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Intrusion detection is frequently used as a second line of defense in Mobile Ad-hoc Net-
works (MANETs). In this paper we examine how to properly use classification methods
in intrusion detection for MANETs. In order to do so we evaluate five supervised classifica-
tion algorithms for intrusion detection on a number of metrics. We measure their perfor-
mance on a dataset, described in this paper, which includes varied traffic conditions and
mobility patterns for multiple attacks. One of our goals is to investigate how classification
performance depends on the problem cost matrix. Consequently, we examine how the use
of uniform versusweighted cost matrices affects classifier performance. A second goal is to
examine techniques for tuning classifiers when unknown attack subtypes are expected
during testing. Frequently, when classifiers are tuned using cross-validation, data from
the same types of attacks are available in all folds. This differs from real-world employment
where unknown types of attacks may be present. Consequently, we develop a sequential
cross-validation procedure so that not all types of attacks will necessarily be present across
all folds, in the hope that this would make the tuning of classifiers more robust. Our results
indicate that weighted cost matrices can be used effectively with most statistical classifiers
and that sequential cross-validation can have a small, but significant effect for certain types
of classifiers.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Mobile Ad hoc Networks (MANETs) present many
important advantages and have been employed in a broad
range of applications such as emergency services [16],
pollution monitoring [6] and vehicular networks [31].
MANETs are dynamic peer-to-peer networks, which em-
ploy multi-hop information transfer without requiring an
a priori infrastructure. Due to their nature, they have un-
ique security requirements. We must guard not only
against usual attacks such as denial of service, but also
against selfish and malicious nodes more generally. While
intrusion prevention can be used as a first line of defence,
. All rights reserved.
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these types of attacks cannot be prevented directly. In
addition, intrusion detection can be used as a mechanism
for indicating possible security failures in the system.

A simple way to perform intrusion detection is to use a
classifier in order to decide whether some observed traffic
data is ‘‘normal’’ or ‘‘abnormal’’. In the simplest case, the
classification objective is to minimise the probability of er-
ror. However, in problems such as that of intrusion detec-
tion, authentication and fraud detection, the goal is not
simply to predict the class with highest probability, but
to actually take the decision with the lowest expected cost.
For example, in intrusion detection, the cost of having an
undetected attack is usually much more severe than trig-
gering a false alarm. In cost-sensitive classification,
decisions are made in order to minimise the expected cost,
rather than the probability of error. The concept of
n detection in MANET using classification algorithms: The effects
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cost-sensitive classification has been already investigated
in wired networks [26].

This paper examines how to properly use classification
methods in intrusion detection for MANETs. We perform a
comparison of the performance of four well known classi-
fiers. We extend our previous approach [25] in wireless ad
hoc networks, where we only investigated simple classifi-
cation, to cost-sensitive classification, i.e. making classifi-
cation decisions that minimise the expected cost, rather
than the probability of misclassification, and measure its
effectiveness for each classifier under consideration. We
also address a common problem in intrusion detection
applications: the fact that in real world deployment, the
data distribution can be very different from that in the
training set. This will for example be the case if new at-
tacks are seen which were not present in the training data.
In order to do this, we use a variant of the well-known k-
fold cross validation method. This method partitions the
training dataset in k parts, and iteratively trains the classi-
fier on k � 1 parts, while keeping the remainder for valida-
tion. This can be used to select classifier parameters that
will also have good performance in unseen data. While
normally the partition is random, in this paper we also
examine a sequential partition. Due to our method of data
collection, this guarantees that most attacks will only be
present in some folds. Consequently, this mimics real-
world conditions more accurately, since some attacks will
never be present during training. Ultimately, this enables
us to make a less optimistic tuning of the classifiers’ hyper-
parameters and hopefully to a more robust performance.
The cross-validation and hyper-parameter selection meth-
od is described in detail in Section 4.2. We compare this
sequential cross-validation method with standard random
cross-validation both in terms of classification error and
in terms of expected cost.

More precisely, the contributions of this paper are the
following: (a) Firstly, we perform a thorough comparison
of four well-known classification algorithms for intrusion
detection in Mobile Ad hoc Networks (MANETs), for both
simple and cost-sensitive classification. (b) Secondly, we
investigate how the performance of the classifiers is af-
fected if the tuning of the hyper-parameters has been per-
formed with random or sequential cross-validation.

All experiments are reported on datasets produced via
extended simulations; consequently the ground truth is al-
ways known. We perform an unbiased comparison, where-
by we tune the hyperparameters of all five models, using a
proper experimental protocol, where the algorithms are
tuned before seeing any actual test data.

In all cases, we compare the performance of the classi-
fication models under different traffic conditions, includ-
ing: the mobility of the network, the number of
malicious nodes, the sampling interval time (i.e. the
amount of time statistics are collected before the classifier
makes a decision) and the type of attacks. For the perfor-
mance comparison we use five well-known and efficient
classification algorithms (i.e. MultiLayer Perceptron
(MLP), Linear classifier, Naïve Bayes classifier, Gaussian Mix-
ture Model (GMM), Support Vector Machines (SVMs)). For
the performance comparison with and without cost-sensi-
tive classification we use four of them since the
Please cite this article in press as: A. Mitrokotsa, C. Dimitrakakis, Intrusi
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employment of cost-sensitive classification in Support
Vector Machines (SVMs) is not a proper probabilistic mod-
el. We have selected features from the network layer for
MANET and we investigate the performance of the classifi-
cation algorithms for four types of attacks (i.e. Black Hole,
Forging, Packet Dropping and Flooding attacks).

