
1

Design Methods for Parallel Hardware
Implementation of Multimedia Iterative Algorithms

Vincenzo Rana‖†, Alessandro A. Nacci‖, Ivan Beretta†,
Marco D. Santambrogio‖, David Atienza†, Donatella Sciuto‖

†Embedded Systems Laboratory (ESL), EPFL, Lausanne, 1015, Switzerland, {ivan.beretta, david.atienza}@epfl.ch
‖Politecnico di Milano, Milano, 20133, Italy, {rana, nacci, santambr, sciuto}@elet.polimi.it

Abstract— Traditionally, parallel implementations of multime-
dia algorithms are carried out manually, since the automation
of this task is very difficult due to the complex dependencies
that generally exist between different elements of the data set.
Moreover, there is a wide family of iterative multimedia algo-
rithms that cannot be executed with satisfactory performance on
Multi-Processor Systems-on-Chip or Graphics Processing Units.
For this reason, new methods to design custom hardware circuits
that exploit the intrinsic parallelism of multimedia algorithms are
needed.

As a consequence, in this paper, we propose a novel design
method for the definition of hardware systems optimized for
a particular class of multimedia iterative algorithms. We have
successfully applied the proposed approach to several real-
world case studies, such as iterative convolution filters and the
Chambolle algorithm, and the proposed design method has been
able to automatically implement, for each one of them, a parallel
architecture able to meet real-time performance (up to 72 frames
per second for the Chambolle algorithm), with on-chip memory
requirements from 2 to 3 orders of magnitude smaller than the
state-of-the art approaches.

I. INTRODUCTION

In the last years, embedded systems have become a valuable
platform not only for simple and low-power applications, but
also for the implementation of very complex algorithms, es-
pecially in the field of image and video processing [1]. Within
this context, iterative algorithms that work on large matrices
[11] can be implemented today on Graphics Processing Units
(GPUs), Multi-Processor Systems-on-Chip (MPSoCs) or Field
Programmable Gate Arrays (FPGAs). However, GPUs and
MPSoCs often fail in achieving real-time performance, as
shown in Section V, on certain families of iterative algorithms
([8], [9]), such as the iterative convolution filters presented in
Algorithm 1, where:

• N is the number of iterations to be performed;
• X is the horizontal width of the input image;
• Y is the vertical height of the input image (so X × Y is

the size of the input image).
The reason why these architectures are not suited for the
considered family of algorithms is that, on the one hand,
it can be very difficult to exploit the Single Instruction
Multiple Data (SIMD) paradigm with the static structure of
GPUs (which have a fixed number of computational units) to
implement algorithms with very complex data dependencies
among iterations. On the other hand, MPSoCs are best suited
for application or task level parallelism, where the operations

Algorithm 1 Generic Iterative Convolution Filter
for (iteration = 0; iteration < N ; iteration++) do

for (x = 0; x < X; x++) do
for (y = 0; y < Y ; y++) do

sum = 0
for (i = -Kernel Size; i < Kernel Size; i++) do

for (j = -Kernel Size; j < Kernel Size; j++) do
sum = sum + Kernel(j,i) * Image(x-j, y -i)

end for
end for
Temp(x,y) = sum

end for
end for
for (x = 0; x < X; x++) do

for (y = 0; y < Y ; y++) do
Image(x,y) = Temp(x,y)

end for
end for

end for

on the input data are very sophisticated and fit the high
complexity of each processing core. On the contrary, FPGAs
provide a fully customizable platform where any kind of
custom operation, either complex or very simple, can be
implemented in hardware and applied on multiple blocks of
data in parallel. Unfortunately, the design of custom systems
could be a very challenging task, since methods to drive
the designer in the definition of architectures optimized for
multimedia algorithms are still missing.

In addition to this, the parallel implementation of an algo-
rithm that works on large amounts of data and, in particular,
on matrices, is also inherently difficult because of the nature
of the algorithm itself, as it typically contains complex data
dependencies. Historically, algorithms for multi-dimensional
data processing are expressed in a serial form, either because
they are meant to illustrate a way to solve the problem
rather than to provide an actual implementation, or because
the are originally targeted for a software execution on an
instruction set processor. The serial version of such algorithms
is generally inefficient and inadequate to process large amounts
of data, especially at a very high rate (e.g., in video processing
applications [9], [11]).

