
A Novel Conflict-Free Memory and Processor
Architecture for DVB-T2 LDPC Decoding

Alberto Jiménez-Pacheco
Laboratoire de Communications Mobiles

School of Computer and Communication Sciences
EPFL Lausanne, Switzerland

Email: alberto.jimenez@epfl.ch

Onkar Dabeer
School of Technology & Computer Science

Tata Institute of Fundamental Research
Mumbai, India

Email: onkar@tifr.res.in

Abstract—In this paper, we present a flexible architecture for
an LDPC decoder that fully exploits the structure of the codes
defined in the DVB-T2 standard (Digital Video Broadcasting
- Second Generation Terrestrial). We propose a processor and
memory architecture which uses the flooding schedule and has no
memory access conflicts, which are encountered in serial schedule
decoders proposed in the literature. Thus, unlike previous works,
we do not require any extra logic or ad hoc designs to resolve
memory conflicts. Despite the typically slower convergence of
flooding schedule compared to serial schedule decoders, our ar-
chitecture meets the throughput and BER requirements specified
in the DVB-T2 standard.

Our design allows a trade-off between memory size and
performance by the selection of the number of bits per message
without affecting the general memory arrangement. Besides, our
architecture is not algorithm specific: any check-node message
processing algorithm can be used (Sum-Product, Min-Sum, etc.)
without modifying the basic architecture. Furthermore, by simply
adding relevant small ROM tables, we get a decoder that is
fully compatible with all three second generation DVB standards
(DVB-T2, DVB-S2 and DVB-C2). We present simulation results
to demonstrate the viability of our solution both functionally and
in terms of the bit-error rate performance. We also discuss the
memory requirements and the throughput of the architecture,
and present preliminary synthesis results in CMOS 130nm
technology.

I. INTRODUCTION

Low-Density Parity Check (LDPC) codes were first intro-
duced by Gallager in his Ph.D. thesis [1]. However, they
truly captured the attention of the coding community only
after the advent of turbo codes [2], and by now they have
been extensively studied (see [3] and references therein). In
particular, random ensembles of LDPC codes in conjunction
with belief propagation (BP) decoding have been demonstrated
to operate very close to the Shannon limit in a variety of
channels [3]. Consequently, LDPC codes have been included
in several recent communication standards: IEEE 802.11n,
IEEE 802.16, DVB-T2, DVB-S2, etc.

The own nature of the BP algorithm lends itself to highly
parallelizable decoding structures. But while random designs
lead to powerful LDPC codes, the hardware implementation
of their decoders, especially for long block lengths, still poses
a considerable challenge in terms of chip area, throughput and
routing complexity. Such implementation considerations force
engineers to design codes with additional structure. In this

paper, we exploit the structure in the LDPC codes adopted
for DVB-T2 to propose and study a semi-parallel processing
architecture for the decoder. The key aspects of our design
are the absence of memory conflicts and its great flexibility.
In the remainder of this section, we describe prior art and our
contributions in light of these works.

A. Prior Art

Motivated by hardware constraints in the implementation of
decoders, many authors have considered LDPC code designs
that are decoder architecture-aware [4], [5]. This design phi-
losophy is also reflected in the LDPC codes adopted for IEEE
802.11n-2009 (WiFi), IEEE 802.16e (WiMAX) and for the
family of new digital video broadcasting standards: DVB-T2
(Terrestrial), DVB-S2 (Satellite) and DVB-C2 (Cable).