The remainder of the paper is organised as follows. Sec-
tion 2 describes the related work while Section 3 describes
the quality metrics used for the comparison of the em-
ployed classification models. Section 4 describes the simu-
lation environment and the experimental results, while
Section 5 concludes the paper.
2. Related work

Intrusion detection is a mature field in network secu-
rity. While there are many possible approaches, such as
rule-based systems [37] and anomaly detection systems
[28], this paper focuses particularly on systems based on
classification algorithms. In particular, we investigate
how these algorithms can be employed most
appropriately.

Classification algorithms have been extensively used for
intrusion detection, and especially for wired networks. The
amount of work reported on for classification-based intru-
sion detection in wireless ad hoc networks is more limited.

More specifically, Zhang and Lee [39] proposed the first
(high-level) Intrusion Detection System (IDS) approach
specific for ad hoc networks. They proposed a distributed
and cooperative anomaly-based IDS, which provides an
efficient guide for the design of IDS in wireless ad hoc net-
works. They focused on an anomaly detection approach
based on routing updates on the Media Access Control
(MAC) layer and on the mobile application layer.

Huang and Lee [15] extended their previous work by
proposing a cluster-based IDS, in order to combat the re-
source constraints that MANETs face. They use a set of sta-
tistical features that can be derived from routing tables and
they apply the classification decision tree induction algo-
rithm C 4.5 in order to detect ‘‘normal’’ versus ‘‘abnormal’’
behaviour. The proposed system is able to identify the
source of the attack, if the identified attack occurs within
one-hop.

Deng et al. [7] proposed two distributed intrusion
detection approaches, based on a hierarchical and a com-
pletely distributed architecture respectively. The intrusion
detection approach used in both of these architectures fo-
cuses on the network layer and it is based on a Support
Vector Machine (SVM) classification algorithm. They use
a set of parameters derived from the network layer and
suggest that a hierarchically distributed approach may be
a more promising solution versus a completely distributed
intrusion detection approach. Liu et al. [19] proposed a
completely distributed anomaly detection approach. They
used MAC layer data to profile the behaviour of mobile
nodes and then applied cross-feature analysis [14] on fea-
ture vectors constructed from the training data. Bose et al.
[2] proposed a cooperative and distributed intrusion detec-
tion system that uses data from the MAC, routing and
application layers, coupled with a Bayesian classifier.
on detection in MANET using classification algorithms: The effects
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Cabrera et al. [4] use an ensemble of classifiers obtained by
training multiple C 4.5 classifiers and evaluate them on a
MANET network for two types of attacks. Abdel-Fattah
et al. [1] use the Conformal Predictor k-nearest neighbour
and the Distance based Outlier Detection (CPDOD) algo-
rithms to perform intrusion detection in MANETs against
three types of attacks while Shim et al. [32] have used a
cluster analysis technique in order to detect Sinkhole at-
tacks in MANETs [12].

In standard classification problems the classification
decision is selected in order to minimise the probability
of error. However, in many problems, some errors are more
serious than others. In such cases, each type of error is as-
signed a cost. The goal then is not to predict the most prob-
able class but instead to take the decision that minimises
the expected cost.

For instance, this requirement appears in authentica-
tion problems. For most authentication systems, the cost
of unauthorized access and is much greater than that of
wrongly denying access to legitimate users. In the same
vein, in intrusion detection systems raising a false alarm
has a significantly lower cost than allowing an undetected
intrusion. In such cases it is wiser to take the classifica-
tion decision that has the minimum expected cost rather
than the decision with the lowest error probability.
Although this problem has been studied a lot, especially
in the domain of optimal statistical decisions [21], it has
been largely ignored in the field of intrusion detection.
A number of other work has considered cost-sensitive
intrusion detection. Fan et al. [11] and Pietraszek et al.
[30] both use wrapper algorithms (Meta-Cost [9] and
Weighted [36] respectively), in conjunction with RIPPER
[5]. The work of Lee et al. [17] employs a decision mech-
anism which directly compares response cost with deci-
sion cost and either logs the detected intrusion or
performs an appropriate response. However, the detection
is implicitly assumed to be infallible, and so they do not
actually consider the expected cost. A more general view
of cost-sensitive intrusion response is taken in [34],
which clearly shows an advantage for cost-sensitive deci-
sions, as expected. An active-learning cost-sensitive ap-
proach, employing Metacost, is examined by [20].
Finally, Ghodratnama et al. [12] have performed cost-sen-
sitive classification using an approach similar to the one
described in our previous work [25], based on the use
of a k-nearest neighbour (KNN) classifier to estimate
probabilities. Most of the above papers report results on
KDD database since they investigate the use of cost-sensi-
tive classification for the problem of intrusion detection
in wired networks.

