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ABSTRACT

The High-Voltage MOSFET is used in a wide variety of applications covering from power systems up to RF-IC. Compact 
models that describe the high-frequency behavior of the device are required to predict high-frequency operation 
and switching capabilities of these elements in HV state-of-the-art systems. In this paper, an RF model is presented 
and verified against extensive Y-parameter measurements, which were carried out on a long channel Lateral double-
Diffusion MOS device. Assessment of the model with measurements confirms the validity of this approach.

Keywords:
Drift region, High-frequency regime, High-Voltage MOSFET, HV-MOS, LDMOS, Physics-based analytical compact 
model, RF.

1. INTRODUCTION

The importance of the High-Voltage (HV-MOS) as a 
device in state-of-the-art applications has been reported 
extensively in scientific literature [1-5]. One of the reasons 
is that modern HV-MOS devices, like Lateral double-
Diffusion MOS (LDMOS), may be integrated together 
with low-voltage modules in CMOS processes [3,5].  
The systems, where such devices are used, range from 
power components for automotive and consumer 
products [2] up to radio frequency applications [6-8]. 
Therefore, compact modeling of HV-MOS is an enabling 
factor that will help in predicting how these devices can 
be optimally integrated in complex architectures [9-26]. 
More particularly, the RF characterization and modeling 
of HV-MOS should receive extra attention since the 
high-frequency behavior is, still, a quite demanding 
and challenging issue. The results presented here are a 
continuation of a previous work that has already been 
published [27].

2. MODEL DESCRIPTION

The structure of an HV-MOS, if simplified, may be 
regarded as the in series combination of two simpler 
elements. On one side lays the low-voltage part which 
closely resembles to a classical MOSFET, except for the 
relatively high longitudinal doping gradient across 
the channel [9,27]. On the other side, beyond the inner 
drain of the low-voltage part there is the high-voltage 
section which protects the low-voltage MOSFET from 
excessively high potentials. This part, also called drift 
region, has the same type doping as the outer drain and 
source of the HV-MOS. Its quite long extension, i.e., a few 

microns, ensures safe operation needed for the device to 
function at dozens of volts [26].

The compact model used in this work takes advantage of 
the above simplification, describing the whole structure 
as a macromodel of two basic elements. The connection 
of these two elements takes place at a node called the 
K-point, which is, in physical terms, the metallurgical 
junction point where the doping profile changes its 
type, between the channel of the low-voltage part and 
the drift region [14,25]. In order to model the device at 
RF, additional extrinsic components must be added. 
Among them, there are a gate resistance and two 
asymmetrical junction diodes between the source and 
the drain terminals and the substrate. In addition, it has 
been observed that overlap capacitances between the 
gate and other nodes are not negligible. These overlap 
capacitances become even more important for specific 
small geometries.

The elements of the intrinsic part of the model can be 
considered as a small signal equivalent network built 
upon transcapacitances and current sources. For the 
core of the model, and omitting higher order effects like 
impact ionization current, the low-voltage part of the 
device can be represented by three transcapacitances 
between the gate and other nodes, and a current 
source between the K-point and the source node. In 
addition, a similar representation can de adopted 
for the drift region. Here, again a current source is 
needed between the outer drain and the K-point, and 
also two transcapacitances, one between the gate and 
the K-point that describes the charge behavior of the 
carriers just below the oxide, and one more between 
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the gate node and the outer drain, which accounts 
for the charges laying in the rest of the drift region. 
This is sketched in the small signal equivalent circuit 
schematic of Figure 1.

2.1 Dynamic Charge Behavior of the Drift Region

The dynamic behavior of the low-voltage part of the 
device including a MOSFET with lateral non-uniform 
doping is analyzed in [9,28-30], while a detailed 
analysis of the charge has been discussed in [27]. In 
this article, the discussion on the dynamic behavior 
of the HV-MOS devices will be pursued by giving a 
transcapacitance representation of the charges in the drift  
region.

Considering the charge-sheet approximation [31], the 
charge of the drift region may be considered as the 
sum of two components. The first component (qk) is the 
charge accumulated just below the thin oxide and has 
been analyzed in [27]. If WDK and LOV.DK are the width 
and the effective gate length overlap the drift region, 
respectively, and TOX is the effective thickness of the thin 
oxide above the drift region, then the total charge at the 
K-point is calculated from:

Q =
W L

T
qK.DK

OX DK OV.DK

OX
k

e ⋅ ⋅
⋅ , (1)

Where, εOX is the permittivity of the oxide, and qk and 
QK.DK are respectively the normalized and absolute 
charge densities [32].

On the other hand, the sum of the charge in the drift 
region will be equal (in absolute value and opposite in 
sign) with the charge that will accumulate at the gate 
node (QG.DK). If QD.DK denotes the charge at the inner part 
of the drift region, we get:

Q Q QG.DK K.DK D.DK= − +( ) . (2)

Note that QG.DK stands only for the part of the gate charge 
that is connected with the drift region, and does not 
represent the whole charge of the gate node. This charge 
may be calculated after the following equation.

