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God made the bulk;

surfaces were invented by the devil.

— Wolgang Pauli

I wonder who created the interface?
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Abstract
Nanocomposite coatings composed of two phases with atomically sharp phase boundaries,

show interesting mechanical properties. These properties are often originating from their

high interface to volume ratio. Composites of nanocrystalline titanium nitride (TiN) grains

surrounded by a one to two monolayer thick interlayer of silicon nitride (Si3N4) show an

enhanced nanohardness.

The central theme of this thesis is concerned with the interfacial properties of two-dimensional

bilayer systems, which are used as model systems to describe the interfaces occurring in

nanocomposite coatings. The systems under investigation are TiN interfaces in contact with

silicon (Si), silicon nitride (Si3N4) and aluminum nitride (AlN). The primary tool used to

analyze the interfaces of bilayer systems is X-ray Photoelectron Spectroscopy (XPS) with

emphasis put on the shake-up feature of the Ti 2p photoelectron line. Shake-ups in TiN are

observed as an additional peak on the lower binding energy side of the energy lines of the

Ti 2p orbitals. Shake-ups are strongly influenced by valence electrons and electron density

distributions. This makes them a powerful tool to probe the chemical and electronic structure

of TiN interfaces. The aim of this study is to utilize the shake-up energy and its intensity to

gain insight into interfacial structures and correlate their changes to interfacial polarization

and macroscopic mechanical properties.

Single crystalline (sc-) and oxygen-free TiN as well as oxygen-free bilayer systems were de-

posited by unbalanced magnetron sputtering and analyzed by Angle Resolved (AR-)XPS.

Bilayer samples were deposited and their quality was controlled using X-ray diffraction (crys-

tallinity), Rutherford back scattering (elemental composition), and atomic force microscopy

(roughness). All XPS samples were fabricated, transfered and analyzed whilst maintaining

ultra high vacuum.

A precise and self-consistent XPS data processing method was developed to evaluate Ti 2p

spectra. This method accounts for the correct photoelectron line shape, background subtrac-

tion and photoelectron peak area intensity. Binding energy, shake-up energy and intensity

ratios of shake-ups taken from pristine TiN surfaces are precisely determined, and the influ-

ence of oxygen on the information content in peak positions and intensities was investigated.

The shake-up energy and intensity of bulk sc-TiN and its origin of the shake-up are discussed.

An analytical description for the XPS signal ratio of bilayer systems is derived to separate

the interfacial signals from the bulk information. The results obtained by this analytical

description are strongly influenced by the interface thickness that has been found to be

proportional to the overlayer thickness. The revealed interface properties show a correlation
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between the shake-up intensity and the interface morphology, oxygen content, overlayer

material and overlayer thickness.

AR-XPS and X-ray Photoelectron Diffraction (XPD) results were used to interpret the crystalline

structure of the different TiN/AlN and TiN/Si3N4 bilayer systems. AlN shows XPD patterns

indicating a crystalline growth of AlN on sc-TiN. The electrically insulating AlN overlayer

creates a charge accumulation at the TiN interface, which results in an enhanced shake-up

intensity. XPD patterns of Si3N4 systems revealed a crystalline growth of Si3N4 in the first

0.6 nm. The intensity of the diffraction patterns reduces with increasing Si3N4 overlayer

thickness due to a change in the growth behavior from crystalline to amorphous structures.

Si3N4 films show, in comparison to AlN, reduced interface charging and hence a lower shake-

up intensity. The crystalline growth of Si3N4 in the initial stages is hindered in systems where

a bias voltage is applied to the substrate during the deposition process. In contrast to the

unbiased systems, which have crystalline interfacial structures, the biased systems no longer

show XPD patterns due to a loss of crystallinity. Additionally the shake-up intensity of biased

systems is thickness-independent, which is in contrast to unbiased systems. The difference in

the shake-up intensity of biased and unbiased Si3N4 is explained by a different band gap of

the Si3N4 structure in the first two monolayers.

This thesis shows that the increase in the shake-up intensity is correlated to intrinsic and

extrinsic interface charging. The obtained results, in combination with theoretical structure

models from literature, show that in one to two monolayer thick interlayers a build-up of

interface polarization is unlikely. The observed nanohardness enhancement in TiN/Si3N4

systems is explained with already known hardness effects.

keywords:

Shake-up, titanium nitride, interface polarization, AR-XPS, nanocomposite coatings, hardness

enhancement
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Zusammenfassung
Mehrphasige dünne nanokomposite Beschichtungen mit atomar scharfen Phasengrenzen

besitzen vorteilhafte mechanische Eigenschaften. Verantwortlich für diese aussergewöhnli-

chen Eigenschaften ist u.a. das hohe Verhältnis von Grenzflächen zu Volumen. Komposite

aus nanokristallinen Titannitrid (TiN)- Körnern, umgeben von einer Siliziumnitrid (Si3N4)-

Zwischenschicht zeigen eine Härteüberhöhung für Si3N4 Zwischenschichten mit einer Dicke

von ein bis zwei Monolagen.

Das zentrale Thema der vorliegenden Doktorarbeit sind Grenzflächeneigenschaften von zwei-

dimensionalen Doppelschichtsystemen, die als Modellsysteme dienen, um Grenzflächen

in Nanokompositen zu beschreiben. Die untersuchten Systeme sind TiN-Grenzflächen im

Kontakt mit Silizium (Si), Siliziumnitrid (Si3N4) und Aluminiumnitrid (AlN). Primär wurden

die Grenzflächen der Doppelschichtsysteme mittels Röntgenphotoelektronenspektroskopie

(XPS) analysiert, wobei der Schwerpunkt der Untersuchung auf dem Shake-Up der Ti 2p

Photoelektronenlinie liegt. Shake-Ups werden in Titannitrid als zusätzlicher Beitrag auf der

niedrigen Bindungsenergieseite des Hauptpeaks der Ti 2p-Linie beobachtet. Shake-Ups sind

sehr empfindlich gegenüber Veränderungen in der Valenzelektronenkonfiguration und gegen-

über Elektronendichteverteilungen. Daher sind Shake-Ups ein leistungsfähiges Hilfsmittel,

um die chemische und elektronische Struktur von TiN-Grenzflächen zu erforschen. Das Ziel

dieser Untersuchungen ist es, die Shake-Up-Energie und deren Intensitäten zu nutzen, um

Einblicke in die Grenzflächenstruktur zu gewinnen und die Veränderungen des Shake-Ups

mit Grenzflächenpolarisation und den makroskopischen Mechanischen Eigenschaften zu

verknüpfen.

Einkristallines und sauerstofffreies TiN sowie sauerstofffreie Doppelschichtsysteme wurden

mit Unbalanced Magnetron Sputtering abgeschieden und mittels winkelaufgelöster Röntgen-

photoelektronenspektroskopie (AR-XPS) analysiert. Doppelschicht-Proben wurden hergestellt

und deren Qualität untersucht bezüglich ihrer Kristallinität (Röntgenbeugung, XRD), ihrer

Elementzusammensetzung (Rutherford-Rückstreu-Spektrometrie, RBS) und ihrer Rauheit

(Rasterkraftmikroskopie, AFM). Alle Proben wurden unter Ultrahochvakuum-Bedingungen

hergestellt, transferiert und analysiert. Eine präzise und widerspruchsfreie Methode zur Aus-

wertung von Ti 2p XPS Spektren wurde entwickelt. Diese Methode berücksichtigt die korrekte

Form von Photoelektronenlinien, die Hintergrundkorrektur und die Peakintensität. Bindungs-

energie, Shake-Up Energie und Shake-Up Intensitätsverhältnisse für reine TiN Oberflächen

wurde genau bestimmt, und der Einfluss von Sauerstoff auf den Informationsgehalt der

Peakposition und -intensität wurden untersucht. Shake-Up Energie und Intensität von ein-
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kristallinem TiN sowie deren Ursprung sind diskutiert. Eine analytische Beschreibung der

XPS-Signalverhältnisse von Doppelschichtsystemen ist hergeleitet, um Grenzflächensignale

von Tiefeninformationen zu trennen. Die durch diese analytische Beschreibung erhaltenen

Ergebnisse sind stark beeinflusst von der Grenzflächendicke, welche proportional zur be-

deckenden Schichtdicke ist. Die Untersuchungen der Grenzflächeneigenschaften deckten

auf, dass die Shake-Up Intensität mit der Grenzflächenmorphologie, dem Sauerstoffgehalt,

dem Grenzflächenmaterial und der bedeckenden Schichtdicke korreliert. Ergebnisse von win-

kelaufgelöstem XPS und Röntgenphotoelektronendiffraktion (XPD) wurden benutzt, um die

kristallinen Strukturen der TiN/AlN und TiN/Si3N4 Doppelschichtsysteme zu interpretieren.

AlN weist XPD-Muster auf, welche auf ein kristallines Wachstum von AlN auf einkristallinem

TiN hinweisen. Die elektrisch isolierende AlN-Schicht verursacht eine Ladungsträgerkonzen-

tration an der TiN-Grenzfläche, die wiederum zu eine Erhöhung der Shake-Up Intensität

führen. XPD-Muster von Si3N4 deuten auf ein kristallines Wachstum von Si3N4 in den er-

sten 0.6 nm hin. Die Intensität von XPD-Mustern nimmt ab mit zunehmender Si3N4 Dicke,

verursacht durch einen Wechsel von kristallinem zu amorphem Wachstumsverhalten. Si3N4

Schichten zeigen im Vergleich zu AlN eine reduzierte Grenzflächenaufladung und folglich eine

niedrigere Shake-Up Intensität. Das kristalline Wachstum von Si3N4 in den ersten Lagen wird

durch Anlegen einer Bias-Spannung am Substrat während des Abscheideprozesses unterbun-

den. Diese Systeme zeigen keine XPD-Muster mehr aufgrund des Verlustes der kristallinen

Struktur. Ausserdem sind die Shake-Up-Intensitäten in Si3N4-Systemen, hergestellt mit Bias,

unabhängig von der bedeckenden Schichtdicke, was im Gegensatz zu den Systemen steht,

die ohne Bias hergestellt wurden. Der Unterschied in den beiden Si3N4 -Systemen wird durch

unterschiedliche elektronische Bandlücken in den ersten zwei Monolagen der beiden Si3N4

Kristallgitter erklärt. Die Doktorarbeit zeigt, dass die Zunahme der Shake-Up-Intensität mit in-

trinsischer und extrinsischer Grenzflächenaufladungen korreliert ist. Die gezeigten Ergebnisse

belegen, in Kombination mit theoretischen Strukturmodellen aus der Literatur, dass Grenz-

flächenpolarisation in ein bis zwei Monolagen dicken Zwischenschichten unwahrscheinlich

sind. Die beobachtete Erhöhung der Nanohärte wird mit bereits bekannten Effekten zum

Härtebeitrag erklärt.

Stichworte:

Shake-up, Titannitrid, Grenzflächenpolarisation, winkelaufgelöster Röntgenphotoelektronen-

spektroskopie (AR-XPS), nanokomposite Beschichtungen, Härteüberhöhung
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Résumé
Les couches minces nanocomposites présentent des propriétés mécaniques remarquables,

souvent reliées à un rapport interface/volume élevé. Ainsi les matériaux composites consti-

tuées de grains nanocristallins de nitrure de titane (TiN) enrobés dans une intercouche d’une

à deux monocouches de nitrure de silicium (Si3N4) présentent une nanodureté accrue.

L’objet de ce travail est l’investigation des propriétés d’interface de systèmes bicouche bidi-

mensionnels utilisés comme systèmes modèle pour décrire les interfaces nanocomposites.

Sont considérés ici des interfaces de nitrure de titane (TiN) en contact avec du silicium (Si),

du nitrure de silicium (Si3N4) et du nitrure d’aluminium (AlN). L’outil principal d’analyse des

systèmes bicouche étudiés repose ici sur les structures d’excitation " shake-up " observées

en spectroscopie de photoélectrons X (XPS). Le phénomène d’excitation shake-up du TiN se

manifeste sous la forme d’un pic satellite du côté des plus faibles énergies de liaison du niveau

de cœur Ti 2p. Après photoémission d’un électron de cœur Ti 2p deux états finaux peuvent être

atteints qui sont responsables de l’apparition d’un pic principal de photoémission et d’un pic

shake-up. La différence d’énergie entre le pic principal et le pic shake-up est appelée " énergie

de shake-up ". Les pics shake-up sont fortement influencés par les électrons de valence et

la distribution de densité d’électrons. Les shake-ups du TiN sont de ce fait un outil puissant

pour l’investigation des structures électroniques et chimiques aux interfaces du TiN. Le but

de la présente étude est d’utiliser l’énergie de shake-up ainsi que l’intensité du pic shake-up

pour obtenir des informations sur les structure d’interface et potentiellement corréler leur

évolution à la polarisation d’interface. La polarisation d’interface pourrait en effet expliquer

l’augmentation de nanodureté.

Des couches de TiN monocristallin (mc-) exemptes d’oxygène ainsi que des systèmes bicouche

sans oxygène ont été fabriqués par pulvérisation cathodique magnétron non-équilibré et

analysées par XPS à résolution angulaire (AR-XPS). Différents échantillons d’interface ont été

déposés et leur qualité a été contrôlée par diffraction aux rayons X (cristallinité), spectroscopie

de rétrodiffusion de Rutherford (composition élémentaire) et microscope à force atomique

(rugosité). Tous les échantillons d’XPS ont été déposés, transférés et analysés sous ultra vide.

Une méthode de traitement de données précise et cohérente a été développée. Cette méthode

prend en compte la forme exacte du pic photoélectronique, la soustraction de la ligne de base

et l’intensité du pic photoélectronique. L’énergie de liaison, l’énergie de shake-up ainsi que les

rapport d’intensités des pics shake-up de TiN pure sont déterminés précisément et l’influence

de l’oxygène est examinée. L’énergie de shake-up et l’intensité du mc-TiN volumique sont

comparés à la littérature et l’origine du pic shake-up est discutée.
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Une description analytique des systèmes bicouche est enfin établie qui permet de séparer les

signaux provenant de l’interface des informations volumiques. Les résultats ainsi obtenus sont

très fortement influencés par l’épaisseur d’interface, elle-même estimée comme étant propor-

tionnelle à l’épaisseur de la surcouche. Les résultats mis en évidence aux interfaces montrent

une corrélation entre l’intensité de pic shake-up d’une part, et la morphologie d’interface, la

teneur en oxygène, le matériaux constituant de la surcouche ainsi que son épaisseur d’autre

part. La structure des différents systèmes bicouche TiN/AlN et TiN/Si3N4 a été interprétée

à partir des résultats d’AR-XPS et de diffraction de photoélectrons X (XPD). Le spectre XPD

de l’AlN indique une croissance cristalline sur mc-TiN. Le caractère électriquement isolant

de la surcouche d’AlN est la cause d’une accumulation de charge à l’interface avec le TiN, à

son tour responsable d’une augmentation de l’intensité du pic shake-up. Le spectre XPD du

Si3N4 révèle lui une croissance cristalline sur quelques monocouches seulement. L’intensité

des spectres de diffraction diminue par ailleurs avec l’épaisseur croissante de la surcouche

de Si3N4. Ceci est interprété comme étant la preuve d’un changement de mode de crois-

sance d’une structure cristalline à une structure amorphe. Comparés à l’AlN, les films de

Si3N4 présentent une accumulation de charge à l’interface moindre, d’oû une intensité de pic

shake-up elle-aussi réduite. La croissance cristalline initiale du Si3N4 est entravée lorsqu’une

polarisation est appliquée au substrat pendant le procédé de dépôt. A l’inverses des système

déposés en l’absence de polarisation, qui présentent une structure cristalline à l’interface,

les systèmes non-polarisés présentent un spectre XPD plat du à leur perte de cristallinité.

La intensité de pic shake-up des systèmes polarisés sont indépendant de la épaisseur des

surcouches. Cette différence d’intensité s’explique par une différence de largeur de bande

interdite de la structure Si3N4 dans les premières deux monocouches.

Dans ce travail de thèse, il est ainsi démontré que l’augmentation d’intensité des pics shake-up

est corrélée à une accumulation de charge à l’interface Les résultats obtenus, associés aux mo-

dèles de structure théorique de la littérature, montrent qu’aucune polarisation d’interface est

improbable développée dans des intercouches de un à deux monocouches d’épaisseur. L’aug-

mentation de nanodureté observée dans le TiN/Si3N4 s’explique donc à partir de mécanisme

de durcissement déjà connus.

mots-clé :

Shake-up, nitrure de titane, charge à l’interface, spectroscopie de photoélectrons X à résolution

angulaire (AR-XPS), couches minces nanocomposites, mécanisme de durcissement
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1 Motivation and structure

Coatings nowadays are used in a tremendous amount of items. They improve the surface

properties, as e.g. corrosion resistivity, wear resistance, hardness, friction or optical properties

[1, 2]. Many tools (e.g. drilling bits), medical devices (e.g. hip joints) and consumer products

(e.g. solar cells) are covered with a protective, functional and/or decorative coating to enhance

their appearance, efficiency and life time. Also intentionally less obvious coatings are used

to protect all kind of glasses (e.g. windows and spectacles) and displays (smartphones and

tablets); even chocolate is coated to prevent melting in the hand. The global value of the

coating market for the year 2017 has been forecasted by Global Industry Analysts, Inc. [3] to

be US$ 107 billion. A global market study by Future Markets Inc. [4] estimates, that just the

nanocoatings market (including dispersed nanocomposites), in the year 2011 was US$ 1.5

billion and predict a growth up to US$ 7.8 billion by the year 2017. Optimistic estimations for

nanoscale and thin film market are up to US$ 13 billion until the year 2016 [5].

1.1 Scientific motivation

Coatings are coverings applied to the surface of an object. In this study thin films (with

thickness of less than a few µm) are studied, and more precisely nanocomposite coatings

which are thin films built of nanomaterials. The latter are materials containing morphological

features in the nanoscale (1−100 nm) and show generally special properties stemming from

the nanoscale dimensions [6]. Nanocomposites are build up of nanocrystalline (nc-) grains,

fibers or crystallites with less than 100 nm diameter (for superhard nanocomposites often grain

sizes below 10 nm are present) [1] which are surrounded by an amorphous (a-)i matrix. Many

different systems, mainly of metal nitrides and carbides, are the subject of current research in

literature and reviewed regularly [1, 2, 7–16]. The influence of deposition temperature and

pressure on the structure of deposited coatings has been described by Thornton [17]. The

structure of the nanocomposite coating has been further correlated to the nano hardness of

the film [18–21]. A multitude of publications over the last years [1, 13, 14, 16, 18–46] addressed

iregarding the following discussion, amorphous (a-) refers in nc-TiN/a-Si3N4 to X-ray amorphous
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Chapter 1. Motivation and structure

the origin of the hardness in nanocomposites. The mechanical properties of a nanocomposite

material are the results of the compounds in the composite, the size, the structure and the

amount of mixture. For a certain combination of compounds (given specific interfacial

bonding) the mechanical properties are e.g. strongly depending on the thickness of the matrix

phase between the crystalline grains [2, 33, 47]. The interface between nanocrystalls and

amorphous matrix have been modeled on a TiN and Si3N4 system and studied by Hultman

et al. [48] using HR-TEM, and by Patscheider et al. [27] using AR-XPS. In the latter a model is

proposed to correlate core level peak and satellite intensities of the XPS spectra directly to

interface polarizations, which could result in an enhanced interface strength and hence to

harder thin films. Some of the photoelectron characteristics of metal nitrides and carbides

are still a matter of debate [35, 49, 50], hence a precise evaluation and quantification as well a

closer look at the origin of the XPS features are presented in this work.

Nanocomposites possess three-dimensional structures that are in the best case difficult and

in most cases impossible to resolve. By reducing the dimensions from a three-dimensional-

nanocomposite to a two-dimensional-multilayer systems it is at least partially possible to

study the material properties with e.g. AR-XPS or HR-TEM. Multilayers show partially a similar

behavior regarding hardness enhancement. The theories of multilayer systems cannot be

translated one-to-one to nanocomposite coatings, since additional grain translation, rotation

or sliding is possible as well as complex grain geometries, which have to be considered in the

case of nanocomposites. In a first step, two dimensional multilayers are used as a model to

understand factors influencing hardness, and this insight is transferred and expanded to the

case of three-dimensional nanocomposites.

1.2 Structure of the thesis

This thesis is structured in four parts: an introduction (part I), a description of the sample

fabrication and characterization methods (part II), an account and discussion of the results

(part III) and the conclusions (part IV).

In the first part (part I) the motivation of the presented work is described, including both the

commercial (sect. 1) and the scientific motivation (sect. 1.1). In the following section the reader

is introduced to the basics of hard coatings (sect. 2) and the relevant hardness enhancement

effects (sect. 2.2), state-of-the-art thin film deposition techniques (sect. 2.3) and a summary

of layer and film growth behavior (sect. 2.4). Section 3 deals with fundamentals of XPS that are

essential for the understanding of the observed features, i.e. the basic photoemission process

(sect. 3.2), different energy lines and their line shapes (sect. 3.3-3.6), as well as the background

(sect. 3.7), and a method to obtain quantitative elemental concentration from the XPS spectra

(sect. 3.8). The third section closes with a brief literature review on XPS spectra of TiN (sect.

3.10).

The second part (part II) deals with the details on the sample fabrication procedures (chapter

4) and the characterization methods (chapter 5): AFM (sect. 5.6), XRD (sect. 5.7), XRR (sect.
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5.8), RBS (sect. 5.9), TEM (sect. 5.10) and Profilometry (sect. 5.11). These techniques were

used to verify that the samples are oxygen-free, single-crystalline and have atomically sharp

interfaces.

Experimental results (sect. III) related to general sample characeristics such as crystallinity

(sect. 6.1), overlayer thickness (sect. 6.2), roughness (sect. 6.3) and interface structure (sect.

6.4) are presented in chapter 6. Chapter 7 focuses on XPS spectra of pristine TiN: binding

energies (sect. 7.1), different components in the Ti 2p XPS spectra (sect. 7.2), background

(sect. 7.3), line shapes (sect. 7.4) and X-ray Photoelectron Diffraction (sect. 7.5) are elucidated.

Chapter 8 deals with TiN/Si, TiN/Si3N3 and TiN/AlN bilayer systems, where the parameters

influencing the shake-up intensity at the systems interface are analyzed. In particular the

influence of the oxygen concentration (sect. 8.3), sample charging and interface charging (sect.

8.4), and the interface thickness δ (sect. 8.5) on the shake-up process are revealed. In chapter

9 the expected interface polarization (sect. 9.1) and the effects contributing to a hardness

enhancement (sect. 9.2) are discussed.

The conclusions are stated in part IV and are divided in the experimental achievements (sect.

10.1), the data processing (sect. 10.2), the obtained bulk properties of TiN (sect. 10.3), the

shake-up process (sect. 10.4), the interface characteristics (sect. 10.5), and the interface

polarization in TiN/Si3N4 nanocomposites, including hardness effects (sect. 10.6).
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2 Hard coatings

There is a variety of hard coatings, ranging from diamond like carbons (with a Vickers hardness

of 10−30 GPa) [11, 51–54], monolithic TiN (24 GPa) [39, 55], nanocomposites of nc-TiN/a-

Si3N4 (up to 50 GPa) [28, 32, 34], TiN/VN multilayers (> 50 GPa) [56–58] to BN (≈ 60 GPa)[59–

62]. A full literature review on hard coatings is beyond the scope of this work. In this thesis

only a few transition metal nitride (TMN) systems have been chosen, namely TiN systems

in contact with Si, Si3N4 and AlN. Previous studies on the hardness of superhard TiN/Si3N4

systems are briefly reviewed in the next section 2.1. Effects underlying hardness enhancement

are discussed in section 2.2. The last section 2.3 of this chapter deals with the most common

deposition techniques for coatings with the focus on Unbalanced Magnetron Sputtering

(UBMS).

2.1 State-of-the-art

Already in 1914 Fleming [63] patented "protective coverings" made out of TiN "for electrodes,

resistors, furnace bricks and similar articles". Further patents [64] and studies on chemical

and Physical Vapor Deposition (PVD) of TiN as protective coatings followed [65–70]. TiN

has found widespread application as a protective coating and as diffusion barrier due to its

hardness, corrosion resistance and its high melting point [55, 65, 71]. TiN is also used as

a decorative coating [72, 73] since its reflection spectrum is very similar to that of gold. Li

Shizhi et al. [74] was the first to report enhanced mechanical properties of nc-TiN and a-Si3N4

nanocomposites, that became the "prototype" of a hard nanocomposite [75, 76]. Structure

and phase studies on this hard system followed [77] as well as investigations on crack growth

resistance [78] and oxidation resistance [79, 80]. Special scientific interest in nc-TiN/a-Si3N4

systems arose after it had been claimed by the group of Vepřek that these thin films show

ultrahardness of over 100 GPa [81, 82]. The origin of this ultrahardness has been the subject of

recent scientific articles [18–34, 83] with the focus on the structure [18–21], the silicon content

[31], the grain size [32], the content of impurities [76, 84, 85] or the interface of the nc-TiN

grains and the surrounding a-Si3N4 matrix [23, 27, 34, 48]. Recently it has been claimed that

these values previously reported [81] are overestimated by a factor of ≈ 2 due to deficiencies
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in the measurement procedure [28]. Nevertheless nc-TiN/a-Si3N4 nanocomposites show

enhanced hardness under certain conditions and have been used to develop design rules for

superhard coatings [2, 86]. Combinations of binary, ternary and quaternary systems, such

as Al−Ti−N [87, 88], Zr−Si−N [40, 89], Ti−Al−Si−N [12, 89] and Ti−Al−V−Si−N [89]

nanocomposites have been reported to show a similar hardness enhancement upon addition

of Si.

2.2 Hardness

The hardness is defined as the resistance of solid matter to plastic deformation. This can be

measured in a variety of ways, defining three types of hardness: scratch hardness, indentation

hardness and rebound hardness. In this thesis hardness is referred to as indentation hardness.

The deposited films are very thin, and hence it is important that the film’s, and not the

substrate’s hardness is measured. In general a nanoindenter is used and certain measurement

rules have to be considered [12, 28] to obtain the indentation hardness H :

H = Pmax

A
(2.1)

where Pmax is the maximum load and A is the contact area. In crystalline materials any plastic

deformation caused by the force of the indenter requires dislocation movement. Dislocations

are crystallographic defects or irregularities within a perfect crystal structure. Different kinds

exist: edge-, screw- or mixed dislocation which are described by the burgers vector [90]. A

dislocation propagates until a barrier or the solid surface is reached. Their movement is

impeded by different kinds of stress fields and by other dislocations, inducing a pile-up of

dislocations in front of barriers. Hardness is a combination of the intrinsic properties of the

film such as ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity,

and viscosity. But also extrinsic effects influence the hardness, such as substrate adhesion,

residual stress and the geometry of the indentation tip [91–93].

Coatings can be classified according to a) their hardness: H > 20 GPa are called hard, H ≥
40 GPa are considered superhard and coatings with H ≥ 80 GPa are ultrahard or b) can be

divided in single- and multiphase coatings. Holleck [91] classified hard coatings according

to their bond nature: metallic (transition metal-nitrides, -carbides and -borides ), covalent

(nitrides, carbides and borides of Al, Si and B, including diamond) and ionic (e.g. oxides of

Al, Be, Ti and Zr). A triangle representing the three bond natures and the arising mechanical

properties is shown in figure 2.1. Covalent bonds show the highest hardness and the lowest

thermal expansion coefficient. Ionic bonds are chemically inert and brittle, while materials

with metallic bonds have a high Young’s modulus and adhere well to metallic substrates [16].

In the case of e.g. TiN a combination of covalent and metallic bonding predetermine the

interplay of adhesive, tough, strong and hard material [95, 96]. The hard materials shown in

fig. 2.1 can be compounded to a multiphase coating with improved mechanical properties

such as nc-TiN/a-Si3N4 composites.

8
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Figure 2.1: The mechanical prop-
erties of a material depend on its
chemical bonding and can be classi-
fied in metallic, covalent and ionic
bonds [94].

In this work the processes that cause hardening are grouped in bulk hardening and in thin

film hardening. The bulk hardening effects are often used in the metal working industry and

imply solid solution strengthening, precipitation hardening, work hardening, martensitic

transformation, Hall-Petch strengthening , inverse Hall-Petch softening , and bombardment

hardening (sect. 2.2.1). The thin film hardening effects are generated by sputter techniques and

encompass hardening effects caused by coherency strains, misfit dislocations, thermal stress,

orientation, Koehler stresses, interlayer stabilization, supermodulus effect and polarization

strengthening (sect. 2.2.2).

2.2.1 Bulk hardening

Hardening techniques have already been used for more than 5000 years, e.g. cold forming or

thermal annealing, as it is used during forging. The bulk hardening effects are mainly used to

increase the hardness of bulk material, but can also be partially transfered to nanocomposites.

In general hardening is enhanced by hindering or inhibiting dislocation creation or movement.

The processes presented in this subsection are commonly used in industry to harden bulk

materials (e.g. steel) or their surfaces.

Solid solution strengthening: An alloying element in a crystalline lattice of a base material

forms a solid solution. The dissolved element can either replace an atom from its lattice posi-

tion (substitution) or occupy interstitial sites in between the lattice (interstitial). Dislocations

create stress fields within the material and interact with the local stress fields that are formed

by the solute atoms. Hence the dislocation movement is impeded and the yield strength and

hardness of the material are increased [90, 97, 98].

Precipitation hardening: Precipitation hardening (also called aged hardening) is based

on thermal annealing to precipitate fine particles of an impurity phase. Those secondary
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phase particles cause lattice distortion, resulting in either a tensile (small precipitates) or a

compressive stress (large precipitates). The induced stress field interacts with the dislocation

stress field and hinders the dislocation movement [90, 97, 98].

Work hardening: Due to plastic deformation the dislocation density increases until a satu-

ration point, where no new dislocations can be formed. A higher dislocation concentration

means also enhanced interactions between the dislocations (pile-up), thus the dislocation

movement is impeded [99, 100].

Martensitic transformation: The martensitic transformation is a diffusionless phase change.

A prominent example is the transformation of body-centered tetragonal (bct) austenite into

face-centered cubic (fcc) martensite. The activation energy to transform the bct structure

in a fcc is very small. The transformation is induced either by quenching or by applying

shear stress; both cases cause an ordered movement of a large number of atoms (displacive

transformation). This distortion results in mismatches between neighboring regions and in

the formation of crystal defects. The latter hinder the dislocation movement, cause dislocation

pile-ups and lead to a harder material.

Hall-Petch strengthening: In the early 1950s E. O. Hall and N. J. Petch discovered indepen-

dently from each other that the crack length [101] and the brittle fracture [102] in steel are

correlated to the grain size d . Strength and hardness (H) increase, for crystallite (grain) size

below 1µm, with decreasing size; this is expressed in the Hall-Petch (HP) formula:

H = H0 + kHPp
d

(2.2)

where H0 is the intrinsic hardness, kHP is the material dependent strengthening coefficient

and d is the grain size. Dislocations propagate through the material until a grain boundary,

where further dislocation movement is impeded, and the dislocations pile up [103]. This

phenomenon is prominent for grains sizes of 50−100 nm, grain sizes below 10−20 nm show

a reverse or inverse Hall-Petch (iHP) behavior , i.e. the strength decreases with the grain size

[21, 104]. Around this critical value dc of the grain size the deformation is dominated for d < dc

by intergranular (small scale sliding in the grain boundaries) and for d > dc by intragranular

processes (dislocation nucleation and motion), see fig. 2.2 [105]. This softening of the material

is still heavily discussed and can only be completely explained in the limit of a zero grain size,

where the material is amorphous [104, 106–110]. Possible explanations are all based on the

fact that if the distance between dislocations gets smaller than the grain size, then no more

pile-ups can develop. Schiøtz et al. [111] showed by molecular dynamic (MD) simulations

that in single phase nc-metals the biggest part of the plastic deformation is mainly caused by

small sliding events of atomic planes at the grain boundaries and only a minor part is due to

dislocation movement in the grains for d < 10 nm [112].
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Intergranular processes
* Small scale sliding in the grain
boundaries

Intragranular processes
* Dislocation nucleation and

motion

Hardness

Amorphous Nanocrystalline Microcrystalline phase

Grain sized 10 nmc ≈

Figure 2.2: Schematic representation of the deformation processes as a function of the grain
size. Above the critical grain size dc HP strengthening occurs and below dc the iHP behavior is
observed. Picture is reprinted with permission from [105].

Texture: The optical, electrical, thermal and mechanical material properties of crystalline

materials depend on its crystalline orientation. In 1949 Taylor [113] observed differences in

the micro-hardness for different orientations of calcite and quartz. For example, the direction

<111> is the strongest in TiN, similar to the weakest bonding direction in diamond [76]. Aligned

columns or grains also show a different deformation behavior and hence different hardness

[32, 47].

2.2.2 Thin film hardening

Nanocomposite coatings can show hardness enhancement that cannot be explained by bulk

hardening processes described above. Solid solution hardening does not contribute to the

superhardness in binary systems as e.g. TiN/Si3N4 nanocomposites. The fcc-Ti1−xSixN system

decomposes into two phases TiN and Si3N4 with sufficiently high kinetic energies (e.g. at

500 ◦C) and in a N-rich deposition process (pN ≥ 10−4 mbar) [22, 77, 114]. Hence (Ti,Si)N

solutions are only found under low kinetic deposition conditions, and so far no superhardness

has been reported in solid solution coatings [115–118]. Ti1−xAlxN composites have a de-

mixing energy of about an order lower than Ti−Si−N systems and decompose only at high

temperatures into stable fcc-TiN and metastable fcc-AlN [118–120]. Precipitation effects due

to annealing cannot explain the hardening of TiN/Si3N4, since the two phases TiN and Si3N4

are already forming during the deposition process. The samples are not plastically deformed to

increase their hardness, hence neither work hardening nor martensitic hardening are affecting
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the hardness in thin films. In the TiN/Si3N4 system the hardness maximum is found for grain

sizes between 3−5 nm [33, 86, 121]. For grain sizes below dc = 10 nm the iHP behavior should

cause a softening, but this is not the case. Similar observations with a hardness enhancement

below dc are made for other nc-TM composites (e.g. TM = V or W) [122].

Therefore bulk hardening effects cannot explain the hardness increase for nanocomposites

with grain sizes of ≈ 3−5 nm, and new approaches, as explained below, are proposed to

explain the hardness enhancement for nanocomposites.

Coherency stress: Epitaxially grown films with a substantial or complete lattice matching

generate coherency stresses, also called epitaxial stresses. The stress is induced by elastic

coherency strain due to the lattice mismatch. Films with a large misfit show a critical thickness

above which the films display in-plane relaxation, resulting in a semi-coherent layer systems

[123]. The coherent stress in layer A can be calculated by [124–127]:

τcoh,A = f E (2.3)

where f is the total misfit (see eq. 5.14) and E is the Young’s modulus. The induced stress

due to coherency strain impedes dislocation movements, resulting in harder materials. The

strength of the coherency stress varies strongly depending on the material under investigation.

Coherency stresses have been reported from τcoh > 2 GPa for metal/metal multilayers [127,

128]i and up to τcoh ≈ 34 GPa in NbN/TaN multilayers [129].

Thermal stress: Thin films are often fabricated at elevated temperatures, therefore after

cooling thermal stress is induced. The temperature-dependent stress τt of a layer A in contact

with layer B can be calculated by [130]:

τt = dB
E AEB (αB −αA)∆T

(1−νA)EB dB + (1−νB )E AdA
(2.4)

where αA ,αB are the thermal expansion coefficients of material A and B and νA ,νB are the

Poisson ratios of material A and B. Compressive thermal stress in TiN of 0.9±0.1 GPa and

tensile stress in Si3N4 of 0.16±0.14 GPa are reported [131], and are inducing additional stress

fields impeding the dislocation movement.

Koehler stress: Based on the isotropic elastic theory, Koehler [132, 133] predicted in 1970

that a multilayer structure with a periodicityΛ of few nm should result in a harder material.

The additional Koehler stress or modulus hardening is induced by a repulsive image force that

exists when a dislocation crosses from a material with a lower Young’s modulus E to another

material with a higher modulus. [21]. The hardness enhancement is proportional to the shear

i Calculations of τcoh are based on [124–127]
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moduli of the two layers. Koehler suggested to choose two high and low modulus materials A

and B with an elastic modulus that differs as much as possible and that show a good bonding

between each other. In this way the dislocations in B are hindered to cross the interface B/A

and very large stress is required to move the dislocation through the interface [132]. Also the

formation of new dislocations by the Frank-Read source (FRS) mechanism is impeded, when

the FRS loop does not fit in the layer. The maximum stress τk to move a dislocation through

multilayer systems can be calculated in a first approximation as a bilayer system by equation

(2.5) [134] that is based on the Peierls dislocation model as laid out in Pacheco and Mura

[135]ii. The maximum stress τk to move a dislocation through an interface is given by:

τk = (GB −G A)
sinΘs

π2 (2.5)

where G A ,GB is the shear modulus of material A and B respectively with G A <GB and Θs is

the angle between interface and slip plane. The Koehler stress τK , being the maximum shear

stress required to move a dislocation within and through material A, is the sum of:

τK = τk +τA (2.6)

where τA is the shear stress applied within material A. Koehler’s predictions were verified first

in Al/Cu and Al/Ag systems by Lehoczky et al. [136, 138], later in epitaxial heterostructures of

TiN/VN [56] and TiN/NbN [139, 140] and in polycrystalline multilayers of Ti/TiN, W/WNx and

Hf/HfN [141]. Calculations using the embedded atom method [142] verified that the Koehler

strengthening is significant, especially when the lamellae are very thin. According to Vepřek

and Reiprich [86] those studies [56, 139–141] verify Koehler’s prediction, but are not sufficient

to explain the hardness maximum for layers between 5−8 nm. Also for VN/NbN superlattices

this is not a reasonable explanation for the observed hardness enhancement, since NbN and

VN have nearly identical elastic properties [143]. A deficit of the Koehler formalism is that

it does not take into account the different thicknesses of the different layers, but only the

predominant wavelengthΛ of alternating layers.