In our own previous work [25], we have investigated
the problem of cost-sensitive classification in wired net-
works, where we employed statistical classifiers to mini-
mise the expected cost. The goal of the current paper is
to measure the flexibility and robustness of a set of proba-
bilistic methods under different costs and different net-
work conditions. Firstly, we extend our previous work to
wireless networks. Secondly, we examine the impact of
different cross-validation mechanisms on the robustness
of the classifiers. Finally, we see how much the expected
cost and decision errors change in response to changes in
Please cite this article in press as: A. Mitrokotsa, C. Dimitrakakis, Intrusio
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the dataset, classifiers and cost matrix employed. We find
that, while some methods are well-behaved, others exhibit
a large sensitivity.

In this paper, we perform a comparative analysis of
classification algorithms for the problem of intrusion
detection in MANETs. We use the same experimental pro-
tocol (tuning of hyper-parameters) and training/testing
data-sets generated through varying traffic conditions
(regarding the mobility of the network, the number of
malicious nodes and the types of attacks) in order to exam-
ine the robustness of well-known classification algorithms;
something quite important since the previous approaches
investigate only a few of those classifiers and performance
comparisons cannot be implemented since different data-
sets are used each time. Additionally, the goals of our paper
are: (a) to investigate if different cross-validation methods
might improve the performance of the classifiers when un-
known types of attacks appear in the test set and (b) how
weighted classification may improve the accuracy of classi-
fiers for the problem on intrusion detection in MANETs.
3. Intrusion detection using classification

We employ statistical classification algorithms to order
to perform intrusion detection in MANETs. Such algorithms
have the advantages that they are largely automated, that
they can be quite accurate, and that they are rooted in sta-
tistics. For that reason, they are prime candidates for use in
cost-sensitive classification problems. After training, they
can be used for detection with arbitrary cost matrices.
They have extended applications including intrusion
detection in wired networks [18], they have been exten-
sively studied, both theoretically and experimentally, and
used in many applications with a high degree of success.

3.1. Intrusion detection model

The IDS architecture we assume is composed of multi-
ple local IDS agents, which are responsible for detecting
possible intrusions locally. However, during the training
phase, we collect data locally, merge it and then use it to
adapt the classifier models offline. During the testing
phase, the resulting classification rule is transmitted to
the local IDS agents, who then perform detection
independently.

3.2. Cost-sensitive classification

All classifier models are trained so as to predict the
probability of every class, given an observation. When
using the models to make decisions, some types of errone-
ous classification decisions may be more important to us
than others. This can be modelled by specifying a set of
cost for each type of error. This cost matrix can be used
with any classifier that has been trained to predict class
probabilities.

Given a specification of costs for correct and incorrect
predictions, the class decision should be the one that leads
to the lowest expected cost, where the expectation is com-
puted using the conditional probability of each class given
n detection in MANET using classification algorithms: The effects
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Table 1
CW a weighted cost matrix for the 5-class problem. N denotes normal traffic,
while A1, A2, . . ., denote different types of attacks.

Class Decision

N A1 A2 A3 A4

N 0 1 1 1 1
A1 10 0 1 1 1
A2 10 1 0 1 1
A3 10 1 1 0 1
A4 10 1 1 1 0
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the example, according to our model.1 More formally, for a
set X of k classes let a k � k matrix C such that C(i, j) is the
expected cost of predicting class i when the true class is j.
If i = j then the decision is correct, while if i – j the decision
is incorrect. Furthermore, let Y, H be random variables
denoting the actual and hypothesised class labels. For any
observations x 2 X the optimal decision will be the class i
that minimises a loss function equal to the expected cost:

Lðx; iÞ ¼ E½CjX ¼ x;H ¼ i� �
X
j2X

PðY ¼ jjX ¼ xÞCði; jÞ ð1Þ

where PðXjYÞ denotes the conditional distribution of class
labels given an observation, according to our model. In this
framework, all that is necessary is a model that can esti-
mate this probability. The cost-sensitive decision-making
function f:S ? X would then simply choose the definition
i that minimises the expected cost given the decision and
the example.2 More formally,

f ðxÞ ¼ arg min
i2X

Lðx; iÞ: ð2Þ

The form of the cost matrix C will depend on the actual
application. In general, it is reasonable to choose the diag-
onal entries equal to zero, i.e. C(i, j) = 0 for i = j, since correct
classification normally incurs no cost. The other entries
specify the cost of incorrectly misclassifying an example
of class j as belonging to class i. They should be non-nega-
tive if the diagonal is zero, i.e. C(i, j) P 0 for i – j. Note that
when this is equal to 1, the cost measure is the same as the
classification error (CE) measure.

As an example, consider a cost matrix C for two classes,
positive (1) and negative (2). The cost of a false positive is
C(1,2) and we can set C(1,1) = C(2,2) = 0, i.e. a correct clas-
sification will have no cost. For intrusion detection applica-
tions, it is common to refer to attacks as positive and
normal instances as negative example.

