighbor Cu distances splits into two shorter (5.02 and 5.09 Å) and two
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atom Wyckoff pos. x/a y/b z/c

Sr1 2a 0 0.4692(135) 0

Sr2 2b 0.5 0.4866(135) 0.5

Cu1 4c 0.7119(63) 0.6209(131) 0.1117(80)

Cu2 4c 0.2771(54) 0.4023(129) 0.6589(81)

B1 4c 0.6916(59) 0.7706(128) 0.9310(69)

B2 4c 0.2714(61) 0.1986(126) 0.4594(78)

O1 4c 0.7382(104) 0.9124(136) 0.8348(125)

O2 4c 0.2522(85) 0.1422(137) 0.3726(103)

O3 4c 0.7262(73) 0.6430(132) 0.9110(97)

O4 4c 0.2678(77) 0.1929(137) 0.6321(94)

O5 4c 0.8143(76) 0.3933(127) 0.6245(101)

O6 4c 0.2252(84) 0.8508(136) 0.8603(108)

Table 6.3: Atomic position in SrCu2(BO3)2 at p=66 kbar, T=300 K. The num-

bers in parenthesis give the statistical error. a=10.31871(77) Å, b=8.92385(45) Å,

c=8.89855(62) Å, β=143.4606(33)◦.

longer (5.18 and 5.23 Å) distances. The coupling paths however are all different so that

we consider this should lead to a spitting of J ′ into four different terms and not only two.

The shortest Cu–Cu interlayer distance is now 3.02 Å.

Finally we present our results on the temperature dependence of the monoclinic distortion.

It was extracted from single crystal and powder X-ray diffraction measurements using

a diamond anvil cell at the high pressure beamline ID9b of the ESRF synchrotron in

Grenoble. The setup is the one given in Table 5.1. We follow the splitting of Bragg

peaks in the monoclinic phase as function of pressure in order to extract the critical

pressure for the transition. Typical example of peak splitting are shown in the inset of

Fig.6.8. The upper one corresponds to the splitting of Q=(2,1,1) tetragonal into four

non equivalent peaks Q=(-3,1,2), (-1,1,2), (-2,2,1), (0,2,1) in the monoclinic phase for a

powder sample and the lower one to the splitting of Q=(5,1,0) into two non equivalent

reflections (-5,1,5) and (-1,5,1) in a single crystal sample. We obtain that the critical
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aa b

c d

Figure 6.7: Views of the crystal structure at high pressure. (a) p=37 kbar, magnetic

plane. (b) p=66 kbar, magnetic plane after the monoclinic distortion. (c) p=37 kbar,

interlayer view along the b-axis showing a cut through 4 magnetic planes in two unit cells.

(d) Similar view at p=66 kbar.

pressure remains confined between 40 and 50 kbar form ambient to base temperature.

At low temperature the error bars are larger due to the smaller number of pressures

measured1. The lowest critical pressure (43 kbar) is found at 200 K. It thus seem that

the magnetic ordering discussed in Chap. 5 takes place relatively close to but still before

the structural distortion.

1This is due to the inherent difficulty in increasing pressure at low temperatures when pressure trans-

mitting medium and capillaries freeze.
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Figure 6.8: Monoclinic distortion as function of pressure and temperature. The symbols

with horizontal error bars give the critical (p,T) determined by X-ray diffraction and they

are connected by the magenta line. The inset shows the fits to the spitting of Bragg peaks

from the original tetragonal into non equivalent monoclinic (see text). The red line at

40 kbar represents the onset of magnetic ordering.

6.3 Conclusion on the crystallographic study

In summary we have obtained important structural information on SrCu2(BO3)2 that

will provide a better understanding of its magnetic properties. They could, for instance,

be used for ab-initio calculations in order to quantify the magnetic couplings. The low

temperature structure and the temperature dependence of the lattice have been obtained

by neutron diffraction. They are in good agreement with the recent publication by Vec-

chini et al. [26] and clearly show spin-lattice coupling effects upon entering the spin gap

regime. We have also studied the high pressure structure and were able to solve it in

both the tetragonal and the monoclinic phases. The Cu–O–Cu angles reduce as function

of pressure which seems consistent with the decrease of magnetic coupling obtained from

fits to the susceptibility. The resolution of a complex monoclinic phase is, in itself, re-

markable given the low symmetry implying a large number of non equivalent atoms in the
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unit cell. This has been made possible by recent improvements in high pressure neutron

diffraction. The monoclinic structure shows that SrCu2(BO3)2 cannot be described by

the Shastry-Sutherland model at high enough pressure. The dimers although still close

to being orthogonal, are connected to each other by four different next nearest neigh-

bor couplings implying a relief of the perfect frustration existing at lower pressure. As

a consequence one could expect a rapid magnetic ordering once the frustration starts to

be lifted. The extraction of the critical monoclinic pressure as function of temperature,

indicates that magnetic ordering at 40 kbar actually seems to take place just before the

structural distortion. We thus explain it, in Chap. 5, by the Neel order expected from

the original Shastry-Sutherland model. The magnetic structure in the monoclinic phase

on the other hand may well be different.