The architecture-aware codes adopted for DVB-T2 belong
to the family of Irregular Repeat-Accumulate (IRA) codes [6],
[7], which implies that their encoding can be done efficiently
with linear-time complexity. Besides, to simplify decoding,
the particular codes selected for DVB-T2 exhibit additional
structure: the parity check matrix can be decomposed into
blocks that exhibit a block-circulant structure. This structure
has been exploited by several authors in different ways: the
works [8], [9] propose a parallel architecture for the decoder
by splitting the check nodes and variable nodes into groups.
But they do not exploit the full parallelism in the DVB-
T2 codes and consequently they need extra logic to resolve
memory conflicts (which are instances where different pro-
cessors attempt to access the same memory locations). Other
solutions include the block-serial approach in [10] and the
layered (Gauss-Seidel) decoding method in [11], [12]. Many
of these works provide few details of their memory (RAM)
arrangement. To the best of knowledge, they all seem to lead
to memory conflicts and use some ad hoc techniques such
as extra logic, or exploit specifics of the serial schedule and
Min-Sum algorithm, to resolve conflicts. All these aspects lead
to reduced flexibility for the engineer: the implementor cannot
change the choice of the algorithm for improving performance
and the implementor cannot easily trade off memory and
accuracy.

978-963-8111-77-7

B. Our Contribution

In this paper, we exploit the structure in the DVB-T2 LDPC
codes to design a parallel processor and memory architecture
for the decoder that is conflict-free. While earlier designs also
make use of the structure of the parity-check matrices, they do
not identify and exploit it fully, and consequently our design is
much cleaner and flexible. The key to our architecture is the
identification of special sets of edges called strands, which
lead to a partitioning of the Tanner graph of the DVB-T2
codes. Our architecture arranges memory in accordance with
the strands and the parallel processors execute the message
computations using node groups (already identified in earlier
works [8]). The special properties of the strands and the node
groups ensure that there are no memory conflicts, while still
using single port RAM for the storage of the messages. Thus,
the greater cost, area and power consumption associated to
dual port RAM memories is also avoided.

Since our architecture is clean and conflict-free, it is flexible.
First, by choosing the number of bits per message, we can
trade off the overall size of the memory with the desired
decoding performance. Second, even if changes are made
to the draft specification codes (without altering the basic
structure), the architecture remains the same except for the
entries in an associated small ROM. Third, the engineer can
pick his choice of the decoding algorithm: Sum-Product, Min-
Sum, or any other variant.

We use the flooding schedule for computation, which in
principle requires more iterations for convergence than the
serial schedule [13]. But since we exploit the full structure in
the code, we meet the throughput requirements in the DVB-T2
standard. Even though we have a higher number of parallel
processors (360 versus 180 or 90 in [9], for instance), the
overall chip area of our design is comparable with earlier
works. This is due to the fact that the major contribution to
the synthesized area comes from the RAM memory, while that
of the processing units is much smaller. Besides, we do not
incur any extra area due to additional logic to resolve memory
access conflicts, since our architecture is conflict-free.

The rest of the paper is organized as follows: in Section II
we describe in detail the structure and properties of the parity-
check matrices that define the LDPC codes adopted in DVB-
T2. We exploit this structure and propose our decoder archi-
tecture in Section III. In Section IV we discuss the sequence of
decoding operations and explain why we do not have memory

conflicts. In Section V we present simulated performance
results using our decoder and discuss first synthesis results.
We summarize our conclusions in Section VI.

II. THE STRUCTURE OF DVB-T2 LDPC CODES

An LDPC code is completely specified by its (!−")×!
binary sparse parity-check matrix ! (incidence matrix of the
Tanner graph [3]), where ! is the length of the codeword
(64800 or 16200 bits in DVB-T2) and " is the number of
information bits. The code rate # := "/! in DVB-T2 can
range from 1/4 to 5/6. The rows of ! correspond to check-
nodes (CNs) and the columns correspond to the variable nodes
(VNs). Each 1 in the parity-check matrix corresponds to an
edge connecting a CN and a VN in the Tanner graph.

The LDPC codes in DVB-T2 are systematic, meaning that
VNs {0, 1, . . . ," − 1} correspond the information bits and
are referred to as information nodes (INs); the VNs {"," +
1, . . . , ! − 1} denote the parity bits and are referred to as
parity nodes (PNs).