Despite the need for parallelism, the hardware design for
algorithms that deal with large sets of data is still carried out

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147991284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

manually, and its automation is discouraged by the complex
dependencies that generally exist between different elements
of the data set. In this context, we present in this paper an inno-
vative design method that goes beyond the code manipulation
performed by the existing loop transformation techniques, as
it is specifically tailored to a well-defined class of algorithms
and to a fine-grained programmable hardware. Hence, it is
able to keep into account the typical dependency schema
of multimedia applications, and to exploit them to extract
an efficient custom-shaped implementation. With respect to
other loop transformation techniques, our approach is able
to generate a circuit that directly computes the result of an
arbitrary n-th iteration, while automatically keeping into ac-
count the required data dependencies. The ability of combining
the unrolling of multiple iterations with the possibility of
partitioning the input (i.e., performing the computation starting
from a subset of the input matrix), and to possibly process
a redundant amount of data in order to guarantee the data
dependencies, make our approach innovative with respect to
the existing techniques

II. TARGET FAMILY OF ALGORITHMS

The design method proposed in this paper can be success-
fully applied to a wide set of iterative algorithms that work
on matrices, which are typical in image and video processing.
In fact, many algorithms in this field ([9], [11]) aim at finding
an output matrix of the same size as the input (e.g., a filtered
image) by using an iterative process: each iteration produces
an intermediate matrix, which is computed by processing one
or more elements of the result produced during the previous
iteration. Algorithm 1 provides an illustrative example of this
class of algorithms: the pseudo-code emphasizes the iterative
behavior (i.e., the N iterations of the outermost loop), as
well as the necessity to scan the entire intermediate matrix
(consisting of X×Y elements) to produce the updated result.

Although the pseudo-code in Algorithm 1 might seem
very specific, its structure models a large number of existing
algorithms, especially in the multimedia field. For instance,
all the algorithms presented in [1], [2], [4], [8] and [11] can
be expressed in that form. However, if the whole algorithm
has to be repeated several times starting from different input
data, as it happens in [4], each execution can be considered
independent from the others, since they do not share interme-
diate results. Thus, the approach proposed in this work is still
valid under the condition that the generated system is used
sequentially for each execution.

In order to formalize the considered family of algorithms,
we define the following notations:

• (x, y, n) represents the element (x, y) of the intermediate
matrix at iteration n;

• G(x, y, n) represents the set of elements that are nec-
essary to correctly compute the value of the element
(x, y, n), in other words it corresponds to the dependency
schema of the algorithm. Since the elements belonging to
G(x, y, n) are used to compute an element at iteration n,
they have to be generated at iteration n− 1.

An algorithm can be successfully handled by the proposed
methodology if the two following conditions hold, which is
typically true for iterative algorithms:

1) no read-after-write (RAW) conflicts should exist within
an iteration, because the first innermost loop performs
the evaluation of the intermediate matrix coming from
the previous iteration and stores the results in a tempo-
rary variable, while the second innermost loop updates
the intermediate matrix. This means that the computation
of an element at iteration n can not depend on the value
of another element at iteration n, but only on previously
generated elements (the ones at iteration n− 1);

2) for each generic element (x,y,n) , the set G(x,y,n) should
only depend on the position (x, y) of the element. In
other words, it should be possible to compute an element
of the intermediate matrix starting from a well-defined
and limited neighborhood of the element itself, taken
from the intermediate matrix coming from the previous
iteration.