Chapter 7

Conclusion and Outlook

This thesis has presented our results on the Shastry-Sutherland compound SrCu2(BO3)2

studied at different temperatures and pressures.

It was shown that is it possible to tune SrCu2(BO3)2 by application of hydrostatic pressure

out of the exact dimer phase to a plaquette singlet state and eventually to an AFM ordered

phase. The first transition occurs around 18 kbar and the second at 40 kbar. This brings

a strong experimental evidence to the controversial theoretical issue of the intermediary

phase in the Shastry-Sutherland model. This evidence is in favor of the existence of an

intermediary plaquette phase on the plaquettes containing a diagonal bond .

The structural part of the work has confirmed the recently observed spin-lattice coupling

in SrCu2(BO3)2 upon entering the spin gap regime. It has also provided the first structural

information on this compound at high pressures. The tetragonal-monoclinic distortion has

been traced as function of pressure and temperature. SrCu2(BO3)2 is found to crystalize

in the C2 space group and the atomic positions have been determined. The dimers remain

quasi-orthogonal but the next nearest neighbor couplings split into four non-equivalent

J ′.

On the technical side, it was also shown that these new high pressure phases can be studied

by neutron scattering even though this requires a very challenging sample environment

with reduced sample sizes: the plaquette phase was observed by INS with a 0.2 g single

crystal at 21.5 kbar in a large pressure cell cooled down to T=0.5 K, and the low symmetry

93
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monoclinic phase with 44 atoms in the unit cell occupying 12 inequivalent positions could

be refined at 66 kbar.

The INS study of the gap excitation as function of temperature has revealed that the

excitation is damped, and can be modeled by a sharp and a broad component which

exchange intensity as temperature varies between 0 and 10 K. This damping could be

explained by a simple phenomenological model indicating that it is the simultaneous

presence of two triplets in the same ‘region’ that causes the decay. The size of this region

could be calculated and is about 21 unit cells.

Some open questions remain, as why is the Neel temperature of the ordered phase so high.

Is the magnetic order in the monoclinic phase different than the one in the tetragonal

phase. A theoretical study of a modified – not perfectly frustrated – Shastry-Sutherland

Hamitonian containing four different J ′ could bring an answer. Can a calculation repro-

duce our experimental observations in the plaquette phase, i.e. a plaquette ground state

on the plaquettes containing a diagonal bond with the triplet excitation being lower in

energy than the quadruplet at the actual coupling values of SrCu2(BO3)2. We hope that

this experimental work will trigger some interest from theorists to address such issues.

Finally we mention here the yet unpublished work by J. A. Larrea at the Laboratory for

Quantum Magnetism at EPFL. High pressure specific heat measurements on SrCu2(BO3)2

have confirmed the neutron results and support the phase transition around 18 kbar as

well as the existence of a new type of excitation. It further shows some intriguing magnetic

field dependence in the new phase. This is certainly another issue to further investigate

in the future.
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The isolated dimer model
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Figure A.1: Relative number of singlets ns = 1/(1 + 3e−β∆) and triplets nt = 1/(3 + eβ∆)

as function of temperature for isolated dimers with a 35 K gap. The inset is a zoom into

the 0–50 K range.

A spin pair – a dimer – coupled antiferromagnetically gives the simplest example of a non-

classical, non-magnetic singlet ground state. This simple system is important as dimers

are often the basic units in frustrated magnets and the tendency to form dimer singlets

appears to be quite a generic feature. For instance, the degenerate ground states of a spin

s = 1/2 triangle1 can be viewed as a singlet plus a left alone spin, and those of a tetrahedra

as a product of singlets on opposed bounds. When taking J ′=0 in the Shastry-Sutherland

model one obtains isolated dimers, and even for α ≤∼0.7 the ground state of the Shastry-

1It is however now believed that the extended triangular lattice shows three-sublattice long range

order and not an RVB state on the all dimer configurations as proposed earlier [99, 100].
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Sutherland model is a product of singlets, and the triplet excitations remain localized to

6th order. Therefore, it is instructive to examine the properties of isolated dimers as a

‘zeroth order’ approximation to the more complexe Shastry-Sutherland model.