For IRA codes we can write ! = [!1 !2], where !2 is
an (! −")× (! −") lower triangular matrix with 1s in its
main and first lower diagonals, all other elements being 0.

The structure of matrix !1 is a bit more complex to specify.
It is a sparse pseudo-random matrix designed with some perio-
dicity constraints. Let ' = 360, we define the code specific
parameters (:= (! −")/' and (̂ := "/' . Information
nodes can be divided into (̂ groups of ' nodes each, group
) consisting of the INs {'),') + 1, . . . ,') + ' − 1},
) ∈ {0, 1, . . . , (̂− 1}. We can thus write

!1 =
[
!1

0, . . . ,!
1
!, . . . ,!

1
"̂−1

]
, (1)

where the (! −")×' submatrix !1
! specifies the connec-

tions between the CNs and IN group). The matrix !1
! has a

block circulant structure:

!1
! =

⎡

⎢⎢⎢⎣

"!,0 "!,$−1 ⋅ ⋅ ⋅ "!,1

"!,1 "!,0 ⋅ ⋅ ⋅ "!,2
...

...
...

...
"!,$−1 "!,$−2 ⋅ ⋅ ⋅ "!,0

⎤

⎥⎥⎥⎦
, (2)

where each "!,% is a (× 1 vector. We see that column * ∈
{0, 1, . . . ,'−1} is a circular downward shift of column 0 by
*(positions. Thus INs in group) all have the same degree
(number of 1s in the column) and we denote it by +&! . We
note that by design, for each code defined in DVB-T2, +&!

Fig. 1. Image of the parity-check matrix of the (! = 16200, # = 5/6) DVB-T2 code (color black corresponds to 1 elements, white to 0 elements).

TABLE I
PARAMETERS FOR THE LDPC CODES DEFINED IN DVB-T2 (! = 64800)

Rate ! !̂ " #! $̄" $̄# $∗
%$

1/2 90 90 8 36 5 7 5 450
3/5 72 108 12 36 6 11 9 648
2/3 60 120 13 12 4 10 8 480
3/4 45 135 12 15 4 14 12 540
4/5 36 144 11 18 4 18 16 576
5/6 30 150 13 15 4 22 20 600

"̄! is the average CN degree.
"∗! is the row weight of submatrix &1.
The rest of the symbols are introduced in Section II.

TABLE II
PARAMETERS FOR THE LDPC CODES DEFINED IN DVB-T2 (! = 16200)

Rate ! !̂ " #! $̄" $̄# $∗
%$

1/4 36 9 12 4 5 7 2† 63

1/2 25 20 8 5 5 4.25 5† 85
3/5 18 27 12 5 6 4.67 7 126
2/3 15 30 13 3 4 4 8 120

3/4 12 33 12 1 4 3.27 11† 108

4/5 10 35 − 0 4 3 11† 105

5/6 8 37 13 1 4 3.27 17† 121

† Except for rates 3
5 and 2

3 , the row weight of &1 is
not constant; the value given here is the maximum row
weight of matrix &1.

can only take two different degrees: a rate-dependent value ,
(8 ≤ , ≤ 13), or 3; and that these appear in two ordered sets:
INs groups {0, 1, . . . , -' − 1} have degree ,, and INs groups
{-', -'+1, . . . , (̂−1} have degree 3 (-' is a rate-dependent
value as well, see Tables I and II).

The block circulant structure implies that the 1s in !1
!

appear in positions

(
(.(()) + * () mod (! −"), *

)
, (3)

1 ≤ + ≤ +&! , 0 ≤ * ≤ ' − 1,

where the values of .(()) denote the rows in the first column
of !1

! where there are 1s, and these positions are specified in
the tables of [14, Annexes A, B].