III. IMPLEMENTATION APPROACHES

Several approaches can be adopted to design an optimized
hardware system for the considered family of algorithms. In
Figure 1 we are considering a quite simple example where
an operation k, with two adjacent inputs (Inputk = 2) and a
single output (Outputk = 1), is executed on all the elements
of the input matrix (which are X × Y) for four iterations
(N = 4). Thus, each iteration of the algorithms requires a
number Z = X·Y

Outputk
of k operators. In this context, the

implementation of all the k operators needed to execute the
N iterations of the algorithm is not a viable solution in
typical realistic scenarios, because of its extremely large area
requirements (the area usage is directly proportional to both Z
and N), which makes it almost impossible to implement this
solution on actual devices for reasonable values of X and Y
(e.g., almost 8 millions of k operators would be necessary to
compute 10 iterations of the considered family of algorithms
on a 1024× 768 image).

The first approach that can be found in the literature [5], in-
dicated with A in Figure 1, corresponds to the implementation
of a single instance of the operator k, which is used several
times in order to compute all the intermediate and final results
of the algorithm, which are the (x, y, n) elements introduced
in the previous section. The area usage of this first approach is
very low, since only a single instance of the operator k has to
be implemented in hardware. However, also the performance
of this approach is low, since all the operations have to be
performed in a completely sequential fashion (only a single
operator is available), and its memory requirements are huge,
since all the intermediate results have to be stored for the
subsequent iteration.

The second approach, indicated as B in Figure 1, involves a
window of k operators running in parallel [6]. This approach
is widely used in the literature [7], especially on algorithms
characterized by simple dependencies. However, this approach
cannot be considered a viable solution when dealing with
algorithms characterized by complex dependencies, since it

3

k k k k k k k k kk k k k k

k k k k k k k k k kk k k k k

k k k k k k k k k kk k k k k

k k k k k k k k k kk k k k k

 B C (proposed approach)D A

k

Iteration 1
Iteration 2

Iteration 3
Iteration 4

}

}

}

}

X x Y elements

Fig. 1. Different approaches to the design of optimized hardware for the
considered family of algorithms

does not take into consideration their dependency schema,
thus leading to unacceptable overheads in terms of both
computation time and memory requirements. In fact, if the
dependencies among the iterations are not taken into account,
it is not possible to ensure that all the output values of
an intermediate computational step are directly used in the
subsequent step, thus it could happen that some of them have
to be stored for later use (memory overhead) or discarded
and then computed again when necessary (timing overhead).
In particular, storing all the data requires a big on-chip or
off-chip memory (able to contain the whole input image) is
needed. The first case is obviously very demanding in terms
of on-chip memories (which are usually not sufficient to hold
the whole input image), while the second one, in addition to
the memory requirement, introduces a non-negligible timing
overhead since each time an old value is needed it has to
be retrieved from the external memory. A third option is to
abolish the memory requirements by discarding all the values
that cannot be stored anymore in the small local cache, thus
computing again a value every time it is needed (an this could
happens hundreds or thousands of times, depending on the
complexity of the dependency schema of the target algorithm).

Finally, the approach indicated as C in Figure 1 is the
one proposed within this research work. It deals, at each
iteration, only on the subset of data, namely a collection
of overlapping G(x, y, n) values, necessary to compute the
information needed by the following iteration. Since in most of
the cases the set of elements that can be successfully computed
at the iteration n is only a subset of the elements computed at
the iteration n–1, the resulting structure is usually very similar
to a 3D cone, such as in the example shown in Figure 1.

The shape of the architectures generated with the proposed

approach is characterized by the size of the input window
(wi), the size of the output window (wo) and the number of
iterations computed by each cone (which is t = N

H , where
H is the number of levels in which the computation of the N
iterations is split). The shape of the cones (e.g., the relationship
between wi and wo) strictly relies on the data dependencies
schema of the selected algorithm (in other words, on the size
and shape of the G(x, y, n) sets).

IV. THE PROPOSED DESIGN METHOD

The methodology proposed in this paper can be successfully
applied to the design of hardware architectures based on a
hardware template that can be tuned to meet the constraints
imposed by the designer and that is able to exploit two
different levels of parallelism:

• Coarse-Grained Parallelism: this is the parallelism that
can be extracted among different iterations of the same
loop on the same elements of the data set;

• Fine-Grained Parallelism: this is the parallelism that
can be extracted when computing different elements in
the same iteration of the loop.