We will derive the specific heat, the magnetic susceptibility, and the neutron scattering

structure factor. Most of the differences we shall find between the isolated dimer calcu-

lation and the real material, will be a manifestation of the frustration and the extended

electron correlations neglected in the simplification.

Two antiferromagnetically coupled s = 1/2 spins form a dimer described by the simple

Hamiltonian:

H = J ~S1
~S2. (A.1)

The ground state is unique and separated by a gap ∆ = J to three excited states. The

energies are

E0 = −3/4J

E1 = E2 = E3 = 1/4J, (A.2)

and the eigenstates correspond to an s = 0 ‘singlet’ for the ground sate |Ψ0〉 with energy

E0 and three s = 1 ‘triplet’ states |Ψ1,2,3〉 with equal energies E1 = E2 = E3:

|Ψ0〉 =
1√
2

[| ↑↓〉 − | ↓↑〉]

|Ψ1〉 = | ↓↓〉

|Ψ2〉 =
1√
2

[| ↑↓〉+ | ↓↑〉]

|Ψ3〉 = | ↑↑〉 (A.3)

In presence of a magnetic field ~B the energy of the m = ±1 triplet states |Ψ3,1〉 will shift

by ∓gµbB. The partition function is then given by

Z = e−
1
4
β∆(eβ∆ + 1 + 2cosh(βgµbB)) (A.4)
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where β = 1/kbT and the singlet and triplet populations in zero field by

ns(T ) = 1/(1 + 3e−β∆) (A.5)

nt(T ) = 1/(3 + eβ∆). (A.6)

Figure A.1, shows the decay of the singlet population in the isolated dimer model as

function of temperature: the gap value roughly corresponds2 to 50% of singlets, while at

high temperatures the singlet proportion tends to 25%. The situation will turn out to be

very different for SrCu2(BO3)2 with inelastic neutron scattering intensity – in principle

proportional to the number of singlets – decreasing in a more subtle manner as discussed

in Chap. 4.

From (A.4) one can derive the thermodynamic quantities as the free energy F = − 1
β
ln(Z),

the magnetization M = −n∂F
∂B

and the susceptibility χ = ∂M
∂H

for a volume dimer density

n. In the limit where χ << 1 the susceptibility is given by a simple expression and is

proportional to number of triplets divided by the temperature:

χ = nµ0β
2g2µ2

b

3 + eβ∆
∝ 1

T
nt (A.7)

Similarly, the specific heat c = T ∂S
∂T

is obtained from the entropy S = −∂F
∂T

:

c =
3kb(β∆)2e−β∆

(1 + 3e−β∆)2
(A.8)

At high temperatures, the susceptibility follows a 1/T paramagnetic-like curve (Fig. A.2).

For temperatures well below the gap, thermal excitation to the magnetic triplet states

becomes unlikely and the susceptibility rapidly goes to zero as only non-magnetic singlets

are left. Between these two extremes, susceptibility has a peak with a maximum around

∼ 0.62∆. Specific heat has a sharper peak at ∼ 0.35∆. This is a typical behavior for

spin gap systems and it is also encountered in SrCu2(BO3)2. The value of the isolated

dimer susceptibility can be compared with the experimental results for SrCu2(BO3)2,

introducing a volume density for the dimers n'4.39·1020cm−3 and a number of Cu moles

2The singlet population is 50% when kbT = ∆/ln(3) ' 0.91∆.
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Figure A.2: Isolated dimer model with ∆=35 K·kb (a) Magnetic susceptibility, (b) Specific

heat.

per cm3'0.0015. This is shown in Fig.A.3 where it can be seen that the peak maximum

is strongly suppressed in the real material. The maximum is also located at a lower

temperature (17 K) than for the isolated dimer (22 K). The differences can be attributed

to the extended and frustrated interaction in SrCu2(BO3)2
3.

Figure A.3: Comparison between the susceptibility of SrCu2(BO3)2 (full line) and an

isolated dimer susceptibility with ∆=35 K. Reproduced from [7].

The structure factor S( ~Q) is another important quantity to compute since it gives the

momentum dependence observed in neutron scattering experiments. For a single dimer it

3Note that they are already responsible for the material having a gap ∆=35 K, while J is ∼85 K.
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is given by4 [101]

S( ~Q) =
1

2
(1− cos( ~Q · ~d)) (A.9)

or averaged over random orientations:

S̄(Q) =
1

2
(1− sin(Qd)/Qd)) (A.10)

with ~d the spatial vector connecting the two spins of the dimer. The first relation is

relevant for a single crystal, while the second relates to a powder sample. To be more

specific in the single crystal Q dependence, we use the geometry of SrCu2(BO3)2 with two

orthogonal dimers oriented diagonally in a square unit cell with lattice constant 8.99 Å

and a distance of 2.9 Å between the spins in each dimer (See Chap. 2).