As can be seen in the example of Fig. 1, Eq. (3) implies
that matrices !1

! only have 1s along +&! diagonals with slope
(, circularly wrapped around. We refer to these diagonals as
strands, and they are central to arranging the memory to ensure
that there are no conflicts. More precisely a strand /!,(is a

set of edges defined as follows:

/!,(:=
{(

.(()) + * () mod (! −"), *
)
: (4)

* = 0, 1, . . . ,' − 1
}
, + = 1, . . . , +&! ;) = 0, 1, . . . , (̂− 1.

Each strand has ' edges, two different strands do not intersect
and their union gives the location of all 1s in !1. The total
number of strands is !) = (̂+̄*, where +̄* is the average IN
degree,

+̄* =
-' , + 3 -3

(̂
, (5)

and (̂ = -' + -3 is the number of IN groups.
It will be later convenient to list the strands in the following

order: /0,0, /0,1, . . . , /0,(!
0−1, /1,0, /1,1, . . . , /1,(!

1−1, . . . ,
/"̂−1,0, /"̂−1,1, . . . , /"̂−1,(!

"̂−1
−1. We number the strands

from 0 to !) − 1 in this order, and as per this numbering
convention, the “CN–IN group)” matrix !1

! consists of
strands (+&0++&1+. . .++&!−1),. . . , (+&0++&1+. . .++&!−1++&!−1).
Furthermore, we number the edges within one strand from 0
to ' − 1 in the following order: for a strand connected to
IN group), 0 corresponds to the element of the strand in the
column '), 1 corresponds to the element of the strand in
column ') + 1, and so forth.

The circulant structure of !1
! also leads to a natural group-

ing of the rows: we define CN group),) ∈ {1, . . . , (}, as the
set consisting of the ' CNs {)+ * (, * = 0, 1, . . . ,' − 1},
since we see from (2) that the *-th row in the group can be
obtained from the first one by a circular shift to the right by
* positions. Similar to the “CN–IN group)” matrix, we can
partition the edges of the “CN group) – IN” matrix using
strands. If strand 0 belongs to CN group), then we define the
offset of this strand to be the index ∈ {0, 1, . . . ,' − 1} of
the element in strand 0 that is connected to the first CN of the
group (i.e., connected to CN)) 1.

Finally, we define the PN group) as the set of PNs {) +
* (, * = 0, 1, . . . ,' − 1},) ∈ {0, . . . , (− 1}. Each PN
1 ∈ {0, 1, . . . , ! −"− 1} is connected to CN 1 and 1+1
(except for 1 = ! − " − 1, which is only connected to
CN ! −" − 1); we call these respectively the forward and
backward connections, from the perspective of the CNs.

III. PROPOSED ARCHITECTURE

The core ideas of our architecture are that 1) nodes within
one group (as defined in Section II) are processed in parallel,
and node groups are dealt with serially; and 2) memory is
arranged such that the messages required in a strand form a
word in RAM. Consequently, messages are all read/written in
parallel from/to the memory without conflicts. A schematic of
the semi-parallel architecture we propose is shown in Fig. 2,
consisting of the following components:

∙ A ROM memory that stores the tables with the parameters
required for the description of the codes.

1We see that by our numbering convention, for INs the strands always have
zero offset.

Address
Computation

Unit

Select Word

0 1 359· · ·

· · ·
Cyclic Shifter

offset

ROM

Functional Units

RAM

Fig. 2. Proposed decoder architecture.

∙ A RAM memory that stores the extrinsic messages ex-
changed between CNs and VNs during belief propaga-
tion, as well as the input log-likelihood ratios (LLRs)
obtained by the soft de-mapper (the receiver stage imme-
diately preceding the LDPC decoder [14]).

∙ A cyclic shifter that circularly shifts messages to the left
(right) while reading (writing) from (to) the RAM by
the specified offset, so that the elements of a memory
row are aligned with the elements of the node group we
are processing. The shifter holds ' messages and can
shift them in both directions by any offset between 0
and ' − 1 elements. When the offset is zero (as for all
INs, for instance), data is exchanged directly between the
RAM and the Functional Units (FUs).