A commonly used cost matrix is the one that measures
the classification error (CE):

C1ðy; y0Þ ¼
0; if y ¼ y0

1; if y – y0

�
ð3Þ
1 The implicit dependency on some model m can be made explicit by
conditioning everything on the model. Then the expectation would be
written E[Cjx, f, m] and the conditional class probability P(yjx,m).

2 Which of course is not necessarily identical to the decision with the
minimum error probability. Furthermore, this framework is easily exten-
sible to the case where the set of decisions differs from the set of class
labels.
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However, a false negatives (FN) is usually considered a
worse kind of error than a false positive (FP). The matrix
C should reflect that, by having C(1,2) P C(2,1). For this
reason, in this paper also considers the weighted cost ma-
trix CW, shown in Table 1.

These matrices shall be used in two different ways.
Firstly, to make decisions based on the class probabilities
given by the classifier, as described in this section. Sec-
ondly, to evaluate the quality of the decisions taken, will
be described in the following section.

3.3. Algorithmic comparisons and quality metrics

When comparisons are made between algorithms, it is
important to use the same measure of quality. For a given
classification algorithm f : X! Y, where X is the observa-
tion space and Y is the set of classes, a common measure of
quality is the expected value of the cost C measured over
an independent test set D,

bEðCjDÞ ¼ 1
jDj
X
d2D

Cðf ðxdÞ; ydÞ; ð4Þ

where xd is the observation of example d and yd is its class.
In this paper we shall perform the evaluation using two

cost matrices. Firstly, C1, the uniform cost matrix, which
measures the classification error (CE). Secondly, Cw, (shown
in Table 1), the weighted cost matrix, which measures the
weighted classification error (WCE).

However, in much of the literature, the Detection Rate
(DR) and the False Alarm (FA) rate are used instead:

DR ¼ TP

TPþ FN
; FA ¼ FP

TNþ FP
ð5Þ

where TP, TN, FP, FN, denote the number of true (TP, TN)
and false (FP, FN) positives and negatives respectively. The
goal of an effective intrusion detection approach is to re-
duce to the largest extent possible the False Alarm rate
(FA) and at the same time to increase the Detection Rate
(DR). Since this is not usually possible, a trade-off between
the two quantities is often sought instead. While such a
trade-off may be automatically accomplished through the
use of an appropriate cost matrix,3 in this paper we will
only use these qualities as a secondary alternative compari-
son metric.

3.4. Classification models

The computation of class probabilities is model-depen-
dent. Ideally one would assume a Bayesian viewpoint and
consider a distribution over all possible models in a set of
models, however in this case we will only consider point
distributions in model space, i.e. a single parameter vector
in the parameter space. While this can cause problems
with overfitting, we will use cross-validation to avoid this
potential pitfall. All the models we use require labelled
3 L e t t h e e x p e c t e d c o s t b e E [ C ] = q P ( H = 1 jC =
2)P(C = 2) + rP(H = 2jC = 1)P(C = 1) = q(1 � DR)P(C = 2) + rFA P(C = 1), where
2 denotes a positive example. Setting r = 1/P(C = 1) and q = k/P(C = 2) we
obtain a cost function minimising FA � kDR, with k being a free parameter
specifying the trade-off we are interested in.

on detection in MANET using classification algorithms: The effects
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training data for their creation. During this training phase,
we do not make use of the cost matrix, but find the model
parameters that minimise the classification error by cross-
validation the training dataset. After training, each model
under consideration returns PðY ¼ yjX ¼ xÞ, the probability
that the class is y, given that the current observation is x.
During evaluation, the decision to be taken will depend
on the cost matrix used. Thus, we plug in the return class
probability to (1), to calculate the loss of each classification
decision, and then we pick the decision with the minimum
expected loss, according to (2).

The classification models we have used for intrusion
detection are: the MultiLayer Perceptron (MLP), the Linear

model, the Gaussian Mixture Model (GMM), the Naïve Bayes

model and the SVM model. Some background information
about these models is given in Appendix A for
completeness.

4. Experiments

In order to examine the performance of the classifica-
tion algorithms, we conducted a series of experiments un-
der varying conditions. For each experiment, we first select
hyper-parameters and train models on an independent
training set, using cross-validation [24]. We compared
two different cross-validation methods for hyperparame-
ter selection. During this phase, no use of the cost matrix
is made. The second phase jointly evaluates the algorithms,
the hyperparameter selection method, as well as the effect
of the cost matrix used for taking decisions, on an indepen-
dent test set, generated from a new simulation run. We
evaluate the methods on both CE and WCE, as well as in
DR and FA.