Supermodulus effect: The supermodulus effect describes the change of the elastic modulus

(biaxial, flexural, shear and Young’s) as a function of the wavelengthΛ of composition mod-

ulations of various transition metal-nobel metal superlattices. The reported elastic moduli

for 1 nm < Λ < 3 nm are 2-4.5 times higher than expected from the bulk values of the two

combined materials [144–146]. The existence [146, 147] as well as the origin [144, 145, 148]

of the supermodulus effect are still controversial [89, 149–152]. Such elastic anomalies may

result in hardness enhancement due to the line tension of a dislocation [153].

iiSome authors [129, 136] used the formalism of Head [137] to calculate the Koehler stress in thin multilayers:

τk = GB−G A
GB+G A

GB
sinΘs

8π . Please note that this equation holds only true for dislocations far away from the interface,
which is not the case in multilayers if the individual layers are very thin.
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Interlayer stabilization: Some multilayers e.g. TiN/AlN [154] or TiN/Si3N4 [131] show a

stabilization of an epitaxial cubic crystal structure. In both cases, AlN and Si3N4, the preferred

crystal structure is a hexagonal phase at ambient pressures, but also cubic synthetic structures

are possible. The hexagonal structure of β−Si3N4 (19 GPa [155]) is much softer than the cubic

γ-structure (47 GPa [156]). A stabilized structure with a higher strength results in a higher film

hardness. This is considered by using the stabilized interface hardness in the calculations of

the Koehler stress (eq. 2.6).

Polarization strengthening: Patscheider et al. [27] proposed an additional electrostatic

field effect that results in hardening. A conducting and an insulating material in contact align

their Fermi levels (EF) . Since no singularity is allowed, those bands bend to adjust their EF

level difference. According to Patscheider et al. [27] no significant bending of the bands at

the interface is present, and electrons accumulate at the phase boundary. This causes an

electrostatic polarization at the TiN/Si3N4 interface, see fig. 2.3. The polarization effect is

bigger for materials with a wide band gap, hence the interface strength increases from Ti, Si to

Si3N4 in contact with TiN. The deformed volume of nanoindented thin films contain a few

hundreds of grains along the deformation directions. Each grain in the nanocomposite has

several interfaces where the polarization effects occur, and hence the strength of the film is

enhanced tremendously. The polarization effect is discussed further in section 9.1.

Bombardment hardening: The kinetic energy of bombarding ions plays an important role

and can result in a hardness enhancement. During the sputter deposition ions are bombarding

the growing film continuously; by applying a positive or negative bias the ion energy can be

reduced or increased. The bombardment can densify and/or modify the film morphology [157,

158] (sect. 6.1) and cause various defects: creation of interstitials and vacancies (reminiscent

of solid solution), dislocations (similar to work hardening), Argon implementation (interstitial

solid solution hardening), and grain boundaries (compare to Hall-Petch hardening) [33].

Thermal annealing of the films can reduce the defects and decrease the hardness [159, 160].

Hence bombardment hardening is not a single effect describing the hardness enhancement, it

is rather a mix of the defect sources described above [33].

Vaz et al. [18] showed that applying a negative bias of −50 V results in a hardness increase in

Ti1−xSixNy systems of up to 8 GPa. An applied bias also changes the composition [15] and the

morphology of the sample [158, 161], and it remains unclear whether the ion bombardment

or the decreasing grain size causes the hardening. Since morphology and composition have a

strong influence on the hardness, the ion bombardment must have a minor influence and is

neglected in this work as an hardening effect.
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Figure 2.3: (top) Sketch of the valence bands of TiN in contact with Si3N4, Si and Ti as in
[27]; (bottom) schematic illustration of a single crystalline (sc-)TiN/a-Si3N4 nanocomposite
showing the polarization at the grain boundaries.
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2.2.3 Modeling hardness

The diversity of the proposed theories illustrates how difficult it is to explain the origin of

hardness. This is mainly due to difficulties in obtaining precise experimental data or images of

the deformation process of nc-grains. A way of gaining insight into the deformation processes

on the nanoscale are MD simulations [111, 162–165], numerical simulations [166–169], and

theoretical modeling [170–179]. Numerical simulations based on finite element method (FEM)

can imitate the deformation process of materials. FEM calculations of metals performed by

Fu et al. [166] show that in a uni-phase nanocrystalline (nc-) material four factors contribute

to grain boundary strengthening: multi slip activation in the grain-boundary region, elastic

anisotropy effects resulting in additional stresses in grain-boundary surrounding, grain bound-

aries acting as barriers to plastic flow and as dislocation sources. FEM simulations by Wei and

Anand [168] decoupled the deformation in two parts: cohesive grain boundaries deformation

and a crystal plasticity model. As those FEM results have been adjusted to the experimental

values, it is difficult to separate the two phases. Warner et al. [169] used a multiscale model

(FEM and atomistics) on nc-Cu with no secondary phase between the grains. Their model

contains only bulk properties of Cu and interfacial properties of the grain boundary. The grain

boundary structures were simulated independently from the atomistic simulations. It is shown

that Hall-Petch (HP) strengthening fits intragranular deformation when partial dislocation

is considered active. The primary challenge in FEM is to derive an equation describing the

mechanical deformation processes. Hence a precise a priori knowledge of the hardening

processes, as described above, needs to be at least partially implemented .

A more fundamental approach is the MD simulation, here atomistic potentials describe the

interaction of molecule clusters. Recent MD simulations [180] use polycrystalline Cu nano

grains in a cube of 30 nm with up to 7·106 atoms. Tucker et al. [180] modeled different grain

sizes and demonstrated that for nc-Cu the deformation mechanisms is related to the grain size.

For large grained structures the lattice strain and dislocation slip are more dominant while

for grain sizes below 15 nm grain boundary mediated deformation (as e.g. grain boundary

migration, sliding, and atomic shuffling) play a significant role. This is in good agreement with

what has been reported previously by Schiøtz et al. [111, 164, 169]. So far no MD modeling

has been performed on metall nitride (MeN)/Si3N4 nanocomposite, but increasing computer

power and a tremendous interest in those systems make it only a matter of time until those

will be performed.

The simplest model to describe the hardness Hn of a two-phase nanocomposite is given by

the rule of mixture [181]:

Hn > H1V1 +H2V2

Vn
(2.7)

where H1, H2 and V1, V2 are the hardness and volume of first and second phase. A maximum

value Hn,max can be more than twice greater than that of the hardest component [105]. The

rule-of-mixture can be applied e.g. to TiN1−xCx systems that form a solid solution [182].
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The rule of mixture gives a lower limit of the hardness, since effects such as cohesive forces

between atoms, dislocation-dominated plastic deformation (sect. 2.2.1) and nanostructure of

the material (sect. 2.2.2) are not included in this approach.

Chu and Barnett [183] derived a model to describe the superlattice strength/hardness of misci-

ble systems with the same slip system. Their calculations include dislocation movement across

layers and within individual layers. Their model is based on two mechanisms: dislocation

movement through the layers and within the individual layers. The formalism accounts for

the interface topography and the fact that in thin layers the dislocation generation is impeded

[132]. A maximum hardness is experienced in the multilayer system, if the layer thickness

inhibits dislocation motion across the boundaries without having dislocation movement

within the layer. The described model of Chu and Barnett [183] agrees with the experimental

observations and shows a maximum hardness at bilayer thicknesses of 5−10 nm. Recently Fu

et al. [166, 184] proposed a mathematical model based on FEM simulations. The model uses

an affected zone (7 lattice parameters) to describe the plastic deformation. This affected zone

model is questioned [169] since TEM images [185] show that the nano grains are crystalline

up to the grain boundary. Farrokh and Khan [179] developed a new phenomenological model

with eight constants, that can only explain the hardness by adjusting the model parameters to

the experimental data.

The mathematical models describing the hardness of a two phase nanocomposite are still

limited, and the transition from multilayers with a periodicity of Λ to a nanocomposite

containing randomly oriented grains with different grain sizes is not trivial. In section 9.2 an

approximation is used to describe the expected hardness for the nc-TiN/SiNx nanocomposite.

2.2.4 Interface studies

A major part of the volume in nanocomposites is the grain-matrix interface. As it has been

shown in MD simulations [164, 169, 180] the interface or grain boundary mediated deforma-

tion is the dominating mechanism during plastic deformation. Almost all hardening effects are

based on interface interactions and hence interfaces play an important role in the strengthen-

ing [21]. Interfaces have been studied by means of Transmission Electron Microscopy (TEM),

X-Ray Diffraction (XRD), X-Ray Reflectometry (XRR), Elastic Recoil Detection Analysis (ERDA)

and computer simulation. In the case of TiN/SiNx many groups [22, 23, 48, 76, 117, 131, 186–

191] investigated the interface. It is generally agreed that the structure of one monolayeriii

(ML) SiNx between TiN (001) slabs is somehow crystalline. For thicker interlayers the structure

transforms into an amorphous SiNx structure [25, 188]. Such an epitaxial stabilization of a

non-equilibrium phase is called pseudomorphic growth. No consent is found yet on the struc-

ture, stoichiometry or on what critical thickness this transition from crystalline to amorphous

occurs [194, 195]. Also for AlN a stabilized rocksalt structure in the superlattice AlN/TiN(001)

iiiThe thickness is sometimes given in the unit ML MonoLayer. There have been some controversial reports
[192] that make it difficult to compare the data. Depending on the structure whether β− Si3N4, c- Si3N4 or SiN is
assumed the unit ML may vary from ≈ 0.2 nm [48, 188] to ≈ 0.3 nm [12, 193].

17



Chapter 2. Hard coatings

has been observed by Madan et al. [154] using XRD, TEM and energy analysis.

TEM studies are a powerful tool for studying the structure on an atomistic length scale (sect.

5.10). First TEM investigations on TiN/Si3N4 (brazed) interfaces were performed by Iwamoto

and Tanaka [186]. The interface was ’wavy’ and the TiN nanoparticles aligned in [110] direction

parallel to the [0001] direction of Si3N4 with (11̄1) TiN planes parallel to (101̄0) Si3N4 . It is

argued that this relationship is caused by polar-plane matching to minimize the electrostatic

potential at the interface [186]. Söderberg et al. [131] observed that a cubic (c-) SiNx structure

forms in TiN/Si3N4/TiN multilayer systems. XRD, XRR and High Resolution TEM (HR-TEM)

studies on interlayers of SiNx with a thickness of ≥ 0.8 nm show a random structure, while for

≤ 0.3 nm an epitaxial cubic crystalline structure is observed. In a subsequent paper cubic SiNx

formations were reported by the same group [188] up to ≈ 0.55 nm and a metastable rocksalt

structure is suggested for the SiNx interlayer. The cubic interlayer minimizes the interfacial

energy by lowering the strain energy during the growth, with increasing thickness the elastic

energy and a molar enthalpy increase until the preferred structure is a-SiNx [188]. These

results are confirmed by HR-TEM, Scanning Tunneling Microscopy (STM) and Low-Energy

Electron Diffraction (LEED) [48].

Similar studies were performed on TiN/AlN interfaces [196–199], in which a transformation

of pseudomorpic grown c-AlN to a wurtzite (w-) structure is observed. The critical thickness

at which c-AlN undergoes this change is much higher compared to c-SiNx [154, 200, 201].

HR-TEM studies and first-principle based calculations by Chen et al. [202] revealed that the

critical thickness for c-AlN between TiN (001) slabs is ≈ 1.95 nm.

As an exact resolution of the interface structure lies beyond the reach of current experimental

techniques, it was expected that first-principle calculations could give a definite answer.

Comprehensive Density Functional Theory (DFT) calculation on α,β,γ structures with 55

configurations between TiN and Si3N4 were performed by Hao et al. [187]. The DFT results

show two structures between TiN (111) slabs being most stable: either a thinβ- like (1×3) Si2N3

or a (1×1) Ti-Si structure depending whether the structure is formed in a N-rich or N-poor

environment, respectively [76]. Zhang et al. [203] focused on the Gibbs free energy obtained

by DFT simulations and found that the fcc-Ti1−xSixN undergoes spinodal decomposition

into fcc-TiN and fcc-SiN under ideal thermodynamic (N-rich) and kinetic (high deposition

temperature) conditions. Later calculation [22, 189] show also that up to two ML of SiNx are

strengthened by valence charge transfer from the metallic TiN . Due to limited computing

power the calculations of Zhang et al. [189] were performed only on the TiN (111) structures.

Ab initio calculations by Hultman et al. [48] show the formation of c-SiN (see fig. 2.4) for

interface thicknesses below two to three ML, while thicker layers also contain an amorphous

phase. Alling et al. [190] examined the previously considered metastable rocksalt (B1) and zinc-

blende (B3) SiN structures and found that both are dynamically unstable. Two new pseudo-B3

Si3N4 phases are suggested where the Si3N4 phases are derived from a cubic L12 −B3- or a

tetragonal D022-type distribution of Si vacancies and are considered dynamically stable.
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Figure 2.4: Schematic illustration
of a cross section of a TiN/SiNx

nanocomposite (Ti: gray; N: blue; Si:
yellow) as obtained from ab-initio
calculations in [48]: (a) two phase
model with an a-Si3N4 tissue phase
(b) three phase model with either
epitaxial c-SiN (thicknesses below
two or three ML) or bilayers of c-SiN
and a-Si3N4 (thicker than three ML)

DFT simulations by Marten et al. [23] demonstrate that the interface formation is independent

of the environmental conditions (N-rich or N-poor) during the deposition process. Marten

et al. [23] put a clear question mark behind previously reported Si1N1 and suggest different

stoichiometries with SiNx (x > 1). Shortly after the same group [194] found a B3-like geometry

for one ML SiNx between a B1-TiN sandwich, indicating that the Si is tetrahedrally coordinated

by N. The thin one ML structure is stable with respect to Si vacancies and to lattice vibrations.

For thicker layers (more than three ML) a tetragonal D022-like order of Si vacancies stabilizes

the B3 interface lattice. It is noted that the one ML thick interface is metallic and has a

nonzero electronic density of states (DOS) at and above the Fermi level with a distinct pseudo

gap below the Fermi level [194]. All those described structures were calculated allowing

vibrational relaxations but being at 0 K. Ivashchenko et al. [195] extended the previous models

by first-principle quantum molecular dynamics (QMD) calculations at 300 K with an annealing

process at 1400 K. After cooling down to 300 K the interfacial structure between TiN(001) slabs

shows a strongly distorted Si3N4-like structure, while between TiN(111) the B1-SiN, Si3N4-

like SiN and Si3N4-like Si2N3 are stable over the whole temperature range. For non-perfect

conditions oxygen impurities can stabilize most likely the α− Si3N4 [195]. Unfortunatelly no

projected DOS (pDOS) are presented in the publication of Ivashchenko et al. [195]. Earlier

studies of Hao et al. [187] on similar system show for the Si3N4-like Si2N3 structure in between

TiN (111) stacks that the Si 3p-N 2p hybrid states are metallic at the Fermi level. This is due to

the hybridization of the N 2p orbitals with the Ti 3d and hence result in a metallic behavior of

the Si3N4-like Si2N3 interlayer [187].

Real three-dimensional nanocomposites are more complex than the experimental multilayer

model restrictions or ab initio constraints; many crystallographic orientations at the grain

faces, enclaves between grains (see fig. 2.4), non-sharp interfaces, and impurities are to be

expected, making the real world anything else but ideal.

2.3 Thin film deposition

Thin films (in the range of a few tens nm up to several µm) can be fabricated by various

deposition techniques, the most commonly used are divided in two groups:
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• chemical techniques:

– wet processes: e.g. plating, spray pyrolysis [204]

– vacuum environment: Atomic Layer Deposition (ALD) [205], Chemical Vapor

Deposition (CVD)[206, 207]

– plasma environment: Plasma Enhanced CVD (PECVD)[208]

• physical techniques, PVD [205, 209, 210]:

– vacuum environment: Molecular Beam Epitaxy (MBE)

– plasma environment: Pulsed Laser Deposition (PLD), magnetron sputtering [211,

212], High Power Impulse Magnetron Sputtering (HIPIMS) [213], Ion Beam Assisted

Deposition (IBAD) [214]

The technique chosen in this work for the sample fabrication is Unbalanced Magnetron

Sputtering (UBMS) that belongs to the group of magnetron sputtering processes. The latter is

explained in more details below, for all other techniques the reader is referred to the review

articles given above or to standard textbooks on thin film deposition [210, 215–220].

Unbalanced Magnetron Sputtering (UBMS) In sputter deposition processes ions are accel-

erated towards a solid source (target) and eject atoms from the target material. Those atoms

are then collected on the substrate and form a thin film.

Sputter processes are usually performed in vacuum chambers, where a plasma is ignited (see

figure 2.5). The plasma contains high energetic ions of a non-reactive process gas (e.g. Ar)

and/or a reactive gas (e.g. N2). To prevent cross contamination, a so called chimney is placed

around the target. The target forms the negative biased cathode. The walls of the chimney

and the chamber inside are grounded and form the anode. Electrons are emitted from the

cathode and are accelerated towards the anode. On their way the electrons ionize the gas

atoms and form a plasma. The positively charged ions (e.g. Ar+) are accelerated in the electric

field towards the cathode. They impact on the target and if the impulse of the ions is high

enough, then atoms of the target material and electrons are ejected. Those atoms then fly

to the substrate where they condense. Reactive gases allow a reaction of the target material

(forming e.g. TiN on the substrate and on the target (poisoning)). The reactivity of the gases is

enhanced by the presence of the plasma.

Deposition rates are increased by increasing either the kinetic energy of the impinging ions

(50−2000 eV) or their amount per unit time. The kinetic energy can simply be adjusted by

applying a higher voltage to the target, but is limited by the maximum voltage/power of the

supply. The number of ions bombarding the target can be increased by either controlling the

diode discharge, the gas pressure or the magnetic field. The diode discharge is also restricted

to the properties of the power supply. The gas pressure allows, on the one hand a higher
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Figure 2.5: Sketch of the used de-
position system. The background
pressure is in general between
10−8 mbar and 10−9 mbar, Ar and
N2 are used as process gases, the
substrate is heated to 800 ◦C if not
mentioned explicitly. Sketch is
adopted from [12].
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Figure 2.6: Sketch of a magnetron
as it is used in UBMS. Magnets (red-
blue) are positioned underneath a
target (grey) and electron trajecto-
ries are disturbed due to the mag-
netic field.

plasma density, but on the other hand a shorter path length of the emitted target atoms is

obtained and therefore no significant increase in the deposition rate is attained. Applying a

permanent magnetic field to the plasma is an efficient way of increasing the plasma density.

The trajectories of electrons in a magnetic field are disturbed, and they spiral around the

magnetic field (see fig. 2.6). Hence their pathway, the probability to ionize the gas atoms

and the plasma density are increased, resulting in a higher deposition rate. In most UBMS

devices the center of the target has a certain magnetic pole orientation in one direction (e.g.

north) and along the edges of the target the magnetic field points in the other direction. In

this way the electrons are trapped between the magnetic force lines. Their overall movement

is along the trace between the two magnetic poles and hence the substrate is eroded faster

along those race tracks. As mentioned before the target acts as a cathode, any changes of the

topography will change the electric field that further results in a change of the ion trajectory

and consequential influences the deposition rate.
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A limiting factor of PVD systems is the target cooling, especially with materials that are either

brittle (as Si) or have a low melting temperature (Sb). The plasma heats up the target and if

the cooling flux is not sufficient, then the quickly rising heat gradient causes a breaking of the

target. High temperatures might even cause melting of the target. For those reasons the target

is mounted on a water cooled Cu block (Cu is selected due to its high thermal conductivity)

and hence damages are prevented.

A bias with a certain voltage can be applied to the substrate, and in the case of insulating

samples a radio frequency (RF) bias can be used. A negative bias at the substrate automatically

increases the ion bombardment by increasing the ion-to-atom ratio and provides a higher

surface energy. The additional ion impact causes denser materials and/or defects.

Due to the vacuum environment the vaporized particles undergo few collisions and hence

their trajectory is more or less linear. This causes shadowing at the edges of the sample, i.e. the

part of an edge that is pointing away from the target is not sufficiently covered with arriving

atoms. This effect can be reduced by rotating the sample during the deposition process.

2.4 Layer growth

In UBMS the thin film builds up with deposition rates typically less than a few tens of Å/s.

The film growth structure is divided into a first stage (atomistic regime) where only a few

monolayers are deposited and a second stage (microstructure) when thicker films of a few tens

of nanometers are formed [221]. In the early stage the film growth is dominated by nucleation.

During the deposition process single atoms approach the surface and are able to migrate along

the surface. Depending on the substrate and deposited material different growth behaviors

are observed. The growth types of the first few nanometers are distinguished in:

• Frank-van-der Merwe [222–224]: planar layer-by-layer growth

• Stranski-Krastanov [225]: layer-plus-island growth

• Volmer-Weber [226]: three-dimensional island growth

What type of growth pattern arises depends on the adatom mobility, the lattice mismatch,

surface contaminations and the surface and interfacial energies of the substrate and the film

[227]. If the atomic mobility is high enough then the adatoms move on the surface until they

are subject to the attractive potential of another already adsorbed atom, hence favoring planar

growth (Frank-van-der Merwe growth). High interfacial energy on the other side enhances

three-dimensional growth (Volmer-Weber growth). The Stranski-Krastanov growth is favored

for systems where the interfacial energy between adsorbates and substrate is low, but a high

surface energy of the epilayer and a high mobility of the adatoms is present. Thus the first

layer formed is homogeneous and planar, while the next layers form islands. All three growth
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Figure 2.7: AFM images of Ag on TiN.

types are influenced by the lattice mismatch, if it is small then two-dimensional growth is

preferred [227].

These three growth types are only applicable for the first layers of the film growth, for a mi-

crostructure description the empirical Sputter Zone Model (SZM) of Movchan [228], Thornton

model [229, 230] or modifications [158, 230] are useful. The Thornton model describes the

film structure depending on the pressure during the deposition process and the temperature

ratio T/Tm , where T is the temperature during the deposition process and Tm is the melting

temperature of the film. The temperature ratio is directly correlated to the atomic mobility.

The influence of the substrate [231–236], the N2 flow [221, 232, 237–240], the film thickness

[241–246], the substrate temperature [240, 247, 248], ion-to-atom ratio [249, 250] and the ion

energy [243, 251–255] on the TiN growth have been thoroughly studied. An overview how

those parameters are influencing the microstructure is found in [256].

For specific elements and certain conditions dewetting is part of the film development, result-

ing in an agglomeration and a formation of beads, e.g. Au on Si [257, 258] or Ag on TiN (see fig.

2.7 or [259]). The theory is based on the capillary instability that has been reported as early

as the late 19th century by Plateau [260], Rayleigh [261]. The driving force in dewetting is the

reduction of the surface energy, hence dewetting is enhanced for materials with a high surface

energy. Very thin films have a high surface to volume ratio and the release of surface energy

can result in cluster agglomeration far below their melting temperature. The agglomeration

size can be controlled e.g. by adjusting the substrate temperature [257]. This controlled nano

cluster formation is e.g. used for ordered nano arrays [262]. The growth behavior of coatings

predetermines the macroscopic properties as e.g. roughness [42], optical properties [232, 233]

and hardness [39].
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3 X-ray Photoelectron Spectroscopy
(XPS)

Photoelectron Spectroscopy (PES) is based on the photoelectric effect [263–266] in which

electrons are emitted through electromagnetic radiation. In X-ray Photoelectron Spectroscopy

(XPS), as the name states, X-rays are are causing the emission of photoelectrons (PE) (see

figure 3.1 left side). Compared to Ultraviolet Photoelectron Spectroscopy (UPS) where the

energy of the radiation is only a few tens of eV, the energy of X-rays is in the order of a few

thousand eV. Therefore UPS is only able to excite electrons from the outer valence band,

while XPS excites electrons from the outer and inner core shells of the molecule. XPS and UPS

are both surface sensitive non-destructive methods to probe the first layers. The information

depth of XPS is roughly in the order of up to 10 nm (depending on the material), but is most

sensitive in the first 4 nm [267].

Auger lines are also recorded during XPS measurements. Auger electrons are emitted by a

three electron process (see fig. 3.1 right side). First a core hole is created (e.g. in the K-shell)

and this hole is filled by a second electron from an outer shell (e.g. L1). During this relaxation

process energy is released which can be used to emit an electron (e.g. L2,3) with a lower EB

than the second electron. Unfortunately the N KLL and Ti LMM Auger lines overlap and an

evaluation is very difficult. Also XPS provides a better quantification of the peak areas than

AES. An introduction to XPS and AES can be found in [268]. In this document the terminology

defined by the American Society for Testing and Materials (ASTM) [269] is used.

3.1 Brief history of XPS

More than a hundred years ago, in 1907, Innes recorded the velocity of electrons emitted from

different metal surfaces exposed to X-rays [270]. From his observations he noted an atomic

disintegration, that might result from free ’corpuscles’. Innes’ experimental setup already

contained all the necessary parts that are still used today, see fig. 3.2. Nowadays technical

achievements like turbomolecular pumps replace the Töpler pump so that ultra high vacuum

(UHV), p < 10−9 mbar can be reached, reducing the measuring times tremendously. Also

hemispherical analyzers are used instead of horse shoe electromagnets with a photographic
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Figure 3.1: Schematics of a) XPS and b) AES.

plate (fig. 3.3). Latest developments have returned to atmospheric XPS, where the sample is

either observed through graphene membranes [271] or through differential pumping of the

analyzer [272] to study e.g. liquid solution samples at low vacuum (1 mbar). The Rutherford

experiment followed in 1911 [273] and Bohr’s atom model was described in 1913 [274]. In the

same year [275, 276] the observed photoelectric effect on X-ray spectra was used to confirm

the Broek’s hypothesis that the central charge and number of electrons in an atom is equal to

its position in the periodic table.

Fifty years later technical improvement in the setup have been implemented mainly by Sieg-

bahn et al. [277]. Siegbahns group also noted that the XPS spectra can be used for chemical

analysis, therefore XPS is sometimes also called Electron Spectroscopy for Chemical Analysis

(ESCA), for which he received the Nobel Price in 1981. The interested reader is referred to the

review article on the history of the XPS by Jenkin et al. [278].

3.2 The photoemission process

In XPS the photoelectric effect is used to investigate the binding energy (EB ) of the electrons

in the sample. The molecules of a sample are exposed to X-rays with a defined energy, hν. If

the energy is high enough, electrons can be emitted from the sample (see figure 3.1). Not only

are the number of emitted electrons detected, but also their kinetic energy Eki n . EB can be

calculated in a first approximation as the difference between the photon energy hν,E and φ:

EB = hν−Eki n −Φ (3.1)

whereΦ is the work function, i.e. a potential including surface potential of the sample and a

correction factor to the actual referencing point for EB [267]. The latter is not only characteristic

for each element but also for its electronic surrounding. Therefore this method can be used to

26



3.3. Line Types

Figure 3.2: Original Setup of [270] A: in-
let, B: metallic sample, R: Box with photo-
graphic plate, a horse shoe electromagnet
is used (not shown)

Figure 3.3: First XP-Spectra of gold
recorded by [270] , a-c: different pho-
tographic plates with different exposure
times and different X-ray energies are used

investigate quantitatively the elemental composition and its chemical environment. While it is

easy to detect qualitatively even traces of elements below 1 ‰, it is quite difficult to determine

a quantitative concentration rates within the order of ±1%. Calibration measurements done

with Rutherford Back-Scattering (RBS, (sect. 5.9)) have to be performed to receive such high

accuracy.

The XPS device, used in this work, consists of a UHV chamber that contains an x-ray source,

e.g. an aluminum Kα X-ray source (1489.6 eV), an electron analyzer and a sample holder (for

more details on the system see sect. 5.1). In the case of AR-XPS the latter is pivot mounted and

can tilt the sample in front of the detector. By tilting the sample in front of the detector, the

information depth can be varied (see sect. 5.3). A good, general overview on XPS is given in

textbooks [50, 267] or in the overview article of Turner and Schreifels [279].

3.3 Line Types

In general the kinetic energy of the photoelectron (PE) is recorded and the position and line

shape contains important information on their origin. Besides the main electron line, many

other line types can occur (see fig. 7.1).

Below are all photoelectron lines listed and briefly described [50, 267, 280]:

• Main lines are caused by photoelectrons that are emitted either from any core level or
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the valence band, provided that the energy of the radiation is higher than that of the

electrons in a given level.

• Auger lines [281–283] are caused by a three electron process, first an electron is emitted

due to the photoelectric effect, secondly an electron from outer shells fills the created

hole via photo emission and can transmit the gained energy to a third electron which is

emitted from the atom. The kinetic energy of Auger electrons is therefore much lower

than the one of photoelectrons, for TiN their kinetic energy is below 500 eV.

• X-ray satellites refer here to peaks due to non-monochromatic radiation of an ideally

pure X-ray anode (note: it is referred to as X-ray satellites not peak satellites) [267, 280].

• X-ray ghost lines are caused by impurities in the X-ray anode material resulting again in

non-monochromatic radiation [267, 280].

• Spin-orbital splitting is based on an initial state effect due to coupling of the electron

spin momentum with its orbital angular momentum, this results in a splitting of the

electron energy levels [284].

• Multiplet or exchange splitting requires unpaired electrons in the initial state of the atom.

After photoemission an unpaired electron remains in the core shell. This unpaired core

electron can couple with the outer shells (spin-spin-coupling) and causes a multiplet

splitting. A famous examples is the N 1s- level multiplet splitting in nitrogenoxide [285].

Multiplet splitting is a final state process and spin-orbit splitting an initial state process

[280, 286, 287].

• Plasmon peaks (sect. 3.4) caused by the excitation of electrons of the conduction band.

The oscillations are quantized and therefore the plasmon peaks repeat in constant

energy distances with decreasing intensity [267].

• Shake-ups are defined as: Any photoelectron peak on the lower binding energy side of

the main line that is caused by discrete intrinsic electron electron interaction is called

shake-up. See also section 3.5.

• Shake-offs are similar to shake-ups, shake-ups are caused by exciting electrons at the

Fermi level into unoccupied discrete orbitals. Shake-offs excite not into discrete states

but into the continuum and add up to the background [267].

• Shake-downs are caused by an photoelectron- valence electron process, where the

valence electron is relaxed into a lower unoccupied state.

Please note: Satellite peaks are any peaks accompanying the main energy line, while shake-ups

are a specific kind of satellite. In this thesis the term satellite will not be used for shake-ups

in order to not confuse shake-ups with any other satellite as e.g. the X-ray satellites. Also the

shake-up is (independent from its higher intensity) defined as the peak on the higher binding

energy side of the main peak.
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Please also note: In the early days of XPS [288, 289] every shake-process is called shake-off,

presently [267, 290] the notation shake-off refers to emitted electrons that excite electrons

at the valence band into the continuum. The "shaked-off" electrons yield to a continuous

energy loss added to the background. Sometimes in XPS the shake-up is called main peak and

the undisturbed (since it has a lower intensity) is called shake-off. Sometimes shake-offs are

defined as the main peak belonging to a shake-upi, in this work all shake lines are defined as

above.

3.4 Plasmons

The excitence of plasmons was first suggested by Bohm and Pine in 1952/53 [292] and was

experimentally detected in aluminum such as by Baer and Busch [293], Powell and Swan [294].

Highly mobile electrons can be excited into collective oscillations, called plasmons, which

have certain characteristic frequencies ωp . Every time emitted electrons interact with the

plasmons, they lose the energy Ep = ħωp . Plasmon-photoelectron interactions can occur

several times, each time causing the same energy loss Ep . Therefore higher-order plasmon

peaks at multiples of Ep are possible. With each order multiple plasmon interactions become

more and more unlikely, therefore the plasmon peak intensity decreases. Moreover, plasmon

oscillations are observed on every photoelectron line.

The following types of plasmons exist

• intrinsic plasmons [50, 267, 295] are created in the photoemission process, due to core

hole-plasmon coupling

• extrinsic plasmons created by interactions of the emitted electron during its travel

through the sample

The extrinsic plasmons are subdivided in the following two groups:

• Surface plasmons are caused by group oscillations of free electrons at the surface and

have a lower frequency, approximately a factor of the square root of two, than the bulk

plasmons.

• Bulk (or volume) plasmons have usually a higher intensity than the surface plasmons

and arise from electron oscillations in the bulk [280, 296].

The intrinsic plasmon contribution to the spectra is small in most cases, with the intrinsic

plasmons overlapping the extrinsic bulk plasmon peak [297, 298] and are not within the scope

of this study. Therefore the intrinsic plasmon has not been separated from the extrinsic bulk

plasmon. For plasmons the Mahan or DS line shape are also used see section 3.6 [50].

iThe shake-up lines have often a higher intensity than the main peak of the core electron, therefore sometimes
the shake-up line is considered to be the main line and the lower binding energy peak is called shake-off peak [291]
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Figure 3.4: left side: projected DOS
adopted from Marlo and Milman
[305]. Right side: a sketch of
the simplified shake-up process.
Please note the sketch is a sim-
ple model which is not consider-
ing any changes in the potentials
upon photo emission (Z+1) nor any
changes in the valence band due
to the excitation process, for details
see text.
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3.5 Shake-ups

Similar to Hüfner [50] the shake-up is defined in this work: any photoelectron peak on the

lower binding energy side of the main line that can be understood by a discrete intrinsic

electron-electron interaction.

Several models are found to describe the origin of the shake-up [50, 299–304]. The simplest

way of looking at the shake-up is to consider it as an electron-electron process (fig. 3.4,

right side). The emitting PE (e.g. from a Ti 2p3/2 orbital) excites an outer valence electron in

previously unoccupied states and loses an energy∆E that is given to the valence electron. This

energy loss ∆E is equal to the binding energy difference between main and shake-up peak

(see fig. 3.6). In this work this energy difference ∆E is also called shake-up energy. The energy

difference ∆E corresponds to the energy difference of the valence electron before and after

excitation, not considering any energy changes due to the created core hole. Projected density

of states (pDOS) calculations (fig. 3.4, left side) reveal that this simple picture is only partially

correct. The occupied and unoccupied states in a bulk TiN are not discrete and electrons can

be excited from and into broader bands. This simple sketch does not consider any changes in

the electrostatic potentials upon the creation of the core hole. The change in the electric field

and a rearrangement of the outer electrons occurs instantly.

During the photoemission process an electron is emitted from an atom with the nuclear charge

Z and a core hole is created. After photoemission, the core hole acts as an extra positive charge,

and the electrons in the outer shells are subject to a Coulomb potential that can be described

by a Z+1 approximation [306, 307]. The systems response of the photo hole is instantaneous

and may result in two states: a ground state (main peak) and an excited state (shake-up).
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Please note both final states are ionized Z+1 states.

In quantum mechanics the shake-up is explained by the wave functions describing the initial

state and final state [301]. The excitation probability and hence the intensity of the photo-

electron line depend on the overlap integral of the wave functions describing the initial and

the final state. The overlap integral of the initial state before ionization and the lowest final

state after ionization is always non-zero and results in the main photo electron line. For some

materials (e.g. Ni and TiN) other overlap integrals are non-zero and are visible as a shake-up

line. In a single Ti atom only a limited number of transitions of the valence electrons 3d into

discrete finale states are allowed by the monopole selection rules (in this case only 3d→3d

excitations). Single crystalline (sc-) TiN is a crystalline solid state material and forms broad

hybridized Ti 3d-N 2p bands close to the Fermi level. As a result the selection rules are softened

and more transitions into different final states are allowed. The shake-up process is no longer

described by one initial eigenstate and one final state, but by a multitude of possible initial

and final states. Additionally the valence electron excitation results again in a reorganization

of the valence electrons, this time an even stronger perturbation in the valence band is created

since the second photoelectron hole is located at the Fermi level. To calculate quantitatively

the shake-up intensity and the energy difference ∆E it is required to perform time dependent

(TD-) DFT or configuration interaction (CI) calculations, which are out of the scope of this

thesis.

In literature [303, 308] the shake-up is often described with the Kotani-Toyozawa (KT) model

(see fig. 3.5) to explain the shake-up state. In the KT model a localized orbital above the

Fermi level and a broad band just below the Fermi level are present in the initial state. In

the ground state the localized (e.g. d-) orbital is above the Fermi level and well separated

from the highest occupied broad (e.g. hybridized s-p-) band. Due to the core hole generated

by the photoionization the sharp d- band is pulled down below the Fermi level EF and the

delocalized p-d-hybrid level is only slightly lowered. The unfilled localized d-shell is now

acting as an electron attractor. Two final states are possible: (1) one, where the d-orbital

remains empty and the s-d-band is screening the two holes (the d- and the core hole) and

(2) a second state, where the d-orbital is filled due to a charge transfer from the s-p-hybrid

level. In the second case the localized d-orbital is completely filled, therefore fully screened

and hence this state is called "well-screened" [309]. In the final state (1) the binding energy of

the core electron is lower than in the state (2); therefore two peaks are observed, the shake-up

and the main peak respectively [310]. The probability that those localized states are filled,

depends on the population, the width and the amount by which they are lowered [311]. This

charge transfer should not be confused with the chemical reaction between Ti and N where

charge is transferred from Ti to N upon bond formation. This process is further not limited to

a broad s-p-band as in CuF2, but is transferable to other broad bands (e.g. the hybridized Ti

3d- N 2p orbital). Please note the KT model is just another description for the above described

two final states (ground and excited ionized state). The main peak (2) is equal to the ground

state in the Z+1 approximation and the shake-up is a result of exciting an electron from the

occupied d-state into higher unoccupied s-p-states (1) that are again rearranged due to the
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Figure 3.5: Sketch of the Kotani-Toyozawa model according to Hüfner [50]. Before photoion-
ization the molecular orbitals are split in an unoccupied d-orbital and an occupied broad
s-p-band (left). After the photoionization both bands, d- and s-p-orbital, are lowered, the
bands overlap and two final states are possible. Either the d-orbital is fully screened by a
charge transfer (right) or remains empty (middle), resulting in a main line and a shake-up line
respectively.

now empty d-state. The exact nature of the ground and excited state remains uncertain until

further TD-DFT is done, therefore in this work the two final states are not further specified.

3.6 Line shapes

Quantitative evaluation of the XPS spectra require a precise peak area determination, therefore

it is essential to use the correct line shape to fit the peak. In order to find the correct line shape,

a full understanding of what is causing and effecting the line shape is needed. Already a simple

carbon C 1s peak is highly discussed and arises many different interpretations [312–314].

Doniach and Sunjic initially derived theoretical core line shapes [315]. The Doniach-Sunjic

(DS) line shape has the numerical disadvantage that it is divergent, while the Mahan line

shape [316] has a finite integral. The Mahan line shape is a combination of a Gaussian

and a Lorentzian line shape. The reason for the Lorentzian part is the lifetime broadening

(Heisenberg uncertainty principle), while the Gauss broadening originate from the response
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function of the instrument [317] and from phonon or vibrational excitation ii. Both line shapes,

DS and Mahan, also contain an asymmetric shape term, which is caused by elastic scattering

of the emitted photoelectrons in the conducting band. Obviously this asymmetry is more

pronounced for metals since they have highly occupied conducting bands. The peak tail can

also be used to analyze the electrons at the Fermi level [319]. A detailed comparison of the

two line shapes discussed above can be found in [50]. All asymmetric peak shapes are moving

intensities away from the area of observation, therefore they are sensitive to the background

limits set by the user. In addition the DS background is ill defined [320], therefore a Gaussian

Lorentzian product with a tail (GL(x)T(y)) Gaussian Lorentzian product used to describe the

line shape (GL(x)) is commonly used for the line shape.