∙ An Address Computation Unit (ACU), which aided by the
ROM tables selects the memory row to be read/written
as well as the offset to be used by the cyclic shifter. The
addresses and offsets computed during the read phase are
stored locally in the ACU and reused during the writing
phase.

∙ ' = 360 Functional Units that implement the function-
ality of an IN, PN and CN, and that work in parallel,
updating all the BP messages corresponding to a node
group at the same time. When IN group) is being
processed, FU 2 executes the operations of IN ') + 2,
while when CN/PN group) is processed FU 2 executes
the operations of CN/PN)+2(. A functional unit reads
messages on the incident edges and computes an outgoing
message for each of the incident edges, according to the
chosen variant of the BP algorithm. Each processing unit
has enough local memory to store all incoming messages
(maximum of 22, as per the last row of Table I) and
computes all outgoing messages in parallel.
Our architecture is independent of the specific algorithm
used for computation at the CNs. Hence, the internal
arithmetic inside the FUs will vary depending on the cho-
sen variant of the belief propagation algorithm [15]: Sum-
Product, Min-Sum, 3-Min, etc. Due to space constraints,
we do not report about our implementation of the FUs
here; these will be reported in a subsequent expanded
journal submission.

A. RAM Memory

Next we describe the organization of the RAM in more
detail. A single-port RAM is used, and we divide it into two
blocks: one to store the input LLRs and another one to store
edge messages passed around during belief propagation. Our
decoder uses the flooding schedule. Hence, the second block
holds the CN → VN messages after the first half of each
decoding iteration, and the VN → CN messages after the
second half.

IN–CN Messages

PN–CN Forward Messages

PN–CN Backward Messages

IN Input LLRs

PN Input LLRs

Ns rows

Q rows

Q rows

Q̂ rows

Q rows

M = 360 Messages wide (M × b bits)

B
lo

ck
2

B
lo

ck
1

Fig. 3. RAM organization.

Messages are stored in RAM in two’s complement format.
If we denote by 4 the number of bits used to represent each
message, then the width of the memory is ' 4 bits and its
depth is arranged as follows (see Fig. 3).

∙ The first block, holding the extrinsic messages, consists
of three parts:

– A block of !) rows holds the IN–CN messages.
Strand 5, 5 = 0, 1, . . . , !) − 1, is stored in row 5,
where the 2-th element in the strand occupies bits
{2 4, 2 4+1, . . . , (2+1)4−1}, 2 = 0, 1, . . . ,'−1.

– The next (rows hold the messages for the for-
ward connection of CNs: row !) +) corres-
pond to the forward connection of CN group),
) = 0, 1, . . . , (− 1. Thus bits {2 4, 2 4+1, . . . , (2+
1)4 − 1} correspond to the message between CN
) + 2(and PN) + 2(.

– The next (rows hold the messages for the back-
ward connection of the CNs: row !) + (+)
correspond to the backward connection of CN group
),) = 0, 1, . . . , (− 1. Thus bits {2 4, 2 4 + 1, . . . ,
(2+ 1)4− 1} correspond to the message between
CN) + 2(and PN) + 2(− 1.

∙ The second block, holding the input LLRs, is divided in
two parts:

– The input LLRs corresponding to IN group) are
stored in row !) + 2(+),) = 0, 1, . . . , (̂− 1.

– The input LLRs corresponding to PN group) are
stored in row !)+2(+ (̂+),) = 0, 1, . . . , (−1.

In the last decoding iteration the contents of this block of
memory are overwritten with the final a-posteriori LLRs,
and hard decisions can be obtained based on their sign
bit.

The total RAM depth is thus given by !) + 3(+ (̂. With
the parameters from Tables I and II we check that the RAM
requirement is dictated by the (! = 64800, # = 3/5) code
and evaluates to a maximum depth of 972 words. If we assume
4 = 4 bits per message, the total RAM requirement for our
decoder is 972×' × 4 ≈ 1.4 Mbit.