Q
W L

T
V VG DK

OX DK OV DK

OX
G FB DK K.

.
.=

⋅ ⋅
⋅ − −( )e

Ψ . (3)

In the above equation, VFB.DK denotes the Flat-Band voltage 
of the drift region and the ΨK is the surface potential at 
the K-point. The latter is calculated from the potential of 
the internal node of the K-point (VK), which is evaluated 
considering the continuity of the current at the K-point [27].  
Therefore, the above set of equations form the core of the 
model for the dynamic behavior of the drift region.

Figure 1: Small Signal equivalent circuit of the macromodel for the HV-MOS. The intrinsic and extrinsic parts are shown, while 
the intrinsic part is further divided into the low-voltage part and the drift region. For the intrinsic part, transcapacitances 
and current sources are used, while the extrinsic part consists of junction-diodes, resistors, and capacitors.
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3. COMPARISON WITH MEASUREMENTS

The model has been verified against numerical simulations 
of Technology Computer-Aided Design (TCAD) tools 
and real measurements [27]. Few selected results will 
be presented in this section in order to demonstrate its 
capabilities. For this purpose, an LDMOS device has been 
chosen with a minimum gate length of L = 500 nm. The 
gate width is W = 40 μm, while the thickness of the oxide 
is TOX = 15 nm in order to withstand a gate potential up 
to 5 V.

3.1 Static Current Aspects

In Figure 2, a comparison between the model and 
measurement for various static current conditions is 
presented. The model shows good capabilities under 
all bias conditions. The device’s behavior is more 
complicated than the classical MOSFET case since there 
is a continuous balance between the two parts of the 
device that sets the quasi-fermi potential of the K-point. 
In principle, it could be said that for low gate potential, 
when the channel of the low-voltage MOSFET of the 
device is in weak inversion, the overall device acts 
similarly to a classic MOSFET having a resistive load at 
its drain. As the inversion level increases and the low-
voltage part gets deeper in strong inversion, more and 
more carriers can be provided to the drift region. Under 

these bias conditions, it is the drift region that will govern 
the overall behavior of the device, especially for high VDS 
values, and the device differentiates importantly from 
the classic MOSFET.

3.2 Dynamic Behavior Analysis

In order to validate the model according to its dynamic 
behavior, the LDMOS device was also measured at 
high frequencies. Considering the device as a two-
port network, where the input (port 1) is between 
gate and source, and the output (port 2) is between 
drain and source (which is connected to the ground), 
S-parameter measurements were performed up to 
6 GHz. The measurements were done under various 
bias conditions. When VDS was zero, the gate potential 
varied between -4V and 4V, while with positive VDS, 
the gate potential swept between 0.8V and 4.8V. The 
S-parameters were transformed to Y-parameters, which 
are better suited for the voltage-to-current terminology 
already used in static analysis. Figure 3 shows some 
selective results of the above measurements for a 
specific frequency, f = 1.2 GHz, displayed along with the 
simulation obtained from the model. The model covers 
adequately the high-frequency behavior of the device 
under an extended range of bias conditions providing 
good results in terms of Y-parameters for all modes of 
operation.

Figure 2: Static current measurements (markers) and model behavior (lines) of an LDMOS (L=500 nm, W=40 μm, TOX=15 nm). 
The two plots on the left are an ID vs. VG analysis with a low value for VDS=100 m and for various VSB values between 0V and 
4.5V. The two plots in the middle repeat the same analysis with high value for VDS=35 V. The two plots on the right illustrate 
and ID vs. VD where VSB=0V and VGS ranges between 1V and 5.5V. The upper graphs show the current while the lower either 
the transconductance, gm for the analyses ID vs. VG, or the output conductance, gds, for the ID vs. VD analysis.
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4. EXTRINSIC NETWORK AND RF PARAMETER 
EXTRACTION

In this section, a short analysis on the parameter 
extraction procedure will be discussed. It shall be focused 
on the extraction of the parameters related to the extrinsic 
part of the device which may benefit from the high-
frequency analysis of the device [33-36]. Although the 
core of the following techniques is based on the classic 
MOSFET, it shall be shown that there is enough space 
for its application to HV-MOS devices.

4.1 Gate Resistance

By analyzing the small signal equivalent circuit, and 
its functionality under small signal conditions, the 
gate resistance can be estimated by the following  
equation [33,37].

R
Y
Y

G =
Re( )

Im( )
11

11
2 . (4)

In Figure 4, the estimation of the gate resistance is plotted 
against the gate potential for the LDMOS device under 
test. The extraction of the value of the gate resistance is 
best performed under negative gate bias conditions and 
with VDS = 0V, since this bias minimizes the influence of 
the rest of the device. For the simulations shown here, a 
value of 90Ω has been used for RG which is very close to 
the estimation of (4) for low enough values of the gate 

potential. These results verify that this equation is valid 
for the HV-MOS devices as well.