3.7 Background

In every spectrum there is also noise and, additionally, the intensity on both sides of the peak

does not drop to zero. For a quantitative determination of the peak area this background

(BG) has to be taken into account. To properly evaluate the spectrum of TiN accounting for

all the issues mentioned above, the BG subtraction is of central importance. An incorrectly

chosen BG causes wrong peak intensities and consequently results in misinterpretation of the

data. In order to select the correct BG it is essential to understand its origin. Photoelectrons

are emitted from depth up to 10 nm. On their way to the surface they undergo inelastic and

elastic scattering. During these inelastic processes they lose energy and give rise to an increase

in the count rate on the lower kinetic energy side of each peak [317]. Besides the inelastic

scattering (extrinsic), also intrinsic effects (excitations due to the created core hole) participate

in the rise of the BG [267]. Therefore a background correction is always required. A poor

background subtraction will result in wrong interpretation (e.g. wrong peak ratio of Ti 2p3/2 to

Ti 2p1/2), but a correct peak ratio does not necessarily mean a correct background [320]. For

each material the background slope has to be either theoretically calculated or experimentally

estimated [321]. Even for well know materials it is still a difficult and a highly discussed task to

find the best approach for the background slope [322]. From simple BG subtractions, such as

a linear BG [323] used for TiN and TiNxOy to a polynomial product of Shirley functions [324]

numerous background subtractions are published. Most of these are available in common

XPS evaluation programs.

All backgrounds should meet the data at the limit of the energy interval, which defines a

set of peaks. Therefore the BG is always adjusted to a higher and lower energy limit of the

peaks under investigation. Adjusting the background to only a single point would include

always the noise of that particular point, therefore all background limits are usually routinely

averaged by several energy points around the left and right side limit. The most commonly

used backgrounds are briefly introduced in the following .

iiPhonons at zero temperature are Poisson distributed, for nphon >> 1 the Poisson distribution can be approxi-
mated by a Gaussian distribution, [318]
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Figure 3.6: Detailed spectrum of Ti 2p with a linear BG (left) and a Shirley BG (right) subtraction
over an energy range of 20 eV. Details on the the four peaks and different BG types will be
discussed in section 7.2 and 7.3, respectively.

Linear background This background simply gives a linear line between the limits of the

spectral region (see fig. 3.6, left side). The linear BG is often used for polymers and insulators,

since hardly any increase in the BG is observed for these materials. Insulators have a big band

gap and therefore show a low energy loss [267], i.e. no BG increase. This background has also

been used already for TiN [325], but as will be seen in section 7.3, is not appropriate for any

quantitative peak fitting in TiN.

Shirley background Probably the most commonly used BG type is the Shirley BG [324, 326]

(see fig. 3.6, right side), which is widely used in the analysis of XPS data [267] and is also

occasionally used for TiN [327–330]. The Shirley BG is an empirical background subtraction

technique that iteratively adjusts the background as a function of the intensity of the photo-

electron line. It is therefore proportional to the peak intensity and shows the highest slope

at the peak center. For everyday practical applications it has the advantage that only a short

energy range of 20 eV has to be recorded. It therefore cuts off intensities arising from shake-up

or similar intrinsic contributions [331]. The algorithm is suitable for spectra that show only

a small intensity increase when going from the low to high binding energy side of a peak; it

is conveniently used as a BG for one or two non-overlapping peaks. The Shirley background

corrected spectra (F (E)) of the kinetic energy E over an interval [Emi n ,Emax ] is given as:

F (E) = I (E)−k
∫ Emax

Emi n

F (E ′)dE ′ (3.2)
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where I (E) is the intensity at the kinetic energy E and k is adjusted in such a way that the BG

adjusts to the spectrum at the lower energy side, F (Emi n) = 0.

Sometimes also a Spline Shirley background is subtracted. In general it is strongly dissuaded

to use Spline background subtraction. Any Spline function is manually adjusted, giving any

imaginable background shape and results in the best case in an only wrong quantitative

intensity.

Tougaard Background The Tougaard BG (see fig. 7.5) [317, 332, 333] is derived through

purely physically sound arguments. It is based on the electron-electron interactions of the

emitted electrons with the electrons in the solid. The latter redistribute, if a moving electron is

present, which induces a small electric field, which then interacts with the emitted (moving)

electron. The Tougaard BG uses the inelastic scattering cross section that is based on the

dielectric response function and describes the interaction of the moving electron in the solid.

A review of these processes is given in [268, 317, 332]. It has been shown in quantitative studies

[317, 333–335] that a Tougaard BG is most suitable if the BG increases dramatically, such as

metals, including TiN. This BG also has the advantage that it contains only the extrinsic back-

ground, so that the intrinsic peaks, such as shake-up and plasmons, can be easily identified

after BG subtraction.

In the following the Tougaard BG is derived according to Tougaard [333] for the background

corrected signal F (E):

c ·F (E) = 1

cosθ

[
L+λcosθ

λL
I (E)−

∫ ∞

E
I (E ′)K (E ′−E)dE ′

]
(3.3)

where K (E ) is the inelastic electron scattering cross section and L is adjusted to meet the data

at the wide range on the low kinetic energy side Emi n of the spectra.

The inelastic electron scattering cross sections K (E) describes the interaction of the photo-

electrons with the solid matter through which they are traveling. The acting forces depend

on the electron distribution over the solid, hence K (E) is a material-dependent parameter.

The individual cross section [317] can either be theoretically calculated by using the dielectric

response function or experimentally by Electron Energy Loss Spectroscopy (EELS). The uni-

versal cross section iii is introduced to overcome the necessity to determine the cross section

for each individual material. According to Tougaard [336] it can be calculated by:

K (E) ∼= 1

λ

B E

(C +E 2)2 (3.4)

Since this BG contains only the kinetic energy E and two parameters B and C it is called

Universal Two-parameter Tougaard background (U2T). Precise experiments were performed

iiinote: Do not confuse with the Scofield cross section, the latter gives the number of electrons that are emitted
by XPS, while the universal cross section describes the interaction of the photoelectrons with the electrons of the
solid.
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by Seah et al. [332] who derived the K (E) by measuring the individual cross section of 59

elements and obtained B = 681.2 eV2 and C = 355.0 eV2. The factor B describes the linear

inclination of the BG and increases with the amount of inelastic scattered electrons.

3.8 First principle method

Elemental quantifications are often performed using built-in sensitivity factors in commercial

software packages. The quantitative concentrations of elements are calculated using sensitivity

factors and the area intensities of the main and shake-up peak of each element [267, 337].

In this work the sensitivity factors used for the composition determination are derived from

basic principles that take into account the inelastic mean free path (IMFP) [338–340], the

geometry of the spectrometer, the transmission function [267], the asymmetry function [341]

and the relative emission cross sections, the so-called Scofield’s cross-sections. The latter

describe the relative intensity of different elements and core shells compared to each other.

Calculations for the Ti 2p1/2 and Ti 2p3/2 orbitals yield an area intensity ratio of 0.515 [342]. In

the present work plasmon intensities are subtracted from the spectra for a correct evaluation

of the shake-up intensity, but they are not included to calculate the quantitative elemental

composition. In the following it is shown how the elemental concentration is received from

the peak area and the above mentioned geometric and physical parameters.

The measured intensity I A of a photoelectron line I A of a given element A is expressed by

[267, 337]:

I A =σA(hν)D(E A)
∫ π

0
dγ

∫ 2π

0
dΦL A(γ) ·

·
∫ ∞

−∞
dx

∫ ∞

−∞
dy J0(x y)cos(α)−1T (x y zΦE A)

∫ ∞

0
dzNA(x y z)exp

( −z

λB (E A)cosΘ

) (3.5)

where

• E A is the kinetic energy of a photo electron line of a specific element A,

• σ(hν) is the photo emission cross section, here the Scofield cross section is used, see

sect. 3.8.2,

• D(E A) is the detector efficiency,

• L A(γ) is the asymmetry function and has been calculated according to Reilman et al.

[341],

• J0(x y) is the X-ray flux at the position (x,y),

• α the angle between surface normal and incident beam,

• T (x y zΦE A) is the analyzer transmission function, which was determined on a regular

basis by reference measurements,
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• NA(x y z) is the atomic density,

• λA(E A) is the inelastic mean free path of photoelectrons with the kinetic energy E A , see

sect. 3.8.1,

The concentration c of an element A in a compound is given by the elements intensity I A and

the sum of all intensities Ial l :

cA = I A

Ial l
(3.6)

The X-ray flux J0 and the detector efficiency D(E A) are assumed to be constant and can

therefore be neglected in equation 3.5. The geometric parameter cos(α)−1 also cancels out.

The intensity I A measured under an angle θ of emission (AOE) can therefore be expressed by:

I A = NA · sA (3.7)

with the sensitivity factor

sA =σA(hν)L A(γ)T (E A)λA cosΘ (3.8)

All sensitivity factors sA have been calculated for each elemental photo line before calculating

the atomic concentration of each element by using equation 3.6.

3.8.1 Inelastic mean free path

The inelastic mean free path (IMFP) is defined in this thesis as the length λ within which the

intensity of a signal decays with the depth of origin to 1/e of the its original intensity (see

equation A.1). The IMFP depends strongly on the kinetic energy of the photoelectrons and

the media, in which the electron is traveling in. The IMFP can either be assessed by elastic

peak electron spectroscopy (EPES) or calculated [339, 343]. Elastic electron scattering strongly

influences their intensity. It has been therefore been proposed by Gries and Werner [344]

to use an attenuation length (AL) and an effective attenuation length (EAL) to describe the

trajectory of the emitted electrons. Especially in X-ray Photoelectron Diffraction (XPD) elastic

scattering occurs in certain crystalline directions. A precise determination of the EAL is beyond

the scope of this work. The interested reader is referred to the review paper of Jablonski and

Powell [345].

In this work the energy-dependent IMFPs have been calculated according to Tanuma et al.

[338, 340] (TPP-2M). The results for electrons with a kinetic energy of ≈ 1030 eV are given in

table 3.1

The IMFP of the bilayer systems investigated in this thesis is a combination of the IMFP from

the bulk and the top layer. Since the difference between bulk and overlayer IMFP is negligible;

therefore the IMFP of the top layer has been used. Besides other parameters the density of the
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Material IMFP according IMFP from literature
TPP-2M [nm] literature [nm]

TiN 2.00 2.4±0.1, 1.7 [339, 346]
Si 2.44 2.4±0.15,2.75±0.25 [347, 348]
Si3N4 2.41 1.9±0.1, 1.6−2.36 [346, 349]
AlN 2.43 n.a.

Table 3.1: IMFP of different materials for electrons with a kinetic energy of ≈ 1030 eV are given.
The values used were taken from [346] and errors were estimated, based on the data spreading
in the plotted data.

material A (ρA) is also included in the TPP-2M formula. The measured density of the overlayers

might be different from the literature values (sect. 5.8). The influence of the density ρA on

the IMFP is small. The biggest difference between literature ρA,lit and the XRR experiment

ρA,XRR is obtained for aluminum (ρAl,XRR ≈ 4.0 g/cm3 versus ρAl,lit ≈ 3.3 g/cm3) and results

in a change of the IMFP of only 0.1 nm. The TPP-2M IMFP are typically calculated for bulk

materials, and it must be assumed that for ultrathin films these values are not precise [339],

especially if the thickness of the overlying material is lower than twice the IMFP.

3.8.2 Photoionization cross-sections

The Scofield’s cross-sections are used to calculate the sensitivity factors sA (see equation 3.7)

and are calculated by using a Hartree-Slater model [342]. This model is based on a single

particle in a central potential and considers only final states with a single vacancy. The

Scofield’s cross-sections are therefore a priori not calculated absolutely correctly for an excited

final state, as it occurs during the shake-up process. However, the approximation of a neutral

pure titanium atom instead of an ionized titanium atom of an TiN compound describes the

situation well for most cases [268, 350], including this work. Following these findings the area

ratio for spin orbit split peaks were set fix to the Scofield’s cross-section [342].

3.9 Further surface effects

XPS is an intensively used technique in science and its experimental setups [271, 272, 351],

and newly developed theories [352, 353], are comprehensive. Different surface effects can

influence the intensity or the binding energy of the PE. Not all effects and theories can be

considered in this work. In the following only a few effects are mentioned with reference to

literature:

• surface or sample charging, charges induce an additional Coulombic field that interacts

with the PE. Negatively charged regions result in higher kinetic energy (i.e. lower EB)

of the PE emerging from that region, positive charged regions result in a higher EB. PE
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created far away from the charged area are not changed, since the Coulombic forces

before and after transversing the charged area have an opposite sign [267]

• surface effects

in an ideal crystal the surface atoms have a lower coordination number compared

to the atoms in the bulk, as a result their binding energy is changed [267]

electron excitations occur while the electron is either moving in a shallow region at

the surface or in vacuum [352]

• intrinsic core hole effects, caused by the static core hole after photoionization resulting

in a energy loss in the kinetic energy of the emitted electron [352, 354]. Note: This energy

loss is due to the interaction of the photoelectron with the core hole during the emission

and is not like in the shake-up due to an electron-electron interaction.

• "magic angle" of ≈ 35◦, under which the influence of the surface roughness (see sect.

5.6) can be neglected [355, 356]. It is shown that this angle is not universal and depends

on the roughness [353, 357].

All these effects have the same influence on the main and the shake-up photoelectrons since

they emerge from the same orbitals and have about the same kinetic energy.

3.10 XPS of TiN

This section is only an introductory section of XPS studies performed on TiN, which is required

to understand why certain procedures as an in situ transfer were performed. A full discussion

on the shake-up origin and a comparison to literature is found in section 7.8.

The first qualitative studies on the intensity of the shake-up feature over a wide range of

composition of TiNx (0.5 < x < 1) were done by Porte [310]. The group of Navinšek [328]

was the first to report a quantitative value for the shake-up intensity of TiN; unfortunately

the sample had been sputter cleaned before investigating. This is in fact problematic, as

preferential sputtering of nitrogen is observed in TiN [176, 329], resulting in TiNx with x < 1 and

decreased shake-up intensity [310]. Therefore the shake-up intensity obtained in Navinšek’s

work is underestimated.

The quantification of the shake-up line intensity in TiN is jeopardized by oxygen. In the

presence of oxygen in the sample TiOxN1−x is formed. A typical binding energy of the latter

is located about 3 eV above that of the Ti 2p states and overlaps with the shake-ups of TiN

[358]. Many papers assigned the shake-up to some kind of oxidized TiNxOy state [323, 359–

361], therefore special care has been taken to keep the oxygen contamination to a minimum

(see section 4.5). A pretreatment such as ion bombardment due to sputter cleaning not only

alters the Ti/N ratio [86, 358], but will also cause point defects as described by [362]. Such

procedures are therefore to be avoided not to alter the information contained in pristine TiN
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surfaces. To obtain TiN surfaces free of such artifacts and to avoid any of these detrimental

effects, single-crystalline TiN layers were grown on MgO under oxygen-free conditions and

transferred in situ to the XPS spectrometer.
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It was almost as incredible

as if you fired a 15-inch shell

at a piece of tissue paper and

it came back and hit you.

— Lord Ernest Rutherford

In this way Lord Ernest Rutherford described his first backscattering experiments, that he also

described as "the most incredible event that has ever happened to me in my life". Obviously

not ballistic projectiles were shot on a tissue paper, but high energetic ions on a thin film. In

this work thin layers of a few nm and different projectiles (X-rays and high energetic ions)

are used to study the interface between bilayer systems. The thin films are fabricated by

Unbalanced Magnetron Sputtering (UBMS) and characterized in detail.

The different fabrication processes are described earlier in section 2.3. This part of the thesis

deals with the methods, parameters and characteristics of the deposition process. Chapter 4

describes the sample fabrication process, including the deposition geometry (sect. 4.1), the

prerequisites for high temperature deposition (sect. 4.2) and the process parameters (sect.

4.3). Further the sample grounding (sect. 4.4) and the in situ transfer (sect. 4.5) are outlined.

In chapter 5 the different sample characterization methods are discussed. The main focus of

this thesis are XPS investigations and hence the emphasis of the method description is on XPS

theory. The basics of XPS (chapter 3), AR-XPS (sect. 5.3), AFM (sect. 5.6) and XPD (sect. 5.4)

are explained and how they have been used in this work (5.1). All other techniques, that were

only used to check if the prerequisites of the sample (as single crystallinity and oxygen-free)

were met, are thus only sketched briefly in section 5.7 to 5.11.

43





4 Sample fabrication

All samples required superior fabrication conditions. The aim was to achieve oxygen-free,

single crystalline (sc-) and stoichiometric TiN sublayers. The ultra-thin overlayers also had to

be stoichiometric and oxygen-free. By means of Unbalanced Magnetron Sputtering (UBMS)

at Ultra High Vacuum (UHV) (i.e. pressure p < 10−9 mbar) and very high temperatures it is

possible to deposit films of the required specifications. In the previous chapter in section

2.3 the basics of UBMS have already been explained briefly. The geometry of the deposition

system influences the deposition rate and is described in sect. 4.1. The precautions used to

perform high temperature depositions are explained in sect. 4.2. All fabrication parameters are

summarized in section 4.3. During the XPS measurements the sample accumulates electrical

charges, that can result in energy shifts in the XPS spectra. Thus the sample has been grounded

to prevent any charging (sect. 4.4). In order to prevent contamination, the sample had been

transfered in-situ in a Mobile Transfer Device (MTD) and its setup is outlined in section 4.5.

4.1 Deposition chamber

The deposition system used is an ATC 1500 F Sputtering System from AJA international

Inc. (North Scituate, MA, USA). The vacuum chamber is equiped with four different tar-

gets (�= 50.8 mm). Their distance di to the substrate depends on which gun number i they

are mounted. Due to the machine geometry the distance d1 (and d2) between gun #1 (and

gun #2) and the substrate are d1 = d2 = 105 mm. Gun #3 (and #4) are further away from the

substrate: d3 = d4 = 118 mm. The guns can be tilted, and hence the pathway of the emitted

target atoms can be changed. The distances given are for a fixed angle that has been used

for all samples. The magnetic field of the outer magnets of gun # 1 is defined as north, all

other guns have their magnets mounted in the opposite direction. The magnetic field is hence

in a closed field configuration between all guns and gun # 1. The z-position of the sample

holder can be varied, but has also been set to a fixed value for all experiments, resulting in the

distances given above. A higher distance between target and substrate causes lower deposition

rates, as will be seen later (table 6.3).
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All guns are equipped with pneumatically controlled shutters, the speed of opening and

closing the shutter is adjustable and influences the determined deposition rate, especially for

short deposition times below 5 s.

A detailed description of the system used in this thesis can be found in [12] and in the manu-

facturers manuals [363].

4.2 High temperature deposition

Very high temperatures are needed to deposited epitaxial samples, hence the sample and

its holder have been heated to 800 ◦C [7]. This is made possible by the substrate holder

being mounted on a heating block, where two high power bulbs are heating the samples.

A thermocouple measures the temperature behind a protective glass approximately 10 mm

away from the backside of the sample, hence the set temperature is not the exact substrate or

sample temperature, the accuracy is empirically estimated to ±50 ◦C.

Since high temperatures and high vacuum are desired for the deposition process, equipment

and processes had to be set up accordingly. After each venting of the system the chamber was

baked out for two days at a temperature of around 100 ◦C at which mainly adsorbed water

vaporizes. At higher temperature above 500 ◦C mainly hydrogen, but also small amounts of

oxygen are degasing from the walls and parts (e.g. substrate shutter) inside the chamber.

For TiN, which is highly sensitive towards oxygen, the chamber and sample holder had to

be prepared with special care. Typically the sample holder including substrate was baked

out overnight at 200 ◦C and then the temperature was slowly increased over 2 hours to 850 ◦C

followed by a fast drop to 800 ◦C. Sample holder and substrate material have been chosen

such that the outgasing is already reduced from the material side. The sample holder is made

out of a black quartz glass (Vitreosil, Saint Gobain Glass) and has been designed to store two

differently sized flat samples and a molybdenum sample plate where the sample is mounted

for the in-situ transfer, as described in section 4.4. For the sample preparation presented in this

thesis, a water and air cooling system has been designed to prevent the heating of the chamber

walls. This could have resulted in further outgasing and a less clean HV environment that

consequently would result in contaminated samples. Additionally Ti has been deposited on

the chamber walls acting as a huge Ti sublimation pump since the highly reactive Ti basically

absorbs any remaining contamination in the HV chamber. Following all these precautions

and settings, pressures below 2.5·10−9 mbar at 800 ◦C could be reached.

4.3 Deposition parameters

All samples have been prepared by reactive UBMS deposition from elemental targets in the

same UHV chamber and under similar geometrical settings. The sample holder was rotated in

order to prevent shadowing and to guarantee a uniform heating of the sample. Depending on

the material system different deposition conditions have been employed, as indicated in the
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sample description.

The background pressure at the deposition temperature was below 4.0·10−8 mbar for all

samples. The pressure during deposition was set to 5·10−3 mbar. The nitride films were

produced at a gas composition of Ar : N2 of about 2:1 (flow rates were 15 sccm and 8 sccm,

resp.), all other layers were deposited in a pure Ar environment. The Ar gas had a purity of 6.0

(i.e. 99.99990%) and N2 of 5.0 (99.9990%) and were additionally filtered by an alphagas-purifier

O2-free (Air Liquide). Titanium, silicon and aluminum have been sputtered from elemental

Material Ti Si Al
type/comments p-type
purity [%] 99.995 99.999 99.99
manufacturer Kurt J. Lesker EvoChem Plasmaterials
thickness [mm] 6.35 3.175,bonded 6.35

Table 4.1: List of the targets used in this study.

targets as summarized in table 4.1. The power density was 10 W/m2. The TiN thickness was ≈
30 nm in order to keep surface roughness at low levels [241].

(001)- or (111)- oriented magnesium oxide (MgO) was used as a substrate due to its small

lattice mismatch with TiN (sect. 6.1), thus enabling epitaxial growth of TiN [65]. For the poly

crystalline (pc-) TiN samples, Si wafers have been used. In order to obtain sc- TiN epitaxially

grown on MgO, the depositions were carried out either at 800 ◦C without any bias or by

applying a bias of approximately −75 V at 200 ◦C. For plasma conditions with no bias, the

floating potential regulated itself to approximately 15 V. If not mentioned differently, no bias

was applied on the substrate.

4.4 Sample grounding

The used MgO substrates are insulating, which can buildup electrostatic charges during

the photoelectron process, resulting in a shift in the binding energy. Therefore neutralizers

are commonly used to eliminate surface charging. There are two neutralizers in the XPS

device used throughout this work to compensate surface charging of the sample: an electron

source and an Ar+ ion source. Both neutralizers are sources of oxygen contamination that

increases over time. To overcome both problems (charging and oxygen contamination due

to neutralizers) a Pt-frame is deposited on the substrate (see fig. 4.1) before mounting the

MgO-substrate to the sample holder. In this way a sufficient electronic contact between the

TiN film and the grounding of the sample holder is guaranteed.

47



Chapter 4. Sample fabrication

Figure 4.1: A priori the MgO substrate is cov-
ered with a Pt-frame and then fixed with two
Mo stripes that are screwed on top of the sam-
ple holder.

MgO

Mo sample plate

Mo stripe Pt frame

4.5 Mobile transfer device

As mentioned in sect. 3.10 it is absolutely mandatory to have no oxygen contamination,

neither in nor on the titanium nitride systems, since the overlap in the Ti 2p photo line of

TiOxNy would severely effect the shake-up intensity. Sputter cleaning alters the surface and

interface [268] and is therefore not an option. Hence the sample has to be transfered without

breaking the UHV. Deposition chamber and XPS device are located in two different rooms, and

for a sample transfer in-situ a Mobile Transfer Device (MTD) is essential. The newly designed

MTD is composed of a connection part to mount the MTD to the different UHV systems, a

storage compartment where the sample is stored during the transport, a volume (V1) between

the storage compartment and the connection, device to handle and move the sample (i.e.

wobble stick), a turbomolecular pump to evacuate the volume V1, an ion-getter pump to

pump the storage, and a cart that allows to move the chamber. The MTD is first mounted to

the deposition chamber, where it is loaded with the sample immediately after the deposition

process. The complete device is unmounted from the deposition system and then moved and

mounted to the XPS device. After pumping the connection part into UHV the sample can be

moved in-situ into the XPS system. The overall design is laid out to connect the MTD also

to other UHV instruments that are available at Empa (e.g. time of flight secondary ion mass

spectrometer (TOF SIMS), low temperature atomic force microscope (LTAFM)).

In the beginning of this thesis a first MTD 1.0 (see fig. 4.2) was availablei. In this earlier version,

two valves were required and the sample was stored on a special shelf below the V1; the total

inner volume was much bigger, and an angled construction reduced the pumping power of the

pumps. A first series of experiments showed that the surface of the samples was significantly

contaminated even though the samples were transfered with this MTD 1.0. Hence the transfer

conditions had to be improved, and a new design for the MTD was developed. The second

version of the MTD (see fig.4.3) was designed in such a way that the pumping time and the

storage conditions were drastically improved. The whole inner surface was reduced, and the

sample was stored directly on the linear transfer arm.

iThe author would like to thank Saša Vranjković for developing the MTD 1.0, for the help with designing the
MTD 2.0 and for all technical drawings.
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Figure 4.2: First version of the transfer chamber, technical drawing by Saša Vranjković.
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Figure 4.3: Second version of the transfer chamber, technical drawing by Saša Vranjković.
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MTD 1.0 MTD 2.0
inner surface 2000 cm2 850 cm2

time to reach 10−7 mbar 50 min 10 min
pressure in storage ≈ 1·10−8 mbar < 5·10−10 mbar
pressure at transfer ≈ 3·10−7 mbar ≈ 2·10−8 mbar

transfer time ≈ 1.5 h ≈ 5 h
number of view ports 2 none

Table 4.2: Technical data of the transfer device. Inner surface excludes wobble stick, bellows
and flange surfaces. Pressure in storage is the averaged pressure in the storage compartment
between loading and unloading of the MTD. Pressure at transfer means the pressure in the
volume V1 while the sample is transfered from the storage to the XPS sample plate.

In the first version the MTD was mounted to the XPS device and then only heated (with heating

tapes) for a few minutes. After 1.5 hours the sample was transfered from storage to the XPS

device. The storage pressure was in the range of a few 10−8 mbar and in the volume V1 at

≈ 3·10−7 mbar. In version 2.0 the volume V1 could be heated longer, since the sample was

safely stored not only at high vacuum (HV) but even at UHV conditions. Additionally the

pump down time could be reduced by a factor of five. The new MTD 2.0 has a five times

shorter pump down time than the first version.

The disadvantages of the new MTD 2.0 are a missing view port; however, with a little practice

the wobble stick movement is nevertheless an easy task to transport the sample, especially

since it is already mounted on the stick and does not need to be picked up (as it was the case

in version 1.0). The advantage of design 2.0 is obviously the UHV storage (< 5·10−10 mbar ii)

therefore even after several days no oxygen contamination is observed. This allows also a long

heating cycle of the volume V1 resulting in better pressures during the actual transfer from

the storage through the volume V1 into the XPS device. The UHV storage conditions and the

lower pumping times are mainly a result of decreasing the inner surface of the device.

iithe sensors used in this thesis only capable of measuring pressures down to 5·10−10 mbar.
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This study focuses on AR-XPS investigations performed on transition metal nitride interfaces.

In the following, the XPS measurements are explained in detail. Previously the basics of XPS

have been illustrated (sect. 3), together with the line types (sect. 3.3), especially plasmons (sect.

3.4) and shake-ups (sect. 3.5), as well as their line shape (sect. 3.6). The background heavily

influences the shake-up quantification, as will be seen later, and thus different background

subtractions have been compared (sect. 3.7). The analysis conditions used to record the XPS

spectra are given in section 5.1. The constraints applied to the data are presented in section

5.2, followed by the description of the derived formalism to resolve bulk and interface signals

(sect. 5.3).

In order to study the described systems via AR-XPS it is essential to have very well defined

samples. XPS measurements are influenced by the surface roughness [364], crystallinity [365]

and the elemental composition [267]. Hence the latter properties had to be determined. The

crystallinity and its orientation have been confirmed by X-Ray Diffraction (XRD) (sect. 5.7) and

Transmission Electron Microscopy (TEM)(sect. 5.10). The interface sharpness and the surface

roughness have also been studied by TEM and Atomic Force Microscopy (AFM)(sect. 5.6),

the latter was also used to analyze the overlayer coverage, i.e. to ascertain to what extend the

sc-TiN is covered. The influence of the overlayer thickness on the interface shake-up ratio is

studied in section 8.4.3. Thus it was essential to calculate the film thicknesses by extrapolating

the deposition rates. These were obtained by measuring deposition time and film height

using either a profilometer (sect. 5.11), X-Ray Reflectometry (XRR) (sect. 5.8), Rutherford

Backscattering Spectrometry (RBS) or Elastic Recoil Detection Analysis (ERDA) (sect. 5.9). RBS

and ERDA are also used to obtain the exact stoichiometry of the fabricated samples.

5.1 Analysis conditions in XPS

All XPS measurements were performed in a Quantum2000 from Physical Electronics using

a monochromatized AlKα source (1486.6 eV). The X-ray spot has a diameter of 100µm and

is operated at a power of 25 W at 15 kV. The instrument’s work function was adjusted to
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give a binding energy of 83.95 eV and a FWHM of 0.8 eV for the Au 4f7/2 peak (appendix

D). The transmission function is calibrated for the angular resolved measurements on a

regular time scale. The base pressure of the instrument was below 5·10−9 mbar during the

measurements presented here. All measurements were done in the fixed analyzer transmission

mode (FAT). Survey scan spectra were recorded over a binding energy range from −5 eV to

1350 eV with an energy resolution of ∆E = 0.5 eV (see fig. 7.1). Detailed spectra were recorded

from 445−525 eV binding energy for Ti 2p (fig. 7.5), from 525−545 eV for O 1s (fig. 7.9) and

from 392−413 eV for N 1s (fig. 7.7). The number of sweeps per region was 25 for O 1s, 4

for N 1s and varied for Ti 2p depending on the angle from 10 to 40 sweeps. For the energy

region of Ti 2s and the valence band only one angle at 45◦ was used. For the detailed spectra

a pass energy of Ep = 58.7 eV with an energy resolution of ∆E = 0.125 eV was used. No ion or

electron neutralizers were used, neither was argon sputtering considered as surface cleaning,

since this would have altered the surface of TiN as described in [86, 358]. For each sample a

minimum of two angle-resolved measurements has been performed. Each angle-resolved

measurement contains 36 measurements at different angles of emission (AOE) ranging from

0◦ to 70◦ in steps of 2◦. The acceptance angle of the electron analyzer was set to 4◦. Since no

carbon or argon was present in the samples, no reference binding energy was available for

calibration. To overcome this deficit the work function at 45◦ (AOE) has been adjusted in such

a way that the binding energy of Au 4f7/2 is found at 83.96 eV; the binding energies of gold are

measured regularly before and after the measurements. The linearity of the binding energy

scale (according to the ISO 15472 [366]) is checked on a monthly base by measuring Au 4f, Ag

3d and Cu 2p. Additionally the transmission function is corrected in the same time period.

For the first two years of this thesis, it was believed that the eucentric height of the sample

holder was calibrated correctly, i.e. independent of the sample tilt the height z between

measuring point and detector is constant. Unfortunately there is a change in z by 0.3 mm,

which results in a loss of intensity towards low AOE see fig. 7.17. Obviously this resulted

in completely wrong peak intensity ratios for those angles. All those measurements have

been disregarded and ever since an Auto-z (i.e. automated height adjustment to the highest

intensity) has been performed prior to each measurement.

5.2 Evaluation of the XPS spectra

The spectra have been evaluated using the CasaXPS software package (Version 2.3.16dev85)

[320]. For BGs that show only a small increase underneath the peak, a Shirley or Linear BG

subtraction is sufficient, therefore Shirley BGs have been used for N 1s and O 1s. The limits

of the background are chosen in away that the peaks in the spectra are within the upper and

lower limit and only integer values where chosen. The latter reduces the influence of the users

personal taste or judgment. In table 5.1 a list of recommended BG limits and the BG type for

different elemental lines are given.

A general reliable peak criterion for choosing one or two peaks is defined in [337]: If the FWHM
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is lower than 1.05 eV then one peak is assigned, if the FWHM is higher than 1.15 eV then two

peaks are assigned, except if difference between the EB of the two peaks compared to one

peak was minimal, then only one peak was assigned. This criterion has been applied, where

the difference between the EB of one and two peaks was defined as to be smaller than 0.7 eV.

Hence peaks that are closer than 0.7 eV, e.g. Si 2p doublet [367], are not resolved in this study.

Plasmons and shake-ups are caused by more complex processes (see section 3.5 and 3.4), and

therefore their FWHM was not constraint to the criterion mentioned above.

5.2.1 Background correction

Area BG limits [eV] BG type
Ti 2p 450-520 U2T
N 1s 394-402 S
O 1s 527 - 536 S
Si 2p in Si 97-104 S
Si 2p in Si3N4 99 - 106 S
Al 2p 69 - 79 S
Al 2s 115 - 126 S

Table 5.1: BG types are described in section 3.7. BG limits are given as the binding energy of
the peak region.

The different BG types are introduced in section 3.7. The choice of BG type for O 1s, N 1s, Al 2p,

Al 2s and Si 2p influences hardly the results, therefore the short-range Shirley BG can be used;

while for Ti 2p it is essential to choose the U2T background (sect. 3.7). As will be discussed

in section 7.3 the Shirley BG does not fulfill for Ti 2p the quantum mechanical requirements

given by the Scofield’s cross-sections.

In single crystalline materials the intensities of elastic and inelastic scattering events show a

clear angle-dependent behavior due to X-ray photoelectron diffraction (see 5.4). The same

accounts for bilayer systems where the distance that the emitted TiN photoelectrons travel

through the sample depends on the angle of emission (AOE) . Hence the background will

fluctuate (sect. 7.3), and the factor B (see eq. 3.4) is allowed to adjust the BG to the limits on

the high BE side of the selected peak region, while the curvature given by C (eq. 3.4) is chosen

to be fix to 355.0 eV2.

A BG correction over the full range from 450 eV to 520 eV results, for certain angles, in a non-

continuous BG, which is a non-physical situation. This discontinuity can be overcome by

separating the BG region into two parts. For TiN the interval is divided in [450 eV, 495 eV]

and [495 eV, 520 eV], for all overlayer systems the BG limits were set to [450 eV, 520 eV]. The

background is also susceptible to noise, therefore a single data channel is not an appropriate

method to evaluate the background. The noise of such a single channel is reduced by averaging

over a few channels left and right of the selected data point. All area limits were averaged over

53



Chapter 5. Sample characterization

5 measuring points and no offsets were used. Especially for these studies the U2T BG has been

implemented into CasaXPS by Neal Fairleyi.

5.2.2 Peak constraints

As will be shown in section 7.4 a standard Gauss-Lorentzian product line shape GL(20) is

justified for peak fitting. To represent the entire Ti 2p spectrum, eight different peaks have

been fitted using constraints that are based on physical principles of these peaks. Three peaks

are identified, each spin-orbit split into doublets with total angular momentum number j

of 1/2 and 3/2. The origin and the physical meaning of these peaks and their interdepen-

dence will be outlined in section 7.8. During the fitting process all positions on the binding

energy scale were variable, i.e. no constraints were used for the binding energy. For TiN the

only constraints of the fitting process were the FWHM of all 3/2 and 1/2 components, e.g.

FWHM(Ti 2p3/2)=FWHM(Ti 2p1/2) as well as the area ratios of the main core level lines of

Ti 2p1/2 : Ti 2p3/2 were set to 0.515 as given by the Scofield’s cross-sections [342] . All confine-

ments for TiN are given in table 7.1. Since in bilayer systems the signal from the covered TiN

is drastically reduced, additional constraints were applied to the fitting process. Besides the

fixed FWHM (as in pure TiN) also shake-up areas, i.e. Area(shake1/2)= 0.515× Area(shake3/2)

were correlated to each other. All other areas and FWHM were kept without any constraints.

The Levenberg-Marquardt algorithm, implemented in CasaXPS, gives qualitatively the same

result, meaning that all energy positions and peak areas show only a small variations from one

angle to the next.

The N 1s line has been analyzed using two fitting curves, a GL(80) and a GL(30), allowing

the separation of N-Ti and N-O, as described in section 7.2. All other energy lines have been

evaluated using a GL(30).

5.3 Angle resolved-XPS (AR-XPS)

Angle Resolved X-ray Photoelectron Spectroscopy (AR-XPS) is the prime technique to differen-

tiate between signals from the surface and the bulk [267, 328]. Low angles of emission θ (AOE)

of 0◦ to 20◦ provide information that is primarily bulk sensitive, while those at high AOE (60◦

to < 90◦) are surface sensitive (see fig. 5.1). AR-XPS is a non-destructive method that can easily

be applied to get a qualitative difference between surface and buried layers; for a quantitative

study some mathematical models have to be applied (see appendix A).

The angle of emission is defined as the angle between detector and the surface normal [368],

i.e. at an AOE of 0◦, where only electrons emitted perpendicular to the surface are detected

[267]. In literature [27, 344, 369] also the term take-off angle (TOA) is used, the latter is defined

as the angle between the surface plane and the detector (TOA=90◦-AOE). The XPS system used

iThe author would like to thank Neal Fairley of Casa Software Ltd. for implementing several new customized
BG types into the software and for enlightening discussions on XPS.
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X‐rays


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Auto Z Auto Z
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Figure 5.1: AR-XPS according to the setup in the system used in this work (Phi instrument,
Quantum2000). The measuring geometry is sketched. The X-ray source always radiates from
the top, the detector is fixed to an angle of 45◦ to the X-ray source. The sample is build-up of a
bulk material B, an interface (int) and an overlayer material L, their intensities are Ibulk ,Ii nt

and IL respectively. The overlayer thickness and the interface thickness are defined as t and
δ, respectively. The angle of emission (AOE) θ between the surface normal (solid line) and
the detector direction (dashed line) is shown for three different sample rotations (from left
to right: θ = 0◦, 45◦ and 70◦). The dotted line indicates the sample height, which was always
automatically corrected (Auto-z). The dashed line represents qualitatively from which depth
the signals are picked up, for high AOE less bulk and more surface intensities are measured.

in this thesis tilts only the sample, and the angle between detector and X-ray source are kept

constant at 45◦.

5.3.1 Determination of the interface ratio ri

The intensity changes of the shake-up at different interfaces are in the focus of this work,

the absolute intensity is strongly influenced by the AOE and also by XPD effects (sect. 5.4).