4.1. Simulation environment

In order to evaluate our approach we simulated a Mo-
bile Ad hoc Network (MANET) and we conducted a series
of experiments. We have assumed that the network has
no preexisting infrastructure and that the employed ad
hoc routing protocol is the Ad hoc On Demand Distance
Vector (AODV [29]). We implemented the simulator within
the GloMoSim [13] library. Our simulation models a net-
work of 50 hosts placed randomly within an
850 � 850 m2 area. Each node has a radio propagation
range of 250 m and the channel capacity was 2 Mbps.
The nodes in the simulation move according to the ‘ran-
dom way point’ model. At the start of the simulation, each
node remains stationary for a period equal to the pause
time, then randomly selects and moves towards a destina-
tion with a speed uniformly lying between zero and the
maximum speed. On reaching this destination it pauses
again and repeats the above procedure till the end of the
simulation. The minimum and maximum speed is set to
0 and 20 m/s, respectively, and pause times at 0, 200,
400, 700 s. The simulation time of the experiments was
700 s, thus a pause time of 0 s corresponds to the continu-
ous motion of the node and a pause time of 700 s corre-
sponds to the time that the node is stationary.

Each node is simulated to generate Constant Bit Rate
(CBR) network traffic at 2 Mbps. The size of the packets
Please cite this article in press as: A. Mitrokotsa, C. Dimitrakakis, Intrusio
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sent by each node varies from 128 to 1024 bytes. We have
studied the performance of the classification algorithms for
various sampling intervals (5, 10, 15, 30 s) in order to study
how quickly these algorithms can perform intrusion detec-
tion. The sampling interval dictates both the interval for
which the statistical features are calculated, and the period
between each classification decision. We expect that long-
er intervals may provide more information, but with the
cost of slower detection. We have also evaluated the per-
formance of the classification algorithms for 5, 15 and 25
malicious nodes. In each case the number of all nodes in
the network is set to 50.

In our experiments, we have simulated four different
types of attacks:

� Flooding attack: We have simulated a Flooding attack
[38] for multiple paths in the network layer, where each
malicious node sends forged RREQ (Route REQuest)
packets randomly to all nodes of the network every
100 ms.
� Forging attack: We have simulated a Forging attack [27]

for RERR (RouteERRor) packets, where each malicious
node modifies and broadcasts (to a selected victim) a
RERR packet every 100 ms leading to repeated link
failures.
� Packet Dropping attack: We have simulated a selective

Packet Dropping [8] attack, where each malicious node
drops all RERR packets leading legitimate nodes to for-
ward packets in broken links.
� Black Hole attack: In a Black Hole attack [33], a malicious

node advertises spurious routing information, thus
receiving packets without forwarding them but drop-
ping them. In the Black Hole attack we have simulated
the scenario where each time a malicious Black Hole

node receives a RREQ packet it sends a RREP (RouteRE-
Ply) packet to the destination without checking if the
node has a path towards the selected destination. Thus,
the Black Hole node is always the first node that
responds to a RREQ packet and it drops the received
RREQ packets. Furthermore, the malicious Black Hole

node drops all RREP and data packets it receives if the
packets are destined for other nodes.

An important decision is the selection of feature vectors
that will be used in the classification. The selected features
should be able to succinctly represent network activity,
while differentiating between ‘‘normal’’ and ‘‘abnormal’’
activity. We have selected the following features from
the network layer:

� RREQ Sent: indicates the number of RREQ packets that
each node sends.
� RREQ Received: indicates the number of RREQ packets

that each node receives.
� RREP Sent: indicates the number of RREP packets that

each node sends.
� RREP Received: indicates the number of RREP packets

that each node receives.
� RERR Sent: indicates the number of RERR (Route Error)

packets that each node receives.
n detection in MANET using classification algorithms: The effects
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Fig. 1. Cross-validation illustration on a dataset with t = 9 records. We
perform 3-fold cross-validation. Each fold is represented by a different
colour. In random cross-validation, folds are assigned randomly to each
record. In the sequential variant, folds are assigned sequentially.
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� RERR Received: indicates the number of RERR packets
that each node sends.
� Data Sent: indicates the number of Data packets that

each node sends.
� Data Received: indicates the number of Data packets

that each node receives.
� Number of Neighbours: indicates the number of one-hop

neighbours that each node has.
� PCR (Percentage of the Change in Route entries): indicates

the percentage of the changed routed entries in the
routing table of each node. PCR is given by
(jS2 � S1j + jS1 � S2j)/jS1j), where (S2 � S1) indicates the
newly increased routing entries and (S1 � S2) indicates
the deleted routing entries during the time interval
(t2 � t1).
� PCH (Percentage of the Change in number of Hop): indi-

cates the percentage of the changes of the sum of hops
of all routing entries for each node. PCH [35] is given by
(H2 � H1)/H1, where (H2 � H1) indicates the changes of
the sum of hops of all routing entries during the time
interval (t2 � t1).

For each sampling interval time (5, 10, 15, 30 s) we
have created one training dataset, where each training
instance contains summary statistics of network activity
for the specified interval using all the above features
and in addition, the type of attack performed during this
interval. This enables us to use supervised learning tech-
niques for classification. Each training dataset was cre-
ated by running different simulations with duration
700 s for different network mobility (pause time equal
to 0, 200, 400, 700 s) and varying numbers of malicious
nodes (5, 15, 25). The derived datasets from each of
these simulations were merged and one training dataset
was produced for each sampling interval. A similar pro-
cedure was followed in order to produce the testing
datasets.