S( ~Q) = sin2(ζ(Qh −Qk)) + sin2(ζ(Qh +Qk)) (A.11)
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Figure A.4: Structure factor for two isolated dimers with SrCu2(BO3)2 geometry,

Eq.A.11. Intensity scale for the color map (left): low intensity in dark blue to high

intensity in dark red.

with the constant ζ=0.7166 and Qh,k in reciprocal lattice units. The Q dependence of the

susceptibility can also be computed [86] and is plotted in Fig.A.5.

4The structure factor is given by specializing the dynamical structure factor (Eq.3.20) to the singlet-

triplet transition.
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χ(~q) ∝ 2

∆
A(~q)(1− e−β∆) + 2βB(~q)e−β∆, (A.12)

A(~q) =
sin2(ζ(qh − qk)) + sin2(ζ(qh + qk))

4(1 + 3e−β∆)
(A.13)

B(~q) =
cos2(ζ(qh − qk)) + cos2(ζ(qh + qk))

4(1 + 3e−β∆)
(A.14)

0 10 20 30 40 50
0

0.5

1

1.5

2

T [K]

χ(
Q

) 
⋅ (

∆/
(n

 µ
0g2 µ b2 ))

 

 

Q=(0,0)
Q=(1,0)
Q=(1.5,0)
Q=(2,0)
Q=(1.5,0.5)

Figure A.5: Q-dependent susceptibility with SrCu2(BO3)2 geometry, Eq.A.12.
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Four spins plaquette

We analyze here the energy spectrum and the neutron scattering structure factor for

an isolated four spins plaquettes. The high pressure study of SrCu2(BO3)2 has shown

(Chap. 5) that the excitation spectrum is strongly modified at 21.5 kbar with a new

type of excitation appearing at 1 meV. This excitation has a structure factor peaking

around Q=(1,0,0) and is accompanied by another excitation at 2 meV which displays a

structure factor identical to the singlet-triplet gap of the low pressure dimer phase. The

plaquettes considered for the calculations are displayed in Fig.B.1. They correspond to

position of the Cu2+ ions SrCu2(BO3)2. We distinguish between ‘void’ plaquettes with no

diagonal bond and ‘full’ plaquettes containing a diagonal bond. For each type they are

two possible orientations. In the SrCu2(BO3)2 geometry the full plaquettes are strongly

elongated while the void are almost squares.

The Hamiltonian for the void and full plaquettes (with diagonal bond taken between spins

1 and 3) are given by:

Hvoid = J ′(~S1
~S2 + ~S2

~S3 + ~S3
~S4 + ~S1

~S4) (B.1)

Hfull = J ′(~S1
~S2 + ~S2

~S3 + ~S3
~S4 + ~S1

~S4) + J(~S1
~S3). (B.2)

The eigenstates can be fully characterized (Table B.1) by the value of the total spin stot

and the values of the total spin on the two diagonals s1,3 and s2,4 [102]:
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Figure B.1: Geometry of the full (left) and void (right) plaquettes in SrCu2(BO3)2. The

positions of the sites refer to ambient crystal structure.

For J ′/J ≥ 1/2 the ground state is a singlet with energy E0. For J ′/J ≥ 1 the first excited

state is a triplet with energy E1, while for 1 ≥ J ′/J ≥ 1/2, the first excited state is E2a,b.

The energies E2a (singlet) and E2b (triplet) are degenerated and form a quadruplet. The

E2a,b quadruplet corresponds to a singlet on the diagonal plus two free spins. For the void

plaquette (J=0) E2a,b and E3 are further degenerate and form a septuplet.

We now compute the neutron scattering structure factor for the transitions between the

E0 ground state and the first two excited states on the void and full plaquette.

The structure factor is given by specializing (3.20) to a specific transition:

Sα,β( ~Q) =
∑
a,b

ei
~Q·(~Ra−~Rb)

∑
λf

〈λi|Sαa |λf〉〈λf |Sβb |λi〉 (B.3)

with |λi〉 the unique ground state and |λf〉 the degenerate excited states, and where α,

β=x,y,z.