Therefore in the following only intensity ratios are used to overcome the angle-dependence

of the intensities. An interface ratio ri and a bulk ratio rb are used to describe the intensity

ratio of the shake-up and the main PE line intensity. The bulk ratio rb is defined as the ratio of

the shake-up intensity and main peak in the bulk material of TiN. If not stated else explicitly,
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then it is referred to the intensities of the 3/2 components (i.e. Ti 2p3/2 and shake-up3/2). The

interface ratio ri is similarly defined as the ratio of the shake-up intensity and main peak

intensity at the interface. ri is assumed to be homogeneous within an interface region with

a thickness δ. All ratios (especially ri ,rb and Rm) are intensity ratios between the shake-up

and main peaks, unless specifically mentioned. The measured ratio Rm (i.e. ratio between

measured shake-up intensity and main peak intensity) is expressed as a function of the bulk

ratio rb and the interface ratio ri by:

Rm =
ri

1+ri
f + rb

1+rb
g

1
1+ri

f + 1
1+rb

g
(5.1)

with

f = 1− g (5.2)

g = e−δ/(λcosΘ) (5.3)

where λ is the IMFP,Θ is the AOE and δ is the interface thickness. The latter is defined as the

thickness of a region at the interface where the shake-up intensity is altered due to interface

effects. A detailed derivation of equation 5.1 is given in appendix A.

Another approach is to investigate the total intensity of the shake-up and the main lines

separately and describing their intensity by an additional diffraction pattern function (eq. 5.4

in sect. 5.4).

5.3.2 Influence of the thickness on the measuring geometry

Section 8.4 shows that the XPS results are also influenced by the overlayer thickness t . There-

fore it is essential to differentiate between real thickness effects and such effects that are

induced into the measurement due to a changed measuring geometry. The latter is explained

in this section.

The thickness of the overlying material changes the information depth of the different materi-

als. Figure 5.2 sketches the information depth for two angles (blue: AOE= 0◦; red: AOE>> 0◦).

The red areas indicate which sample volume is contributing with a higher intensity for high

AOE compared to low AOE. The blue areas indicate from where more information is obtained

at AOE= 0◦ compared to AOE>> 0◦. The colors indicate the regions which are probed less or

more in dependence of the angle. The highest intensity will always emerge from the sample

surface, but for low AOE more depth information than for high AOE is found in the XPS signal.

For a pure TiN a low AOE reveals more depth information of the bulk TiN, while for high AOE

more surface information is obtained (see left sketch in fig. 5.2). For a thin overlayer (e.g.

AlN) with a thickness t1 XPS signals from the overlayer and the underlying TiN are recorded
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TiN TiN

AlN

t1 t2 t3

AOE >> 0°

AOE = 0°

Figure 5.2: Comparison of the relative information depth of high AOE (red) compared to low
AOE (blue). The information obtained from a TiN/AlN interface decreases with increasing
thickness t of the overlying AlN film (t1 < t2 < t3). TiN is drawn in orange and AlN in grey. For
details see text.

(see second sketch from the left in fig. 5.2). High AOE (red) probe stronger the surface of the

overlayer and the interface of the sublayer (TiN) but much less of the overlayer signal from the

interfacial region. Low AOE (blue) provide more signal of the overlayer, including its interface

region, the interface and more bulk information from the sublayer.

With growing overlayer thickness (t1 < t2 < t3), the region from where the electrons are de-

tected with respect to the position of the interface is changed. For high AOE (red) more and

more "bulk" information from the overlayer is recorded, while the interface signal of the sub-

layer vanishes. For low AOE (blue) the observed sublayer region moves closer to the interface,

while the overlayer information contains more bulk overlayer volume.

In both cases AR-XPS is probing a fixed volume, assuming the same IMFP. With increasing

overlayer thickness the interface moves deeper and eventually lies too deep to be detected.

The influence of a lower AOE and an increasing thickness t on the Al 2s signal can be qual-

itatively separated (see fig. 5.3). For a lower AOE (blue in fig. 5.2) the Al 2s signal contains

more information from the AlN "bulk" and more information from the AlN side of the TiN/AlN

interface than for higher angles (red in fig. 5.2). In thicker overlayers the Al 2s signal contains

also more information from the AlN "bulk", but less interface information compared to thinner

layers. A similar qualitative comparison is applied to the Ti 2p signal (fig. 5.3).

5.4 X-Ray Photoelectron Diffraction (XPD)

In single-crystalline materials the emitted photoelectrons can undergo multiple elastic scat-

tering resulting in interference patterns [266, 267, 365, 370–374]. Those patterns were first

reported by Siegbahn [266] and Fadley et al. [370]. The wave field of the photoemitted elec-

trons scatter at the surrounding atoms and undergo coherent interference. This is visible in

intensity [375] and background fringes [376] that are dependent on the observation angles
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Figure 5.3: In-
fluence of the
information vol-
ume depending
on the overlayer
thickness and
the AOE.
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and electron energies. This elastic scattering of emitted photoelectrons induced by X-rays is

called X-ray Photoelectron Diffraction (XPD). The interference patterns contain information

on the scattering path lengths and thus on the relative position of emitting and scattering

atoms [374]. Hence XPD is often used to investigate adsorbates on surfaces, epitaxial films

and particles. The interference pattern can be generated by single or by multiple-scattering

processes, the latter is important, especially for electron energies below 50 eV [375]. For high

energetic electrons (Eki n > 500 eV) mainly 0th order diffraction (forward focusing) occurs.

XPD patterns are recorded by setting the analyzer window to a certain kinetic energy and

performing a full angle-scan over the azimuthal angleΦ= 0◦−360◦ with a sample tilt from χ=
0◦−90◦, similar to recording a pole figure (see sect. 5.7)[377]. With this setup the stereographic

projection of the angular distribution, i.e. the intensities of a specified energy versus the two

anglesΦ,χ are recorded over the sample hemisphere. XPD has also been performed on sc-TiN

(001) by Timm et al. [378]. Their results for a kinetic energy of Eki n = 851.1 eV, corresponding

to the binding energy of the N 1s photoelectrons (when a Mg K α radition is used), are shown

in fig. 5.4. The angular intensity distribution is assigned to the fcc structure of TiN. In this work

an Al K α source is used for XPS. The Ti 2p photo electrons have therefore a kinetic energy of

Eki n > 1020 eV and show mainly forward focusing [371]. Any higher order diffraction can be

neglected and is also not observed in this study. In this thesis, the intensity of the forward

focusing is described by the following semi-empirical derived equation:

IFF(θ) = I0 + Ic cos(θ)+
n∑

i=1
Ip,i ·e

−
(

cos(θ)−cos(θi )
σi

)2

(5.4)

with cos(θi ) > 1 and where I0 is the intensity of the offset, Ic is the intensity of the Cosinus
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5.5. Models for the bulk ratio rb

Figure 5.4: (a) XPD pattern of TiN (001) for N1s (Eki n = 851.1eV over a range of χ= 0◦−78◦.
(b) Stereographic representation of crystal directions (dots) and high density planes (lines) of
a sc-TiN (001) surface. (reprint of Timm et al. [378])

decay, Ip is the intensity of the Gauss distributed peak i at the angle cos(θi ), and w is the

FWHM of the Gauss distribution. Electrons originating from the final ground state (main)

and the final excited state (shake-up) have approximately the same kinetics. Hence their

XPD patterns are only slightly different. The focus of this study is to obtain knowledge on the

shake-up intensity at different interfaces independent from XPD. The interference induced

changes in the intensity in the main and shake-up peaks can be overcome by using their

intensity ratio Rm (see sect. 5.5).

5.5 Models for the bulk ratio rb

The oxygen-free bulk ratio rb of the intensity of the shake-up and the main peaks are absolutely

essential for the further interface investigations. As we will see below in sect. 8.5.2 a small

change in the bulk ratio cannot only change the absolute values of the interface ratio ri but

also their qualitative interpretation. Therefore, five different ways of extrapolating the true

bulk ratio for oxygen-free TiN are discussed below. The results and discussion of the different

approaches can be found in section 7.6.

The bulk ratio is, due to the overlap of the binding energy of TiOxNy with the shake-up peak,

strongly influenced by the oxygen concentration in the material under observation. From

ERDA measurements of pure bulk TiN and from AR-XPS data of TiN samples covered with

an oxidation barrier (Si3N4), it is known that the bulk itself is oxygen-free (below 0.2 atomic

percent (at%)). Hence it can be assumed that oxygen is only present at the top of the sample,

which enables the use of the following five models:

Averaging the ratio The most simple way of estimating a value for rb is by averaging over all

measured angles. This method ignores any changes of the ratio with the angle. All samples,

especially the pure TiN samples, have a small but not negligible amount of oxygen on their
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surface even though the samples were transfered in situ.

Linear approach The measured intensity of the shake-up Sm overlaps with the TiOxNy

contribution in the Ti 2p spectra. Therefore Sm can be expressed by:

Sm = IS + Iox y (5.5)

where Iox y is the intensity of the oxygen contribution and IS is the intensity of the shake-

up contribution. Iox y is according to the first principal method 3.8 linear to the oxygen

concentration (cox y ) . It is therefore given by:

Iox y = cox y · I0,ox y (5.6)

The measured intensity ratio Rm is the fraction of measured shake-up intensity Sm and the

measured main line intensity Mm and can be calculated by:

Rm = Sm

Mm
= IS + cox y · I0,ox y

Mm
(5.7)

A Levenberg-Marquardt algorithm is used to fit the measured date of Rm versus the oxygen

concentration. For the measured main peak intensity Mm it is assumed that it is neither

influenced by the oxygen concentration nor by the angle of emission and therefore being

equal to the true main intensity Mm = IM . The obtained values for IS and IM are then used to

calculate the oxygen free bulk ratio rb by:

rb = IS

IM
(5.8)

This approach is not angle-dependent and uses only the oxygen concentration to determine

the true bulk value.

Exponential Approach The following semi empirical approach was obtained by visual in-

spection of the plot of the measured ratio Rm versus the oxygen concentration (see fig. 7.21).

Rm shows an slightly exponential behavior and increases with the oxygen concentration. A

function for Rm is estimated with the fitting parameters a describing a linear part, b the

exponential decay, and R0 a virtual ratio by:

Rm = R0

(
1−a ·e−bcox y

)
(5.9)

The oxygen free bulk ratio rb is then easily obtained by setting cox y = 0 in eq. 5.9:

rb = R0 (1−a) (5.10)

This approach also considers only the influence of the oxygen concentration and ignores any
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changes due to the AOE.

XPD approach The intensities for the main Ti 2p and the shake-up are subject to forward

focusing and are described by equation 5.4. The XPD approach uses the intensities IFF of

both main and shake-up. ForΘ= 0◦ on the 0th order forward focusing occures, its intensity is

given by Ip,0 in equation 5.4. The bulk ratio is obtained by dividing Ip,0 of shake-up and main.

The bulk ratio rb is then calculated by:

rb = Ip,0(shake−up3/2)

Ip,0(Ti 2p3/2)
(5.11)

Angle resolved approach This approach is based on the calculations done for AR-XPS mea-

surements on bilayer system (sect. 5.3). The top layer TiOxNy is graded and has a thickness

toxy. For pure TiN sample, the interface thickness δ (in eq. A.13) is interpreted as toxy. Hence

equation 5.1 is used to fit the measured values depending on the angle by simply setting

toxy = δ.

5.6 Atomic Force Microscopy

Atomic Force Microscopy (AFM) is a type of a scanning probe microscopy, where in the ideal

case an atomically sharp tip is probing the sample surface. The tip is mounted at the end

of a cantilever, and its bending is typically detected by a laser that is being reflected off the

tip backside. The reflection is recorded by photodiodes that are attached to an electronic

feedback loop. The forces that act on the tip, when it is brought into the proximity of the

surface, are bending the cantilever and are detected by a movement of the laser reflection on

the detector. The tip is rastered over the surface and gives a topography image of the sample

with a very high resolution. For a more detailed description of AFM the reader is referred to

standard textbooks on AFM [379, 380].

The commercial and atmospheric AFM used in the present work is a NanoSurf Mobile S [381].

All samples were stored in an desiccator to prevent water to diffuse into the hygroscopic

MgO-substrate. All samples were measured with an atmospheric AFM within 24 hours after

desiccator removal. The scans were performed in non-contact mode and no tip voltage

was applied. The scans were controlled with an adaptive PID and two types of scans were

performed: a wide range scan over 4×4µm2 with a line speed of 4 s/line and a small range of

0.5×0.5µm2 with a line speed of 1 s/line.

The "high resolution" scan head type was used with a height resolution of ∆z = 0.027 nm and

a lateral resolution ∆x = ∆y = 0.15 nm. The AFM tips used were SuperSharpSiliconT M tips

(type: SSS-NCLR-20) with a tip radius of typically 2 nm.

A parabolic BG subtraction has been performed on all images and the arithmetic average
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Figure 5.5: Sketch of the Bragg
conditions for constructive interfer-
ence.

surface roughness Sa has been calculated by:

Sa = 1

M N

N∑
i=1

M∑
j=1

∣∣z̄ − zi j
∣∣ (5.12)

where z̄ is the averaged mean value of all heights zi j and zi j is the height at a position (i,j).

5.7 X-Ray Diffraction (XRD)

Probably the most important technique in crystallography is X-Ray Diffraction (XRD). The

recorded diffraction patterns reveal information on the crystal structure, mean crystallite size,

residual stress and distribution of orientations. The information depth is up to a few µm and

is therefore of special interest in thin film characterization. In the following only the basics of

this nondestructive technique are briefly explained. For more details please refer to textbooks

on XRD [382–384].

Diffraction conditions

The concept of XRD is sketched in figure 5.5. Constructive interference is detected if the

optical path length ∆ = ∆1 +∆2 is equal to a multiple of the wavelength of the X-rays λx .

Simple trigonometric calculations lead directly to Bragg’s law that describes the relation for

constructive interference:

nλx = 2dhkl sinΘ (5.13)

where dhkl is the lattice constant for the (hkl) planes, n is an integer andΘ is the angle between

sample surface and detector .

Commonly, the Bragg-Brentano setup is used, where the incident and diffracted beam have

equal angles θ to the substrate normal. A Siemens/Bruker, D5000 diffractometer has been used,
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which has a fixed X-ray source. Therefore the sample is turned by the angleΘ and the detector

by 2Θ, hence the measurement is called a Θ/2Θ-scan. The X-ray source is a copper anode

that emits mainly Cu radiation as CuKα,1,CuKα,2 and CuKβ. Also other X-ray ghost lines (sect.

3.3) with very low intensity are present, e.g. TaKα,1.

The obtained patterns can be compared to databases, e.g. JCPDS/ICDD (Joint Committee

on Powder Diffraction Standards/ International Centre for Diffraction Data) or ICSD, FIZ

Karlsruhe. In this way also the elemental composition and crystal phase of a material can be

revealed.

Lattice mismatch

If a film grows on a substrate, and the deposited film has at least one crystallographic orienta-

tion equivalent to the substrate, we speak of epitaxy. If substrate and deposit are of the same

material, then it is called homoepitaxy, else heteroepitaxy. The lattice constants in heteroepi-

taxial systems differ slightly, and hence both system have a lattice mismatch. The latter results

in residual stress that can be compensated by defects in the crystallographic structure. The

lattice mismatch f A−B of two materials A and B , where A is usually the substrate, is calculated

by:

f = dB −dA

dB
(5.14)

where dB and dA are the lattice constants of the film and the substrate. The lattice mismatch

can be used to calculate the coherency stress (see eq. 2.3).

Scherrer formula

The mean grain size d of crystallites can be calculated by the Scherrer equation [385, 386]:

d = Kλx

βcosΘ
(5.15)

where d is the grain size, β is the FWHM of the 2Θ peak, and K is a shape factor . The

latter varies with the actual crystallite shape and has typically a value of 0.9. The Scherrer

formula underestimates the actual mean grain size, since other broadening effects are not

considered, e.g. strain and instrumental broadening. The Scherrer formalism excludes also

peak anisotropy, since typically only the (00l)-reflections are measured, i.e. if columnar growth

occurs, then the length of the columns is obtained and not their width that could be much

smaller. Scherrer’s formula is only applicable for grain sizes up to about 100−200 nm due to

the difficulty to differentiate between broadening of the crystallite size and broadening due to

other factors [386].
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Figure 5.6: a) A fcc-crystal pointing in [001] direction shows no intensity for (110) planes,
unless b) it is tilted by χ= 45◦ and rotated byφ [387].

Pole figures

The texture, i.e. the distribution of the crystallographic orientations, is observed by pole

figures. For fixed Θ/2Θ angles only planes that fulfill Bragg’s law and that are parallel to the

sample surface participate in the diffraction intensity due to geometrical limitations (i.e. the

scattering vector has to be parallel to the plane normal). These limitations are used to record a

pole figure, where theΘ/2Θ angles are kept fixed and the sample is tilted in χ and rotated in φ.

High intensities appear in the pole figure, when plane normals of the same family, are parallel

to the angle bisector of incident and diffracted beam. FixedΘ/2Θ angles for a (110) plane of a

fcc-crystal with its surface in [001] (fig. 5.6) are chosen. During the recording of the pole figure

the sample is rotated around χ from 0◦ to 360◦ and after each spin tilted by angle of ∆χ. No

intensity is detected for the <110> family, until the fcc (001) sample is tilted by χ= 45◦, here

the sample is also rotated by φ and diffraction patterns appear every 90◦. The (001) crystal has

a four fold symmetry in [110], and hence four points/peaks are visible in the stereographic

projection on the circle of χ= 45◦ (fig. 5.7).

Randomly oriented samples (here the intensity would be equally distributed over the full pole

figure) or samples with a preferred orientation can be differentiated. Two scenarios are of

special interest for thin film studies: bi- and uniaxial texture. In case that a film grows not only

in the direction given by the substrate surface (e.g. 001), but all orientations of the substrate

are copied then we speak of a biaxial texture. If the crystallites of the film point all in one
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Figure 5.7: (110) pole figure for a fcc-
(001) crystal for a biaxial grown film
(left) and for uniaxial (right) [387].

doo

Figure 5.8: Top view on bi- (left)
and uniaxial (right) textures, in
a Θ/2Θ scan only (001) diffrac-
tions appear.

direction, but are rotated around this axis [001] then a uniaxial texture is present (see fig. 5.8).

The latter texture shows then not only four sharp peaks but rather a ring of intensity since

for all φ angles at χ = 45◦ (110)-plane normals are parallel to the bisector of incident and

diffracted beam. In order to differentiate between bi- and uniaxial growth a minimum of two

pole figures has to be analyzed.

5.8 X-Ray Reflectometry (XRR)

XRR provides information on the layer thicknesses t in the range of 2−200 nm, the density ρ

and the roughness Sa (0−2 nm) even of buried interfaces. In contrast to XRD, no crystallinity

is required to perform XRR, and also multilayer systems can be studied. The only requisite is a

difference in the refractive index of the layers. A schematic of the XRR geometry is shown in

figure 5.9. Similar to XRD, interference fringes are induced by the difference of the optical path

length ∆ between a beam that is reflected at the sample surface (Point A) and at the interface

(Point B). Below a certain critical angleΘc that is proportional to the square root of the density

ρ, total reflection occurs. Again simple trigonometry can be used to calculate the conditions

for interference fringes:

nλx =∆= 2t sinΘt (5.16)

where Θt is the refracted angle described by Snell’s law. The refraction depends also on the

density ρ of the material and therefore simulations are required to determine the parameters

t, ρ and Sa .
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Figure 5.9: Sketch of the XRR basics, picture taken from [384]

5.9 High energetic ion scattering (RBS, ERDA)

In Rutherford Backscattering Spectrometry (RBS) the back scattering of high energetic particles

(projectiles) is used to analyze the distribution of elements in a sample (target). Only projectiles

with a lighter mass than the target atoms can be scattered backwards, hence light ions (typical

He-ions) with energies in the MeV range are used. Conservation of momentum and energy

allow to correlate the target and projectile mass to the energy of the back-scattered particles

for a certain angle. The projectiles also lose energy during their travel through the material.

This loss can be resolved and hence depth resolution is obtained [388, 389].

In Elastic Recoil Detection Analysis (ERDA) also ions in the MeV energy range are accelerated

towards a sample, and target atoms are recoiled. Especially lighter elements are easily recoiled

and hence ERDA is also sensitive to light elements such as hydrogen. The overlap in the

spectrum of forward scattered (RBS) and elastically recoiled (ERDA) projectiles is resolved

by either the ∆E −E or the Time Of Flight (TOF) method. In the former mentioned method,

the specific energy loss ∆E through a thin layer is used to distinguish between forward- and

backscattered ions with the same energy E . In TOF the particle velocity is used to categorize

the particle mass [389].

All RBS and ERDA [390] experiments have been performed at the ETHZ Ion Beam Physics lab-

oratory ii. For the RBS experiments a 2 MeV 4He beam and a silicon PIN diode detector under

165 < degree are used and for ERDA a 13 MeV 127I beam at an incident angle of 18 < degree.

The RBS data have been analyzed with the RUMP software [391] and ERDA data with the

DataFurnace code [392]. The results obtained by RBS and ERDA are presented in table 7.2.

iiHere the author would like to thank Max Döbeli from the Laboratory for Ion Beam Physics of ETHZ for
measuring and analyzing the samples.
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5.10. Transmission Electron Microscopy (TEM)

5.10 Transmission Electron Microscopy (TEM)

In Transmission Electron Microscopy (TEM) a focused electron beam is transmitted through

a very thin sample. The electrons of the beam interact with the sample, and the transmitted

electrons are recorded on a fluorescent screen or a digital camera. The basics of a TEM are

similar to a conventional light microscope. However, a much higher resolution is obtained

compared to a light microscope, since the accelerated electrons have a much smaller wave-

length (a few pm) than visible light (several hundred nm). For more details on TEM the reader

is referred to TEM textbooks by Williams and Carter [393].

The maximal sample thickness for TEM is around 100 nm, and for high resolution (HR-)TEM

thickness of around 20 nm are required. Cross-sectional TEM samples were cut, mechanically

ground, and manually polished (tripod method). The final refining has been done by ion

milling the sample under a low-angle Ar beam in a BalTec Res 101 ion miller. In this thesis

a JEM-2200FS (JEOL Ltd., Japan) is used to obtain TEM images. The instrument has been

operated at an acceleration voltage of 200 kV. A double tilt sample holder has been used to

allow the tilting of the sample around two axes. Electron diffraction patterns of the MgO

substrate have been used to orient the sample along the zone axes (001).

5.11 Profilometry

A profilometer measures the height and roughness of a sample with a scanning needle in

contact. A stylus is moved laterally across the sample surface and the height of the stylus is

transformed into a digital signal. By repeating several line scan the topography of the sample is

measured. In this thesis a Tencor P-10 surface Profiler with a diamond stylus is used to obtain

a line profile. The investigated samples were covered partially by a piece of Si-wafer during

the deposition process. After removing the Si-wafer a step remains, the latter is measured

and reveals the height between substrate and film. Since the stylus is in contact and forces

between 1 and 100 mg act on the surface, hence the surface can be damaged or deformed.
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There’s plenty of room at the bottom.

- Richard P. Feynman

In this part of the thesis the results are presented and discussed. This part is divided in four

chapters: chapter 6 deals with results of the general sample characteristics, in chapter 7

pristine TiN is analyzed using XPS, chapter 8 focuses on XPS results of bilayer systems and in

chapter 9 interface polarization and hardness enhancement are discussed.

Before evaluating any XPS spectra it has to be verified, that all the fabricated samples are well

defined, i.e. crystallinity (sect. 6.1), overlayer thickness (sect. 6.2), roughness (sect. 6.3) and

interface structure (sect. 6.4) have to be known as precise as possible.

In chapter 7 XPS spectra of pristine TiN are presented. Each peak in the TiN spectrum is

discussed regarding its position and intensity (sect. 7.1). The different components in the Ti

2p XPS spectra of TiN are shown in section 7.2. The background correction, which is important

for a quantitative evaluation, is presented in section 7.3 and the line shape of Ti 2p in TiN

is discussed in section 7.4. Photoelectrons (PE) emitted from sc-TiN samples undergo X-ray

photoelectron diffraction (XPD), this results in visible oscillations in the PE intensity and the

binding energy EB (sect. 7.5). All information, gained from the above mentioned sections, is

gathered and used to further evaluate the TiN samples. Five different models are discussed
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to obtain the bulk ratio rb of the shake-up and main peak (sect. 7.6) and the origin of the

shake-up is discussed (sect. 7.8).

The insight and basic results of the TiN sublayer are then used to evaluate interface systems in

chapter 8. This chapter deals with TiN/Si, TiN/Si3N4 and TiN/AlN bilayer systems and their

interface. In the first section of this chapter general information as oxygen concentration (sect.

8.3), sample and interface charging (sect. 8.4) are gathered. The interface thickness δ required

to obtain the interface ratio ri (as described in the suggested model, eq. A.23) is discussed in

section 8.5.1. In section 8.6 the ratios ri of the interfacial shake-up and main energy line are

elucidated and the parameters influencing ri are summarized and discussed in section 8.7.

The last chapter 9 of the results part deals with the expected interface polarization (sect. 9.1)

and the effects contributing to an hardness enhancement (sect. 9.2).
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6 General sample characteristics

For XPS experiments it is essential to know the systems under investigation very well. Surface

and interface roughness, crystallinity, overlayer thickness and exact elemental composition

have to be determined in order to give reliable conclusions on the shake-up properties.

First, the crystallinity and orientation of the bulk TiN had to be verified (sect.6.1). The overlayer

thickness is a very important parameter in the shake-up ratio and needs to be determined

precisely (sect. 6.2). To rule out effects due to surface and interface roughness, the samples

have to be as flat as possible, therefore AFM measurements were done on different systems

with different overlay materials and thicknesses (sect. 6.3). AFM measurements only reveal

the surface of TiN before depositing an overlayer, hence TEM samples were prepared and

investigated to verify that an atomically sharp interface is present (sect. 6.4).

6.1 Crystallinity of TiN

The crystallinity has been checked on selected samples by performingΘ/2Θ scans and pole fig-

ure measurements (sect. 5.7). Therefore thick samples in the range of 500 nm were fabricated

and investigated.

Figure 6.1 shows aΘ/2Θ overview scan for TiN deposited on MgO(001) and MgO(111). The

overview scan of TiN(001) reveals two double peaks, that are magnified again in the inlay.

The highest peak in the XRD pattern is at 2Θ= 42.924◦ representing the (002) planes of the

substrate MgO (CuKα1). A second peak accompanies the CuKα1 peak of MgO(002), which is a

result of the CuKα2 that is always present in X-ray diffractograms where a Cu-X-ray tube is

used. The TiN film in this sample has a thickness of approximately 500 nm, which is apparently

not sufficient to block the substrate patterns. Also visible are the two diffraction patterns of

the TiN lattice planes (002) at 2Θ= 42.546◦ for CuKα1 and at 2Θ= 42.656◦ for CuKα2. There

are additionally very small peaks observed on the left side of the four main peaks, which

are caused by various X-ray lines, e.g. CuKβ1 at 38.614◦. No further diffraction patterns are

observed in this diffractogram indicating a single-crystalline epitaxial grow behavior of TiN on

73



Chapter 6. General sample characteristics

30 40 50 60 70 80

in
te
ns
ity

 [a
.u
.]

2

TiN (001)

TiN (111)

42 42.5 43 43.5

in
te
ns
ity

 [a
.u
.]

2 [°]

TiN (001)

Figure 6.1: XRDΘ/2Θ overview scan for TiN (001) and TiN (111).

Mg(001).

In the XRD pattern of the TiN(111) sample the two diffractions (due to CuKα1, CuKα2) of the

TiN(111) lattice planes are overlapping, but are resolved by fitting two Gauss distributions

and 2Θ= 36.621◦ for CuKα1 and at 2Θ= 36.726◦ for CuKα2 are revealed. Next to the TiN(111)

diffractions are also the MgO(111) patterns with a lower intensity (approx. 10% of MgO(001))

visible. Their CuKα1 and CuKα2 components cannot be resolved due to their low intensity.

The TiN(111) sample has the same thickness of approximately 500 nm as the TiN(001) sample.

The intensity ratio between TiN film and MgO substrate are reversed, since the intensity of

the TiN(111) is approximately 70% of the TiN(002) peak [394], while the MgO(111) intensity

is below 10% of the MgO(002) intensity [395]. In the TiN(111) samples also the diffraction

reflexes of the (222) planes of TiN and MgO are observed between 2Θ= 77.5◦ and 2Θ= 79.0◦.

Their intensity is, in accordance with Christensen [394], lower than that for the (111) lattice

planes.

The lattice constants are calculated using equation 5.13 and are summarized and compared to

literature in table 6.1.
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6.1. Crystallinity of TiN

Material exp. d002[Å] Lit. d002[Å] literature
MgO 4.190±0.010 4.211 [396]
TiN 4.255±0.005 4.235 [397]

Table 6.1: Lattice constants for the (002) planes at room temperature are given and compared
to literature.

Pole figures of TiN (001) and (111)

The texture of 500 nm thick TiN films grown at 800◦C on MgO(001) and MgO(111) was evalu-

ated by recording pole figures (sect. 5.7). The pole figures for the (002) planes were measured

with 2Θ = 42.510◦, for the (111) with 2Θ = 36.663◦ and for (220) planes 2Θ = 61.813◦. The

samples were tilted by χ from 0◦ to 80◦ and rotated by φ from 0◦ to 360◦.

The (002) pole figure of TiN(001) shows only one single peak at χ= 0◦ and φ= 0◦ indicating

either uni- or biaxial epitaxial growth of TiN (sect. 5.7). The second pole figure for the (111)

planes contains four peaks on the χ= 54.7◦ ring, the intensity maxima are well separated by

∆φ= 90◦. It is therefore concluded that the TiN grows biaxially on the MgO(001) substrate.

The broadening of the peaks along χ is due to the used slit geometry, if point apertures at the

X-ray source and detector are used then round peaks are visible in the pole figure.

The diffraction patterns of the (002) planes in TiN(111) are observed if the sample is tilted by

χ= 54.7◦. Under those conditions all peaks are heavily broadened due to the slit geometry

and the (002) diffractions of the film and substrate cannot be separated. Therefore, the (022)

planes were used to study the TiN(111) samples. The latter show one peak in the (111) (at

χ= 0◦) and three peaks in the (022) pole figure on the χ= 35.3◦ ring. TiN(111) has a threefold

symmetry in the <022> families, hence it is concluded that TiN grows also biaxial epitaxial on

MgO(111).

The pole figures of TiN indicate that the film copies the exact crystal structure of the substrate

if it is deposited under the conditions mentioned in section 4. This is in good agreement with

the observations formerly reported [188, 254].

Influence of deposition temperature

Figure 6.4 shows the diffraction patterns of samples prepared at 800◦C, 700◦C and 600◦C

with no bias and at 200◦C using a substrate bias voltage of −70 V. The position of the 2Θ

peaks shifts for lower deposition temperatures to lower values revealing an increase in the

lattice constant, i.e. the lattice is expanded in the direction of growth. This is most likely

due to compressive stresses, which force the TiN lattice to adjust to the MgO substrate. The

compressive stresses are parallel to the substrate resulting in a smaller lattice parameter in

this direction. A compression parallel to the substrate results in an expansion of the lattice

parameters in the direction of growth, which is the direction observed in aΘ/2Θ scan.
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Figure 6.2: Pole figure pictures of TiN(001) in [002] (left) and [111] direction (right), top row are
stereographic representations and bottom row the same pole figures in a 3D view.
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6.1. Crystallinity of TiN
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Figure 6.3: Pole figure pictures of TiN(111) in [022] (left) and [111] direction (right), top row are
stereographic representations and bottom row the same pole figures in a 3D view.
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Chapter 6. General sample characteristics

The experimental lattice mismatch fexp has been calculated for the (001) planes using the

result from table 6.1 and equation 5.14. The theoretical lattice mismatch ftheo has been calcu-

lated using the thermal expansion coefficient α of 12.6×10−6 /K for MgO [398], 8.9×10−6 /K

for TiN [399] and the lattice constants d from literature given in table 6.1. For these calcula-

tions it is assumed that the lattice parameters were constant in the investigated temperature

interval, i.e. the lattice constants for TiN and MgO are calculated for the given temperature,

but XRD is measured at room temperature (RT).

The hetero-epitaxial TiN on MgO decreases its lattice mismatch with increasing temperature.

Already Karr et al. [254] has shown that the lattice mismatch decreases from fexp = 0.6% at

RT to ≈ 0.2% at 750◦C. The lattice mismatch calculations ftheo are in good agreement with

the observations of Karr et al. [254] and show a decrease of the mismatch from 0.57% at RT

to 0.32% at 800◦C. The experimental results differ by a factor of 2.5 compared to Karr et al.

[254] which is, considering the uncertainty of 0.010 Å, in good agreement with the thoeretical

lattice mismatches. Experimental results and theoretical calculations, presented in this thesis,

indicate that the TiN films form their fcc-structure with their lattice mismatch at the deposition

temperature. This structure remains unaltered after sample cooling to RT.

Temperature fexp [%] ftheo [%] grain size d [nm] film thickness t [nm]
TiN
800◦C 0.84 0.32 450 ≈ 500
700◦C 0.92 0.35 220 ≈ 160
600◦C 1.12 0.38 <150 ≈ 50
200◦C plus Bias 1.21 0.51 310 ≈ 370
RT 0.57

Table 6.2: Lattice mismatch of TiN grown at different temperatures. The film thicknesses were
interpolated from deposition rates for TiN at 800◦C.

The peak broadening is often used to determine the grain size d by applying the Scherrer

formula 5.15. The instrumental peak broadening is not considered. The Scherrer formula is

only applicable to unstrained grains smaller than 200 nm. The crystallites in here are neither

unstrained nor smaller than 100 nm, therefore the absolute values (see table 6.2) are to be

taken with precaution. Nevertheless the Scherrer formula describes qualitatively correctly the

grain sizes behavior. The measured size refers to the size of the grains perpendicular to the

surface, in this case only in [001] direction. AFM (sect.6.3) and TEM (sect.6.4) results clearly

show that in fact a sc-TiN with no columns is present on the MgO samples. The fact that only

(001) grain sizes are measured is also clearly seen, if the calculated grains sizes by Scherrer are

compared to the film thickness (see table 6.2). Grain size and thickness agree well within the

uncertainties given by the Scherrer formalism.
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6.2. Overlayer thickness

6.2 Overlayer thickness

There are several options to determine the thickness of deposited materials. Four techniques

namely XRR, profilometry, AFM and RBS are presented and compared. The results of the

deposition rates are summarized in table 6.3.

XRR experiments and simulations are used to obtain the film thickness as described in section

5.8. Only thin films can be analyzed with reflectometry measurements (typically between

10 nm and 200 nm) and precision of approximately 0.1 nm are possible with a simple XRR

setup. The disadvantage is that a density contrast between overlying material and substrate

is necessary, also neither the interface nor the surface should be rough. E.g. Si films on a

Si-substrate show no density difference and hence cannot be investigated by XRR.

The easiest way to measure the thickness of thin films is using a profilometer (see sect. 5.11).

The resolution of the profilometer given by the manufacturer is below 10 Å. However, consider-

ing the signal-to-noise ratio, the finite tip curvature and the deformation of the material during

investigation it cannot be assumed that the device has a better resolution than a few tens

of nm. Due to shadowing the step might be smeared out and result in the wrong thickness,

therefore a line scan has to be performed over a wide range of a few µm. In order to have a

good precision thick layers of a few hundreds to thousand nm have to be deposited, which

can be a disadvantage, especially for materials with low deposition rate.

AFM measurements can also, at least qualitatively, give an estimate of the deposited layer

thickness, especially if macroparticles are formed, or if the substrate is still visible in between

the overlayer grains. Here the roughness of the thickest sample still showing the TiN sublayer is

used to interpolate the deposition rate, see e.g. figure 6.7 top for Si3N4 and figure 6.11 bottom

for Si.

RBS is also capable to resolve a film thickness if experiment and simulation are aligned

correctly. The accuracy in the thickness for RBS is in general about 4%. The RBS experiments

have the drawback that a high energy ion beam in the range of 1−3 MeV and hence a linear

particle accelerator, is compulsory. Such accelerators are not found in most materials science

labs. The samples in this work were sent to the ETH Laboratory for Ion Beam Physics, where

the samples were analyzed.

In most XPS devices a sputter gun is present to perform depth profiling of the sample. If the

sputter rate for ion, material, energy and incident angle is known, then the thickness can be

estimated by recording a depth profile. The sputtering time necessary to sputter through a

thin film is reported on the x-axis and the apparent atomic percentages of the elements are

on the y-axis. These sputter rates depend strongly the XPS system used, therefore it is usually

difficult to obtain calibrated sputter rates. Also the precision is rather low due to the slow

decay in the elemental concentration and the fading out of the offset.

XRR is the preferred technique to evaluate thin film thicknesses due to its high precision and
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Material XRR profilometer AFM RBS
TiN 1.7±0.2 1.8±0.1
Si n.a. 10±0.1 8.1±1.0
Si3N4 3.1±0.1 3.1±0.1 3.1±0.1
Si3N4 (w/ Bias) 4.2±0.1
AlN (gun1) 2.0±0.1 2.0±0.5
AlN (gun3) 1.4±0.1 1.0±0.2

Table 6.3: Deposition rates of different techniques in nm/min. The growth rate for Si3N4 with
Bias was obtained for a bias of −250 V.

facile operation. If, however, no XRR results could be obtained due to the limitations men-

tioned above, then profilometry was used to measure the deposit thickness. The comparison

shows that the thickness determination agrees well among the different techniques.

Many parameters influence the deposition rate: applied power, pressure, magnetic field,

sputtered material, temperature and the distance between targets and substrate are just

some of the factors that are affecting the film thickness. Magnus et al. [42] showed that

the substrate temperature between 200 ◦C and 600 ◦C has only a minor influence on the

deposition temperature. All other parameters were kept constant as described in section 4.

Due to internal multiuser machine management the targets have been shifted to different gun

positions. Since the different position have different target-substrate distances and different

magnetic fields, therefore the deposition rates differ, e.g. AlN deposited from gun 3 has a

deposition rate of 2.0±0.1 nm/min and from gun 1 of 1.4±0.1 nm/min.

Another uncertainty in the thickness of the deposited films arises from the deposition time.

The latter is not exact and may vary due to the shutter opening and closing. The error is

estimated by up to 1 s, resulting in uncertainties up to of 0.17 nm for Si. The deposition rate

is also not constant over time, since the race track depth of the target is also influencing the

deposition rate slightly (sect. 2.3). The relation between track depth and deposition rate has

not been determined. The overall error in the thickness is estimated to be up to 0.25 nm for

materials with high deposition rates as Si, while for low deposition rates as for AlN and Si3N4

the error is estimated to be about 0.05−0.1 nm.

6.3 Topography measurements

It has been reported by De Bernardez et al. [400] and Yan et al. [364] that the surface roughness

influences XPS measurements, hence prerequisites are flat inter- and surfaces. Therefore

AFM imaging has been performed to gain insight on the interface and surface topography.