Figure 3: Y-parameters, in real and imaginary part, of an LDMOS device with geometric parameters of L=500 nm, W=40 μm, 
and TOX=15 nm. The markers (VDS=0V: ○ and VDS=30V: ◊) are for measurements while the lines are the model’s behavior. Port 
1 is gate-to-source and port 2 is drain-to-source, and VSB=0V. The results are shown for frequency f=1.2GHz.

Figure 4: The Gate Resistance (RG) as estimated by (4) under 
various bias conditions with VSB=0V and f=1.2 GHz, for an 
LDMOS device with L=500 nm, W=40 μm and TOX=15 nm. 
Markers stand for measurements (VDS=0V: ○ and VDS=30V: 
◊), while lines are model simulations. The accurate value 
of the resistance is best extracted under negative gate bias 
and zero drain-to-source difference potential, as these 
conditions minimize the influence of the rest of the device. 
Here, the RG used for the model is 90Ω. The dotted line 
is for the simulation of the model minimizing the gate 
resistance.
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4.2 Capacitances

Viewing the transistor as a two-port network, the 
imaginary parts of the Y-parameters hold information 
on the capacitances and the transcapacitances of the 
devices. This way, the following equation, which 
contains Im(Y11), can be used as an estimation of the 
capacitance seen from the gate node, meaning the total 
gate capacitance.

C
Y
fGG =

Im( )11
2π

. (5)

In Figure 5, an estimation of the total gate capacitance is 
shown against the gate potential. The profile resembles 
to the classical MOSFET one, where the regions of 
operation of the device according to the gate potential 
are well separated, especially for the VDS = 0V case. 
For the lowest values of the gate potential, the gate 
capacitance is maximized as the device works in 
accumulation. As the gate potential increases, the area 
below the thin oxide gets depleted and the device 
enters in depletion. Further increment of the gate 
potential leads to an inversion layer where the total 
gate capacitance reaches again its maximum value [38].  
Under a positive VDS, the device shows some clear 
deviation with respect to corresponding basic MOSFET 
device. Due to Miller effect, the total gate capacitance 
exceeds the maximum expected and exhibits a different 
shape [9].

The rest of the Y-parameters can be used in order to 
extract information on the extrinsic capacitances, see 
Figure 6. These can be obtained from the following 
relationships.

C
Y
fGD =

Im( )12
2π

, (6)

C
Y
fDG =

Im( )21
2π

, (7)

C
Y
fDD =

Im( )22
2π

. (8)

Similarly, to the total gate capacitance, the Im(Y22) 
represents the capacitance of the device seen from the 
drain node. A major component of CDD is the junction 
diode capacitance. On the other hand, one can see that 
at low and negative gate potentials, the estimations of 
CGD and CDG coincide. By inspection of the equivalent 
small-signal circuit, CDD may be regarded as the sum 
of the extrinsic overlap capacitance between the gate 
and the drain (CGD.OV) with the gate-to-drain capacitive 

load of the drift region. If this sum is substracted from 
CDD, under the same bias conditions, the rest holds 
for the drain-to-substrate parasitic junction diode (CJ.

DB) capacitance. Again, these parasitic elements are 
magnified for negative gate biases, where the channel 
does not influence the overall behavior of the device. 
Note that, under positive VDS, the reciprocity between 
these two transcapacitances breaks down due to the 
saturation of the device from the drain side.

Figure 5; Total Gate Resistance (CGG) as estimated by (5), 
under various bias conditions with VSB=0V and f=1.2 GHz, 
for an LDMOS device with L=500 nm, W=40 μm, and 
TOX=15 nm. Markers stand for measurements (VDS=0V: ○  
and VDS=30V: ◊), while lines are model simulations.

Figure 6: Various capacitances and transcapacitances as 
estimated by (6), (7), and (8), under various bias conditions 
with VSB=0V and f=1.2 GHz, for an LDMOS device with 
L=500 nm, W=40 μm, and TOX=15 nm. The non-filled markers 
stand for measurements with VDS=0V and the filled markers 
for VDS=30V, while the lines show the model simulation. 
The dotted lines represent the contribution of the junction 
diode capacitance to CDD, while the dashed lines stand for 
the contribution of the extrinsic, gate-to-drain, overlap 
capacitance to CDD.
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Table 1 displays the related models parameters used for 
the above analyses.

5. CONCLUSION

Compact modeling of High-Voltage MOS devices is critical 
and merits a careful analysis at RF. In this work, we present 
an RF HV-MOS model along with its core equations that 
provides good results up to the GHz range of frequency. 
Further analysis of the dynamic behavior of the HV-MOS 
verifies the adequacy of the foundations of our RF model 
in terms of equivalent circuit built upon passive elements.
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