4.2. Cross-validation and hyperparameter selection

Cross-validation [24] is an approach that has exten-
sively been used as an unbiased hyper-parameter selection
method for machine learning techniques. The main idea is
that the training dataset D is split in k-folds (parts), such
that D ¼

Sk
i¼1Di with Di \ Dj = ; for all i – j. For a given

choice of model and hyper-parameters, the following pro-
cedure is performed for k iterations: At the i-th iteration,
the subset Di is used for validating the classifier perfor-
mance, and the classifier is trained on the remaining data,
i.e. on DnDi. The performance itself is measured on Di. Con-
sequently, we obtain a set of k measurements, which are
then averaged. The main question we pose in this paper
is how to select the folds.

The usual procedure is to perform a random partition,
i.e. to randomly assign folds to each data record, as seen
at the top of Fig. 1. This is a usually a good choice for i.i.d
data [10]. However, in intrusion detection the testing data-
set can be significantly different from the training dataset.
For that reason, we would like to have a procedure which is
more robust to this. For that reason, we examined whether
sequential cross-validation, which is illustrated at the
Please cite this article in press as: A. Mitrokotsa, C. Dimitrakakis, Intrusi
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bottom of Fig. 1. This allocates folds sequentially, and
may protect against the selection of too optimistic hyper-
parameters.

In both cases, for our experiments we used k = 10, thus
obtaining 10 measurements CEi of the classification error.
For each hyper-parameter choice h in the set of candidates
H, we recorded the average cross-validation classification
error CEðhÞ ¼ k�1Pk

i¼1CEiðhÞ and selected the one with
the lowest average error, i.e. h⁄ = arg minhCE(h). We then
re-trained the classifier on the full dataset D, using h⁄.
The trained classifier was then evaluated on the indepen-
dent test set using either a uniform or a weighted cost
matrix.

For the MLP classifier we have tuned three parame-
ters: the learning rate (g), the number of hidden units
(nh) and the number of iterations (T) used in the stochastic
gradient descent optimisation. For the selection of the
most appropriate parameters, we have followed the fol-
lowing procedure.

Keeping nh equal to 0 we selected the appropriate g
among values that range between 0.0001 and 0.1 with step
0.1 and the appropriate T selecting among 10, 100, 500 and
1000. Having selected the appropriate g and the appropri-
ate T, we examined various values in order to select the
appropriate nh. We selected the best among 10, 20, 40,
60, 80, 100, 120, 140, 160, 320. Additionally, we used the
MLP model with no hidden units as a Linear model.

For the GMM we also tuned three parameters, i.e. the
threshold (s), the number of iterations (T) and the number
of Gaussian Mixtures (ng). Keeping ng fixed to 20, we se-
lected the appropriate s from {10�1, 10�2, 10�3, 10�4}
and the T 2 {25,100,500,1000} For the selection of the
appropriate ng, after selecting s,T we selected ng from
{10,20,40,60,80,100,120,140,160,320}. Additionally, we
used the GMM model with one Mixture component as a
Naïve Bayes model.

For the SVM we tuned two parameters, i.e. the standard
deviation (r) for the Gaussian kernel and the regularisation
parameter c which represents the trade-off between the
size of the margin and the number of misclassified exam-
ples. For the selection of the appropriate combination of
r and c, we selected r from {1,10,100,1000} and c from
{1,10,100,1000}.
on detection in MANET using classification algorithms: The effects
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Fig. 2. Classification error (CE) per classifier when tuning is performed
either with random or sequential cross-validation
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4.3. Experimental results

In the experiments, we compare the performance of
classifiers tuned with either sequential or random cross-
validation, on an independently generated testing dataset.
Each classifier is combined with either a uniform or
weighted cost matrix for making classification decisions.
The performance is evaluated both in terms of the classifi-
cation error (CE) and the weighted classification error
(WCE). The expected result is that using the uniform cost
matrix for classification will result in a lower CE than using
a weighted cost matrix, while the converse will hold for
WCE.

Fig. 2 depicts how the classification error (CE) varies for
each classifier when the tuning has been performed either
randomly or sequentially for binary and multi-class classifi-
cation. For these experiments we have used the training
and testing datasets for different sampling intervals (5,
Fig. 3. Cumulative differences in (CE) between random and sequential cross-v
random tuning performs better than sequential and vice versa. Results are given fo
is clearly visible from this figure that, for the two-class problems, the sequentia
SVM classifier’s performance is very sensitive.
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10, 15, 30 s) and took the average for all sampling intervals
for each classifier. It is clear that the Naïve Bayes classifier
has the highest CE, while the lowest CE is achieved by
the MLP. In the two-class case, we can see that the sequen-
tial method significantly increases the robustness of Naïve
Bayes, MLP and SVM. However, it has no significant effect
in the five-class case for any classifier apart from the
SVM. In general, the SVM appears to be extremely sensitive
to the choice of cross-validation method. This is evident in
Fig. 3 which depicts the cumulative differences in CE be-
tween random and sequential schemes for the five classifi-
ers under consideration for different sampling intervals
(dt). We may conclude from these results that, when
cross-validation.