B. ROM Memory

For each block length and code rate we need to store in
ROM the parameters that describe the parity-check matrix of
the code. From the point of view of INs it is enough to store
the degree , for those groups for which it is different from 3,
and the IN group index -' starting at which IN groups have
degree 3. The strand numbers can be immediately computed
given those two parameters and the IN group number). Since
the offset is always 0 for INs, it does not need to be stored.

From the point of view of the CNs, for each of the (CN
groups we need to store its degree2 ++! , and two lists of ++!
elements each: one to store the strand numbers and another
one for the corresponding offsets.

All in all, for the description of the 6 long block-length and
the 7 short block-length LDPC codes defined in DVB-T2 the
total ROM requirements amount to 75 Kbit.

IV. SEQUENCE OF DECODING OPERATIONS

During initialization, the input LLRs computed by the soft
de-mapper are written to RAM (in its second block). Since in
the first iteration of belief propagation INs and PNs simply
transfer these initial LLRs to their adjacent CNs, we also
include this copy as part of the initialization, and appropriately
fill in the first block of the RAM as well.

Next, we proceed with the iterative decoding. Each iteration
consist of a first half in which CN → VN messages are
computed and a second half in which VN → CN messages
are computed. Each iteration begins by sequentially processing
the (groups of CNs, one group at a time. For each group,
the ACU reads the ROM and computes the strands to be
read, and the offset (if any) for the cyclic shifter. These
addresses and offsets are stored locally in the ACU to be
reused during the writing phase. The RAM is then read one
strand at a time. If the offset is non-zero, then the word
contents are circularly shifted to the left and then written to
the FUs’ internal memory. Then the FUs compute the outgoing
messages. If the offset is non-zero, then the word contents are
circularly shifted to the right before being written to the RAM
(using the addresses stored locally in the ACU). All address

2For ! = 64800 all codes have constant row weight, so only one value
per code rate needs to be stored; this is not the case for ! = 16200, where
for every code rate the degree of each CN group needs to be stored.

computation, read/write, message computation and cyclic shift
operations are pipelined.

The second half iteration processes first the (̂ groups of INs
and then the (groups of PNs in a similar way, but naturally
the calculations carried out by the FUs to compute the VN →
CN messages are different from those carried out during the
first half iteration to compute the CN → VN messages.

If the maximum number of iterations has been reached (or
some other stop criterion is met), then this second half of the
iteration is different: instead of computing extrinsic messages,
the FUs calculate the final a-posteriori LLRs, which are stored
in the second RAM block, overwriting the input LLRs which
are not necessary any more.

We note that the RAM is read/written one strand at a
time. Also, for any node group, all the incident edges in
a strand correspond to successive nodes in the group. As a
consequence of these facts, we do not have memory conflicts.
Our arrangement of the memory in accordance with the strands
is a key component not found in earlier works, that makes our
architecture clean, conflict-free and flexible.

V. RESULTS

Although we defer to a subsequent journal publication the
formal proof of the correctness of our decoding scheme and of
the absence of memory conflicts, we provide some simulation
results that functionally validate our architecture and asses its
performance. To this aim we constructed three different LDPC
software decoders:

∙ The first one is a completely generic floating-point de-
coder that implements the Min-Sum and Sum-Product
variants of the BP algorithm. It can work with any LDPC
code, without relying in any specific properties of the
parity-check matrix.

∙ The second simulator is also a floating-point decoder, but
its memory arrangement and sequence of decoding op-
erations accurately follow the architecture we proposed,
reflecting the limited hardware resources described in
Section III. Thus, it is tailored to the specific properties
of the LDPC codes defined in DVB-T2.

∙ The third software decoder is also architecture-aware, as
the second one, but it is fully implemented in fix-point
(the messages are stored in RAM in fix-point format and
the operations inside the FUs are also carried out with
finite precision).