Assuming that the two conditions presented in Section
II hold for the iterative algorithm taken in consideration,
it is sufficient to analyze the instructions (in C or VHDL
code) contained in the innermost loop (e.g., sum = sum +
Kernel(j,i) * Image(x-j, y -i) in Algorithm 1) to identify the sets
G(x, y,N − t), one for each (x, y,N) element of wo, which
represents the inputs of the cone. In other words, it is possible
to trace back the dependencies among the different elements
(all the ones needed to compute the desired output window
specified by the designer as input) at different iterations (from
the first iteration to the iteration specified by the designer as
input). In fact, as shown in Algorithm 2, in order to build
the complete architecture, the designer can specify the size
and shape of the desired output window (wo), as a set of
(x, y, n) elements, as well as the number of iterations to be
implemented within a single cone (t).

Once the analysis of the dependencies is completed, it is
possible to generate and synthesize the basic hardware cone
able to produce the desired output window starting from the
elements at the iteration N − t. At this point, if the final
hardware cone includes all the iterations of the algorithm (thus
if N = t), it can be simply executed sequentially (shifting the
location of the output window in order to cover the whole
input data set) to generate all the output windows necessary
to build the final result. Otherwise, if only a portion of the
iterations are processed by the hardware cone (see Figure 1),
it is necessary to build the structure shown in Figure 2 in order
to cover (following a multi-level approach) all the iterations
required by the target algorithm, as described in the Reverse
Scheduling procedure of Algorithm 2. In particular, Figure
2 shows the structure of an architecture consisting of cones
spanning 4 iterations (t = 4), for an algorithm requiring a
total of 12 iterations (N = 12).

In other words, in the final solution the computation of the
previously introduced innermost loop is performed on a subset
of elements, instead of considering the whole data set. This

4

Algorithm 2 Proposed Design Method
Input from the designer:

• Desired output window wo

• Total number N of iterations
• Height t of each cone

Output:
• Final parallel hardware implementation

of the considered multimedia iterative algorithm

Cone Generation:
wi=∅
for each (xk, yk, N) belonging to wo do
wi = wi ∪ G(xk, yk, N − t)

end for
Synthesize a cone able to generate wo starting from wi

Reverse Scheduling:
for (p = 0; p < Size(InputMatrix)

Size(wo)
; p++) do

Schedule 1 cone at level N
t in position p

for (iteration = N
t − 1 ; iteration > 0; iteration–) do

Schedule all the cones necessary at level iteration in
position p, in order to feed the cones already scheduled
at level iteration+1 in position p

end for
end for

Ri

Ro

t=N/H
1 2 3

4 5

6

Level 1 (H-2)

Level 2 (H-1)

Level 3 (H)

Fig. 2. Cone structure for N = 12 and H = 3 (thus, t = 4)

makes it possible to split the computation in several different
tasks (implemented in hardware as cones that span on more
iterations) that can be executed sequentially or completely in
parallel, depending on the amount of resources available on
the target device.

The method proposed within this paper (intended as a set
of subsequent steps to be performed in order to implement
the Approach C of Figure 1) can be followed by any de-
signer in order to build a system that follows the previously
described architectural template. However, we also developed
a design framework that makes it possible for the designer
to automatically generate the desired architecture by simply

specifying the size of the output window and the number of
iterations to be implemented within a single cone. Thus, the
designer can exploit this tool in order to explore the design
space, selecting the architecture with the highest performance
among the ones that fulfill the area constraints imposed by the
designer. However, the description of this design framework is
out of the scope of the paper, since the method is more generic
and it is valid also when applied manually by the designer.

A. Memory Requirements Analysis

The main advantage of employing the proposed approach
with respect to approaches A and B of Figure 1 is that it makes
it possible to exploit the knowledge of the dependency schema
of the target algorithm in order to obtain high-performance
architectures (as shown by the experimental results on several
real-world case study, such as the one presented in Section V)
with very low requirements in term of on-chip memory.