The growth mode is not in the focus of this thesis, hence the growth behavior is not further

discussed.

All surface topography measurements were done with an AFM as described in (sect. 5.6), the
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6.3. Topography measurements

roughness Sa was calculated following equation 5.12. First, substrate and pristine TiN surfaces

were measured (sect. 6.3.1), and then the different overlayer materials and their roughness

in dependence of the film thickness (sect. 6.3.2) were studied. All AFM figures shown in the

left column are scans of 4×4µm2 and in the right column scans of 0.5×0.5µm2. Please note:

The shown AFM images are all scaled differently in order to see all features of all samples.

6.3.1 Substrate and TiN topography

Substrates were scanned by AFM before annealing them at 800 ◦C. AFM images of the sub-

strates are shown in figure 6.5 and summarized in table 6.4. The pure MgO (001) substrate

shows a roughness of 0.14±0.05 nm, basically being atomically flat. The AFM images of

TiN on MgO (001) also indicate what can be seen clearly in UHV-STM images of Karr et al.

[241, 254], revealing that the morphology of TiN is dominated by growth mounds with a size

of 40−100 nm [42].

Due to the problematic polishing process performed by the manufacturer [401] the MgO (111)

substrates have a higher surface roughness of 0.46±0.25 nm and deep grooves of up to 5 nm.

The used Si-wafers (001) are as rough as MgO (111), but show rather roundish surface patterns

compared to the scratches in MgO (111).

The TiN overlayers (shown in fig. 6.6) have a thickness of approximately 30 nm and were

all deposited at 800 ◦C. TiN surfaces on MgO (001) and Si (001) substrate are fairly flat

(0.18±0.03 nm and 0.31±0.05 nm respectively), while for TiN on MgO (111) a rough surface

of Sa = 1.2±0.3 nm is observed. TiN grows epitaxially on MgO [231] at 800 ◦C. The reported

surface roughness of TiN on Si varies over a wide range e.g. 0.27 nm [402] to up to 30 nm

[39]i.The topography of TiN on MgO(111) shows grooves and a high roughness due to the

already scratched substrate surface. Under the given conditions TiN wets Si quite well and

hence the rough Si surface is flattened by the TiN layer. As described earlier in sect. 2.4 the

film structure and hence the roughness are influenced by the process parameters.

material roughness Sa [nm]
MgO (001) 0.14±0.05
MgO (111) 0.46±0.25

Si (001) 0.41±0.13
TiN on MgO (001) 0.18±0.03
TiN on MgO (111) 1.17±0.33

TiN on Si 0.31±0.05

Table 6.4: Roughness values are given in nm and calculated by equation 5.12 using only the
4×4µm2 images and performing a parabolic background fit.

iRoot mean square roughness is used, while in this thesis the arithmetic averaged roughness (sect. 5.12) is used.
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Figure 6.5: AFM images of pure MgO-substrate ((001) and in (111)) as well as Si (001) are
shown.
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Figure 6.6: AFM images of TiN deposited on MgO(001) and MgO(111) as well as on Si(001) are
shown.
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6.3.2 Overlayer topography

Different overlayer films (AlN, Si3N4 and Si) were deposited on the TiN (001). The roughnes

values are investigated for different overlayer thicknesses and in the case of Si also at different

temperatures. It is shown that in the TiN/AlN and TiN/Si3N4 systems the roughness decreases

with overlayer thickness, while Si bilayers show the opposite behavior.

Si3N4 overlayer topography

Thin Si3N4 films on TiN (001) show a leaf-like pattern that smears out with increasing layer

thickness. Thicker Si3N4 overlayers show flat mounds and considerably lower roughness

(fig.6.7). A direct comparison between Si3N4 film thickness and roughness is shown in figure

6.8. It is seen that the surface roughness decreases until a thickness of 1 nm is reached. Si3N4

films thicker than are considered atomically flat. The observed grooves in thin Si3N4 (e.g. for

t = 0.5 nm, top left in fig. 6.7) look like the patterns in the TiN on MgO (001), that are only

partially covered by thin Si3N4 films. The top layer first forms islands (Volmer-Weber growth)

that grow and at one point are in contact and coalescence [230].

AlN overlayer topography

AlN films (fig.6.9) show a very similar topography as Si3N4, here a roughness below Sa = 0.3 nm

is reached already for film thicknesses of 0.5 nm, indicating a better planar growth (Stranski-

Krastanov or Frank-van-der Merwe growth) behavior for AlN than for Si3N4.

Si overlayer topography

The Si films on TiN show a completely different pattern(see 6.12, top and middle). Large

islands of up to 250 nm are formed during deposition at 800 ◦C and are equally distribute over

the full surface. Si deposited at 800 ◦C shows a minimum roughness of 2 nm that increases

with the film thickness up to 8 nm (fig.6.12). At lower temperatures 500 ◦C (see 6.12,bottom)

the mobility of the film-forming Si atoms is reduced and the formation of large islands is

restrained.

6.4 TEM of TiN/Si3N4 multilayers

Within this thesis the TEM samples are used to obtain information on the interface topography

and the TiN crystallinity. In figure 6.13 a multilayer TEM picture is presented (the sample

has been prepared by Magdalena Parlinskaii). The sample was prepared under the same

conditions as the bilayer systems where the growth direction is [001](sect. 4.3). The multilayer

is composed of ≈ 4.0 nm thick TiN layers and Si3N4 interlayers with increasing thickness,

iiThe author would like to thank Magdalena Parlinska for the sample preparation and the introduction to TEM.
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6.4. TEM of TiN/Si3N4 multilayers
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Figure 6.7: Si3N4 of different thicknesses deposited on TiN at 800 ◦C, roughness Sa is given as
the averaged roughness of the particular sample. For details see text and figure 6.8. Note the
different range scales.
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Figure 6.9: Roughness Sa of AlN of different
thicknesses t deposited on TiN (001).

every second layer the Si3N4 layer thickness is increased by ≈ 0.3 nm. It is clearly seen that

the sc-TiN continuesly grows epitaxially up to ≈ 0.6 nm thick Si3N4 interlayers. For thicker

Si3N4 layers the TiN layers show grains with different orientations due to loss of coherence

with the underlying Si3N4 layer. This is in agreement with the TEM studies reported by [188]

who reported an epitaxial stabilization of cubic SiNx of up to ≈ 0.7−1.0 nm. The TEM picture

shows further that the interface TiN/Si3N4 is atomically flat, which is essential for the following

AR-XPS measurements.
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6.4. TEM of TiN/Si3N4 multilayers
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Figure 6.10: AlN of different thickness deposited on TiN at 800 ◦C, roughness Sa is given as
the averaged roughness of the particular sample. For details see text and figure 6.9. Note the
different range scales.
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4 nm [010]    ●

Figure 6.13: TEM image of a TiN/Si3N4 multilayer system, with a magnification of 600k.

90



7 XPS of pristine TiN

This chapter is the basis for the further evaluation of the bilayer systems(chapter 8). The

shake-up of pristine TiN and its properties and dependences are required to resolve later an

interface signal ratio ri .

A quantitative evaluation of a XPS spectrum requires knowing the identity of all photoelectron

(PE) peaks contributing to the total experimental spectrum ((sect. 7.1)). Additionally it is

indispensable to properly reproduce the relative intensity, wherever it is dictated a priori by

quantum mechanics, as e.g. in the case of multiplet splitting. Any fitting routine that does

not appropriately reproduce such constraints, may lead to erroneous interpretations. The

values of the peak intensities, as determined by fitting routines, are influenced by the choice

of the background function, by overlapping peaks and also, in the case of single-crystalline

materials, by photoelectron diffraction (XPD) effects. Therefore special care on the diffraction

patterns, as explained in section 7.5 has to be taken before evaluating peak ratios.

All XPS spectra were recorded according to the description in 5.1. An overview spectrum is

shown in 7.1. Each element contained in the sample, is represented by several photoelectron

peak, which are discussed in the following section.

7.1 Binding energies of TiN

A XPS spectrum of stoichiometric TiN, recorded using monochromatic Al Kα radiation, is

shown in figure 7.1: it contains the core level lines originating from Ti (Ti 2s, Ti 2p, Ti 3s, Ti

3p), those of N (N 1s) and surface contaminations of O (O 1s) as well as Auger transition lines

from Ti and N and the Ti−N hybrid states close to the valence band. The Ti 2p peak (also see

detailed spectra in fig. 7.5) shows a clear spin-orbit splitting of 5.74±0.05 eV between Ti 2p3/2

and Ti 2p1/2 . As mentioned above, an additional peak at lower kinetic energies is observed on

the Ti 2p main peaks, called shake-up.

As described in section 5.1, no binding energy EB reference peaks (e.g. C 1s or Ar 2p) were

available; all binding energies are shown as measured. Several surface effects (e.g. surface
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Figure 7.1: A full XPS spectrum of TiN containing Ti, N and a small amount of O.

charging or oxygen, see sect. 3.9) can cause a binding energy shift for different AOE. In the

following the energy shifts due to oxygen, charging at the surface and instrumental influence

are first studied for the case of polycrystalline (pc-)TiN. Additional shifts in the binding energy

are resolved for sc-TiN samples, this is discussed in section 7.5.

A strong sample charging is not expected since the sample has been carefully grounded (sect.

4.4) and only a small energy shift of the spectra is observed (fig. 7.2). An instrumental influence

on EB is excluded, since the analyzer calibration is independent of the AOEi(Appendix D).

Fig. 7.2 shows how the binding energy EB is influenced by the AOE, note values of ∆EB,oxy

and ∆EB,ch are plotted in the right axis. The noise in a single angle-resolved scan (with 36

different angles) is quite high. Averaging over six angel resolved measurements resolves that

EB is affected by the AOE. An empirical function fEB
ii is chosen to fit the data (yellow line in fig.

7.2). The function contains an exponential decaying (black dotted line) and an exponential

increasing function (black dashed line) to describe the influence of surface effects.

Oxygen is accumulated at the surface and results in an increase of ∆EB,oxy =0.5 eV for high

angles of emission, i.e. for information stemming from PE emitted close to the surface.

The increase of ∆EB,oxy is ascribed to surface oxides forming TiOxN1−x. Binding energies

for TiOxN1−x between 455.4 eV [330] and 456.8 eV [309] were reported; they overlap with the

shake-up and the main peak. The TiOxN1−x contribution has not been resolved due to the low

iReference measurements on gold show an decrease from 0◦ to 70◦ of 0.05 eV and the standard deviation for
the gold peak is 0.03 eV for an energy resolution of 0.125 eV.

ii fEB = E0+A exp(cosΘ/a)+B exp(−cosΘ/b);Θ= AOE, the parameters E0, A, a,B and b have no direct physical
meaning.
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measurements (crosses) for each AOE, the averaged values (bold crosses) and two fit function
describing the increase of EB due to oxygen contaminations (black long dashed line) and due
to surfaces effects (black small dashed line). See text for details.

oxygen content. This oxidized component of TiN was not subtracted from the spectra, which

resulted in a small shift in the binding energy of the main TiN peak line.

Surface charging results in a decay of ∆EB,ch =−0.3 eV in the binding energy with increasing

AOE. Johansson et al. [403] calculated a binding energy shift of −0.07 eV for Ti 2p and N 1s

between surface Ti 2p atoms and bulk atoms due to a lower coordination of the atoms at the

surface. The remaining decrease in EB is assigned to a slightly negatively charged surface. All

surface effects are hidden in the EB signals. Increasing (∆EB,oxy) and decreasing components

(∆EB,ch) influence each other, i.e. if the fit function describing ∆EB,oxy is increased artificially

then ∆EB,oxy is decreased manually. Hence the obtained value are guidance value and cannot

be considered as absolute.

More experimental support for charging and different surface termination is gained by analyz-

ing the energy difference ∆E(Ti 2p3/2,N 1s) between Ti 2p3/2 and N 1s core levels (see fig. 7.3).

∆E(Ti 2p3/2,N 1s) reveals that for bulk sensitive angles (low AOE) both binding energies were

shifting similarly. This indicates that the effect described by ∆EB,ch is either due to sample

charging and/or a different surface coordination.

The shifts are systematic and can therefore be either extrapolated or subtracted from the

data. Surface and interface charging in bilayer systems are further revealed in section 8.4. The

binding energy EB is hardly influenced for AOE of 0◦, surface charging, surface termination

and oxygen effects are minimal at 0◦. No energy referencing (e.g. to C 1s) is possible and
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Figure 7.3: Binding energy dif-
ference ∆E(Ti 2p3/2,N 1s) between
Ti 2p3/2 and N 1s averaged over
three angle-resolved measurements,
for angles below 45 degree no in-
crease in ∆E is observed.
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therefore the binding energy has been corrected by the oxygen offset ∆EB,oxy at an AOE of 0◦

for all bulk EB values in TiN as shown in table 7.1.

All analyzed sc-TiN(001) samples have a binding energy for Ti 2p3/2 of EB = 455.1±0.1 eV.

As a comparison to the above described angle-dependent treatment the binding energy for

Ti 2p3/2 was plotted versus the oxygen concentration and extrapolated to a zero oxygen content

binding energy (see fig. 7.4). In this way 455.0±0.1 eV was obtained for the binding energy

for the Ti 2p3/2 of oxygen-free TiN. A low oxygen concentration is mainly measured for low

AOE and as a result both methods (EB vs. AOE or EB vs. cox y ) are tantamount. For lower

oxygen concentrations a smaller scattering of the binding energy data was found than for

higher oxygen concentrations; the latter were measured mainly for high AOE and showed this

deviation due to generally low intensities for those angles.

Table 7.1 summarizes all binding energies EB for pure TiN(001) samples and all bilayer systems

under investigation. The uncertainty shown in table 7.1 has been calculated using the standard

deviation of the binding energies of four similarly fabricated TiN (001) samples. Within each

measurement the error is higher, but was decreased by the above described fitting routine.

The peak criteria as described in section 5.2 were applied. The shake-up and plasmon lines are

very broad. The shake-up is an energy loss process, which is not from one single localized state

to another, but rather a multitude of different excited states. Hence the shake-up is not one

EB peak but a convolution of many smaller peaks that cannot be resolved, this appears in the

spectra as one broad energy line. Plasmon peaks are caused by exciting valence electrons into

oscillating states with certain frequencies, there is also not one single frequency mode in which

the excitation can occur. The convolution of frequencies results also in a peak broadening.

For bilayer systems consisting of an overlayer on top of TiN the oxygen components (O-Ti and
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angles of emission. An increase in
the binding energy with the oxygen
content (as measured by XPS) is
observed.

O-N) are not resolved due to a low oxygen concentration, this results in broad oxygen energy

lines.

There is also a binding energy shift with AOE in bilayer systems and this shift dependence

additionally on the overlayer thickness t . A detailed analysis of this interface effect is found in

section 8.4.

7.2 Ti 2p components in TiN

The binding energy EB of Ti 2p3/2 has been analyzed in detail in the previous section, in this

section deals with the other components of the Ti 2p spectra as well as its background BG. For

TiN the spin-orbit splitting energy between Ti 2p3/2 and Ti 2p1/2 is found at 5.83±0.09 eV; the

shake-up energy amounts to 2.16±0.04 eV for the 3/2 shake-up. Both values were obtained

by averaging over all measurements and are in agreement with literature data, where values

between 5.5 eV and 5.9 eV for the spin orbit splitting and 2.3 eV to 2.8 eV for the shake-up are

reported [327, 328, 330, 404]. If the oxygen concentration is high enough then the shake-up

lines in TiN can be well separated from any TiOxN1−x contributions, which have a binding

energy of about 3 eV above the Ti 2p states [358]. X-ray satellites (e.g. Kβ) and ghost lines (X-ray

lines stemming from contamination anode elements) can be ruled out as explanations for this

contribution, since they would appear also in all XPS lines for all elements, which is not the

case (see fig. 7.5, 7.7, 7.8 and 7.9). The shake-up feature is not correlated to a surface or bulk

plasmon. The energy difference ∆E3/2 (and ∆E1/2) between the main Ti 2p3/2 (and Ti 2p1/2)

peak and the shake-up depends on the electron total momentum j , for the two spin-orbit split

states a shake-up energy of ∆E3/2 = 2.16±0.04 eV and of ∆E1/2 = 1.78±0.07 eV are measured
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(see fig. 7.6). These values are constant for all angles indicating that ∆E is not influenced

by surface or bulk properties, as for example by surface oxygen or surface plasmons. For

∆E1/2 the variance of the data points is larger than for ∆E3/2, since the shake-up1/2 is strongly

influenced by the surface plasmons that overlap in that energy area. The origin of this energy

difference between ∆E3/2 and ∆E1/2 is discussed in detail below in section 7.8.

7.2.1 Surface and bulk plasmons

Besides the two main peaks and the two shake-up peaks, additional four peaks are visible

after the spectral fitting procedure (sect. 5.2 and fig. 7.5). These peaks are caused by an

interaction of surface and bulk plasmons with the emitted electrons. The two plasmon peaks

at 467.51±0.02 eV and 474.02±0.14 eV showed an increased intensity with higher angle of

emission (fig. 7.10), i.e. they are due to a surface phenomenon and are therefore interpreted

as surface plasmons. They are separated by 6.51±0.15 eV, which is similar to the spin-orbit

splitting of the main Ti 2p3/2 and Ti 2p1/2 peaks. The splitting is not exactly the same as the

spin orbit splitting of Ti 2p, but considering the fact that surface plasmon peaks are broad

(FWHM=7.3±1.4), this agreement seems satisfactory. The large width of the surface plasmon

peaks is a result of each plasmon peak containing the main core level and the shake-up line;

they are further strongly influenced by the even broader bulk plasmon peak (see below) due

to overlapping. The energy loss due to surface plasmons between the center of mass of the

Ti 2p3/2 main peak was 11.6±0.7 eV. The same energy loss was observed for the Ti 2p1/2

components as well as for the shake-up peaks. This is exactly the same value of energy loss

that was also observed for the Ti 2s core shells due to surface plasmons (see 7.8). Second order

surface plasmons are not observed, as their intensity is too small, and their position overlaps
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Figure 7.7: XPS spectrum of N 1s,
from right to left: N 1s main peak,
originating from N−Ti bonds and a
minor N 1s peak from N−O bonds
and two weak bulk plasmons.
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Figure 7.9: O 1s, the oxygen signal at an angle of emission of 20◦ after 2 hours (left) and after
approximately 16 hours of measuring (right)
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with the broad first bulk plasmon at 481.51±0.76 eV. The first bulk plasmon is very broad

(FWHM=10.5 eV) due to the fact that it contains all four peaks from the Ti 2p spectra (Ti 2p3/2 ,

Ti 2p1/2 and their two shake-ups). The energy difference between the center of mass of the

four major peaks at 458.2±0.1 eV and the first and second bulk plasmon are 22.9±0.4 eV and

49±0.2 eV. The energy loss due to the second bulk plasmon is approximately twice that of the

first bulk plasmon loss, indicating that it is a second order plasmon. This is in good agreement

with the results for the first bulk plasmon reported in Strydom and Hofmann [361] (22.6 eV),

and is a bit lower than in Soto [405] (24.7 eV). Further loss peaks, as described in [361] due

to electron transition from N 2p to Ti 3d or Ti 4s, are not observed. Also for the low intensity

Ti 2s peak at 562.5±0.2 eV the plasmon peaks were observed with a kinetic energy lowered

by 11.7±0.3 eV, 26.2±0.1 eV and 49.3±0.2 eV. Those values correspond to first order surface

and first and second order bulk plasmons (see 7.8). After the correct background correction

the plasmon loss features can be clearly separated from the main peak and the shake-ups,

despite the width of the plasmon loss features.

7.2.2 Nitrogen N 1s

The binding energies of the N 1s core level electrons in TiN originating from N bonded to Ti

have been reported to lie between 396.6 eV to 397.4 eV; the values for N bonded to O rang from

395.8 eV to 402.5 eV [328, 358, 406, 407]; also other interpretations of additional peaks are given

in literature [327, 369, 408]. A shoulder, causing an asymmetric peak shape, has been observed

in the N 1s core level peak in TiN and other transition metal nitrides. Instead of using an

asymmetric peak shape as reported in [328], a GL(80) line shape (see section 5.2.2) was used for

the main peak and a second peak with GL(30) was fitted [12]. This allows the separation of the

N−O contribution, which is masked when using a tail function. The main peak of N 1s, shown

in fig. 7.7 has a binding energy of 397.08±0.03 eV; it is accompanied by a smaller contribution

with an approximately five to eight times lower intensity at 399.45±0.12 eV (averaged over all

samples). The main nitrogen peak is assumed to stem from N bonded to Ti and the second

(smaller) peak is assigned to N bonded to O. Esaka et al. [409] resolved in TiN three energy

lines for N 1s at 402.0 eV, 397.8 eV and 396.6 eV and correlated them to the three oxidation

states N3−, N2− and N1−. With increasing oxygen concentration the N3−component increases

and N1− shifts to higher binding energies. Milošev [328] found also two N−O bond peaks

at 400 eV and 396 eV and observed an increase of the intensity ratio I (N −O400eV )/I (N 3−) at

lower AOE. Due to the low oxygen concentration it was not possible to identify the two N3−

and N2− energy lines, and also no increase in the intensity ratio I (N −O400eV )/I (N 3−) could

be observed. For low angles of emission the energy difference ∆E(Ti 2p3/2,N 1s) between

titanium Ti 2p3/2 and nitrogen N 1s is 57.95±0.03 eV (fig. 7.3). This is in agreement with Porte

et al. [310], who reported approximately 58.3 eV for ∆E(Ti 2p,N 1s) in stoichiometric TiN and

interpreted the increase with increasing nitrogen content as an enhanced charge transfer

from Ti to N. A slight increase in ∆E(Ti 2p3/2, N 1s) by 0.2 eV for high angles of emission is due

to surface oxygen, as shown in 7.3. Ti is less electronegative than N and hence the oxidized

binding energy of Ti 2p shifts stronger than EB of N 1s. This results in an increase in the energy
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Figure 7.11: Binding energy difference ∆E(Ti 2p3/2, N 1s) between Ti 2p3/2 and N 1s; the in-
crease in the binding energy difference is correlated to the oxygen content. Data obtained
from one sample for several runs with different angles.

difference ∆E(Ti 2p3/2, N 1s) with increasing oxygen concentration. Saha and Tompkins [369]

reported a shift in the N-Ti line from 395.7 eV to 397.1 eV, if TiN is oxidized. In this thesis the

binding energy shift for the oxidized N-O states of the N 1s peak cannot be resolved, due to

the low oxygen content in the fabricated samples.

For N 1s two plasmon peaks are observed at 12.8±0.2 eV and at 26.0±0.5 eV, see figure 7.7.

Their energy loss is similar to that of the first order surface and bulk plasmon peaks of Ti

2p and Ti 2s, although the nitrogen plasmon peak intensity is much lower than of that from

titanium.

7.2.3 Oxygen O 1s

The O 1s spectrum (given in fig. 7.9) consists of two peak components assigned to O−Ti at

530.80±0.07 eV and to O−N at 532.99±0.27 eV [350]. Here the binding energy is obtained by

averaging over all measurements of all angles, the error is given by the standard deviation. In

figure 7.12 the average for all 235 measurements with different angles of one sample is shown

to illustrate the effect of averaging on the else very noisy measurements. Both components

have about the same intensity, indicating that oxygen is bonded to equal parts to titanium

and to nitrogen. The amount of oxygen at the surface and in the bulk material is small (below

0.2at% in the bulk), therefore the signal to noise ratio is over all angles low. In order to have a

consistent peak fitting for such low intensity signals, the same FWHM for both O 1s peaks had

101



Chapter 7. XPS of pristine TiN

Figure 7.12: Averaged O 1s spec-
tra of one sample for 235 measure-
ments at different angles.
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to be used. During the XPS measurements their intensities increased slowly (sect. 7.7). Due

to the low intensity no binding energy shift depending on the angle can be resolved, and no

interpolation to an AOE of 0◦ is performed: instead the binding energies are averaged over

all angles and samples (fig. 7.12). A third peak can be identified, if the statistical quality is

enhanced by averaging over more than 200 angle-resolved measurements. This photo line has

a binding energy of 534.3±0.5 eV, its intensity is ≈ 1at%, the interpretation of this peak is for

such low intensities pure speculation and not in the scope of this study.

7.2.4 Valence band

The low binding energy spectrum, including the valence band region, is shown in fig. 7.13.

About 16 eV below the Fermi level the N 2s states are observed, similar to Porte et al. [310] who

reported 16.6 eV. The hybridized N 2p - Ti 3d states are found at 6 eV below the Fermi level

and show a lower intensity compared to those reported by Porte, which is attributed to the

lower oxygen concentration in the TiN deposited in this work. This band contains the covalent

Ti−N bonds, which are considered the reason for the high mechanical hardness [410] and the

high melting point of TiN [411]. The drop in the DOS towards lower binding energy between

6 eV and 11 eV is due to a complete hybridization of the N 2p and Ti 3d states. Around the

Fermi level Ti 3d1 states contain delocalized electrons and give the material its relative high

electrical conductivity [328].
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Figure 7.13: Valence band region
of titanium nitride. The electronic
states at the Fermi level originate
from Ti 3d, at around 6 eV hy-
bridized N 2p-Ti 3d states are found,
and at around 16 eV N 2s states are
present.

7.3 Background corrections

In section 3.7 the rising of a background (BG) has been explained and different BG types have

been presented. In this section the advantages of the Universal Two-parameter Tougaard

background (U2T) are elucidated and discussed.

Figure 3.6 present the Ti 2p spectra with a linear or a Shirley BG subtraction respectively. In

both cases the BG limits were set to 451−466.5 eV. The onset of the linear BG at around 451 eV

shows that the BG is higher than the measured count rate, which is not physical. Considering

that this cut-off is part of the peak integral results in a big error for the integrated peak

area. Also the shake−up1/2 and Ti 2p1/2 fits are overestimated, while the 3/2 components are

underestimated. The Shirley BG gives the correct onset, but the 1/2 and 3/2 components are

even more over- and underestimated respectively. Additionally the peak positions are shifted

and do not represent the measured data. It is concluded that neither the linear nor the Shirley

BG do fulfill the quantum mechanical requirements, which should yield area ratios for Ti 2p1/2

and Ti 2p3/2 of 0.515, as given by the Scofield’s cross-sections [342]. A wrong set BG results

also in a falsified binding energy. The fitted EB for non-distinct peaks is slightly changed for

different BGs, e.g. using a Shirley BG results in a energy difference in ∆E3/2 = 1.95 eV while a

U2T BG gives ∆E3/2 = 2.16 eV (sect. 8.6.1).

An advanced technique to calculate the background functions was developed by Tougaard et

al. [317, 333]. Applying the Tougaard BG to the Ti 2p spectrum (fig. 7.5) results in the correct

Scofield ratio for all 1/2 and 3/2 components, even without setting them to a fixed value in

the fitting parameters (see table 7.1). Additional peaks are revealed that are diminished by

the linear or Shirley BG. Those peaks will be discussed later, first we focus on the background
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Figure 7.14: Intensity spectra of
pure TiN and a TiN/Si3N4 bilayer
system with 1.6 nm of Si3N4 .
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description.

In the universal two-parameter Tougaard (U2T) BG (sect. 3.7), two parameters B and C for the

inclination and the curvature of the BG are used; typically: B = 681.2 eV2 and C = 355.0 eV2

[332].

In figure 7.14 the results for pure TiN at an angle of emission of 0◦ and for TiN covered with

1.6 nm Si3N4 for AOE of 0◦ and 60◦ are plotted. The spectral intensity does not change for

binding energies higher than 50 eV above the Ti 2p3/2 energy line. Under the same angle a

Si3N4-covered TiN sample shows a higher increase in the BG than an uncovered TiN sample.

The emitted Ti 2p electrons undergo more inelastic scattering while traveling through the

Si3N4. This inelastic interaction causes a decrease in the kinetic energy of the PE and hence in

an increase in the BG. For higher AOE the traveling length, the amount of inelastic scattering

events and the BG increase. Therefore the factor B has been allowed to adjust the BG to the

limits on the high BE side of the selected peak region, while the curvature given by C is chosen

to be fix to C = 355.0 eV2.

In single crystalline materials the intensity of elastic scattering events are enhanced in the crys-

tallographic principal directions, and therefore the intensity shows a clear angle-dependent

behavior. This phenomenon is called elastic forward scattering and results in the so-called

X-ray Photoelectron Diffraction (XPD, see sect. 7.5). Along certain crystallographic directions

high energy electrons undergo forward focusing, i.e. less inelastic and more elastic scattering

occurs. This is not only seen in the intensity (fig. 7.17) that shows a clear angle dependence,

but also in the BG parameter B (see fig. 7.15). For pristine sc-TiN clear diffraction patterns are

observed in B. The averaged value for B in TiN is 657.1±19.9 eV2 in accordance with literature
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Figure 7.15: The BG parameter B re-
veals fluctuations that can be clearly
correlated to XPD. Shown are B for
pure TiN (cross) and TiN covered
with 1.6nm thick Si3N4 overlayer (di-
amonds).

[332]. On the other side, for Si3N4 overlayers the diffraction patterns are strongly reduced, and

the overall BG increases from B = 800 eV2 to over B = 950 eV2 from low AOE to high AOE.

7.4 TiN line shape

The exact line shape asymmetry of any given material cannot be calculated analytically; there-

fore the line shape of Ti 2p3/2 and Ti 2p1/2 in TiN is estimated by a reasonable modification of

the line shape in pure Ti, which is considered below. All other elements have been analyzed

using the line shapes given in 5.1.

Metallic titanium line shape The line shape of a XPS peak is strongly influenced by the

valence band density of states. Typically metals show an asymmetric contribution at high

binding energy, while insulators show symmetric line shapes [315, 412]. Figure 7.16 shows the

spectrum of a sputter-cleaned oxygenfree Ti target. As discussed above a U2T BG has been

subtracted, and three energies lines have been fitted: Ti 2p3/2 , Ti 2p1/2 and a broad plasmon

(compare to [280]). The latter is most likely not a single plasmon, but rather contains all kind

of extrinsic losses (e.g. several surface and bulk plasmons). The line shape of the metallic Ti

2p peaks has been adjusted by the Chi square refinement, a shape described by a standard

Gaussian-Lorentzian product [315, 316] combined with a tail T has been determined (sect.

3.6). For pure titanium the optimal peak shape of GL(20)T (0.65) has been found. The author

is aware that the residual could be even further decreased by separating all components of the

plasmon peak in their origin. For this purpose further measurements, e.g. High Kinetic Energy

XPS (HIKE) would be required. The exact shape of the titanium peak is not within the scope of
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Figure 7.16: A Ti 2p spectrum of a pure Ti target after sputter cleaning is shown, the BG
subtraction is a U2T.

this work.

Titanium nitride line shape The line shape is decisive for an accurate determination of the

shake-up ratio rb (eq. 5.1). Differences in rb of up to a factor of three are found between

e.g. GL(20) and GL(30)T(0.88) line shapes. Since the exact line shape of TiN could neither

be extracted nor calculated, therefore the following approximation was used to describe the

main Ti 2p peak in TiN: Pure titanium shows an asymmetric peak shape, as described above,

with a tail value T of 0.65. Metallic Ti has four valence electrons in the 3d24s2 configuration

within a broad valence band of approximately 1 eV, leading to a tail formation, while TiN has a

delocalized Ti 3d1 state at the Fermi level and a fully hybridized N 2p-Ti 3d band. Both bands

are separated by a pseudo-gap of approximately 2.5 eV [305]. Only the delocalized Ti 3d1 states

add up significantly to the tail intensity. Therefore in TiN only one valence electron instead of

four (like in metallic Ti) can contribute to the tail, resulting in a decrease in the tail area of the

Ti 2p line in TiN by about a factor of four. The intensity of the tail for metallic Ti is described

by an exponential function e−T ·E with E being the kinetic energy. A decrease of the tail area a

factor of four with respect to metallic Ti means an increase of the T value by a factor of four.

The calculation to determine the peak tail can be found in the Appendix B. It is found that the

tail decay is so strong for T values higher than 2.5 that it can be neglected, and the fit function

becomes symmetric. Therefore a simple GL(20) without tail line shape is perfectly sufficient

and has been used for the line shape of Ti 2p in TiN.
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Figure 7.17: Ti 2p3/2 intensities for
sc- and pc- TiN samples. The inten-
sities are scaled for a better repre-
sentation. The plotted lines repre-
sent a fit function (eq. 5.4). data la-
beled TiN(001) and (111) represent
sc-TiN layers with the surface nor-
mal being the crystalline orienta-
tion [001] and [111] respectively.

7.5 XPD patterns in TiN

As explained in section 5.4 forward focusing and diffraction occur for photoelectrons emitted

from a single crystalline material such as sc-TiN. The intensity of photoelectron lines (e.g.

Ti 2p3/2 ) is modulated as a function of the AOE (see fig. 7.17). The patterns are correlated with

the crystalline symmetry of the sample and vary therefore in AOE according to the crystal plane

orientations of the sample under investigation. Photoelectrons of Ti2p3/2 have a relatively

high kinetic energy (Eki n ≈ 1031.5 eV), well above 500 eV where the XPD patterns are generally

dominated by forward focusing. All AR-XPS measurements of sc-TiN(001) samples are angle

scans, where the sample is tilted around the [010] axis. Sc-TiN(001) samples (crosses, in fig.

7.17) show a maximum in the Ti 2p intensity at 0◦ and two local maxima at approximately

12◦ and 40◦. This is in accordance with the observations of Timm et al. [378], shown in figure

5.4. The three maxima represent the forward focusing in [001], [104] and in [101]. Sc-TiN(111)

(circles) has four maxima at about 0◦, 20◦, 38◦ and 53◦, representing the forward focusing in

[111], [112], [011] and [010]. Polycrystalline TiN (triangles) shows an initial decrease for angles

above 10◦, which continues linearly at lower rates for higher angles. As expected, no forward

focusing is observed. A wrongly set focus of the analyzer entrance lens results in a diffuse

intensity (squares), having only a shallow maximum for an AOE of 25◦.

The intensities of the Ti 2p shake-up3/2 , Ti 2p3/2 and N 1s of a sc-TiN(001) sample are shown

in figure 7.18. The maxima in the [104] and in [101] direction for all three photoelectron

lines are slightly different. Photoelectrons with a different origin and hence a different Eki n

undergo a different kind of diffraction in XPD. This influence is small for the two XPD patterns

of shake-up3/2 and Ti 2p3/2, where the difference in Eki n is only about 2.2 eV; their diffraction
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Figure 7.18: Intensities of TiN (001)
photoelectrons of different origin
with different Eki n .
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patterns hardly differ. The slight difference of ∆Θ≈ 1◦ in the fitted maxima is too large to be

explained by the different EB and therefore attributed to the low resolution in the AOE of the

AR-XPS measurementiii. The uncertainty ∆Θ between shake-up and main fit function is later

carried on to the bulk ratio rb and interface ratio ri of the Ti 2p3/2 shake-up and main peak

(eq. 5.11). The ratio of two oscillating functions, which are slightly shifted by ∆Θ to each other,

shows also oscillations. Those oscillations are partially filtered by the applied fitting routines

(eq. 5.1, fig. 7.23).

N 1s photoelectrons show intensity maxima at 17◦, 41◦ and 66◦. The energy difference between

electrons of N 1s and Ti 2p3/2 is about 80 eV and hence the diffraction pattern for N 1s are

shifted compared to Ti 2p3/2. Consequently also the elemental concentration of nitrogen and

titanium show XPD patterns (see fig. 7.26).

The BG is also angle-dependent (fig. 7.15). Minima are observed at 0◦, 22◦ and 42◦ [413]. The

BG value B represents the linear increase of inelastically scattered electrons, the minima occur

at angles, where inelastic scattering is reduced and elastic scattering, i.e. forward focusing

is enhanced. The BG at a certain energy Ex is the sum of all energy losses of all PE with a

lower energy than Ex , hence the BG at Ti 2p also contains the N1s BG. In a forward focusing

direction mainly elastic scattering occurs, resulting in a reduced BG. The minima in the BG at

0◦ and 42◦ of TiN(001) correspond to the intensity maxima at 0◦ and ≈ 40◦ of all Ti 2p and N

1s losses. The BG plateau between 10◦ and 20◦ is a result of a linear combination of the Ti 2p

maxima at 12◦ and the N1s maxima at 17◦. The minimum in B at 24◦ is most likely a outlier.

Not only the intensity and the background are influenced by XPD, but also the binding energy

iiiAR-XPS scans were performed with a step size of 2◦
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Figure 7.19: Binding energy pat-
terns of sc-TiN as observed in six fol-
lowing experiments (thin crosses),
averaged over all six measurements
(bold crosses) and fit line from equa-
tion 5.4(line).

EB . This diffraction effect is only visible after tedious experiments. It is shown for the energy

line of Ti 2p3/2 in what matter EB is changed by the AOE in sc-TiN .

Figure 7.19 shows the binding energy of over 200 XPS measurements that are fitted to equation

5.4. Three local maxima and a global minimum at around 30◦ are observed. The binding

energy for Ti 2p3/2 in pc-TiN increases with the oxygen concentration and hence increases for

high AOE, that is detecting more surface oxygen (sect. 7.1). This causes the increase of the

electron binding energy at AOE above about 30◦.The influence of the oxygen contamination

on EB (as in pc-TiN observed) is excluded by subtraction the EB fit curve of a pc-TiN sample

(fig. 7.2) from the EB fit curve of a sc-TiN sample (fig. 7.20).

The black line in fig. 7.20 represents the binding energy difference between sc-TiN(001) and pc-

TiN. A negative value means that EB in sc-TiN is lower than in pc-TiN. Four local minima at 0◦,

10◦, 30◦ and 65◦ as well as three local maxima at 4◦, 18◦ and 46◦ are observed. Minima in EB are

approximately in the same crystalline directions as intensity maxima due to forward focusing

(see fig. 7.17). The higher PE intensity in these directions is a result of more PE that stem

from deeper regions in the sample, which are forward focused along certain crystallographic

directions. Hence the change in EB might be correlated to a change in the depth information

of the PE emerging from the bulk or the surface. Surface effects result in a higher EB at the

surface as described in section 7.1. Oscillations in EB are observed in all single-crystalline

samples investigated in this thesis (see fig. 7.20 and 8.6) and are result of different electron

states at the surface/interface compared to the bulk.
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Figure 7.20: Fitted binding energy
for Ti 2p3/2 in sc-TiN (as shown in
fig.7.19) and the energy difference
between sc- and pc- TiN.
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7.6 Bulk ratio rb in sc-TiN

All fabricated samples are oxygen-free in the bulk, but have a slight oxygen contamination at

the sample surface, even though all precautions as described in sect. 4.5 and 4.2 were met. The

energy line of Ti 2p(Ti−O) in TiOxNy overlaps with the shake-up line, therefore the measured

ratio Rm increases with the measured oxygen concentration (see figure 7.21).