1) Functional validation: The functional validation of the
proposed architecture was carried out by comparing the out-
puts of the two first software decoders when fed with the
same inputs, and this for both code lengths and for all code
rates, under different channel conditions. As a double check
we also compared our two floating-point decoders with the
generic LDPC decoder implementation provided in Matlab’s
Communication Toolbox (which unfortunately implements the
Sum-Product algorithm, but not the Min-Sum).

2) Fix-point performance validation: Once the functional
validation had been passed, we moved on to validate the per-
formance of the fix-point implementation of our architecture.

Our fix-point software simulator aims to be bit-accurate with
the Verilog implementation. In fact, we used it to generate
input/output test vectors with which to validate the Verilog
implementation of the decoder.

We next show simulation results for our decoder using two
different algorithms and quantization strategies for CN mes-
sage processing: the Sum-Product algorithm with 4 = 5 bits
per message, and the Min-Sum algorithm with 4 = 4. The
results shown in Fig. 4 have been obtained integrating our
bit-accurate fix-point decoder into a complete simulator of the
whole DVB-T2 transmit/receive chain, and using an AWGN
channel model.

0 1 2 3 4 5 6 7
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CNR [dB]

B
E

R
 (B

it
E

rr
or

 R
at

e)

rate 5/6
rate 1/2

SPA, floating−point
MSA, floating−point
SPA, 5 bits
MSA, 4 bits

Fig. 4. Bit Error Rate (BER) at the output of the LDPC decoder in the
DVB-T2 receiving chain. AWGN channel, QPSK modulation, 50 decoding
iterations. SPA stands for Sum-Product Algorithm, MSA for Min-Sum Algo-
rithm.

These results have been obtained under the same conditions
as the reference results in the implementation guidelines pub-
lished by the DVB consortium [16, Ch. 14], and are therefore
immediately comparable. In fact, the vertical dotted lines
shown in Fig. 4 correspond to the target carrier-to-noise ratios
(CNR) for which a bit-error rate (BER) of 10−4 should be
obtained using an optimal floating-point decoder. Hence we
see that our fix-point decoder using the Sum-Product algorithm
performs within 0.2 dB of the ideal floating-point decoder. We
observe the appearance of error floors due to the quantization
of the messages, but they are well below 10−6 and they
will be absorbed by the BCH decoder that comes right after
LDPC decoding in the DVB-T2 receiving chain [14]. The Min-
Sum implementation is less sensitive to quantization effects,
even using 4 bits instead of 5 to encode the messages: error
floors are below 10−7 and the shift of the BER curves with
respect to floating-point performance is around 0.1 dB. Of
course, overall performance is worse due to its sub-optimality
compared to the Sum-Product algorithm.

Due to space constraints, we have presented a limited set of
results for illustration, but these results are representative of
the behavior of our decoder for other code rates, modulation
types and channel models.

A preliminary synthesis of the proposed decoder has been

carried out in CMOS 130nm technology, using a clock fre-
quency of 200 MHz. The target throughput for the LDPC
decoder derived from the DVB-T2 standard is 60.4 Mbps.
Assuming a fix number of iterations equal to 50 (value used
in the reference results of [16]), with the clock-frequency
of 200 MHz, we reach a maximum throughput of 59 Mbps
for the (! = 64800, # = 3/5) combination, which turns out
to be the limiting case. For all other codes, the maximum
achievable throughput with 50 iterations is well above the
required target. Reducing the number of iterations from 50
to 45 is enough to meet the throughput requirement in the
limiting case, while the effect on performance is minimal.