In fact, from the internal memory usage perspective, the on-
chip memory requirement of the approaches A and B in their
basic formulation is 2∗X∗Y ∗e, where e is the size of a single
element of the input. This is because it is necessary to keep
into the internal memory at least 2 arrays (containing each
one X ∗ Y elements): the first one stores all the intermediate
values computed at the previous iteration, while the second
one stores the results of the current iteration.

However, by optimizing the memory management it is
possible to drastically reduce the memory required to store
the intermediate results, but the total memory requirement is
bound to a minimum of X ∗ Y ∗ e. Thus, the actual memory
requirement M1 of the different formulations of the approaches
A and B is:

X ∗ Y ∗ e ≤M1 ≤ 2 ∗X ∗ Y ∗ e. (1)

On the other hand, the memory requirement of the proposed
approach is given by the following formula:

(
N

H
+1)∗ (Si+ So)

2
+(H+1)∗ (Wi+Wo)

2
−Si−So (2)

that is based on (see Figure 2 for a graphical representation
of the architecture):

• the number of levels of the whole architecture (H);
• the number of iterations performed by a single cone

(N/H);
• the number of inputs (Si) and the number of outputs (So)

of a single cone;
• the number of inputs (Wi) and the number of outputs (Wo)

of the whole architecture.
In general, the memory requirement of the proposed approach
is from 2 to 3 orders of magnitude smaller than the one of the
architectures following the approaches A and B, as proved in
Section V on a real-world case study.

V. CASE STUDY: CHAMBOLLE ALGORITHM FOR OPTICAL
FLOW ESTIMATION

We successfully applied the proposed approach to several
real-world case studies based on multimedia applications, such
as iterative filters and complex image processing algorithms.

5

For the sake of illustration, one of them is presented and
analyzed in this section: the Chambolle [4] algorithm, which is
very popular in image processing (especially for the estimation
of the optical flow [8]).

The optical flow is a vector field representing the movement
of an object in a sequence of frames, and it can be determined
by analyzing the variation of the brightness inside a sequence
of successive images [3]. The estimation of this vector field
is one of the most important problems in image and video
processing, as it can be employed for motion estimation and
compensation, as well as in other fields such as robotics and
even medical analysis.

From the practical point of view, the optical flow between
two images I0 and I1, which are given in the form of two input
matrices, is a vector u = (u1, u2) . The vector u is initialized
at 0, and its final value is computed by means of an iterative
way in order to increase the precision of the solution [8].
The value of u can be determined using an iterative technique
known as Chambolle algorithm [4], which is summarized in
Algorithm 3, where the vector v is basically a support variable
defined by using a thresholding function based on I1 and on
the value of u computed at the previous iteration (for the sake
of simplicity, the pseudo-code only shows the computation of
u1, but u2 is computed in a similar way).

Algorithm 3 Chambolle Algorithm
1: for i = 1, .., N do
2: div p = (BackwardX(pxu1) +BackwardY (pyu1))
3: Term = div p− v1/θ
4: Term1 = ForwardX(Term)
5: Term2 = ForwardY (Term)
6: |∇u1| =

√
Term2

1 + Term2
2

7: pxu1 = [pxu1 + τ/θ · Term1] / [1 + τ/θ · |∇u1|]
8: pyu1 = [pyu1 + τ/θ · Term2] / [1 + τ/θ · |∇u1|]
9: u1 = v1 − θ· div p

10: end for

In the execution of Chambolle, the vector u is updated by
two intermediate values, namely px = (pxu1, pxu2) and py =
(pyu1, pyu2) [8], as shown in Lines 7 and 8 of Algorithm 3.
Variables θ and τ are predefined values that determine the
precision, while N is the number of iterations to be performed
(usually set to 200). The BackwardX(z) function returns a
matrix where each element of z is reduced by its left neighbor,
while in BackwardY it is subtracted from its upper neighbor,
in ForwardX it is subtracted from its right neighbor, and in
ForwardY from its lower neighbor.