Fig. 4a depicts the performance of four classifiers in
terms CE for the two and five-class problems when a uni-
form or a weighted cost matrix is used. In the uniform case,
the cost matrix is such that all misclassifications carry the
same cost. In the second (weighted) case, failure to detect
an attack has a cost 10 times greater than that of false
alarms (see Table 1). The weighted matrix significantly im-
proves classification performance in the two-class case for
all classifiers. In the five-class case however, we observe an
opposite but much smaller effect. Neither of these two ef-
fects are surprising since, in the five-class case we are
effectively placing little importance in misidentifying at-
tacks. This becomes clearer once we look at the weighted
classification error (WCE).

In fact Fig. 4b depicts the performance of the same four
classifiers for the same problems of binary and multi-class
classification but this time in terms of the weighted classi-
fication error (WCE). In both cases (binary and multi-class
classification) we see the expected result that the WCE is
lower when the weights of the classes are taken into con-
sideration in the classification algorithm.

The differences between classification using weighted
and uniform cost matrices are shown in more detail in
Fig. 5. This shows CE and WCE for both the two-class and
alidation tuning. For every method shown, positive values indicate that
r sampling interval times dt 2 {5,10,15,20} and four different classifiers. It
l tuning performs better. For the five-class problems, it is clear that the
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Fig. 4. Performance of normal and weighted classification when we measure either CE or WCE for 2 and 5 class problems.

Fig. 5. Cumulative difference between uniform and weighted classifiers. Negative values indicated that the weighted classifier is better. The first row (a and
b) shows the relative classification error (CE), while the second row (c and d) shows the relative weighted classification error (WCE). Results are shown for four
different sampling interval times {5,10,15,30}. It can be seen that using a weighted classifier results in clearly better performance for WCE. When the CE is
measured, the weighted classifiers are slightly worse than the uniform classifiers for the 5-class problem, and significantly better for the 2-class problem.
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five-class case, for all classifiers, as the sampling interval
time varies. It can be seen that in all cases, WCE is reduced
when a weighted classifier is used, as expected. In addition,
there is an unexpected improvement in CE for the two-
class case when a weighted classifier is used.

Finally, we wanted to see what was the effect of varying
the weighted cost matrix CW with respect to the Detection
Rate (DR), the False Alarm Rate (FA), the classification error
(CE) and the weighted classification error (WCE). For these
Please cite this article in press as: A. Mitrokotsa, C. Dimitrakakis, Intrusio
of cost and model selection, Ad Hoc Netw. (2012), http://dx.doi.org/10.
experiments, we have used the training and testing data-
sets that correspond to sampling interval dt15 s and per-
formed binary classification. Overall, Fig. 6 shows that
the classifiers behave ’nicely’, that is, the detection rate
smoothly increases with the ratio. Thus, the class probabil-
ities they output are a good measure of uncertainty. From
Fig. 6a, it is obvious that the highest Detection Rate (DR) is
achieved for the MLP and the Linear classifiers while the
lowest Detection Rate (DR) for the Naïve Bayes classifier.
n detection in MANET using classification algorithms: The effects
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Correspondingly, the highest False Alarm Rate (FA) and
with high increase, as we increase the cost (ratio FN to
FP) is observed for the Linear and MLP classifier. Thus, it
is obvious that the classifiers that present the highest
Detection Rate (DR) also present high False Alarm Rate FA.
The same picture holds for FA, with the differences being
more pronounced, as can be seen in Fig. 6b. It is interesting
to see that, for example, the further the matrix is from uni-
form, the less the classification error is (Fig. 6c).

The same holds for both CE and WCE From Fig. 6c it is
obvious that GMM is the most robust classifier, since it
achieves the lowest classification error (CE) uniformly for
all classification costs. However, the Linear classifier on
the other hand, as depicted in Fig. 6d is more robust on
terms of weighted classification error (weighted CE) even
though its classification performance is suboptimal. A good
compromise appears to be the MLP classifier. Finally, we
investigate how the cost affects the detection rate (DR)
for different types of attacks. From Fig. 6e it is obvious that
the effect is stronger for the Forging and Packet Dropping at-
tacks, while the easiest attack to detect is the Flooding at-
tack and the hardest attack to detect is the Black Hole.
5. Conclusions

This paper examined how to properly use classification
methods in intrusion detection for MANETs. More pre-
cisely, in this paper we have performed a thorough analysis
of five well-known classifiers. We investigated: (i) Firstly,
how simple classification versus cost-sensitive classifica-
tion affects performance, both in terms of classification er-
ror (CE) and in terms of weighted error (expected cost)
(WCE). (ii) Additionally, we wanted to investigate how hy-
per-parameter tuning affects performance when new un-
known attacks are included in the test dataset. In order
to achieve that we compared standard random cross-vali-
dation with sequential cross-validation, so that the valida-
tion set in most folds would include previously unknown
attacks. In random cross-validation, all attack types are in-
cluded in all folds. (iii) We perform a fair comparison of all
classifiers, since we use the same datasets and tune their
hyper-parameters based on the same procedure. The data-
sets cover a broad range of conditions including various at-
tack types, various levels of network mobility and
malicious activity and finally different data collection
intervals for the intrusion detection system.