VI. CONCLUSIONS

We have presented a flexible architecture for an LDPC
decoder for the DVB-T2 system, which can be easily extended
to support DVB-S2 and DVB-C2 as well. We use the flooding
schedule and propose a semi-parallel architecture which uses
360 processing units. We identify a particular way to partition
the parity check-matrices in node groups and in strands of
360 elements each. By arranging the memory so that a word
in RAM corresponds to a strand we completely avoid the
memory access conflicts present in previous solutions, and
hence we do not require any extra logic or ad hoc solutions to
handle these exceptional circumstances. The clean structure
offers great flexibility to the designer: new codes can be
added by simple addition of small ROM tables and it is
easy to trade off performance and memory usage without any
modifications to the RAM arrangement or general decoding
structure. Besides, our proposal is not tailored to any particular
variant of the BP algorithm, and any check-node processing
algorithm can be employed without further redesign. We have
shown some simulations and preliminary synthesis results that
proof the viability of our solution, both from a functional
point of view and performance-wise: throughput and decoding
performance requirements specified in the DVB-T2 standard
and implementation guidelines are satisfied by our decoder.

ACKNOWLEDGMENT

The authors would like to thank Prof. Rüdiger Urbanke
and Prof. Bixio Rimoldi at EPFL, and Dr. Mauro Lattuada,
Dr. Matteo Buttusi and Pascal Peguet at Abilis Systems for
numerous valuable discussions.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” Ph.D. dissertation, MIT
Press, Cambridge, Massachussets, Jul. 1963.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: turbo-codes,” in IEEE ICC ’93, May
1993, pp. 1064–1070.

[3] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2008.

[4] E. Boutillon, J. Castura, and F. R. Kschingang, “Decoder-first code
design,” in Pro. 2nd International Symposium on Turbo Codes & Related
Topics, Brest, France, Sep. 2000, pp. 459–462.

[5] M. M. Mansour and N. Shanbhag, “Architecture-aware low-density
parity-check codes,” in Proc. IEEE International Symposium on Circuits
and Systems (ISCAS’03), vol. 2, May 2003, pp. II–57 – II–60.

[6] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate
codes,” in Proc. 2nd International Symposium on Turbo Codes & Related
Topics, Brest, France, Sep. 2000, pp. 1–8.

[7] F. Kienle and N. Wehn, “Design methodology for IRA codes,” in Proc.
Asia South Pacific Design Automation Conference (ASP-DAC’04), Jan.
2004, pp. 459–462.

[8] F. Kienle, T. Brack, and N. Wehn, “A synthesizable IP core for DVB-S2
LDPC code decoding,” in Proc. IEEE Conference on Design, Automation
and Test in Europe (DATE’05), 2005, pp. 100–105.

[9] M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, and M. Falcao,
“Flexible parallel architecture for DVB-S2 LDPC decoders,” in IEEE
Global Telecomm. Conf. (GLOBECOM’07), Nov. 2007, pp. 3265–3269.

[10] J. Dielissen, A. Hekstra, and V. Berg, “Low cost LDPC decoder for
DVB-S2,” in Proc. IEEE Conference on Design, Automation and Test
in Europe (DATE’06), 2006, pp. 130–135.

[11] D. Hocevar, “A reduced complexity decoder architecture via layered de-
coding of LDPC codes,” in Proc. IEEE Workshop on Signal Processing
Systems (SIPS’04), Austin, USA, Oct. 2004, pp. 107–112.

[12] C. Marchand, J.-B. Doré, L. Conde-Canencia, and E. Boutillon, “Conflict
resolution by matrix reordering for DVB-T2 ldpc decoders,” in Proc.
IEEE Global Telecommunications Conference (GLOBECOM’09), De-
cember 2009, pp. 1–6.

[13] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-passing
schedules for LDPC decoding,” IEEE Trans. Inf. Theory, vol. 53, no. 11,
pp. 4076–4091, Nov. 2007.

[14] “Digital video broadcasting (DVB); frame structure, channel coding
and modulation for a second generation digital terrestrial television
broadcasting system (DVB-T2),” ETSI, Tech. Rep. EN 302 755 V1.2.1,
Feb. 2011.

[15] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[16] “Implementation guidelines for a second generation digital terrestrial
television broadcasting system (DVB-T2),” ETSI, Tech. Rep. 102 831
V0.10.4, Jun. 2010.