Five different approaches to calculate the bulk ratio rb of shake-up to main intensity can be

used (sect. 5.5). These five methods are compared in the following and their results are shown

in fig. 7.22.

• The averaged rb is the simplest way of calculating the ratio. The disadvantage is that

bulk and surface values for low and high AOE are averaged, i.e. the mean value contains

also contributions of TiOxNy at the surface, that overestimate the value for rb .

• The linear approach correlates the oxygen concentration with the bulk ratio rb . The

dotted line in fig. 7.21 represents the fit function for this linear approach. Inspection

of measured data and line fit indicate that the fit value for the linear approach is also

overestimated.

• An exponential approach was developed to better represent the data in dependence of

the oxygen concentration. This method is purely empirical, but as will be seen in the

next paragraphs, is sufficient to describe the bulk ratio.

• The XPD approach uses the angle-dependence of the forward focused intensities and

uses the ratio of Ip,0 of shake-up to main (eq. 5.4). A slight difference in the diffraction
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Figure 7.23: The area ratio Rm =
Sm/Mm increases with increasing
angle of emission and also increases
over time due to oxygen contami-
nation. The ratios are shown for
the first measurement directly after
deposition (triangles) and after 72
hours in the spectrometer (empty
circles).
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patterns of main and shake-up (sect. 7.5) is expressed in a shift of the AOE by ∆Θ. This

shift is carried on in this approach and results in an overestimated bulk value rb with a

high uncertainty (sect. 7.5).

• The angle-resolved approach is based on equation 5.1 and is further discussed in the

following paragraphs.

The angle-resolved approach is not directly considering the effect of the oxygen concentration

cox y , but since the measured cox y is dependent on the angle, hence the oxygen content is

indirectly included. The time-dependence of the oxygen concentration is considered, since the

influence of the slowly increasing oxygen contamination is neglected for each angle-resolved

scan (AOE =0◦-70◦) .

Figure 7.23 shows the angular dependences of the measured area ratio Rm for pristine TiN.

It increases for all measurements from low angles of emission to high angles, thus showing

a surface sensitivity. As described above, a small oxygen contamination occurred during

the measuring time, resulting in an increase in the thickness toxy of the oxygen-containing

layer TiOxNy. The thickness can be determined by applying equation 5.1 to the measured

total ratio Rm while keeping the value for ri fix. Figure 7.24 illustrates that the thickness toxy
of the overlying surface contamination slowly increases over time. This increase causes an

increase in the ratio Rm over time in figure 7.23. It is continuous with increasing exposure

time. Applying the fitting of equation 5.1 to all measurements and all four TiN(001) samples

resulted in a bulk ratio rb of the shake-up to the main peak of 1.9±0.1 for single-crystalline

titanium nitride interpolated to pure and oxygen-free bulk TiN. The interpretation of the bulk

ratio rb and the shake-up origin will be discussed in detail below in sect. 7.8.
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Figure 7.24: The thickness toxy of
the oxygen contaminated layer in-
creases slowly during the measuring
time at p = 4.5·10−9 mbar. The oxi-
dized layer thickness has been cal-
culated as described in section 5.5.

All five experimental methods (fig. 7.22) result the same value for rb within their accuracy.

All methods are slightly overestimating the bulk ratio due to the surface contaminations.

The lowest value for rb and a small uncertainty is obtained for the angle-resolved method.

Therefore in the following the bulk ratio rb was derived according to the angle-resolved

approach. Differences in rb between pc- or sc-TiN in (001) or (111) are not observed, also TiN

samples deposited with a bias of −75 V at 200 ◦Civ show the same bulk ratio rb (fig. 7.25). An

insufficient sample grounding (without a Pt frame, sect. 4.4) results in a high uncertainty, but

nevertheless shows the same bulk ratio. Within the error margins all samples independent of

orientation, grounding or bias show the same ratio rb .

7.7 Elemental compositions

The elemental concentrations were determined as described in section 3.8, only intensity

correction factors determined from basic principles were used, no additional adjustment

factor was used. The results of the elemental concentration determinations are given in fig.

7.26. The composition ratio averaged over all angles and all samples was Ti/N = 1.0±0.1,

which is in perfect agreement with the RBS measurement (tab. 7.2).

The sc-TiN samples give rise to diffraction effects (sect. 7.5), that are observed as irregularities

in the monotonous change of the photoelectron intensity of Ti 2p and of N 1s, as the observa-

tion angle is varied (see fig. 7.18). These non-uniform fluctuations cause oscillations in the

elemental concentration (fig. 7.26). For high electron angles of emission the oxygen concen-

ivThe biased TiN samples are nanocrystalline and exhibit compressive stresses, see sect. 6.1.
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Figure 7.25: Bulk ratios of TiN sam-
ples deposited under different con-
ditions. All samples are supported
with a grounding Pt-frame, if not
mentioned explicitly. F.l.t.r.:sc-TiN
deposited without a grounding Pt-
frame, sc-TiN(001), sc-TiN(111), sc-
TiN(001) deposited with a bias and
pc-TiN deposited on a Si-wafer. The
numbers in brackets indicate how
many samples were analyzed. 0
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tration increases, indicating that it is accumulated only at the sample surface. It increases

from 2 at% for an angle of emission of 0◦ to 12 at% for 70◦. The oxygen amount additionally

increased by about an additional 2 at% after 64 hours in the spectrometer at 5×10−9 mbar,

illustrating that the oxygen content was hardly altered by the length of the measurement.

Calibration measurements with ERDA showed oxygen concentrations below 0.2 at% in the

bulk for samples that were fabricated under similar conditions. Therefore it must be assumed

that the oxygen concentration in the bulk is heavily overestimated by the XPS measurements.

Figure 7.27 shows the calculated elemental concentration for different AOE of a TiN/Si bilayer

system. Clearly the Si and O intensities increase with the AOE, while Ti and N decrease. This

confirms that Si and O are located on top of TiN. Similar to the BG (see fig. 7.15) also the

diffraction patterns in the concentration of elements is blurred and less pronounced than in sc-

TiN (see fig. 7.26). The covering material does not crystallize in the same crystal structure, and

hence more inelastic scattering occurs along the directions where forward focusing appears in

pure TiN. In comparison to uncovered TiN also the oxygen concentration is lower for the less

reactive overlayers Si and Si3N4 (not shown).

The Si3N4 and AlN bilayer systems show in general a similar behavior, the elemental concen-

tration as obtained by XPS and ERDA are summarized in table 7.2.

7.8 Comparison of shake-up results with literature

Shake-Ups have been reported in various elements and compound e.g. [414], nickel Ni 1s

[415][416], copper difluoride Cu 2p [417] and nitroanilines N1s [418]. The shake-up feature
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Figure 7.26: Elemental concentra-
tion of a sc-TiN grown on MgO(001)
for different AOE, measured within
the 12 h after deposition.
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is always represented by an additional line peak on the higher binding energy side of the

main peak and is caused due to two possible final states. Experiments indicate that the shake-

up position and intensity convey important information on the materials properties. The

previously mentioned (see reference) energy line types (main lines and plasmons) are well

described and understood in detail. DFT calculations for those lines are straight forward and

therefore easily accessible. All this is not the case for shake-ups. A full understanding of the

process is only possible by time-dependent DFT calculations.

The most comprehensive studies on TiN using XPS have been done by Porte [310], Bertóti

[358] and Milošev et al. [328]. Porte et al. were the first to study the intensity increase of the TiN

shake-up qualitatively as the nitrogen content in TiNx (0.5 < x ≤ 0.98) increases. In that work

all samples had undergone a "very slightly" argon etching prior to the XPS measurements,

and a BG correction was performed; however, it is not mentioned what Ar+ energy and sputter

rate and what BG type were used. The oxygen content in the samples was about 1-2at% and

also carbon species in unknown amounts were present on the surface. Bertóti et al. [358] used

a Shirley background and experienced difficulties with the energy referencing due to the lack

of carbon after sputter cleaning (Ar+, 2.5 kV). The latter was required since up to 30at% of

surface oxygen were present. Argon bombardment generally alters the surface, and the Shirley

background causes less accurate peak ratios between the spin orbit split Ti 2p3/2 and Ti 2p1/2

deviating from the correct value of 0.515. This explains their observation of a lower than 0.5

ratio of Ti 2p3/2 and Ti 2p1/2 . A few years later Bertóti [329] actually showed that the chosen

BG severely affects the results, but quantitative determination remained uncertain. Milošev

et al. were the first to report a quantitative value for the shake-up intensity, being 36% of the

total intensity, while the core level intensity was 58% and the TiOxNy component in the Ti 2p

spectra contributed to 7%. In their studies also a Shirley BG correction and sputter cleaning

has been performed. The focus of that study was on the oxidizing process forming TiNxOy

and on oxidation states in the Ti 2p spectra. In a second step Milošev used angle-resolved

XPS, similar to the work presented here, for quantitative studies of the oxidation states; the

ratio between shake-up and main peak was kept fixed at 0.6. These values are much lower

than what is obtained from the angle-resolved measurements (rb = 1.9±0.1). The samples of

Milošev were sputter cleaned; however, preferential sputtering of N and O most likely led to

understoichiometric TiOxNy (with x+y<1) [176, 329]. As described by Porte [310], a decrease

in the N content is directly correlated with a reduced shake-up intensity, therefore Milošev’s

value can only be considered as a lower limit of the shake-up intensity. In addition the Shirley

BG used in Milošev’s work artificially reduces the intensity of the shake-up more than that

of the main core level. To the author’s knowledge only Milošev et al. [328] have reported a

quantitative value for the ratio rb of the shake-up and the main peak in TiN. Their value is

below the observations made in this thesis. The difference is explained by the preferential

sputtering (used by Milošev) resulting in substoichiometric TiNx and therefore in a lower

shake-up intensity. The XPS spectra of Delfino et al. [404] show also that in TiN the Ti 2p3/2

shake-up intensity is much higher than the main peak, but no numbers are given in there.

From the spectra shown in Delfino et al. [404] it is guessed that also a Shirley or Linear BG
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7.9. Origin of the shake-up

correction has been performed. In this thesis the intensity ratio of the two main peaks (Ti 2p1/2

and Ti 2p3/2 ) was fixed according to Scofield, and a ratio of 0.49±0.04 is observed for the spin

orbit split shake-ups 3/2 and 1/2, which is the same value as for the main peak within the

uncertainty margins. Therefore relative intensity difference between the 1/2 and 3/2 shake-up,

as it is observed in Ni [416] is not observed in the experiments performed in this work. The

discrepancy between the values reported in literature and those presented in this work can

be attributed to energy scale referencing, oxygen contamination, sputter cleaning using high

energy Ar+ ions and an inappropriate background type. In many cases little or no information

is given on the energy scale referencing procedures used. As shown in this work, the peak

positions are significantly influenced by the oxygen concentration and sample charging at

different angles (see fig. 7.2), explaining the scatter in the reported binding energies. Exposing

the sample to air will immediately contaminate the sample surface, and sputter cleaning will

result in preferential sputtering [329]. Transferring the samples ex-situ and sputter cleaning

are therefore inappropriate to investigate TiN. In this work the influence of oxygen at the

surface had been minimized by transferring the sample in situ and assessed by measuring at

low angles of emission. Additionally special care had been taken to prepare TiN with very low

oxygen contents in the bulk material (0.2at%, measured by RBS). It has been shown that the

Tougaard BG provides the most appropriate description, especially for samples with a step-like

BG and for angle-dependent measurements. The Tougaard BG is calculated accounting for the

extrinsic (inelastic scattering) and intrinsic excitations (e.g. due to screening) which can extend

up to 50 eV above the main peak binding energy. A seeming disadvantage of Tougaard BG is

that a wide range of spectra of up to 80 eV has to be recorded, while for Shirley BG corrections

only a 20 eV spectrum is sufficient. However, a Shirley BG cannot account for surface and

bulk plasmons intensities and their effect on the main peak intensity. These features with an

energy loss of approximately 11 eV and 22 eV for first and second order bulk plasmons in the

case for TiN are separated too far away from the main peaks to be accounted for in a Shirley

BG. By choosing a Tougaard BG it is possible to attain the correct ratios for Ti 2p1/2 to Ti 2p3/2

as calculated by Scofield and the surface plasmons show the same multiplet splitting energy

as the main Ti 2p peaks. For these reasons the Tougaard background correction algorithm is

the best choice for an appropriate evaluation of TiN spectra.

7.9 Origin of the shake-up

In the investigations of Porte [310] on N-deficient TiNx the origin the shake-up in TiN is

described to a charge transfer. Porte observed that the shake-up feature increases with the

nitrogen content; and that below a critical limit of x < 0.8 in TiNx the shake-up feature disap-

pears. It was argued that below that limit (x<0.8) the vacancy states can no longer form a band

and become localized, and the wave function and the band do not overlap anymore [310].

This argumentation is tempting, but as described in section 3.5 TD-DFT or CI is required to

gain further insight.
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Chapter 7. XPS of pristine TiN

Shake-up energy∆E The shake-up energy ∆E for TiN is reported between 2.2 eV and 2.8 eV

[88, 310, 328, 330, 358]. In the present work, a value for ∆E = 2.16±0.04 eV for the Ti 2p3/2

in oxygen free bulk sc-TiN is obtained. The discrepancies in literature are due to oxygen

contaminations, sputtering cleaning and incorrect peak fitting. So far only the shake-up energy

for the Ti 2p3/2 has been investigated. A clear difference between the ∆E3/2 = 2.16±0.04 eV

and ∆E1/2 = 1.78±0.07 eV is found in the present work. Similar disparity between the two

shake-ups energies have been observed in metallic nickel [416, 419]. In the case of nickel the

shake-up feature is interpreted with two final states: a 2p53d9 (shake-up) state and a state

2p53d10 (main). The shake-up is composed of several multiplets, and the satellite energy

was calculated using a Born-Haber cycle type approach. The calculations and experiments

show a good agreement for the shake-up energies for Ni 2p3/2 (6.0 eV) and Ni 2p1/2 (4.6 eV)

[416]. To the author’s knowledge no similar calculations have been performed for TiN. The

disparity of ∆E3/2 and ∆E1/2 in TiN can be explained by the coupling of core and valence

band vacancy [420], resulting in two different shake-up energies depending how the holes or

remaining core electrons of Ti 2p3/2 and Ti 2p1/2 couple with the valence electrons. While this

explanation is suggestive, it is by far not sufficient for a complete description of the process: the

transition amplitudes between occupied and unoccupied states, which describe the transition

probabilities, as well as a reliable description (beyond the Kohn-Sham formalism) of the

excited states would be necessary, but is not within the scope of this thesis. Nevertheless

experimental results for ∆E are in the order of what can be explained by an process where the

final state has excited electrons from occupied into initially unoccupied states.

Bulk ratio rb The transition probabilities to excite an electron in unoccupied states has

been calculated by Kochur and Popov [290] and Lowe et al. [421] for single Ti atoms. Their

theoretical values should be in the order of the experimental data presented in this work.

Kochur and Popov [290] calculated the transition probability for different elements and differ-

ent shell excitations and obtained an increase in the shake up intensity with decreasing main

quantum number, transition probabilities up to 0.5 are received in those DFT simulations.

The probability for excited final states of the Ti 3d orbitals is calculated to be 0.1. Those

calculations are for single atoms and not for solid states. Single atoms have discrete energy

levels in which electrons are allowed to be excited. In solids those countable energies levels

merge into broad energy bands. Wider bands and smaller energy gaps between those states

allow more transitions into unoccupied states and result in higher probabilities/intensities for

the shake-up process. A ratio rb = 1.9±0.1 equals to a transition probability of 0.65, i.e. an

increase by a factor of 7 which sounds reasonable for the widened bands.

7.10 Summary of the TiN results

In this chapter it was shown that the binding energies of TiN are influenced by oxygen con-

tamination and surface effects (surface charging and termination), which result in an increase

in the binding energy EB towards higher and lower AOE (sect. 7.1). A self-consitent evaluation
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7.10. Summary of the TiN results

process was applied to the Ti 2p region of the TiN XPS spectra, and all components in the Ti

2p peak were resolved (sect. 7.2 and table 7.1). The shake-up energy depends on the core shell

where the PE is emitted from, and∆E3/2 = 2.16±0.04 eV and of∆E1/2 = 1.78±0.07 eV were ob-

served. Further it was found that the appropriate BG for the Ti 2p region in TiN is the Universal

Two-parameter Tougaard background (U2T BG) (sect. 7.3), which also contains information

on the crystalline structure of the sc-TiN sample. The Ti 2p line shape was estimated using a

tail-approximation and a simple Gaussian-Lorentzian line shape GL(20) without a peak tail T

was found to describe the line shape the best (sect. 7.4). XPD patterns were further resolved

in PE intensities and in binding energies EB (sect. 7.5). The change in EB of sc-TiN might

be correlated to a change in the depth information during the tilting of the sample around

the AOE. High AOE detect more PE emitted from the surface region, which show a higher EB

due to the influence of surface oxygen. The bulk ratio rb of shake-up and main PE line was

calculated and a value of rb = 1.9±0.1 was found. The bulk ratio rb is independent from the

method chosen to calculate it, but is heavily influenced by slight oxygen contaminations. The

crystallinity (sc- or pc-), the crystallographic orientation ((001) or (111)) or an applied bias

during the deposition have no influence on rb . The oxygen contamination is located at the

sample surface of the TiN samples and was compared to other bulk sensitive methods as RBS

and ERDA (sect. 7.7). Therefore AR-XPS was successfully used to resolve the bulk ratio rb in

TiN. All obtained result of the TiN samples were compared to literature and the origin of the

shake-up was discussed (sect. 7.8). It was explained that the shake-up is a direct result of a

multitude of final excited states and that shake-up energy and intensity depend on the core

shell from where the PE are emitted from.
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Chapter 7. XPS of pristine TiN

system assignment binding energy [eV] FWHM [eV]
sc-TiN(001) Ti 2p3/2 455.1±0.1 1.3±0.1

Ti 2p1/2 460.9±0.1 same as Ti 2p3/2

Shake-up3/2 457.3±0.1 3.8±0.1
Shake-up1/2 462.9±0.2 same as shake-up3/2

surface plasmon 3/2 467.8±0.1 7.3±1.4
surface plasmon 1/2 474.0±0.2 same as surf. plas.3/2

1st bulk plasmon 481.2±0.2 10.5±1.9
2nd bulk plasmon 507.4±0.1 10.6±1.1
N 1s (N-Ti) 397.2±0.1 1.1±0.1
N 1s (N-O) 399.6±0.1 2.3±0.1
O 1s (O-Ti)(*) 531.0±0.5 2.2±0.6
O 1s (O-N)(*) 533.1±0.3 same as O 1s (O-Ti)

Si bilayer Ti 2p3/2 455.1±0.3 1.3±0.1
Si 2p 99.4±0.1 1.2±0.1
O 1s 532.2±0.3 2.7±0.6

Si3N4 bilayer Ti 2p3/2 455.1±0.2 1.3±0.1
Si 2p 101.9±0.3 1.8±0.1
N 1s (N-Ti) 397.3±0.2 1.4±0.3
N 1s (N-Si) 398.3±0.5 2.5±0.6
O 1s 532.3±0.3 2.4±0.4

AlN bilayer Ti 2p3/2 455.0±0.1 1.3±0.1
Al 2p 73.6±0.7 1.9±0.3
Al 2s 118.7±0.4 1.9±0.3
N 1s (N-Me) (*) 397.1±0.5 1.4±0.1
N 1s (N-O) 399.9±1.6 1.7±0.3
O 1s 531.9±0.7 2.8±0.4

Table 7.1: Binding energies obtained as described in sect. 7.1, the uncertainties are determined
by the standard deviation of four different samples, that were fabricated similarly. The given
FWHM are the average over all measurements. FWHM in italic indicate that the FWHM was
constraint to the mentioned peak. The values for the bilayer systems presented are averaged
EB over all angles and all measurements. (*)N 1s (N-Me) refers to Me = Al or Ti bonds (sect.
8.4).

Material x in XPS cox y in XPS [at%] x in ERDA cox y in ERDA [at%]
TiNx 1.1±0.1 2.4±0.6 1.0±0.02 < 0.2
SiNx 1.34±0.1 1.2±0.2 1.33±0.01 < 0.1
AlNx 0.9±0.1 4.0±0.1 n.a. n.a.

Table 7.2: Elemental compositions of different samples are compared. In some samples the
oxygen concentration in the bulk TiN was close to the detection limit of ERDA <0.025at%, the
results given are maximum oxygen concentrations in the bulk.
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8 XPS investigations of bilayer systems

In this chapter the results for bilayer systems on sc-TiN(001) are presented, and the physics

behind the shake-up feature are discussed. Section 8.1 investigates the overlayer structure

using XPD, and it is verified that no perturbing factors are falsifying the shake-up intensity at

the interface (sect. 8.2 and 8.3). In the following section 8.4 an interfacial charging is revealed,

which depends on the thickness t of the overlying film.

In figure 8.1 small energy windows (30 eV) of wider spectra taken with a 80 eV width for an

TiN/Si3N4 bilayer system with different AOE are shown. Biased Si3N4 bilayer systems refer

to interface systems, where during the Si3N4 deposition a bias of −250 V has been applied at

the substrate (see chapt. sec:Safabr). It is clearly seen in figure 8.1 that the shake-up intensity

increases with increasing angle of emission (AOE). In bilayer systems the Ti PE signals of higher

AOE contain more information from the TiN interface, therefore the increase of the shake-up

intensity with higher AOE is directly correlated to a higher interfacial shake-up intensity.

These enhanced shake-up intensities are observed for different TiN interface bilayer systems.

Figure 8.2 shows three different interface systems, TiN/AlN as well as biased and unbiased

TiN/Si3N4 bilayers. It is observed that, depending on the overlayer material the shake-up

intensity is altered. The shown spectra in figure 8.2 are detailed spectra of complete spectra of

different bilayer system for one particular AOE. The following sections show, that it is essential

to analyze all spectra of all AOE. The gained information is used to discuss the spectra of figure

8.2 in detail (sect. 8.7).

Seemingly the increased shake-up intensity is correlated to the TiN interface in the investigated

bilayer systems. The interface ratio ri of the shake-up to main peak of Ti 2p3/2 at the interface

is calculated by applying the least square method to equation 5.1. The latter is strongly

influenced by the interface thickness δ, which is discussed in section 8.5.1. In the second part

of this chapter (sect. 8.6), it is shown that interface charging is influencing the shake-up energy

of the systems (sect. 8.6.1). It is further explanied how the shake-up intensity is correlated

to its energy (sect. 8.6.2). The correlation between shake-up energy and intensity is applied

to the interface ratio ri , and the influence of different overlayer systems and their overlayer
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Chapter 8. XPS investigations of bilayer systems

Figure 8.1: Details of Ti 2p spectra of
a biased TiN/Si3N4 bilayer system,
shown is only a short energy range
over 30 eV of the full recorded spec-
trum (80 eV).
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Figure 8.2: Normalized spectra at an
AOE of 70◦ of AlN (t = 1.3 nm, grey),
unbiased Si3N4 (t = 1.4 nm, violet)
and biased Si3N4 (t = 1.4 nm, crim-
son) bilayer systems on sc-TiN(001)
are compared.
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8.1. XPD patterns in overlayers

thickness t is analyzed (sect. 8.6.3).

All results presented in the following refer to TiN (001) bilayer systems deposited at 800 ◦C,

without substrate bias unless indicated otherwise. The different interface phenomena are

demonstrated on the Ti 2p3/2 photoelectron (PE) line in this part of the thesis. The observa-

tions and explanations are, however, not limited to Ti 2p3/2 , but also account for Ti 2p1/2 .

In this chapter only the obtained results are shown and explained regarding their physical

context; a discussion of the results focusing on the bilayer systems is given in section 8.7.

8.1 XPD patterns in overlayers

Forward focusing (sect. 5.4) is clearly observed in pristine sc-TiN. XPD patterns are a versatile

method to study the structure of thin films or structure of adsorbed molecules [365]. To

properly measure XPD pole figures the sample has to be moved about the measured spot in a

polar and azimuthal motion. The experimental system used in this thesis has only the option

of rotating the sample along the AOE and is not designed to record XPD patterns. Nevertheless

the limited range of tilt axis of the sample is capable of giving insight into the structure of the

overlayer. It is not possible to derive the exact crystalline structure, but it can be differentiated

between amorphous and crystalline materials. Figure 8.3 shows the area intensity of the Si 2p

signal versus the AOE for Si3N4 bilayer systems. For each data point of the line more than

five angle-resolved measurements were averaged and smoothed by averaging over the next

neighbor. It is clearly seen that Si3N4 films with a thickness 0.5 nm < t < 0.7 nm on top of TiN

(001) show an enhancement in the intensity of Si 2p for AOE ≤ 10◦. The higher intensity is

caused by XPD and indicates a crystalline structure of Si3N4 for t < 0.7 nm. With increasing

overlayer thickness the intensity of the XPD peak is damped and indicates a growth change

from crystalline to amorphous Si3N4. If a substrate bias of −250 V is used then no XPD in the

Si 2p intensity is observed, suggesting that crystalline growth is prevented by the enhanced

ion energy under applied bias.

AlN overlayers show for thin (t < 0.5 nm) and thick films (t = 1.5 nm) XPD patterns (fig. 8.4).

The diffraction patterns for different t differ in their position and intensity. This indicates

that in AlN films the crystalline structures changes with increasing thickness. Si overlayers on

TiN are not evaluated regarding their XPD patterns, since AFM results show that Si is not fully

covering the TiN sublayer (sect. 6.3).

8.2 Binding energies of overlayer systems

The binding energies for the different interface systems are summarized in table 7.1. Full

survey spectra and detailed spectra of all bilayer systems are found in appendix C. The main

Ti 2p3/2 line lies for all bilayer system at 455.1±0.3 eV. AR-XPS measurements revealed that

oxygen is located at the surface of the overlayer (sect. 7.7). It is generally observed that

overlayers reduce the oxygen contamination after deposition, and it has not been possible for
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Figure 8.3: The intensity of the Si 2p PE line is compared for different Si3N4 overlayers, all
shown values are averaged, smoothed and scaled. From top to bottom: three samples with
0.5 nm < t < 0.7 nm deposited at 800 ◦C without substrate bias, two samples with t = 1.7 nm
at 800 ◦C without bias, three sample with 1.0 nm < t < 1.4 nm at 500 ◦C-800 ◦C with a bias of
−250 V. The dashed lines are parallel and are guides for the eyes.
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Figure 8.4: In AlN the intensity of the Al 2s signal shows a clear angle-dependences due to XPD.
Presented are the results of normalized and smoothed data. The lines of 1.5 nm and 0.8 nm
are obtained from one sample each, while for t < 0.5 nm the data had to be averaged over two
samples due to the low count rate.
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8.3. Oxygen in bilayer systems

the bilayer systems to resolve two different oxygen components (O 1s (O-Ti) and O 1s (O-N)),

as it was possible for pure TiN.

XPS spectra of TiN covered with Si (fig. C.2) show PE lines of Si 2p at 99.4±0.1 eV for silicon

and a pronounced oxygen O 1s energy line at 532.2±0.3 eV [280]. For overlayers of Si3N4 (fig.

C.4) the Si 2p line is found at 101.9±0.3 eV indicating Si−N bonds [422]. The nitrogen binding

energy can be separated in two peaks, one corresponding to N−Ti at 397.3±0.2 eV (sect. 7.1)

and a second peak of N−Si at 398.3±0.5 eV [423, 424]. XPS spectra of TiN covered with AlN

(see fig. C.6) have Al 2p and Al 2s lines at 73.6±0.7 eV and 118.7±0.4 eV, respectively. Both

lines correspond to Al bonded to N [425]. Spin-orbit-splitting is only observed in Ti 2p, the

energy split in Si 2p and Al 2p has been reported to be 0.6 eV [367] and 0.4 eV (respectively)

[425], which is too small to be resolved (see peak criteria in sect. 5.2). Silicide energy lines are

not found in the XPS spectra and indicate that there is no Ti-Si bonding.

8.3 Oxygen in bilayer systems

A big effort has been put into the experimental setup to keep the oxygen contamination as low

as possible. Nevertheless, high surface oxygen concentrations (of up to 18 at%) are present in

the samples with AlN or Si overlayers. In figure 8.5 the averaged oxygen concentration cox y
i is

plotted versus the overlayer thickness of different materials covering TiN (001).

Si3N4 bilayer systems have the lowest oxygen concentration, and the averaged oxygen content

is slightly decreased with increasing Si3N4 overlayer thickness. The biased Si3N4 are in general

showing a lower oxygen concentration than the unbiased systems. This is explained by a

denser material due to higher ion energy under the applied bias [42, 426]. Si films on TiN

reduce the overall oxygen concentration slightly compared to TiN. Si3N4 and Si show a higher

oxidation resistance than the pure TiN and protect it, if fully covered, from being oxidized.

AFM measurements (sect. 6.3) show clearly that Si is not completely covering the TiN sublayer

for thin films. The open voids between the Si grains allows the oxidation of the TiN sublayer

and results in a higher oxygen concentration in the TiN/Si system compared to fully covering

TiN/Si3N4 systems.

In AlN bilayers the oxygen concentration is very high. Both TiN and AlN have highly reactive

surfaces, which result in easily contaminated samples even under UHV conditions. Three data

points stand out (empty gray circles), which are measured for thin overlayers with a thickness

t = 0.4−0.5 nm. The binding energy for Al 2p in those three points is 74.3±0.3 eV and for

the thicker layers EB is 73.0±0.1 eV, while TiN shows no significant change in the binding

energy, neither for thin (EB = 455.3±0.3 eV) nor thicker AlN overlayers (EB = 455.0±0.1 eV).

This indicates that in the thin AlN films the detected oxygen is bonded to Al atoms and forms

AlNxOy. AlN samples with t ≤ 0.5 nm have oxygen contamination between 6 at% and 12

icox y is averaged over the first angle-resolved scan, i.e. the first 36 measurements. Please note that the absolute
oxygen values have a relative error of about 10%. cox y in this section is only used to explain qualitatively the
oxygen influence, hence no further effort has been made to obtain exact values for cox y .
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Figure 8.5: The oxygen concentration is shown as a function of the overlayer thickness of
different materials. The plotted lines are linear fits of the data points. Presented are values for
TiN (yellow stars), Si (blue squares), Si3N4 (purple diamonds), biased Si3N4 (tipped crimson
diamonds) and AlN (gray circles). Data points represented by open symbols are neglected
from the evaluation process (see fig. 8.9). Please note that the thickness scale for Si is plotted
on the top axis, while the Al and Si3N4 thickness values are given on the bottom axis. Also note,
there are two overlapping Si3N4 data points with a thickness of 1.7 nm.
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8.4. Sample charging and interfacial charging

at%. The thinnest sample (t = 0.4 nm) is not fully covering the TiN substrate, and hence the

oxidation uptake of the sample surface lies between that of TiN and AlN. Samples with an

AlN film of approximately 0.5 nm show a large statistical spread in their cox y . For very thin

overlayers the relative error ∆trel in the thickness is large (∆t = 0.1 nm →∆trel = 20%, see sect.

6.2). The wide spread of cox y for t ≈ 0.5 nm indicates a change of the surface morphology

in that thickness range (see also sect. 6.3). Oxygen-free TiN/AlN interfaces with a thickness

t ≤ 0.5 nm could not be obtained under the available experimental conditions. Overlayers

of AlN with a thickness t < 0.5 nm and of Si3N4 with t ≤ 1.0 nm have an enhanced roughness

(Sa ≥ 0.25 nm) and do only partially cover the TiN sublayer (sect. 6.3). Hence they have to be

evaluated separately in the evaluation process and are presented as open symbols in the data

plots. All Si overlayers are excluded, since even t ≥ 10 nm is not sufficient to have a closed

cover on TiN. For the sake of completeness these thin overlayers, which do not fully cover the

TiN sublayer, are partially shown as open blue squares in the data plots, but are not used in

the further evaluation.

8.4 Sample charging and interfacial charging

The hurried reader is directly referred to the summarizing list in section 8.4.5, where the results

of this section are summarized.

Figure 8.6 shows the binding energies EB in a TiN/AlN bilayer system, which displays EB of

Al 2s and Ti 2p3/2 as a function of the AOE. It is clearly seen that bilayer systems with an AlN

overlayer show an angular dependence of the binding energy EB in the Al 2s and Ti 2p3/2 PE

lines. For surfaces sensitive AOE (> 45◦) the values for EB scatter, slightly increase and oscillate.

The effects causing changes of the binding energy with increasing AOE are explained in detail

in section 7.5 and 7.1.

For AOE below 30◦ a clear increase in EB with decreasing AOE is observed for both photoelec-

tron lines (Al 2s and Ti 2p3/2). The increase between 30◦ and 0◦ of Al 2s is stronger than it is for

Ti 2p3/2.

The shift of EB not only depends on the AOE, but also on the film thicknesses of AlN. In figure

8.7 the extrapolatedii binding energy of Ti 2p3/2 and Al 2s are plotted versus the overlayer

thickness t . It is clearly seen, that EB at an AOE of 0◦ of Al 2s and Ti 2p3/2 decreases with the

overlayer thickness t . The thickest sample with t = 1.5 nm shows a slight increase for Ti 2p3/2,

also the value for Al 2s is higher than what is expected from the trend of the EB curve of Al 2s.

A similar behavior is observed for TiN/Si3N4 interfaces, EB also shows an angle dependence

(not shown) and a thickness dependence (fig. 8.10). In the following first the change in EB

of the AlN bilayer systems is discussed and then explanations are given for the TiN/Si3N4

systems (sect. 8.4.4).

iiA linear fit function for values between 0◦ to 30◦ as indicated in fig. 8.6 is used.
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A systematic error due to an instrumental misalignment can be excluded (compare to section

7.1 and appendix D). An increase of EB due to oxygen is also excluded since EB shown in figure

8.7 is measured for bulk sensitive AOE only, and in these samples oxygen is observed mainly at

the sample surface. The change in EB correlated to surface oxygen is explained in the slight

increase of EB for higher AOE (see sect. 7.1 and 7.5).

For pure TiN a shift in EB is observed and has been correlated to surface charging and a

different surface coordination (sect. 7.1). A different surface coordination can be excluded

at the interface, since it is assumed that all Ti atoms are terminated with six surrounding

N atoms at the interface. A formation of a Ti0.5Al0.5N phase at the interface is not expected

from thermodynamical calculations [118–120](sect. 2.2.2). The hypothetical formation of

Ti0.5Al0.5N would also show no change in EB . It has been shown that EB for Al 2p in Ti0.5Al0.5N

alloys is equivalent to EB of AlN (EB (AlN)= 74.3±0.3 eV) [88, 427].

Changes in the work functionΦ of the substrate (see equation 3.1) have been reported for poly-

meric self-assembled monolayers (SAM) [428, 429] and result in a change of the measured EB .

However, an increase in the work functionΦ of the substrate would results in a homogeneous

lowering of EB independent from the AOE.

The only remaining plausible explanation for the shift in EB with the overlayer thickness is

electrostatic charging. In the following the question is discussed whether this charge occurs in

the complete sample (homogeneous charging), at the sample surface (surface charging) or at

the interface (interfacial charging).

8.4.1 Homogeneous charging

Sample charging results in a shift in the binding energy of the PE lines. If the sample has an

additional positive (negative) charge, then the additional Coulomb interaction can retard

(accelerate) the electrons, i.e. a lowering (increasing) of Eki n of the emitted electrons. In the

case of an homogeneously charged sample all PE lines should shift by approximately the same

amount, i.e. energy differences between different photo lines remain constant. In figure 8.9

the energy difference ∆Eo, defined as the difference between the energy of Ti 2p3/2 and Al 2s

in AlN (or Si 2p in the case of Si3N4) are displayed as a function of the overlayer thickness.

It is clearly observed that the energy difference ∆Eo continuously increases with increasing

overlayer thickness.

An explanation for the difference in the decrease of EB could be that the core and valence

orbitals are influenced differently due to the homogeneous charging. Al 2s electrons are

closer to the Fermi level than the Ti 2p3/2 electrons and are more sensitive to the surrounding

electron distribution and as a result are shifting slightly stronger than Ti 2p3/2 . This is not

the case in this bilayer system. A close comparison between figure 8.7 and 8.9 reveals that

in fig. 8.7 the results of EB for the sample with t = 0.7 nm are excluded. This sample has not

been grounded with a Pt-frame (sect. 4.4), and therefore showed strong electrostatic charging
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in the spectrometer. (Binding energies of EB(Ti 2p3/2 )=461.1 eV and EB(Al 2s)=124.9 eV were

recorded for this sample without a Pt-frame.) The full spectrum shifts of more than 5 eV,

but has no influence on the energy difference ∆Eo . Hence the increase in ∆Eo cannot be

correlated to a homogeneous charging of the complete sample.

8.4.2 Surface charging

This paragraph deals with surface charging of only the AlN surface, in contrast to the next

paragraph where a higher overlayer volume charging is discussed.

In general one would expect an increase in EB for charged AlN overlayers, since AlN is an

insulator [267] with a band gap between 5.4 eV and 6.3 eV [430, 431]. During the photoemission

process electrons are emitted from the AlN overlayer and create PE holes. Those holes in the

insulating AlN film are only slowly filled compared to the timescale of the photoemission

process [428] and results in a positively charged AlN overlayer. This charge distribution

interacts due to Coulombic forces with the PE of the AlN film and reduces their kinetic energy,

i.e. increases EB . If the charging is only located at the surface of AlN then EB should increase

with increasing AOE and not as it is observed with decreasing AOE.

Additionally surface charging would only result in an angle-dependent shift of the binding

energy of Al 2s. The buried TiN signals would be not affected by a surface charging of AlN

unless by a charge of opposite sign (i.e. accumulation of negative charge in TiN at the interface,

see next section 8.4.3). Therefore surface charging can be ruled out.

8.4.3 Interfacial charging

Before discussing interfacial charging, it is essential to briefly review the influence of the

overlayer thickness on the measurement geometry (sect. 5.3.2). A thicker overlayer results

- in comparison to a thinner layer - in more information from the AlN "bulk"iii and more

information from the TiN interface (fig. 5.3). In both PE lines (Ti 2p3/2 and Al 2s) EB decreases

with the increasing thickness t , i.e. EB of Al 2s is lower in the bulk than it is at the interface,

and EB of Ti 2p3/2 is lower at the interface than it is in the bulk (fig. 8.8). At the same time the

angle-resolved measurements show an increase in EB with decreasing AOE (fig. 8.6), i.e. EB

of Al 2s is higher in the bulk and interface region than it is at the surface and EB of Ti 2p3/2 is

higher in the bulk than it is at the interface (fig. 8.8).