Broadly speaking, the results show that surprisingly, the
use of a cost matrix not only minimises expected cost (as
we anticipated), but it also reduces the classification error
for most classifiers (see Fig. 5). Consequently, intrusion
detection is improved both with respect to classification
error and with respect to cost. The sequential cross-valida-
tion method had a limited amount of success. In the two-
class case, it usually improved performance, while it had
little effect in the five-class case. This could be attributed
to the fact that the two are essentially different problems.
For the first problem, it is sufficient to learn to distinguish
normal from malicious traffic.

With respect to particular models, the experimental re-
sults indicate that the Naïve Bayes classifier has the poorest
Please cite this article in press as: A. Mitrokotsa, C. Dimitrakakis, Intrusi
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performance while the best overall performance is
achieved with the MLP classifier. For the four out of five
classifiers the cross validation method has no significant
effect in the 5-class problem, while the SVM classifier is
very sensitive to this choice. For the two-class problems,
a significant improvement is obtained with sequential
cross-validation. Finally, we found that cost-sensitive clas-
sification, is more effective than error-minimising classifi-
cation in terms of minimising the expected cost for all
classifiers, which is an expected result. In addition, and
perhaps somewhat surprisingly, it reduces the classification
error in the binary case significantly for all classifiers as
well. Consequently, we believe that both weighted classifi-
cation matrices and sequential cross-validation tuning
schemes should be part of the repertoire of intrusion
detection practitioners who utilise statistical classifiers. A
good direction of future work would be to validate our re-
sults with real-world data or with simulators whose
parameters are derived on real-world data such as mLab
[22,23].
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Appendix A. Model details

This section describes the four models employed in
some more detail.

MLP A specific instance of an MLP can be viewed simply
as a function g : X! Y, where g can be further defined as a
composition of other functions zi : X!Z. In most cases of
interest, this decomposition can be written as g(x) = Kw0z(x)
with x 2 X, w being a parameter vector, while K is a partic-
ular kernel and the function z(x) = [z1(x),z2(x), . . .] is re-
ferred to as the hidden layer. For each of those, we have
ziðxÞ ¼ Ki v 0ix

� �
where each vi is a parameter vector,

V = [v1,v2, . . .] is the parameter matrix of the hidden layer
and finally Ki is an arbitrary kernel. For this particular appli-
cation we wish to use an MLP m, as a model for the condi-
tional class probability given the observations, i.e.

PðY ¼ yjX ¼ x;M ¼ mÞ; y ¼ gðxÞ; ð6Þ

for which reason we are using a sigmoid kernel for K. In the
experiments we shall be employing a hyperbolic tangent
as the kernel for the hidden layer, when there is one.

Linear This is essentially a special case of an MLP. In par-
ticular, when there is no hidden layer, we have zi = xi. This
is the Linear model, the second model into consideration.

GMM The GMM, the third model under consideration,
models conditional observation density for each class, i.e.
PðX ¼ xjY ¼ y;M ¼ mÞ. This can be achieved simply by
using a separate set of mixtures Uy for modelling the obser-
vation density of each class y. Then, for a given class y the
density at each point x is calculated by marginalizing over
on detection in MANET using classification algorithms: The effects
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the mixture components u 2 Uy, for the class, dropping the
dependency on m for simplicity:

PðX ¼ xjY ¼ yÞ ¼ RuPðX ¼ xjU ¼ uÞPðU ¼ ujY ¼ yÞ: ð7Þ

Note that the likelihood function PðX ¼ xjU ¼ uÞ will have
a Gaussian form, with parameters the covariance matrix Ru

and the mean vector lu. The term PðU ¼ ujY ¼ yÞ will be
represented by another parameter, the component
weight.4 Finally, we must separately estimate PðY ¼ yÞ from
the data, thus obtaining the conditional probability given
the observations:

PðY ¼ yjX ¼ xÞ ¼ 1
Z

PðX ¼ xjY ¼ yÞPðY ¼ yÞ; ð8Þ

where Z ¼
P

y2YPðX ¼ xjY ¼ yÞPðY ¼ yÞ does not depend
on y and where we have again dropped the dependency
on m.

Naïve Bayes The fourth model under consideration is the
Naïve Bayes model. This is a special case of the Gaussian
Mixture Model (GMM) when there is only one Gaussian
mixture.

SVM The last model we evaluated is the Support Vector
Machine (SVM) [3] model, which uses Lagrangian methods
to minimise a regularized function of the empirical classifi-
cation error. The SVM algorithm finds a linear hyperplane
separation with a maximal margin in this hyperspace.
The points that are lying on the margin are called support
vectors. The main parameter of the algorithm is c, which
represents the trade-off between the size of the margin
and the number of violated constraints, and the kernel
K(xi,xj). In this work we will utilise SVM s with a gaussian
kernel of the form Kðxi; xjÞ ¼ 1ffiffiffiffi

2p
p

r expð�kxi � xjk2=r2Þ.
The conditional class probabilities from either Eq. (7) or

(8), depending on the model, can then be plugged into Eq.
(1), for calculating the decision function (2).
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