Before applying the design method described in this paper,
it is necessary to check if the conditions presented in Section
II hold:

1) no RAW conflicts exist in the Chambolle algorithm,
since the output vector is updated by means of two
intermediate values, px and py;

2) according to the definition of the Backward and
Forward operations, it can be derived that the de-
pendencies schema is the one depicted in Figure 3.
In particular, an element depends on 7 surrounding

elements computed at the previous iteration, as outlined
in Figure 3 (a). As a consequence, the dependencies of
each element can be delimited in a 3× 3 square.

n

n n+1

n

n

n

n+1

n n

n

n+1

n+1

n

n

n

n n+1

n

n

n n

(a)

(b)

n+1

n+1 n+2

n+1

n+1

n+1

n+2

n+1 n+1

n+1

n+2

n+1

n+1

n

n n n n

n

n

n

n

n n n n

n

n

n

n+2

n

n+1

n+2

(c)

Fig. 3. Data dependencies among the elements of consecutive iterations of
the Chambolle algorithm for 1 (a), 2 (b) or 3 (c) levels

Since all the conditions are met, the proposed approach can
be successfully applied to the Chambolle algorithm. Among
the possible solutions that can be generated thanks to the
method proposed in this paper, we present here the one
considering an 8 × 8 output window (wo = 64) and able to
parallelize 2 iterations in a single cone (H = 5, N

H = 2), since
it is the one characterized by the best performance among all
the solution of the design space we have explored. With respect
to the schema presented in Figure 2, the complete architecture,
which occupies around 95% of the Slices of a Xilinx Virtex 6
VLX760 FGPA, consists of 5 levels (since H = 5) for a total
of 21 executions of the hardware cone (8 for Level 1, 6 for
Level 2, 4 for Level 3, 2 for Level 4 and finally 1 for Level
5) in order to generate the target 8× 8 window of valid final
results.

In order to realize a proof-of-concept design, we exploited
a Xilinx Virtex 6 (XC6VLX760) FPGA device as underlying
prototyping platform, thus synthetizing and running on this
FPGA device the system obtained by following the methods
presented in this paper. Table I shows the comparison between
the performance achieved by the proposed approach and
the ones obtained by other state-of-the-art implementations
on FPGAs or on other powerful parallel architectures, such
as GPGPUs. In particular, the results presented in Table I
underline the frame rate that can be achieved by the different
approaches (thus considering, for each frame, both the time
necessary to load the input and store the output and the time
needed to perform the whole computation) when executing
the Chambolle algorithm (100 or 200 iterations) on a flow of
images with a resolution of 512×512 or 1024×768. In [8], the
robust TV-L1 technique to calculate the optical flow between
two frames is proposed and implemented using modern GPUs.
The authors proved that a real-time frame rate can be achieved
by the most powerful devices for low resolution sequences, but
only few frames that are larger than 512×512 can be processed
in one second. Additional hardware results of the execution
of TV-L1 on GPUs can be also found in [9], but even the

6

fastest implementation cannot process more than 6 frames per
second, even with just 512×512 images. Finally, the approach
presented by the authors of [10] is an ad-hoc parallel solution
that is able to perform the Chambolle algorithm with a very
high frame rate on a Virtex-V FPGA device.

TABLE I
COMPARISON WITH RESPECT TO STATE-OF-THE-ART IMPLEMENTATIONS

Ref. Device Iterations Image Frame
Resolution Rate (fps)

[8] GeForce 7800 GS 100 512× 512 2.6
200 1.3

[8] GeForce Go 100 512× 512 4.7
7900 GTX 200 2.3

[9] NVIDIA GTX285
(OpenGL only) 100 512× 512 5-6
Xilinx Virtex-V

[10] XC5VLX110T 200 512× 512 99.1
Xilinx Virtex-V

[10] XC5VLX110T 200 1024× 768 38.1

Proposed Xilinx Virtex-VI
Approach XC6VLX760 200 512× 512 72
Proposed Xilinx Virtex-VI
Approach XC6VLX760 200 1024× 768 24

For what concerns the memory requirement analysis, when
considering 1024×768 images (X=1024, Y=768, e=8 Bit), the
memory requirement M1 of approaches A and B is, according
to Equation 1:

X∗Y ∗e = 768Kbyte ≤M1 ≤ 2∗X∗Y ∗e = 1.5MByte (3)

However, since it could be difficult to completely satisfy
the internal memory requirements of approaches A and B
in realistic scenarios, the number of accesses to the external
memory of this kind of approaches considerably raises (in
order to write and then read back the intermediate results
produced once the internal memory is completely full), thus
leading to a huge degradation of the performance (as shown
in the results presented in Table I).