A negatively charged region results in a lowered EB for PE emitted from this charged region

(see section 8.4.1). Electrons emitted from a positively charged volume have an apparent

higher EB . The AR-XPS results and the change in EB due to the thickness are hence indicating

that the AlN interface region is positively charged and the TiN interface region has a negative

charge accumulation.

iii"Bulk" in this context means a region not in the vicinity of the AlN surface or TiN/AlN interface.
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Figure 8.8: Sketch to
describe the interface
charging.

This charge accumulation is explained by the tendency of insulators such as AlN to charge

positively as a consequence of the photoemission process. A charge build-up at an insula-

tor/metal interface is balanced by charges of opposite sign in the metal [432]. Hence the

positively charged AlN induces a negative charge accumulation at the TiN side of the interface.

This interfacial charging is called extrinsic charging, since it is induced by an external photon

source (X-rays).

The observed interfacial charging can also be explained by intrinsic interfacial charging. An

intrinsic charge accumulation evolves at metal/semi-conductor contacts of bulk material.

Band bending occurs at an interface of bulk metals and bulk semiconductors. The extent

and the width of this band bending region are defined by the band gap, the work function,

the Debye length and the depletion zone of the contact materials. The interfaces under

investigation are thin and obey quantum size effects (QSE), i.e. for thin films in the range of

the de Broglie wavelength of electrons, the electronic structure of the thin films is modified

[433]. The determination of the exact electronic structure and hence the polarization requires

theoretical calculations, which are beyond the scope of this thesis.

However, independent from any QSE, an interfacial charging is observed in these systems. In

a macroscopic picture of the interface, electrons will flow from the valence band of the metal

to the semiconductor or insulator (see sect. 2.2.2, fig. 2.3) and an electrostatic polarization

is induced [27]. This intrinsic effect is heavily perturbated by applying an external electro-

magnetic field, hence it is assumed, that the intrinsic charging effect is rather small compared

to the extrinsic charging. A separation of the intrinsic and extrinsic interfacial charging cannot

be resolved with AR-XPS.

The decrease in the binding energy EB with increasing overlayer thickness is correlated to the

interfacial charging. The decrease in the Ti 2p3/2 energy line is less pronounced than it is for Al

2s. In the following this is explained by a much shorter depletion zone in TiN compared to AlN.

The interfacial region of TiN/AlN has a gradient in the interfacial charging, which can at least

on the "bulk" TiN side of the interface be explained by a depletion zone using band models.

The depletion zone is described by the Debye length. For metals the Debye length is in general

very small (<1 nm), while for insulators the Debye length can be several µm. The accumulated

electrons on the TiN side of the interface are hence located within the first nm, while for AlN
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photoelectron holes are created in the complete film. The angle-resolved measurement of the

binding energy for TiN is probing more than just the first nm, also Ti 2p3/2 photoelectrons

away from the depletion zone are detected. The influence on the binding energy is hence less

pronounced in the Ti 2p3/2 than in the Al 2s, since AlN has a much larger charged volume that

is detected by AR-XPS.

The energy difference ∆Eo of Ti 2p3/2 and Al 2s describes, independent from the description

(QSE or macrosopic band models), the difference in the charging between overlayer and

sublayer. ∆Eo is therefore a parameter that describes the interfacial charging.

8.4.4 Si3N4 systems

Si3N4 overlayers show also an angle dependence in EB, which is similar to AlN bilayer systems

explained by interfacial charging. The binding energies EB of Si 2p and Ti 2p3/2 are decreasing

until a thickness of 0.8 nm and from there on an increas occurs until the highest investigated

thickness of 1.5 nm (fig. 8.10).

Section 8.1 shows that the first two to three monolayers of Si3N4 (t < 0.7 nm) have a different

crystalline structure. DFT calculations by Marten et al. [194] and Ivashchenko et al. [195]

indicate that those structures in first few monolayers are crystalline. The exact structure and

composition is highly disputed (sect. 9.1), but all favored structures have either remaining free
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Figure 8.10: The binding energies EB of Ti 2p3/2 and Si 2p change with the thickness of the
overlying Si3N4 film.

charges at the Fermi level and can be considered as slightly metallic or have only a very small

band gap. This unknown small band gap (sbg-) structure is in the following abbreviated as

sbg-SiNx . An explanation for the EB decrease in thin SiNx overlayers (t ≤ 0.8 nm) could be that

the thin sbg-SiNx films are a semi-conductor and hence similar to AlN electrons accumulate

at the TiN side of the interface while electron holes accumulate at the sbg-SiNx side (see left

side of figure 8.11). The change from decreasing to increasing EB at t ≈ 0.8 nm is an indication

for a change in the Si3N4 structure.

The binding energy EB of Si 2p and ∆Eo in TiN/Si3N4 systems increase between 0.8 nm and

1.4 nm. The decrease of EB in AlN overlayer is explained by a positive interfacial charging

of AlN. Following the argumentations presented for the AlN overlayer the increase in EB of

SiNx between 0.8 nm and 1.4 nm is correlated to a negative interfacial charging. This might

be explained with a shift of the charges to an interlayer between a sbg-SiNx and an a-Si3N4

layer (see right side of figure 8.11). The a-Si3N4 layer has a much higher band gap of ≈4.9 eV

[434] than the sbg-SiNx structure resulting in a positive charge accumulation in the a-Si3N4

toplayer. The charge rearrange in sbg-SiNx and TiN and is a result the binding energies of Si

2p and Ti 2p3/2 increase with increasing overlayer thickness.

The evaluation of Si3N4 overlayers thicker than 1.5 nm are again troublesome since the Ti 2p3/2

signal can hardly be resolved and strong deviations appear.

AFM measurement show that Si3N4 layers below t ≤ 0.8 nm have a roughness of Sa ≥ 0.25 nm

and hence many effects can influence each other (e.g. oxygen contamination, island charging,

133



Chapter 8. XPS investigations of bilayer systems

EB of Si 2p 
increases

EB of Ti 2p 
increases

+
-

+
-

+
-

+ + +
- -

EB of Si 2p 
increases

EB of Ti 2p 
increases

Semi-metallic 
sbg-SiNx

t<0.8nm t>0.8nm

- -
+ +

+ +

- - -

Figure 8.11: Sketch of SiNx on TiN with different thickness. Left: t < 0.8 nm, right: t > 0.8 nm

sect. 6.3). Even though the EB behavior with the overlayer thickness t could be explained

with the different sbg-SiNx structure in the first two ML, the higher roughness is an exclusion

criterion that has to be considered. Hence all Si3N4 systems with a overlayer thickness below

1.0 nm are neglected from the further investigations since the higher roughness is disturbing

the photoemission process and its evaluation. For the sake of completeness the results are

shown in the figures as empty diamonds, but are not considered any longer in the evaluation

or discussion of the results. The data for Si3N4 overlying films thicker than t ≥ 1.7 nm is

insufficient to give an exact statement on the charging situation, but can be still used for the

evaluation of the interface ratio ri (sect. 8.6).

In biased TiN/Si3N4 systems, where a substrate bias has been applied during the deposition

of Si3N4, it is expected that the crystalline growth of sbg-Si3N4 is hindered. Already within the

first monolayer an amorphous high band gap Si3N4 structure is formed. This should result in

a higher interfacial charging (i.e. higher ∆Eo ) in biased Si3N4 compared to unbiased Si3N4

systems. The few available data points are insufficient and more data is required for a precise

statement regarding the charging situation in the biased TiN/Si3N4 interface.

8.4.5 Summary of sample and interface charging

In this subsection it has been shown that the increase of the binding energy EB for lower

AOE and the decrease in EB of AlN as well as the increase of Si3N4 with increasing overlayer

thickness are not correlated to:

• an instrumental misalignment

• forward focusing (see also sect.7.5)

• oxygen

• different interface coordination of TiN, AlN or Si3N4

• a formation of Ti0.5Al0.5N or TixSiyN
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• change in the work function of the substrate

• homogeneous sample charging

• surface charging of AlN or Si3N4

The change in the binding energies EB is explained by extrinsic and intrinsic interface charging.

In TiN/AlN bilayers systems the AlN overlayer charges positively, while electrons are accumu-

lated at the TiN side of the interface. This interface polarization results in a decrease EB of Al

2s and Ti 2p3/2 with increasing AlN film thickness. TiN/Si3N4 interfaces show a decrease in

EB for Si3N4 overlayers with an increasing thickness of up to 0.8 nm. For thicker Si3N4 films

an increase in EB is observed. The change in the binding energy behavior might be explained

with a change in the growth pattern of Si3N4 at around 0.8 nm.

8.5 Interface model to describe ri

The ratio ri of shake-up and main peak intensity at the interface can be extracted from

equation 5.1 using the least-square-method. ri is a function of the AOE Θ, the IMFP λ, the

bulk ratio rb , the measured ratio Rm and the interface thickness δ. In order to have a reliable

fitting process all parameters have to be either known (λ, rb and δ) or are a variable (Θ) of

the data Rm . The IMFP can be calculated according to section 3.8.1, and the bulk ratio rb

is obtained from experiments on pristine TiN (sect. 7.6). Hence all parameters except the

interface thickness δ are known. The interface in this context is the region, in which the

shake-up is influenced by the overlying material (see fig. 5.1). In the following subsection (sect.

8.5.1) the justification of the model of an interface thickness δ is investigated for shake-up

ratios in bilayer systems. The uncertainties contained in the model are discussed in section

8.5.2, and it is explained why the values for ri cannot be considered as absolute. In section

8.5.3 the influence of oxygen is analyzed.

8.5.1 Interface thickness δ

The model system as shown in fig. 5.1 assumes that there exists an interface region with a

thickness δ. TEM studies elucidate that the interface of TiN and Si3N4 is atomically sharp (sect.

6.4). Hence it could be assumed that there is no extended interface region, i.e. δ= 0. Inserting

δ = 0 in eq. 5.1 results in Rm = rb , where Rm is the measured ratio and rb the bulk ratio of

pristine TiN. In this case the ratio of shake-up and main peak is constant over the full volume

of the TiN sublayer. For this discussion the results are assumed to be independent from any

XPD influence, and hence Rm is independent of the angle. The measured ratio Rm is obtained

by averaging the ratio over the first 36 measurements, corresponding to a single angle scan

fromΘ=0◦-70◦. The averaged values for Rm are shown in figure 8.12. The error bars represent

the standard deviation and are so high that they blur the data and make a clear statement

impossible. Hence the averaged ratio is not a good choice to obtain significant results.
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Figure 8.12: The ratio Rm = rb is
plotted versus the overlayer thick-
ness for δ= 0. The same color code
as in fig. 8.5 is used. Please note that
the thickness scale for Si is plotted
on the bottom axis, while the AlN
and Si3N4 thickness values are given
on the top axis.
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Figure 8.13 shows the results for ri as a function of δ, presented are the ri values of three

TiN/AlN samples of different thicknesses. The plotted points are obtained by fitting eq. 5.1 to

the experimental data and using different values of δ in the fit function. The drawn fit curves

express ri (δ) as an exponential function (fig. 8.13). All AlN samples have in common that the

interface ratio ri increases with decreasing δ as well as with increasing overlayer thickness t .

In the limit δ→ 0 the interface ratio ri results in ri (δ) →∞iv (compare also to fig. 8.14).

In the presented approach a critical interface thickness δc is defined; for interface regions

thicker than δc the applied fit algorithm diverges (respectively ri ). Already in the vicinity of

δc high values for ri are obtained, which are physically meaningless. For AlN samples with a

overlayer thickness t = 0.8 nm the interface thickness can be still chosen to be δ= 0.25 nm, as

is shown in figure 8.13. Films with t = 1.0 nm result for δ= 0.25 nm in meaningless interface

ratios ri above 100 and for t = 1.5 nm the fit function diverges for δ = 0.25 nm. Hence it is

concluded that the critical interface thickness δc increases with the overlayer thickness t

(δc ∝ t ).

An empirical check of all measured results reveal that δ= 0.5 nm is a value where the used

fitting routine still converges for all samples. However, by choosing a fixed value for the

interface ratio δ, uncertainties in the absolute values of ri (sect. 8.5.2) are introduced to the

evaluation process. If all data are evaluated with the parameter δ= 0.5 nm, then the relation

between ∆E3/2 and ri is broken (sect. 8.6.2), which is an essential part of the shake-up theory

(ri should increase with decreasing ∆E3/2 ).

ivFor δ→ 0 eq. A.23 results in Rm ≈ ri f + rb g where f → 0 and g → 1, since the measured ratio Rm is always
higher than the previously obtained bulk ratio rb (Rm > rb ), hence ri →∞ is obtained.
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Figure 8.13: TiN/AlN bilayer system with different overlayer thicknesses t are compared to
their interface ratio ri , also shown is the curve for t = δ.

Section 8.4.3 explains that charges are accumulated within the depletion zone at the interface.

It is shown later in section 8.6.2 that the electron accumulation at the TiN side of the interface

results in a decrease of the shake-up energy and influences the shake-up intensity. Hence it

must be assumed that the depletion zone is the interface region where the shake-up properties

are altered. The amount of interfacial charging and hence the width of the depletion zone

depends on the overlayer thickness t (sect. 8.4.3). The width of the depletion zone cannot be

determined exactly due to the complexity of QSE that occur at the interface. It can be assumed

that the depletion zone at the TiN interface side is not wider than the positively charged region

of the AlN or Si3N4 side of the interface. Therefore interface regions thicker than the covering

film are physically not meaningful (δ≤ t ).

So far it has been shown in this section that δc < 0.5 nm < δ ≤ t . Best fitting results (lowest

sum over all squared residual) are obtained for high δv. Therefore it is reasonable to choose

the highest value for δ, which is given by the overlayer thickness t (δ= t ).

For AlN bilayer systems with a thickness of t ≥ 0.8 nm (see fig. 8.13) the ratio ri is for all

values of δ proportional to the overlayer thickness t . Also for δ= t the relation ri ∝ t is still

valid. TiN/Si3N4 bilayer systems show a similar behavior, where ri ∝ t for overlying films with

t ≥ 1.0 nm. Therefore the assumption δ= t can be used in a first approximation to evaluate

the interface ratio ri .

vif δ is allowed to adjust itself to Rm then the relation δ= 0.4e−1.7t ≈ 4t is obtained.
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8.5.2 Uncertainties in interface ratios

All parameters (rb , λ and δ) in the fit function (eq. 5.1) and the experimental data (Rm) have

an error that contributes to the overall error of ri . In this section the uncertainties due to these

factors are revealed and discussed.

The self-consistent peak fitting procedure (sect. 5.2) used to extract the measured ratio Rm

out of the Ti 2p spectrum is very precise for high intensity spectra. For high AOE (Θ> 50◦) the

count rate decreases (fig. 7.20), and a low signal-to-noise ratio is obtained, i.e. the error ∆Rm

depends on the AOE and is larger for high AOE. Longer measuring timesvi are not feasible

due to multiuser time management. XPD patterns are superimposing a clear interface signal

and finally result in a highly disturbed measured shake-up ratio (fig. 8.17). An additional fit

function would be required to modulate the curve due to XPD patterns (similar to sect. 7.5).

The latter has been tested but cannot be resolved within this thesis. The diffraction patterns in

ri have not been considered in the fit algorithm (applying eq. 5.1 to the data), the fact that this

is not resolved is also visible in the absolute sum of the quadratic deviation (goodness of fit),

which remains as high as if the averaged values for ri were used. The suggested formalism (eq.

5.1) results in higher absolute values for ri and hence the relative errors are reduced.

The available experimental equipment does not allow a higher signal-to-noise ratio within the

given time frame and hence the perturbing effects, can only be partially separated from the

interface shake-up intensity. If all mentioned effects could be neglected, then the suggested

fitting routine should find automatically the correct values for δ and ri . In this case an

appropriate error propagation will be possible and the error ∆ri can be approximated. The

available data has those perturbing effects and hence the uncertainties in ri can only be

estimated. In the following the influence of a varying IMFP, δ and rb are discussed.

The IMFP λ is calculated from theoretical data obtained from literature (sect. 3.8.1), and an

error for this data is in general not given. A wide spread of IMFP values is found in literature,

indicating that the IMFP is not precise. λ appears in the function A.23 of ri only in combination

with δ as a quotient δ/λ. Hence the error ∆λ is included in the error treatment of ∆δ.

Figure 8.14 shows a plot of the function ri (δ,rb) to illustrate the error due to the remaining two

parameters rb and δ. The function ri changes hardly with rb for large valueas of δ, while for

small interface thicknesses δ→ 0 the function shows a singularity. The error of ri due to the

uncertainty in rb for values of rb = 1.9±0.1, the value determined for TiN earlier, is considered

small compared to the error due to the uncertainties in δ. In this work the interface thickness

is set equal to the overlayer thickness δ= t (sect. 8.5.1). The minimal thickness, and hence the

smallest interface thickness δ, used in this work is t = δ= 0.8 nm. For δ= 0.8 nm it is revealed

from figure 8.14, that the error in ri for t ≥ 0.8 nm is rather small.

It is concluded that the uncertainties in the proposed fitting procedure to obtain ri are reduced

viIn this thesis one angle-resolved scan lasted about 8−12 h, on each sample a minimum of 2 scans were
performed.
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Figure 8.14: The interface ratio ri (δ,rb) is plotted as a function of the interface thickness δ and
the bulk ratio rb . The following values were used: Rm = 2.3, λ= 2.4 nm and Θ= 0◦. The red
line indicates the values for δ= 0.8 nm.

compared to the averaged values presented in figure 8.5. The influence of errors due to

uncertainties in the bulk ratio rb and the interface thickness δ (if δ≥ 0.8 nm) are considered

small and will not influence a qualitative interpretation of the data. A correct error propagation

is not possible and therefore no error bars are shown for ri . (In the following values are given for

the interface ratio, please keep in mind that they can be used only for a qualitative evaluation.)

8.5.3 Oxygen influence on interface ratios

It has been shown in sect. 7.6 that oxygen interferes with the TiN shake-up signal. In this

section the influence of oxygen on the shake-up ratio ri at the interface is considered. The

interface ratio ri for different overlayer systems versus the averaged oxygen concentration cox y

are presented in fig. 8.15. Additionally the semi-empirical function (eq. 5.9) is plotted, which

describes the shake-up ratio as a function of cox y for pure TiN (fig. 7.21). All data points in the

vicinity and below this semi-empirical curve can be explained completely with the oxygen

content. Oxygen only influences the shake-up if it is within the TiN sublayer, surface oxygen

bonded to Si or Al cannot contribute to the shake-up intensity.

The oxygen contamination is to a major part at the overlayer surface (compare to fig. 7.27 and

sect. 8.3). The oxygen concentration cox y in fig. 8.15 is the overall concentration, and hence

the oxygen contamination in the TiN sublayer is lower than the values given in figure 8.15. If

only oxygen would influence the shake-up ratio, then the interface ratio ri of Si3N4 would have

to be below that of pure TiN, since pure TiN samples have a higher oxygen concentration than

Si3N4 bilayers. Additionally AlN shows a decrease with the oxygen concentration, the opposite

of what is expected for an oxygen correlation to the shake-up. Hence the high interface ratios

for Si3N4 and AlN cannot be explained by the oxygen content at the interfaces. For Si overlayers

the interface shake-up ratio is below that shown by the semi-empirically determined function
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Figure 8.15: The interface ratio ri

is plotted versus the overall oxygen
concentration cox y . Please note that
for TiN the bulk ratio rb has been
used. The same color code as in fig.
8.5 is used.
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that describes the oxygen influence at the TiN surface (eq. 5.9). Therefore the Si interface

ratio ri is explained by oxidation. TiN barely covered by Si oxidizes slowly, which results in an

overestimated ri . In the following the Si bilayer systems are not considered any further, since

they neither form continuous nor oxygen-free interfaces.

8.6 Shake-up ratios ri at different interfaces

The previous subsection 8.5 focuses on the procedure and the model to obtain ri . This section

deals with the results obtained from the applied fit algorithm and describes the physics behind

the change in the interface ratio ri .

The results for the measured ratio Rm of two different TiN/Si3N4 bilayer systems and the fit

function Rm(Θ) (where Θ is the AOE) are plotted in figure 8.16 and 8.17. In the case of AlN

as an overlying material the measured ratio Rm shows a clear difference between a 1.0 nm

overlayer and a 1.5 nm layer of AlN (fig. 8.16). Si3N4 overlayers (fig. 8.17) are spreading wider

and even though the quotient Rm of shake-up to main peak is used, diffraction pattern effects

are still sensed in the measured ratio Rm . The XPD pattern is neglected by applying, similar

to the evaluation of the bulk ratio, an exponential function for Rm , in this case eq. 5.1. It is

in the nature of the function of Rm that it increases with the AOE independently from any

XPD patterns. The measured data Rm scatter heavily around the fit function Rm(Θ) and the

standard deviation increases for increasing AOE. For high AOE the signal intensity decreases

(compare to fig. 7.18), hence induce a higher noise in the ratio Rm and result in a higher

scattering for higher AOE. Most samples show an increase in Rm forΘ> 60◦, in some cases as

shown in the sample with t = 1.4 nm in fig. 8.17 the intensity might even decrease due to XPD.
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Figure 8.16: Results of angle-
resolved measurements of TiN/AlN
bilayers system with different
diffraction patterns. Solid circles
are for a thickness of t = 1.5 nm
and empty circles correspond to
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Figure 8.18: The shake-up energy ∆E3/2 and the energy difference ∆Eo between Ti 2p3/2 and
Al 2s (or Si 2p) show a linear correlation. The same color code as in fig. 8.9 is used.

In pristine sc-TiN forward focusing occurs and the intensity IFF (eq.5.4) shows maxima in

preferred crystalline orientations, IFF can be evaluated separately for the shake-up and the

main peak (fig. 7.18). For overlayer systems this is an even more difficult task since the XPD

pattern is damped by the overlayer passage, where electrons emitted from the sublayer TiN

undergo inelastic scattering in e.g. Si3N4 . In principle it is possible to obtain an undiffracted

ratio from the two fit values IFF of shake-up and main, but the signal-to-noise rate of the

XPS-device used in here is to low to exploit this approach.

8.6.1 Shake-up energy∆E3/2 and interface charging

In section 8.4.3 it is shown and explained that interfacial charging occurs at TiN/Si3N4 and

TiN/AlN interfaces. The energy difference ∆Eo between Ti 2p3/2 and Al 2s (or Si 2p) is a

parameter that describes the electric potential between the charges at the interface. In this

section the influence of the interfacial charging on the shake-up properties is investigated.

In figure 8.18 a clear correlation is revealed between the energy difference ∆Eo and the energy

loss ∆E3/2 of the photoelectron due to the shake-up process. The shake-up energy ∆E3/2

decreases with increasing ∆Eo , which is proportional to the interfacial charging.

Figure 8.19 illustrates in a simple sketch of the valence band DOS of TiN (see also sect. 3.5)

how interface charges can influence the shake-up energy ∆E3/2. In polarized metallic TiN the

free electrons are partially occupying previously unoccupied states and reduce the distance

between Fermi Energy and a pronounced maximum in the unoccupied states. The higher the
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Figure 8.19: Sketch of a simple elec-
tron excitation model describing the
shake-up process for bulk TiN and
at a polarized interface. pDOS are
adopted from Marlo and Milman
[305].

interfacial charging the more free electrons are available to fill up more unoccupied states.

Hence the shake-up energy ∆E3/2 required to excite electrons into the unoccupied states is

reduced. In other words the energy difference ∆E3/2 between the two final states is directly

correlated to energy difference ∆Eo of Ti 2p and Al 2s (or Si 2p), which is a valuable parameter

to describe the interfacial charging.

The same trend is also observed for the unbiased and biased Si3N4 systems. It is remarkable

that the correlation between interfacial charging ∆Eo and ∆E3/2 is independent from the

quality (i.e. oxygen content and film coverage) or the structure of the sample.

This semi-classical approach explains the observations made regarding ∆Eo and ∆E3/2, but is

not sufficient to explain the exact mechanisms behind the excitation process. Again TD-DFT

calculations are required to gain more insight in the exact process.

8.6.2 Shake-up energy∆E3/2 and intensity ratio ri

The energy differences ∆E3/2 between the main and the shake-up peak is the energy required

to promote an electron in the excited final state. The shake-up intensity is proportional to the

transition probability from a ground state (main) to an excited state (shake-up). The shake-up

process is quantum mechanically described by the time-dependent Schrödinger equation:

iħ ∂

∂t

∣∣ψ(t )
〉= Ht

∣∣ψ(t )
〉

(8.1)
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The solutions can only be approximated, e.g. by Dirac’s perturbation theory (see e.g. Nolting

[435]). The time-dependent 1st order transition probability w (1)
ms(t) from an initial (main) to

a final state (shake-up) with the energies E (0)
m and E (0)

s , respectivelyvii, can be approximated

[435] by:

w (1)
ms(t ) = 1

ħ2

∣∣∣∣∫ t

o

〈
E (0)

s

∣∣H1,t1

∣∣E (0)
m

〉
exp

(
i

ħ
(
∆E 0

ms

)
t1

)
dt1

∣∣∣∣2

(8.2)

where the shake-up energy is ∆E 0
ms = E (0)

s −E (0)
m . The equation 8.2 shows that the transition

probability depends on the energy difference ∆E 0
ms , which the electron has to overcome.

This is in agreement with the experiments, where the transition probability increases with

decreasing ∆E3/2. For a further understanding of the correlation between ∆E3/2 and the shake-

up ratio it is required to calculate the solutions for the above equation for all possible initial

and final states. Those calculations are beyond the scope of this thesis.

The averaged function of ri (∆E3/2) over all systems (dashed line in fig. 8.20) is in good agree-

ment with the uncovered TiN bulk values. All systems scatter slightly around this average.

Unbiased and biased Si3N4 systems show a stronger decrease than AlN in the slope of ∆E3/2

versus ri .

It has been discussed and explained that the values of ri cannot be considered absolute (sect.

8.5.2). The interface ratio ri depends on the interface thickness δ (see fig. 8.13) and on the

quotient δ/λ, i.e. on t/λ (sect. 8.5.1). The difference in the inclination of ri (∆E3/2) is explained

with uncertainties in δ/λ that arises due to the different IMFP, deposition rates and width of

the depletion zone (i.e. δ) of the different systems.

In the case of Si3N4 overlayers, the applied bias results in denser materials and in the implan-

tation of Argon (4at% in Si3N4 at a bias of −250 V). For denser materials a decrease in the IMFP

λ is expected, which is not considered in the evaluation process. The deposition rates are

flawed and result in an imprecise overlayer thickness t . Also the crude assumption δ= t is not

absolute, since the depletion zone depends on the interface charging, which is not the same

for different overlayer systems.

The qualitative correlation between ri and ∆E3/2 has also been observed in the Ni shake-

up peak [416], again for a detailed understanding of the shake-up process TD-DFT or CI

calculations are required.

8.6.3 ∆E3/2 and ri in TiN bilayer systems

The binding energy EB of Ti 2p and Al 2s (or Si 2p) as well as their energy difference ∆Eo in

TiN/AlN and TiN/Si3N4 bilayer systems depend on the thickness of the overlayer (sect. 8.4).

Since ∆Eo , shake-up energy ∆E3/2 and intensity ri are correlated (sect. 8.6.1), it is easily

viithe index (0) or (1) represents the 0th or 1st order in the series expansion used. Equation 8.2 cannot be used to
calculate the exact transition probability, since neither initial nor final state are exactly known.
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Figure 8.20: The shake-up energy
∆E3/2 versus the interface ratio ri

is shown for different bilayer sys-
tems. The dashed line represents
the average over all samples inde-
pendent from their overlying mate-
rial or thickness. The bulk ratio rb

is also included for referencing. The
same color code as in fig. 8.5 is used,
lines are guides for the eyes.

concluded that ∆E3/2 and ri must be influenced by the thickness t .

Figure 8.21 shows that the shake-up energy∆E3/2 depends on the overlayer thickness t , similar

to the binding energies of Ti 2p and Al 2s (or Si 2p). (Very thin films of AlN (t < 0.8 nm) and

Si3N4 (t < 1.0 nm) are neglected from the evaluation for the reasons given in section 8.3.)

The values obtained for ∆E3/2 of bilayer systems (see fig. 8.21) are all below the bulk values

of pristine sc-TiN, where ∆E3/2 is 2.16±0.04 eV (see fig. 7.6). Si3N4 bilayer systems show an

increase in the shake-up energy ∆E3/2 with increasing overlayer thickness, while AlN bilayer

systems reduce their ∆E3/2 with increasing overlayer thickness t . The shake-up energy of

biased Si3N4 systems is almost constant. It is also clearly seen, that values of ∆E3/2 for thinner

films (AlN t ≤ 0.8 nm and Si3N4 t < 1.0 nm) scatter widely and do not fit in this description.

The decrease of∆E3/2 in TiN/AlN bilayer systems with increasing t is explained with increasing

charge accumulation ∆Eo at the interface (sect. 8.6.1). The increase of ∆E3/2 in TiN/Si3N4

systems is also correlated to an interfacial charging, which might be explained with a sbg-Si3N4

material in the first two monolayers of the Si3N4 grown on TiN(001) (sect. 8.4).

Figure 8.22 illustrates the results for the interface ratio ri as a function of the overlayer thick-

ness. All investigated bilayer systems reveal a higher ri than the bulk ratio rb for TiN. Fully

covering AlN overlayers (t ≥ 0.8 nm) have an enhanced interface ratio ri that increases further

with increasing thickness t . Si3N4 films on TiN decrease their ratio ri with increasing thickness

of Si3N4 over the full range of accessible thicknesses (for overlayer thicknesses higher than

1.7 nm the intensity of the Ti 2p3/2 PE line cannot be resolved sufficiently). The biased Si3N4

interface systems show no clear trend regarding the interface ratio ri . The results of ri depend-

ing on the overlayer thickness t are explained by a change in the interfacial charging (sect.
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Figure 8.21: Energy differences
∆E3/2 of main and shake-up energy
line versus the overlayer thickness
are shown for different overlying
materials. Empty symbols are
not considered in the evaluation
process (sect. 8.3). The same color
code as in fig. 8.5 is used.

2.2

2.0

1.8

1.6

 sh
ak
e‐
up

 e
ne

rg
y 

E 3

/2
 [e

V]

1.51.00.50.0
 overlayer thickness t [nm]

 TiN

Si3N4

AlN

Si3N4 bias

8.4), which alters ∆E3/2 (sect. 8.6.1) and hence influence the interface ratio ri (sect. 8.6.2).

It is concluded that in all studied bilayer systems the interfacial charging depends on the

thickness, morphology, crystalline structure and material of the overlying film. The energy

difference ∆Eo between Ti 2p3/2 and Al 2s (or Si 2p) is a valuable parameter describing the

amount of interface charging. It is experimentally shown that the required shake-up energy

∆E3/2 to promote an electron in an excited state is correlated to the shake-up intensity ratio ri .

A lower energy difference ∆E3/2 results in a higher shake-up intensity. This relation between ri

and ∆E3/2 is independent of the overlying film material.

The gained insight on the physical mechanisms behind the shake-up process of the bilayer

systems are summarized and discussed in the following section 8.7.

8.7 Discussion of bilayer systems

The shown results for the measured ratio Rm in figure 8.2 are only for one particular AOE=70◦

of each bilayer system. It is shown in the previous sections that many factors are influencing

the Rm and that it is essential to evaluate an AR-XPS scan (0◦-70◦) in order to reveal the ratio

ri at different interfaces. High AOE (as used in fig. 8.2) have a low signal-to-noise ratio and

therefore a measurement time of up to 45 min has been chosen. During this time the positions

can slightly shift due to partial sample charging. As it is shown in the sections above, already

small shifts of∆EB = 0.05 eV are influencing the shake-up properties. The poor signal-to-noise

ratio and the limited energy resolution are overcome by extrapolating the required data from

many angle-resolved spectra.
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Figure 8.22: Interface ratios ri as a
function of the overlayer thickness t
for interface systems on sc-TiN(001).
For TiN the bulk ratio rb is used.
Lines are guides for the eyes. The
same color code as in fig. 8.5 is used.

In the following subsections the results for each bilayer system are summarized and discussed.

8.7.1 Si overlayers

The TiN/Si bilayer systems studied show even for very thick 10 nm overlayer of Si still a fairly

strong Ti 2p signal from the sublayer TiN. The depth information in standard XPS with an X-ray

energy of 1486.6 eV is limited to approximately 4−5 nm and decays exponentially. Hence it is

not expected that a strong Ti signal buried below a 10 nm overlayer is observed. AFM scans

reveal that Si forms big islands on TiN(001), which do not fully cover TiN (sect. 6.3) when

deposited at 800 ◦C. Lowering the deposition temperature to 500 ◦C decreases the roughness,

but still results in an only partial coverage of the TiN sublayers. As a result TiN is directly

observed past the 10 nm thick islands. Hence it is not surprising that the measured results

for the shake-up (i.e. binding energy EB and shake-up ratio ri at the interfaces) are not much

different from those obtained from pristine TiN (sect. 8.2 and 8.5.3). Compared to TiN only

slightly lower oxygen concentration cox y and a slightly higher interface intensity (i.e. ri ) are

found. The increase in ri is a consequence of the oxidation of the uncovered areas of TiN

(fig. 8.5). The evaluation of the Si films shows that it is essential to have uniform and fully

covering overlayers to obtain reliable data for the interface interpretation. The prepared and

investigated Si bilayers systems cannot add any information to the understanding of shake-ups

at interfaces.
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8.7.2 AlN overlayers

AlN layers on TiN with a thickness t ≥ 0.8 nm are atomically flat (Sa < 0.25 nm, sect. 6.3)

and hence, in contrast to Si overlayers, are flat enough to study the TiN/AlN interface by

AR-XPS. The AlN overlayers have a high oxygen concentration at the surface due to the fairly

high reactivity of AlN. It has been shown (sect. 8.5.3) that oxygen in the AlN layer is neither

influencing the interface ratio ri nor the energy differences ∆E3/2 (loss due to shake-up), the

binding energy EB or the energy difference ∆Eo between Ti 2p3/2 and Al 2s (sect. 8.4). XPD

patterns indicate that all overlayers of AlN show a crystalline structure. The diffraction patterns

and hence the AlN structures change from AlN film thicknesses of t ≤ 0.5 nm to t ≥ 1.5 nm.

To properly extract information on the materials system TiN/AlN, one has to differentiate

between the sample charging (visible in EB shift of all PE lines) and the charging at the interface

region (observed in ∆E0, sect. 8.4). ∆Eo is used to show that electrons are accumulated at

the TiN/AlN interface and that the electron density at the interface increases with the AlN

thickness t . With increasing electron density the energy difference ∆E3/2 decreases (sect.

8.6.1). Additionally the shake-up ratio ri at the interface is increasing with decreasing shake-

up energy ∆E3/2 for all overlayers (sect. 8.6). Therefore it is concluded that ∆Eo , ∆E3/2 and ri

are probing the electron density between the overlayer and the sublayer independent from

the sample charging. AlN is a strong insulator for all known structures having a band gap of

either 5.4 eV (zinc-blende) [430, 431], 5.8 eV (rocksalt) [203] or 6.3 eV (wurzite)[430, 431]. Due

to the photoemission process the AlN overlayer is charged positively and this induces negative

charges on the TiN side of the interface.

XPD patterns (sect. 8.1) show that AlN growth proceeds in a crystalline structure on TiN (001).

The diffraction pattern changes for AlN thicker than t > 0.8 nm. The latter is explained with

the formation of a stabilized rocksalt structure in superlattices of AlN/TiN(001) with an AlN

layer thickness up to t = 2.0 nm, thicker interlayers of AlN crystallize in the hexagonal phase

[154].

8.7.3 Si3N4 overlayers

The TiN/Si3N4 systems deposited have a partially similar behavior as the TiN/AlN bilayers.

The averaged oxygen concentration is fairly low (below 4 at%), and the interface ratio ri is

above the values that can be explained with an oxygen contamination alone. AFM roughness

measurements suggest that only samples with thickness t > 1.0 nm are flat enough to be anal-

ysed by AR-XPS, hence only a small window from t > 1.0 nm to t < 1.7 nm can be investigated.

Thicker samples do not provide enough intensity from the TiN sublayer to obtain reliable data

within a limited time frame. The binding energy EB and the energy difference ∆Eo increase for

thickness from 0.8 nm to 1.4 nm.

The decrease for a Si3N4 layer thickness of up to 0.8 nm is explained with theoretical consider-

ations and experimental results that suggest that Si3N4 bilayer systems form in the first two
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ML a small band gap (sbg-)SiNx layer of a crystalline form of SiNx (sect. 8.1), which might

even behave metallic [194, 195]. In this case only a small interface charging between the SiNx

overlayer and the TiN sublayer will evolve. In this work it is proposed that the charged region

shifts with increasing film thickness (t ≥ 0.8 nm) away from the TiN/sbg-SiNx interface region.

It is suggested that after the termination of the first two monolayers, where a small band gap

(sbg-)SiNx is formed, an amorphous (a-) Si3N4 high band gap structure continues to grow.

Due to the different band gaps in between the different SiNx and Si3N4 structures the interface

charge will move from the TiN/sbg-SiNx interface towards a sbg-SiNx/Si3N4 interface region

(sec. 8.4).

The biased Si3N4 systems show no crystalline phase in the XPD pattern of Si 2p, and hence no

SiNx interlayer of presumably metallic character forms. The biased layer of Si3N4 is insulating

and charges can build up immediately. This is observed in a thickness-independent shake-up

energy ∆E3/2 of biased Si3N4 (fig. 8.21), at least for the small range of investigated thickness t .

For a comparison of the interface ratio ri of biased and unbiased Si3N4 films more data is

required. A precise statement regarding the charging situation and the shake-up intensity

cannot be given based on the limited experimental data. However, it is expected that the

amorphous high band gap Si3N4 structure results in a higher interfacial charging than for the

sbg-SiNx , which will be visible in an enhanced interface ratio ri in the biased systems.
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9 Effects of hardness enhancement

In section 8.4 it is shown that the shake-up intensity is strongly influenced by an intrinsic and

extrinsic interface charging. Patscheider et al. [27] suggested that intrinsic interface polariza-

tion, probed by the shake-up intensity, results in an hardness enhancement in the TiN/Si3N4

nanocomposites. In the following section 9.1 it is argued that the suggested hardness en-

hancement due to interface polarization is most unlikely for thin one to two ML thick SiNx

interlayers.

9.1 Polarisation at the interface

The band model approach, as used by Patscheider et al. [27], is a continuum model used to

describe an ideal infinite crystal. In an infinite three-dimensional crystal the high number of

orbitals are so close that they overlap and form broad bands, separated by band gaps, which

indicate forbidden energy regions. Most microscopic sized bulk systems can be considered

as infinitely sized and the band model describes the electronic properties sufficiently. In the

case of TiN/Si3N4 nanocomposites, where only a few monolayers of Si3N4 are separating the

TiN grains, the Si3N4 cannot be described any longer as infinite in all dimensions. On the

nanoscale the SiNx matrix can be approximated as a two dimensional layer with a 0.5 nm

thickness. Such a system would be physically described as a two-dimensional quantum well,

resulting in discrete energy values [433, 436–438]. Hence the band model, as it is used in

Patscheider et al. [27], is not a suitable description for this problem.