Figure B.3, shows the structure factors (Sx,x + Sy,y + Sz,z) for one of the two possible

full plaquette orientations. The other plaquette is simply obtained by mirror symmetry

along Qk. The important result is that the singlet-triplet E0 → E1 transition peaks just
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Energy stot s1,3 s2,4

E0 −2J ′ + J/4 0 1 1

E1 −J ′ + J/4 1 1 1

E2a −3J/4 0 0 0

E2b −3J/4 1 0 1

E3 −J/4 1 1 0

E4 J ′ + J/4 2 1 1

Table B.1: Energies and eigenstates for the four spins plaquette.

above Qh=1 and the singlet-quadruplet transition E0 → E2 has a structure factor strictly

identical to the dimer singlet-triplet structure factor.

In Fig.B.4, we compute the sum of the structure factors for the two possible orientations

of the full plaquettes. The E0 → E1 transition has some high intensity regions as around

Q=(2,2,0). By symmetry, the results are the same as before along the Q=(H,0,0) line. The

E0 → E2 transition has a structure factor strictly identical to that of the two orthogonal

dimers in the SrCu2(BO3)2 geometry (shown in Fig.A.4).

Figure B.5 shows S( ~Q) for one of the two possible orientations of the void plaquette. The

other orientation is obtained by symmetry along Qh=Qk. The E0 → E1 transition has a

structure factor similar to the one obtained for the full plaquette but the intensity peaks

in the magnetic plane have more circular shapes denoting the smaller distortion of the

void plaquettes. Along the Q=(H,0,0) line however, the structure factors for all the four

types of plaquettes considered are identical.

The transition to the second excited state is now E0 → [E2E3] since E2 and E3 are

degenerate. S( ~Q) is in general very different than the singlet-triplet excitation of a dimer.

Along the Q=(H,0,0) line, the void plaquettes display a triple peak structure between

Qh=0 and Qh=4, where the dimer has a single peak. The sum over the two void plaquettes

orientations is given in Fig.B.6.

The conclusion of this analysis is that the isolated four spins plaquette containing a diago-

nal bond catches the main features observed experimentally in SrCu2(BO3)2 at 21.5 kbar.

The ground state is a non magnetic singlet, there is a gap – which is actually expected to



104 APPENDIX B. FOUR SPINS PLAQUETTE

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−4

−3

−2

−1

0

1

2

3

E
/J

J’/J

 

 

E
0
, Stot=0

E
1
, Stot=1

E
2
, Stot=0 and 1

E
3
, Stot=1

E
4
, Stot=2

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

E
/J

’

J/J’

Figure B.2: Energy spectrum for the full plaquette. Left: As a function of J ′/J . Right:

as a function of J/J ′. The void plaquette spectrum is obtained along the J/J ′=0 line on

the right panel.

survive on the extended plaquette system [92] – and they are two low lying excited states

that are observable by INS. The crossover between the these two states is at J ′/J=1 for

the isolated plaquette, but can turnout to be at very different values on the extended

frustrated lattice. Our experimental evidence shows the lowest triplet has a structure

factor peaking just above Qh=1 on the Q=(H,0,0) line, which is the case for the E0 → E1

transition discussed above. The second excited state at 21.5 kbar has the same structure

factor than ∆ the ambient pressure gap. The E0 → E2 transition for the full plaquette

shows exactly this behavior, while for the void plaquette S( ~Q) is different. We thus fa-

vor the interpretation that the new discovered phase in SrCu2(BO3)2 corresponds to the

formation of a plaquette state on the plaquettes containing a diagonal bond.
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Figure B.3: Sum of the structure factors (Sx,x + Sy,y + Sz,z) for one full plaquette

orientation displayed on the upper panel. The middle panel shows the transition E0 → E1

and the lower panel the transition E0 → E2. Intensity scale for the color map: low

intensity in dark blue to high intensity in dark red.
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Figure B.4: Sum of the structure factors (Sx,x + Sy,y + Sz,z) for the two orientations

of full plaquettes displayed in the upper panel. The middle panel shows the transition

E0 → E1 and the lower panel the transition E0 → E2.
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Figure B.5: Sum of the structure factors (Sx,x + Sy,y + Sz,z) for one void plaquette

orientation displayed in the upper panel. The middle panel shows the transition E0 → E1

and the lower panel the transition E0 → [E2, E3]. The green line is the dimer singlet-

triplet structure factor (Eq.A.11).
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Figure B.6: Sum of the structure factors (Sx,x + Sy,y + Sz,z) for the two orientations

of void plaquettes displayed in the upper panel. The middle panel shows the transition

E0 → E1 and the lower panel the transition E0 → [E2, E3]. The green line is the dimer

singlet-triplet structure factor (Eq.A.11).
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