Considering the solution we have proposed in Section V for
the Chambolle algorithm (with N=10, H=5, N/H=2, Si=138,
So=64, Wi=674, Wo=64), the memory requirement M2 of the
architecture generated with the proposed design method is,
according to Equation 2:

M2 = 2.26KByte (4)

Thus, in conclusion, the memory requirement of the proposed
solution is at least 2 orders of magnitude smaller than a generic
architecture following the design approaches A or B.

VI. CONCLUSION

In this paper, we proposed a design method that can be
successfully applied to all the iterative algorithms that fulfill
the two conditions presented in Section II. Thus, if the target
algorithm fits the class model presented in this paper, the
proposed design method makes it possible for the designer
to define a custom architecture able to execute the specified
algorithm with very-high performance.

We successfully applied the proposed design method to
several case studies, such as iterative filters and complex image
processing algorithms, outperforming most of the alternative
implementations that can be found in the literature. In par-
ticular, the experimental results presented in Section V show
that the proposed approach, when applied to a real-world case
study such as the one of the Chambolle algorithm, is the first
one that guarantees a real-time execution without a manual
optimization of the algorithm (such as the one in [10]) and at
the same time it presents an on-chip memory requirement from
2 to 3 orders of magnitude smaller than the other approaches.

REFERENCES

[1] Mohammad K., Agaian S., ”Efficient FPGA implementation of convo-
lution”, Systems, Man and Cybernetics (SMC) 2009, pp. 3478-3483

[2] Ben Cope, ”Implementation of 2D Convolution on FPGA, GPU and
CPU”, Internal Report

[3] S. Behbahani et al., ”Analysing optical flow based methods,” IEEE Inter-
national Symposium on Signal Processing and Information Technology,
2007, pp. 133 –137.

[4] A. Chambolle, ”An algorithm for total variation minimization and
applications,” Journal of Mathematical Imaging and Vision, 2004.

[5] Jaiminkumar Chavda, Pranav Tank, Shrikant N. Pradhan, and Swati Jain.
2010. ”Performance Measure of Image Processing Algorithms on DSP
Processor & FPGA Based Coprocessor”. In Proceedings of the 2010
International Conference on Advances in Communication, Network, and
Computing (CNC ’10). IEEE Computer Society, Washington, DC, USA,
173-176.

[6] ALTERA, ”Video and Image Processing Design Using FPGAs”, AL-
TERA White paper, 2007

[7] Dillinger, P.; Vogelbruch, J.F.; Leinen, J.; Suslov, S.; Patzak, R.; Winkler,
H.; Schwan, K.; , ”FPGA-Based Real-Time Image Segmentation for
Medical Systems and Data Processing,” Nuclear Science, IEEE Trans-
actions on , vol.53, no.4, pp.2097-2101, Aug. 2006

[8] C. Zach et al., ”A duality based approach for realtime tv-l1 optical flow,”
in Proc. of DAGM Symposium on Pattern Recognition, 2007.

[9] A. Weishaupt, et al., ”Tracking and Structure from Motion,”, available
at: http://infoscience.epfl.ch/record/146572, 2010.

[10] A. Akin, et al., ”A high-performance parallel implementation of the
Chambolle algorithm,” Design, Automation & Test in Europe (DATE),
2011

[11] Seok Lai Park, ”Retinex method based on CMSB-plane for variable
lighting face recognition”, International Conference on Audio, Language
and Image Processing, 2008. ICALIP 2008, pp.499-503