In section 8.6.2 it is shown that the shake-up intensity increases with the interfacial charging

(i.e. polarization). Further it is explained that the intrinsic and extrinsic charge contributions

cannot be separated (sect. 8.4), but only the intrinsic interfacial charging can contribute to the

hardness enhancement. Following the argumentation of Patscheider et al. [27] the interface

charging probed by the shake-up intensity is correlated to the hardness. This argumentation

is not consistent with the obtained results in this thesis. The argumentation of Patscheider

[47] implies that the intrinsic contributions of the interfacial charging are contributing to the

shake-up intensity. If it is assumed that the shake-up is probing mainly the intrinsic interfacial
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charging, then the hardness should increase in a similar way as the polarization. This is not

the case since the reported nanohardness enhancement has its maximum for SiNx interlayers

of one to two ML, while the polarization increases continuously at least until a thickness of

≈ 0.8 nm is reached.

According to Patscheider et al. [27] the polarization at the TiN/Si3N4 interface is a consequence

of charge accumulation at TiN grain boundaries due to a lower highest occupied level in Si3N4.

It has been shown by Hao et al. [76] on TiN(111)/SiNx/TiN(111) interfaces that in the case

of β-like Si2N3, not only the Si 3p- N 2p form hybridized orbitals, but also the N atoms

form hybridized bonds with the Ti atoms [187]. There is a high electron density in the Ti 3d

orbitals [439, 440] at the Fermi level causing a metallic character of the interface system [187].

First principle calculations also favor other structures for the SiNx interlayer [194, 195, 203],

showing a similar metallic behavior for the reported SiNx arrangement. Projected density of

states (pDOS) calculations show further that Si3N4 layers between a stack of TiN with a Si3N4

thickness of three ML have in the second ML only a small band gap of Eg ≈ 1 eV [194], while

the first layers of both sandwich structures have a residual electron DOS at the Fermi level. The

hardness enhancement is obtained for thicknesses of approximately two ML, where a metallic

interface is expected and no polarization can form. The polarization picture as described by

Patscheider et al. [27] is not suitable any longer for such highly hybridized metallic orbitals,

where a Ti-N-Si hybrid orbital is formed at the TiN/Si3N4 interface. Even the term interface is

difficult in this context; a clear plane separating Si3N4 and TiN cannot be drawn, since both

phases share a N atom.

To summarize, the shake-up intensity cannot directly be correlated to an hardness enhance-

ment, since intrinsic and extrinsic interfacial charging cannot be separated. Further it is

argued that the suggested polarization by Patscheider et al. [27] most likely does not persist in

TiN/Si3N4 interface systems, since the applied band model is not suitable for a structure with

thickness of one to two ML, and since all favored interlayer structures have metallic states in

the pDOS at the Fermi level or have at least a small band gap [194, 195, 203]. In such slightly

metallic SiNx interlayers no polarization can assemble and also no polarization strengthening

can participate in the hardness enhancement of TiN/Si3N4 nanocomposites.

The question remains, where does the hardness enhancement originates from? In the following

section 9.2 the effects contributing to the hardness are listed and discussed.

9.2 Contributing effects

In sect. 2.2.2 it has been explained that "bulk hardening effects" are not contributing to

the hardness enhancement of nanocomposites. In this section it is discussed which and to

what amount "thin film hardening effects" are participating in the total hardness of a nano

composite containing two phases. The calculations below are only approximations intended

to show qualitatively which effects are contributing under what conditions and to which

extent.
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Si3N4 has the possibility to grow in different structures and different orientations on top of

the grain. In this approach only two orientations of the c-axis of the α− and β− Si3N4 are

considered: parallel (∥) and orthogonal (⊥) to the surface normal. Ab initio interface studies

suggest several structures for the Si3N4 interlayer (sect. 2.2.4), three structures (α-, β- and

c-Si3N4 system) are chosen to calculate the hardness of the nanocomposite, the used values

are found in the appendix E (tab. E.1). For the c-Si3N4 system a lower (l) and an upper (up)

limit is estimated to show how strong the hardness is deviating due to the wide range of

reported hardness H , Young’s modulus E and shear modulus G .

TiN/Si3N4 systems grow epitaxially under certain conditions [441], and hence fulfill the prereq-

uisite for coherency stress τcoh (eq. 2.3). Epitaxial growth only occurs for systems with a small

lattice mismatch f , only for f < 0.1 the coherency stress is considered in the hardness calcu-

lations. Most superhard nanocomposites were deposited at elevated temperature (> 200 ◦C)

[15, 115, 161, 422, 442], and thermal stress τt (eq. 2.4) will hinder the deformation process.

Nanocomposites show a random orientation (i.e. no texture), therefore no texture effects are

present [19, 81, 183]. Grain boundary sliding has been reported [111, 164, 166, 168] to be the

dominating effect in uni-phase nanocrystalline film deformation. For nanocomposites it is

assumed that the combination of two appropriate materials (i.e. high coherency) results in a

strong interface, where grain boundary sliding is hindered [86, 443–445]. Hence the Koehler

stress (eq. 2.6), as it is observed in multilayer systems, is applied to the hardness calculations

of the nanocomposites, since dislocation movement through the interface material will be

impeded in a similar way as in multilayers. Polarization strengthening is not used, since its

existence in these nanocomposites is doubtful, as explained in sect. 9.1.

The Vickers hardness is further approximated by H ≈ 3σ [446–448], where σ is the yield stress.

The latter is calculated by Schmidt’s law that correlates the shear stress τs to yield stress σ

using: σ = τs/m where m is the Taylor factor [449] with m ≈ 0.3 for polycrystalline TMN

with a B1-structure [183]. In this work the total hardness (Htot ) of the nanocomposite is

approximated by:

Htot = Hcoh +Ht +HK (9.1)

where Hcoh is the hardness enhancement due to coherency stress τcoh (eq. 2.3), Ht is the

hardness induced due to thermal stress τt (eq. 2.4) and HK is the hardness increase due

to Koehler stress (eq. 2.6) where HK = Hk + HA and HA is the hardness of the material A

containing the dislocation activity (see appendix E).

Figure 9.1 reveals the results for the hardness approximations. The columns are divided in

the stress components contributing to the total hardness. The gray shaded area represents

the expected maximum hardness according to Fischer-Cripps et al. [28]. Black lines represent

actual experimental data of TiN/Si3N4 nanocomposites from different groups fabricated under

different conditions. The nanohardness values of the group of Vepřek [81, 82], who claimed

hardness of more than 100 GPa, are not included here. Their reported results are disputed,
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Figure 9.1: Different approximations for the total hardness of a nanocomposite with an α-
Si3N4, β-Si3N4 and c-Si3N4 matrix between the nc-TiN grains. For α- and β- Si3N4 the hard-
ness is calculated for parallel ∥ and orthogonal ⊥ growth behavior. In the case of c-Si3N4 a
lower (l) and an upper (up) approximation for β-Si3N4 are estimated. All parameters used
are found in table E.1 and the obtained hardness values are shown in table E.2. Experimen-
tal results from literature are marked by lines: at 55 GPa the expected maximum hardness
[28] (shaded area); experimental maximum hardness data from different source are given at:
48 GPa [115], 46 GPa [15], 42 GPa [20], 40 GPa [422, 450, 451], 36 GPa [161], 25 GPa [452] (black
lines, line thickness represents amount of literature with equal value). Please note, experi-
mental settings (as deposition technique, temperature, bias etc.) are different for different
publications. Nanohardness values obtained by the group of Vepřek are not shown, due to
their most likely heavily overestimated hardness [28].

since the claimed superhardness could not be reproduced, and it has been claimed that

the measurement procedure of Vepřek et al. [81, 82] shows some deficiencies and is hence

overestimated by a factor of approximately two [28].

The Si3N4 hardness is an important factor in approximating the Koehler hardness (green).

Using a low hardness value 30 GPa [453] or a high value 47 GPa [156] for the c-Si3N4 structure

results directly in a lower (l) and an upper (up) hardness for the nanocomposite. The coherency

stress (blue) is an effect of the lattice mismatch, and only participates if the mismatch is not

so large that dislocations are introduced. For α-Si3N4 (∥ and ⊥) and β-Si3N4 (⊥) the lattice

mismatch is above 0.2, and hence the coherency stress is not considered for those systems.

The hardness increase due to thermal stress (red) contributes only to a minor part and is

approximately 1.25 GPa for all samples.
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Reviewing experimental data from the literature indicates that the experimental maximum

hardness for TiN/Si3N4 nanocomposites is Htot ≤ 48 GPa, being more than a factor of two

below the values of Vepřek’s group. Real nanocomposites have not only one phase with one

certain orientation between their grains (see fig. 2.4), but form different crystalline structures

between the nc- grains. The interface structure depends on the adjacent grain orientation.

The gap at grain junctions probably results in amorphous Si3N4 depots, and the grain-grain

distances are not everywhere uniform. A multitude of different structures is expected, with

the most prominent one being β- and c-Si3N4 . The averaged value of 49 GPa of all considered

structures is in qualitative agreement with experimental data.

Note: Applying Schmidt’s law and the Taylor factor are estimations that account only for

isotropic materials and introduce some uncertainties [183]. The author is aware that the

hardness values are an estimate that only explains qualitatively the observed hardness, but in

a sufficient way.

The synthezised c-Si3N4 has been reported to be the third-hardest material after diamond and

c-BN [454]. Hence the superhardness enhancement is explained by the stabilization of the

c-Si3N4 phase for thin interlayer thicknesses [194, 195]. An additional hardening effect (as e.g.

interface polarization) is not required to explain the observed phenomena.
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Anyone who has never made a mistake

has never tried anything new.

- Albert Einstein
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10 Conclusions

The aim of this thesis was to investigate the shake-up feature in the XPS spectra, specifi-

cally in the Ti 2p PE line of TiN interfaces to determine properties of bilayers of TiN with

semiconducting and insulating overlayers. The background of this work was to investigate

an assumed intrinsic interface polarization and utilize the quantitative description of the

interface polarization to explain the hardness enhancement in TiN/Si3N4 nanocomposites.

The thesis’ outcome is that the observed shake-up intensity changes are correlated to an

intrinsic and an extrinsic polarization, which is induced due to the photoemission process. A

self-consistent method for the TiN spectra evaluation is presented and a formalism to calculate

the interface ratio ri of shake-up and main peak is derived. Results for the bulk rb and interface

ratio ri are presented and put into a physical context. A method has been found to change

the shake-up energy. It is experimentally shown that the shake-up intensity increases with

decreasing shake-up energy.

It is further explained why an intrinsic interface polarization in TiN/Si3N4 nanocomposites is

unlikely. Values of nanohardness are summarized from literature and compared to hardness

estimations using known hardness enhancement effects. It is shown that no additional

hardness effect such as interface polarization is require to estimate the hardness of TiN/Si3N4

nanocomposites.

In order to gather the results described above many experimental, analytical and technical

problems were solved and new approaches were tried. The achievements of this thesis are

briefly presented in the following sections, describing:

161



Chapter 10. Conclusions

• experimental improvements (sect. 10.1),

• data evaluation of TiN XPS spectra and a formalism to reveal the interface ratio ri (sect.

10.2),

• XPS results of pristine oxygen-free TiN (sect. 10.3),

• interface characteristics (sect. 10.5),

• the shake-up origin and parameters influencing shake-up energy and intensity (sect.

10.4) and

• the interface polarization in TiN/Si3N4 nanocomposites, as well as effects contributing

to the hardness (sect. 10.6).

10.1 Experimental achievements

In this work, unbalanced magnetron sputter deposition has been used to fabricate bilayer

systems of TiN/AlN, TiN/Si3N4 and TiN/Si. The deposition process has been optimized to

obtain oxygen-free TiN layers and oxygen-free bilayer systems. Any oxygen contamination

results in a disturbing TiOxNy line, rendering the evaluation of the shake-up ratio problematic.

Therefore oxygen contaminations have been kept at a minimum by transferring the samples

in situ between deposition and analysis. An ultra high vacuum (UHV) transfer chamber has

been designed and assembled to transfer the deposited samples without breaking the UHV.

The design was chosen to reduce the pumping time and to guarantee pressures in the storage

compartment below 5×10−10 mbar.

The encountered experimental problems (e.g. sample grounding) are described and have

been successfully solved. Different techniques have been used to obtain information on bulk

(XRD, RBS, XPD), surface (AFM, XRR, XPS) and interface (TEM, XPS) properties. The results

obtained using these techniques verify that the TiN samples are single crystallinity (sc-) and

oxygen-free, and the interfaces are atomically sharp.

10.2 Data processing

A self-consistent evaluation fitting routine of the XPS spectra of TiN is presented and used to

evaluate the spectra of sc-TiN in detail. A big effort has been put in the correct identification

of all peaks in the Ti 2p spectra, as well as deriving their peak shape and their intensities. It

is found that the Tougaard BG in combination with Gauss-Lorentzian product line shapes

(GL(20)) are describing the Ti 2p spectra well. The spin-orbit split main peaks Ti 2p1/2 and

Ti 2p3/2 , their corresponding shake-up features as well as first and second order bulk and
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surface plasmons are evaluated fulfilling the requirements to the intensity ratios of the spin-

orbit split peak, its shake-up losses and plasmon losses.

Angle resolved measurements were used to extract the oxygen-free bulk ratio rb of TiN bulk

(shake-up to main peak ratio). The ratio rb is obtained by extrapolation of AR-XPS spectra to

oxygen-free conditions without having to use a damaging sputter cleaning procedures. Five

different models have been suggested and compared to obtain the bulk ratio rb . Additionally,

an empirical equation is developed to express the bulk ratio rb as a function of the oxygen

content cox y .

10.3 Conlusions on pristine TiN

The sc-TiN has been thoroughly characterized by XRD polefigures, AFM and TEM imaging. A

precise knowledge of effects influencing the XPS results of sc-TiN is essential, since sc-TiN

is used as the sublayer for the bilayer system, and all interface signals have to be separated

from the bulk properties. The bulk ratio of shake-up and main intensity is revealed by using

an angle-resolved approach, where a value of rb = 1.9±0.1 is extrapolated.

The bulk ratio is within the uncertainties independent of the crystalline structure of TiN, i.e.

independent of the orientation ((001) or (111)) and independent of the degree of crystallinity

(sc- or pc-). Also no difference in the bulk ratio is observed for TiN samples deposited with or

without an applied substrate bias. An insufficient sample grounding results also to the same

bulk ratio, but shows a much higher scattering in the shake-up ratio due to time-dependent

fluctuations in the sample charging.

The shake-up energy depends on the total angular momentum of the emitted PE, for electrons

emitted from Ti 2p1/2 a shake-up energy of ∆E1/2 = 1.78±0.07 eV and for Ti 2p3/2 of ∆E3/2

= 2.16±0.04 eV are found. XPD patterns are observed and angle-dependent patterns are

resolved in the PE line intensities, the background and binding energy.

10.4 Conclusion shake-up

The obtained shake-up energy and intensity for bulk sc-TiN is explained by two final states

of the ionized Ti atom in a crystalline network. A simple electron excitation model describes

the changes in the shake-up energy qualitatively and the difference in ∆E1/2 and ∆E3/2 are

explained by core hole-valence band coupling [420] (sect. 7.10). The obtained shake-up

intensities for pristine TiN are above the expected values received by DFT calculations [290]

for excitation process in single atoms. The higher intensity has been explained with band

broadening and an reduced excitation energy (sect. 7.8). For a complete quantitative de-

scription of the shake-up feature it is required to perform further computational simulation

(TD-DFT or CI).
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Different overlayers on sc-TiN are used to change the shake-up energy at the interface. Hence

a method is found that allows the fine tuning of the shake-up energy by varying the overlayer

thickness or the overlayer material. The TiN interface studies reveal clearly that the shake-up

energy decreases with increasing interfacial charging (sect. 8.4). Further it is revealed that a

decreasing shake-up energy results in an increase in the shake-up ratio ri (sect. 8.6.2). The

gained insight on the shake-up feature is utilized to characterize the different bilayer systems

(sect. 8.6.3).

10.5 Conclusion on bilayer systems

Different layer morphologies in TiN/Si3N4 , TiN/AlN and TiN/Si bilayers are observed using

AFM. Si films deposited on TiN are not fully covering the TiN sublayer and exhibit island growth.

Completely covering TiN/Si layers could not be prepared. Si3N4 and AlN films deposited on a

TiN sublayer show atomically flat overlayers for Si3N4 films thicker than 1 nm and for AlN films

thicker than 0.5 nm. TEM images verify that the prepared TiN/Si3N4 interfaces are atomically

flat.

XPD patterns obtained using XPS reveal that AlN films grow epitaxially on sc-TiN(001) and that

the crystalline structure changes between 0.8 nm and 1.5 nm. Si3N4 overlayers show similar

XPD patterns indicating an epitaxial growth pattern for layers thinner than 0.7 nm, while

thicker Si3N4 or biased Si3N4 films grow amorphous.

AR-XPS data illustrate that TiN/AlN and TiN/Si3N4 interfaces are charging, the resulting

interfacial charging is altered by the overlayer structure and thickness. An interfacial charging

modifies the shake-up energy. It is experimentally shown that a decrease in the shake-up

energy is directly correlated to an increase in the shake-up intensity. Hence the overlayer

thickness can be used to fine tune the shake-up energy and intensity.

10.6 Conclusions on interface polarization and superhardness

The observed polarization on the TiN/AlN and TiN/Si3N4 bilayer systems during the pho-

toemission process is extrinsic and intrinsic. The difference between intrinsic and extrinsic

interfacial charging cannot be resolved with AR-XPS.

In this thesis it is explained that the proposed band model to describe the interface polariza-

tion [27] is not appropriate. Recent DFT calculations [194, 195] indicate metallic or at least

small band gap SiNx structures for the first two monolayers of Si3N4 grown on TiN(111), and

therefore no intrinsic interface polarization can build up at those interface.

The maximum hardness enhancement Htot due to coherency stress, thermal stress and

Koehler stress has been estimated and compared to literature. All reported hardness maxima

for TiN/Si3N4 nanocomposites are found between 25 GPa and 48 GPa (with the exception of
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Vepřek et al. [82], who reported values above 100 GPa). The estimated maximum hardness

depends on the assumed interface structure and is between approximately 40 GPa and ap-

proximately 70 GPa. These calculated values are for ideal systems. It must be assumed that the

interface structures in real nanocomposite systems are not ideal and are a mixture of different

structures, which depend on the adjacent grain orientations. The estimated hardness values

describe well the experimental data and no further hardness enhancement effect, as interface

polarization, is required.
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Nomenclature

α thermal expansion coefficient

αA ,αB the thermal expansion coefficients of material A and B

z̄ averaged mean value of all heights zi j

β FWHM of the 2Θ peak in XRD

χ angle by which the sample in pole figures is tilted

∆ optical path length

δ interface thickness

∆E1/2 energy difference between the main and the shake-up peake of Ti 2p1/2

∆E3/2 energy difference between the main and the shake-up peake of Ti 2p3/2 , also called

shake-up energy

∆Θ shift between the maxima of main and shake-up in the XPD patterns

∆Eo energy difference between the PE lines of core holes of two materials indicating the

interface charging

λ inelastic mean free path

λx wavelength of the X-rays

νA ,νB Poisson ratio of material A and B

Φ work function, see eq. 3.1

φ angle by which the sample in pole figures is rotated

ρ density of the material

ρA density of the material A

σ yield stress
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τk maximum stress to move a dislocation through an interface

τs shear stress

τt thermal stress of a layer A in contact with layer B

τK Koehler stress

Θ in XPS: see AOE; in XRD: angle between sample surface and detector

Θs angle between interface and slip plane

Θt refracted angle described by Snell’s law

A contact area

B universal parameter of the U2T, linear inclination

C universal parameter of the U2T, describing the curvature

cox y oxygen concentration

d grain size

dc critical grain size, transition from HP to iHP

dt distance that an emitted electron travels through the solid

dhkl lattice constant for the (hkl) planes

di distance between substrate and target in gun # i

E or Eki n kinetic energy; E can also refer to the Young’s modulus

f total misfit

F (E) background corrected spectra

f A−B lattice mismatch of two materials A and B

fexp experimental lattice mismatch

ftheo theoretical lattice mismatch

G A ,GB shear modulus of material A and B respectively

H hardness

H0 intrinsic hardness

HA hardness of the material A containing the dislocation activity

HK hardness increase due to Koehler stress
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Hcoh hardness enhancement due to coherency stress τcoh

Htot total hardness

Ht hardness induced due to thermal stress τt

I (E) intensity at the kinetic energy E

I0 intensity of the offset

I A measured intensity of an element A

Ic intensity of the Cosinus decay

Im measured intensity signal

Ip intensity of the Gauss distributed peak i at the angle cos(θi )

I0 intensity of a pure element at the place of origin

Ii nt interface intensity of a signal emerging from an interface

Iox y intensity of the oxygen contribution

IS intensity of the shake-up contribution

K a shape factor used in the Scherrer equation

k fitting parameter for the Shirley background

K (E) inelastic electron scattering cross section

kHP material dependent strengthening coefficient

L fitting parameter to adjust the background to its limits

m Taylor factor

Mm measured intensity of the main photoelectron line

n an integer

p pressure in mbar

Pmax maximum load

R0 virtual ratio used for fitting

rb ratio of the shake-up intensity and main peak in the bulk material

ri ratio at the interface of the shake-up intensity and main peak intensity

Rm ratio of the measured area intensity of the shake-up Sm and the main intensity Mm
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Sa arithmetic average surface roughness

Sm measured intensity of the shake-up

T exponential decaying tail value used to describe the line shape

Tm melting temperature of the film

x depth from where a signal emerges

zi j height at a position (i,j)

∆E an energy difference, if not described explicitly then it refers to the energy difference

between shake-up and main peak

EF Fermi level

EB binding energy

a linear fitting parameter

a- X-ray amorphous

AFM Atomic Force Microscopy

AFM Atomic Force Microscopy

AL attenuation length

AOE angle of emission θ between detector and the normal to the sample surface

AR-XPS Angle Resolved X-ray Photoelectron Spectroscopy

at% atomic percent

B element that is only contained in the bulk, e.g. Ti

b exponential fitting parameter

bct body-centered tetragonal

BG background

c- cubic

CVD Chemical Vapor Deposition

DFT Density Functional Theory

DOS density of states

DS Doniach-Sunjic line shape
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EAL effective attenuation length

EELS Electron Energy Loss Spectroscopy

EPES elastic peak electron spectroscopy

ERDA Elastic Recoil Detection Analysis

ERDA Elastic Recoil Detection Analysis

ESCA Electron Spectroscopy for Chemical Analysis

fcc face-centered cubic

FEM finite element method

FRS Frank-Read source

GL(x) Gaussian Lorentzian product used to describe the line shape

HIKE High Kinetic Energy XPS

HP Hall-Petch

HR-TEM High Resolution TEM

HV high vacuum

iHP inverse Hall-Petch

IMFP inelastic mean free path

j total angular momentum number

L element that is only contained in the overlying material, e.g. Si

LEED Low-Energy Electron Diffraction

LTAFM low temperature atomic force microscope

MD molecular dynamic

MgO magnesium oxide

ML monolayer, please note footnote in section 2.2.4

MTD Mobile Transfer Device

nc- nanocrystalline

pc- poly crystalline

pDOS projected DOS
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PE photoelectron

PES Photoelectron Spectroscopy

PVD Physical Vapor Deposition

QMD quantum molecular dynamics

QSE quantum size effects

RBS Rutherford Backscattering Spectrometry

RT room temperature

sbg-SiNx small band gap SiNx , (sect. 8.4.4)

sc- single crystalline

STM Scanning Tunneling Microscopy

SZM Sputter Zone Model

T temperature during the deposition process

TEM Transmission Electron Microscopy

TMN transition metal nitride

TOA take-off angle

TOF Time Of Flight

TOF SIMS time of flight secondary ion mass spectrometer

U2T Universal Two-parameter Tougaard background

UBMS Unbalanced Magnetron Sputtering

UHV Ultra High Vacuum: p < 10−9 mbar

UPS Ultraviolet Photoelectron Spectroscopy

V1 volume between the storage and the connection part in the mobile transfer device

w- wurtzite

XPD X-ray Photoelectron Diffraction

XPS X-ray Photoelectron Spectroscopy

XRD X-Ray Diffraction

XRR X-Ray Reflectometry

z height of the sample in the XPS device
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A Interface maths

In the following formulae the interface ratio ri and bulk ratio rb are derived. First an expression for

the interface intensity Ii nt of a signal emerging from an interface between the bulk with the element B

and the overlying material L is formulated. In the bilayer system (see fig.5.1), that is used in here, the

overlayer has a thickness t and does not contain the bulk element B. The real interface is atomically flat

(see section 6.3 amd 6.4), but the interaction region (how far a polarization or a charging is causing a

signal change in the shake-up) might be rather diffuse. The effects resulting in a change of the shake-up

behavior and the range of an interface region are discussed in chapter 8. A interface thickness δ is

defined as the thickness of the region in which the shake-up intensity is different from the shake-up

intensity of the bulk material .

The intensity I (d) of the emitted electrons traveling through a material the distance dt is given by the

Lambert-Beer law:

I (dt ) = I0 ·e−dt /λ (A.1)

where I0 is the intensity of a pure element at the place of origin and λ is the IMFP (see sect. 3.8.1). Since

the signal from a depth x under the angle of emission Θ travels the distance d = x
cosΘ , this signal is

given by:

I (x) = I0 ·e−x/(λcosΘ) (A.2)

The measured intensity signal Im can be expressed as:

Im =
∫ ∞

0
I (x) (A.3)

=
∫ t

0
IL(x)dx +

∫ t+δ

t
Ii nt (x)dx +

∫ ∞

t+δ
Ibulk (x)dx (A.4)

The shake-up process only happens in the TiN sublayer hence the signals of the overlying material are

not adding any intensity to the shake-up intensity. In a more general approach a measured sublayer

intensity Im is defined, that only contains intensities from the sublayer B. Since the overlying material

L does not contain the element B therefore no intensity arises from the overlayer. This means the first
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term in equation A.3 is zero and insertion of equation A.2 in equation A.3 leads to:

Im =
∫ t+δ

t
I0,inte

−x/(λcosΘ) dx +
∫ ∞

t+δ
I0,bulke−x/(λcosΘ) dx (A.5)

= I0,int

[
−λcosΘ e−x/(λcosΘ)

]t+δ
t

+ I0,bulk

[
−λcosΘ e−x/(λcosΘ)

]∞
t+δ (A.6)

= λcosΘ

(
I0,int

[
e−x/(λcosΘ)

]t

t+δ+ I0,bulk

[
e−x/(λcosΘ)

]t+δ
∞

)
(A.7)

= λcosΘ
(
I0,int

[
e−t/(λcosΘ) −e−(t+δ)/(λcosΘ)

]
+ I0,bulk

[
e−(t+δ)/(λcosΘ)

])
(A.8)

= λcosΘ e−t/(λcosΘ)
(
I0,int

(
1−e−δ/(λcosΘ)

)
+ I0,bulke−δ/(λcosΘ)

)
(A.9)

If we replace

c = λcosΘ e−t/(λcosΘ) (A.10)

f = 1− g (A.11)

g = e−δ/(λcosΘ), (A.12)

then the measured intensity Im of the sublayer B can be written as:

Im = c ·
(
Ii nt · f + Ibulk · g

)
(A.13)

Note that only the function c depends on the thickness of the overlayer.

As described in section 5.3 only the intensity ratios are of interest in this work. Therefore we define Rm

as the ratio of the measured area intensity Sm of the shake-up and the measured intensity Mm of the

main photoelectron line.

The measured ratio Rm can be calculated by using equation A.13:

Rm = Sm

Mm
= Si nt · f +Sbulk · g

Mi nt · f +Mbulk · g
(A.14)

and the measured ratio Rm becomes independent on the overlayer thickness t . Since we are interested

on the intensity change in the shake-up at the interface, hence we define an interface ratio ri of the

shake-up intensity Si nt and the intensity of the main PE line Mi nt as:

ri = Si nt

Mi nt
(A.15)

and in the same way a bulk ratio rb is defined

rb = Sbulk

Mbulk
(A.16)

The indices i and b are indicating that the signal emerges from the interface and bulk volume respec-

tively.

A detected electron has either undergone a shake-up process or not, the sum of both shaken and not
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shaken electrons is constant. It is assumed that the scattering ratio of core orbitals of an atom (e.g. Ti

2p) and therefore the sensitivity factors sc are not changing significantly neither between shake-up

and main line nor if different electron densities surround the atom. Therefore the overall amount of

emitted electrons between the bulk and the interface can be considered as equal and constanti, i.e.:

Mi nt +Si nt = Mbulk +Sbulk = k (A.17)

With the above equation A.17 we can write Mi nt = k −Si nt . Replacing Si nt according to equation A.15

gives Si nt = ri Mi nt . Therefore we can write:

Mi nt = k −Si nt = k − ri Mi nt (A.18)

⇔ Mi nt + ri Mi nt = k (A.19)

⇔ Mi nt = k
1

1+ ri
(A.20)

In a similar way we can write:

Si nt = k
ri

1+ ri
(A.21)

The same accounts for the bulk values of the shake-up intensity Sbulk and the main intensity Mbulk . If

the last two equations are merged in equation A.14, then the constant k cancels and we obtain:

Rm =
ri

1+ri
f + rb

1+rb
g

1
1+ri

f + 1
1+rb

g
(A.22)

The author would like to point out the difference between the mathematical derived ratio Rm and the

experimental obtained interface ratio ri . The fit function for ratio Rm is independent from the overlayer

thickness t since the overlayer does not contain titanium. This is integrated in equation A.13 where the

Ti 2p signal from the overlayer has not been included. The experimental results for the interface ratio ri

show a clear thickness dependence (sect. 8.6.3).

The interface ratio ri is obtained by rearranging equation A.22 and results in

ri = g rb −Rm − f rbRm

g Rm − rb − f
(A.23)

iLess electrons will be emitted from deeper lying atoms, but this is already taken into account in equation
A.2. Here the intensities are calculated as they appear at the origin of emission, i.e. before any scattering with
neighboring atoms.
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B Tail determination of TiN

In this appendix the tail shape of Ti 2p3/2 and Ti 2p1/2 is approximated by using the line shape of pure

titanium. The line shape for Ti has been empirically found to be a function of a Gauss-Lorentzian

product (GL) and an exponential decaying tail (T). The tail of the peak describes the inelastic scattering

of the emitted PE, that undergoes an interaction with the electrons in the conduction band of the metal.

The area AT i of the titanium peak is calculated by the function GL(x,E0, w,m) ·T (x,E0, w,k) describing

the intensity as a function of the kinetic energy of the PE.

AT i =
∫ ∞

−∞
GL(x,E0, w,m) ·T (x,E0, w,k) (B.1)

where G is a Gaussian function, L is a Lorentzian function, E0 is the kinetic energy of the peak position,

w is the FWHM, m is a factor describing the amount of mixing of Gaussian and Lorentzian parts, k is

an asymmetry parameter and T is an exponential decaying tail function described by [320]:

T (x,E0, w,k) = exp(−k
x −E0

w
) ; x ≤ E0 (B.2)

1 ; el se (B.3)

we can reformulate this:

AT i =
∫ ∞

−∞
GL(x,E0, w,m) ·T (x,E0,k) (B.4)

=
∫ E0

−∞
GL(x,E0, w,m) ·T (x,E0,k)+

∫ ∞

E0

GL(x,E0, w,m) (B.5)

=
∫ E0

−∞
GL(x,E0, w,m) ·

∫ E0

−∞
T (x,E0,k)+

∫ ∞

E0

GL(x,E0, w,m) (B.6)

= AT i ,el ast ·
∫ E0

−∞
T (x,E0,k)+ AT i ,el ast (B.7)

= AT i ,el ast · (1+TT i ,t ai l ) (B.8)
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where the symmetry of the GL-function around E0 has been used to replace AT i ,el ast =
∫ E0
−∞GL(x,E0, w,m) =∫ ∞

E0
GL(x,E0, w,m) and a tail form factor has been introduced TT i ,t ai l =

∫ E0
−∞ T (x,E0,k).

TT i ,t ai l can be further simplyfied by:

TT i =
∫ ∞

E0

T (x,E0,kT i ) (B.9)

=
∫ ∞

E0

exp

(
−kT i

(
x −E0

w

))
dx (B.10)

=
[
− w

kT i
exp

(
−kT i

(
x −E0

w

))]∞
E0

= w

kT i
(B.11)

Hence the area of the Ti-peak is described by:

AT i = AT i ,el ast · (1+ w

kT i
) (B.12)

In Ti four valence electrons are in the valence band, but only one is present in TiN. Only valence

electrons can contribute to the tail, therefore it is approximated that the TiN tail is only a fourth of the

Ti tail:

TT i N
!= 1

4
TT i (B.13)

This means:

4kT i = kT i N (B.14)
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C Additional XPS spectra

C.1 Detailed spectra of different overlayers

C.2 Ti 2p spectra of Si3N4 overlayer on TiN
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Appendix C. Additional XPS spectra
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Figure C.1: Survey spectrum of a TiN/Si bilayer systems recorded at AOE = 45◦, shown are
4.2 nm of Si deposited at 800 ◦C on sc-TiN(001). No bias is used during the deposition.
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Figure C.2: Detailed O 1s (left) and Si 2p (right) spectrum of a TiN/Si bilayer recorded at AOE
= 44◦. In both cases a Shirley background subtraction is used. Axis are scaled in order to be
comparable to other spectra.
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C.2. Ti 2p spectra of Si3N4 overlayer on TiN
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Figure C.3: Survey spectrum of a TiN/Si3N4 bilayer systems recorded at AOE = 45◦, shown are
1.4 nm of Si3N4 deposited at 800 ◦C on sc-TiN(001). No bias is used during the deposition.
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Figure C.4: Detailed O 1s (left) and Si 2p (right) spectrum of a TiN/Si3N4 bilayer recorded at
AOE = 44◦. In both cases a Shirley background subtraction is used. Axis are scaled in order to
be comparable to other spectra.
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Appendix C. Additional XPS spectra
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Figure C.5: Survey spectrum of a TiN/AlN bilayer systems recorded at AOE = 45◦, shown are
1.5 nm of AlN deposited at 800 ◦C on sc-TiN(001). No bias is used during the deposition.
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Figure C.6: Detailed O 1s (left) and Al 2s (right) spectrum of a TiN/AlN bilayer recorded at AOE
= 44◦. In both cases a Shirley background subtraction is used. Axis are scaled in order to be
comparable to other spectra.
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C.2. Ti 2p spectra of Si3N4 overlayer on TiN
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Figure C.7: Ti 2p spectra for TiN covered with a 1.7 nm overlayer of Si3N4. All main and shake-
up peaks are fitted with a GL(20) line shape, all others with a GL(30) (sect. 7.4). The AOE
increases from top to bottom. Note the y-axis scale is adjusted for each spectrum.
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D Gold AR-XPS

In section 7.1 a shift in the binding energy is observed in dependence of the AOE. A gold reference

sample has been measured under the same conditions as all other samples analyzed in this work (sect.

5.1). The work function has been calibrated so that EB (Au 4 f7/2)=83.95 eV. The binding energy of Au

4 f7/2 shows no dependence from the AOE (see fig.D.1). The standard deviation over all AOE from 0◦ to

70◦ is ±0.03 eV.
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Appendix D. Gold AR-XPS

84.2

84.0

83.8

83.6

 b
in
di
ng

 e
ne

rg
y 
Au

 4
f 7
/2
  [
eV

] 

6050403020100
 angle of emission [°] 

Figure D.1: The binding energy of Au 4 f7/2 is independent from the AOE. For a better compari-
son the axis dimension of the binding energy axis has been chosen to be equivalent to the one
of fig.7.2.
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E Hardness estimations

The values used for the hardness calculations are shown in table E.2. The β-Si3N4 hardness approxi-

mations are based on experimental data obtained by Vila et al. [155], their hardness Hβ−Si3N4 varies

between 9 GPa and 23.4 GPa and depends on the nitrogen flow during the deposition. The big devia-

tions result in an lower and upper guess of the hardness. For the unstable c-Si3N4 phase only limited

experimental data is available [455]. The shear modulus for this c-Si3N4 phase has been indirectly

inferred and is controversial [456]. Therefore ab initio calculated shear modulus are used in order to

approximate the c-Si3N4 hardness.

In the case of α-Si3N4 and β-Si3N4 ⊥ the misfit between Si3N4 and TiN are to large hence no epitax-

ial growth occurs and no coherency stress can develop to participate in an hardness increase. For

β−Si3N4 ∥the reported lattice constant of Ivashchenko et al. [195] are used.

In the cases of β-Si3N4 and TiN the shear modulus G has been calculated using the Young’s modulus E

and the Poisson’s ratio ν.

G = E

2(1+ν)
(E.1)

with a Poisson’s ratio for α-, β- and c- Si3N4 of ν= 0.25 and for TiN ν= 0.2. The author is aware that ν

should be different for ν⊥ and ν∥ depending whether the deformation occurs perpendicular or parallel

to the surface, but no data is available on the non isotropic Si3N4 structures. Nevertheless the Poisson’s

ratio is not expected to deviate much from the 0.25 and hence is sufficient for the approximation used

in here.

Please note: According to Koehler [132] the material with the lower shear modulus G A controls the

hardness, i.e. that HK = Hk +HA with G A <GB [86, 134]. The reason why the lower shear modulus is

used is that the dislocation moves in a multilayer system in the layer with the lower shear stress (or line

energy W [132, 457]). In the case of uni-elemental nanocomposites it has been shown by Schiøtz et al.

[111] that for grain sizes of the order of 5 nm the main part of the plastic deformation is occurring at

the grain boundaries and only a minor part by dislocation activity in the grains. It is further argued that

the nanocomposites have no dislocations at the grain-matrix interface, while in the grain junctions

dislocations are present (see fig. 2.4). Hence in the case of TiN/Si3N4 the dislocation activity takes only
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Appendix E. Hardness estimations

place in the Si3N4 interlayer/grain junctions and equation (2.6) writes as τK = τk +τSi3N4 . (If it would be

assumed that the dislocation moves through the TiN grain, then Htot (c −Si3N4, low) = 34.83 GPa and

Htot (c −Si3N4,up) = 42.19 GPa would be obtained.) Additionally it is pointed out, that the reported

shear modulus vary over a wide range [156, 453, 458] and even a shear modulus of 148 GPa is reported

[455]. This would mean that there is no Koehler stress since Gc−Si3N4 −GT i N = 0 (compare to eq.2.5).
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