
Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

1



Abstract—The acquisition of Global Navigation Satellite

Systems signals using Code Division Multiple Access can be

performed through classical correlation or using a Fourier

transform. These methods are well known but what is missing is a

comparison of their performance for a given hardware area or

target. This paper presents this comparison for Field-

Programmable Gate Arrays, describing the different parameters

involved in the acquisition, detailing some optimized

implementations where hardware elements are duplicated, and

estimating and discussing the performances. The influence of the

Doppler effect on the code, is also discussed as it plays an

important role, particularly for new signals using a high chipping

rate.

Index Terms—Acquisition, Architecture, CDMA, FFT, FPGA,

GNSS

I. INTRODUCTION

LOBAL Navigation Satellite Systems (GNSSs) use

pseudorandom noise (PRN) codes for ranging, and to

distinguish satellites via Code Division Multiple Access

(CDMA). The first processing step in a GNSS receiver is thus

acquisition, which consists of the rough estimation of the

phases of the PRN codes, as well as the Doppler frequencies

through multiple correlations with locally generated signals

(called replicas).

Acquisition can require a relatively long processing time,

due to the large number of possibilities for the two parameters

being estimated. This is even truer for very weak signals,

which are acquired nowadays by high-sensitivity receivers,

since this implies very long integration times.

Today’s technology allows very efficient acquisitions, by

processing signals at higher frequencies, and by parallelizing

operations by duplicating hardware elements and/or using

Fourier transforms. However, a general question is how to

select the best architecture for a specific application.

In this context, this paper provides a general framework for

hardware implementation on Field-Programmable Gate Arrays

(FPGAs). The framework is illustrated with an example

application in which we rank the considered architectures

Manuscript received June 9, 2011, revised December 19, 2011, revised

May 25, 2012, revised August 23, 2012, accepted September 19, 2012.

Authors are with the Electronics and Signal Processing Laboratory

(ESPLAB) of the Institute of Microengineering (IMT) of the École

Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland.

e-mail : firstname.lastname@epfl.ch

according to their performance. In addition, this paper also

highlights and discusses the influence of the Doppler effect on

the code. It will be shown that it may have a great impact on

some acquisition architectures.

We review in Section II the acquisition principle before

presenting the three main architectures used for the acquisition

of CDMA signals with their advantages and drawbacks. These

architectures are the Serial Search (SS), which is the

traditional method; the Parallel Frequency Search (PFS),

which uses a Fourier transform as a spectrum analyzer; and the

Parallel Code-phase Search (PCS), which uses a Fourier

transform to perform the correlation faster. The same section

also presents the different parameters involved in acquisition

and their impact on acquisition time.

In Section III, the target devices, FPGAs, are briefly

presented in order to provide the tools to understand the

detailed analysis of the architectures that follows. After this

analysis, the analytical developments about the acquisition

time are completed.

Finally, in Section IV, we examine a practical example

application considering the acquisition of the Global

Positioning System (GPS) L1 C/A signal, and discuss newer

signals.

Note that while a GPS L1 C/A signal is considered

throughout this paper for illustration purposes, the proposed

framework can easily be adapted to other GNSS signals. Only

the code length, frequency and type (e.g. time-multiplexed,

composite, addition of sub-carrier) need to be adapted to

consider other GNSS signals including those from Galileo,

GLONASS, GPS, and other forthcoming GNSSs.

II. ACQUISITION

A. Acquisition Principle

The signal emitted by satellites is a combination of several

signals : 1) a carrier; 2) a PRN code specific to each satellite

used for multiplexing and ranging measurements, denoted c(t)

(c(t) can also include a secondary PRN code and a subcarrier);

and 3) navigation data which contain information for

positioning (time, ephemeris, etc.), denoted d(t). For instance,

the L1 C/A signal emitted by GPS satellites can be expressed

as

        1cos 2i L i is t a f t c t d t (1)

where a is the amplitude of the signal, fL1 the carrier frequency

(1575.42 MHz), and i an index that denotes the satellite. The

Comparison Framework of FPGA-based GNSS

Signals Acquisition Architectures

Jérôme Leclère, Cyril Botteron, Pierre-André Farine

G

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147991054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

2

code chipping rate is 1.023 Mchip/s (a chip refers to the signal

corresponding to an individual term of a pseudo random

sequence [1]), and the data rate is 50 bit/s. This signal uses a

BPSK modulation, whereas newer signals use more advanced

modulations (e.g. QPSK, BOC, CBOC, AltBOC). The three

signal components, carrier, code, and data, however, are

always present, except for pilot channels, which carry no data.

At the receiver side, the signal is strongly attenuated,

insomuch as the thermal noise generated by the front-end is

even stronger than the signal, leading to a signal-to-noise ratio

(SNR) below 0 dB. Consequently, before extracting the

navigation data, the carrier and the PRN code have to be

removed in order to integrate the signal over time and raise the

signal out of the noise.

The removal of the carrier and the code is performed by

multiplying the input signal with local replicas, i.e. a carrier at

the same frequency as the input carrier, which must be

complex to cancel the influence of the unknown phase of the

input carrier, and a PRN code with the same phase as the input

code.

The phase of the incoming PRN code is unknown on the

receiver side since it depends on many quantities such as the

transmit and travel times of the signal. Consequently, in order

to align the replica with it, all possible phases have to be tested

with a certain resolution. The resolution depends on the

modulation used and on the required performance, e.g. it is

typically ½ chip for the GPS L1 C/A signal.

The frequency of the received signals is affected on the one

hand by the Doppler effect due to the high speed of the

satellites (about ± 5 kHz) and the speed of the receiver to a

lesser extent (maximum of 1.5 Hz/(km/h) for the L1 frequency

[2]). On the other hand, the inaccuracy of the receiver’s

oscillator creates a Doppler-like effect through the down-

conversion from radio frequency to baseband by placing the

signal away from its nominal intermediate frequency (which is

typically a low Intermediate Frequency (IF) or zero-IF), but it

affects all the satellite signals in the same way. The total range

of the Doppler frequency is the combination of these elements

and depends on the context [2]. Consequently, in order to align

the frequency of the carrier replica with the input signal, this

range, called the frequency search space, has to be explored

with a certain resolution. This resolution depends on the

integration time used, because, after integration, a mismatch of

the frequencies results in degradation as a sinc function whose

width is inversely proportional to the integration time [1].

A graphical representation of the time-frequency search

space is depicted in Fig. 1, where each square represents a cell,

i.e. a code-phase/carrier frequency bin. The acquisition

consists thus in the evaluation of a 2D correlation function,

called the Ambiguity Function [3].

To increase the integration time (and thus the SNR) without

affecting the resolution of the frequency search, non-coherent

integrations can be performed. They consist of summing the

magnitude (or the power) of many complex correlation values

of the same cell. The integration performed before the

computation of the magnitude (or the power) is called the

coherent integration. Non-coherent integrations can also be

used to extend the limit imposed by the data bits. Indeed, if

there is a data bit transition during a coherent integration, it

will result in a loss. More details about coherent and non-

coherent integration can be found in [2, 4].

To help with the acquisition process, a receiver can get

information (time, position, ephemeris, etc.) from another

source (mobile network, internet, etc.). This can help the

receiver 1) to know which satellites are in view; 2) to reduce

the frequency search space (knowing the approximate time,

and receiver and satellites positions, the corresponding

Doppler frequencies can be estimated); and 3) to reduce the

code-phase search space if fine time (time known to better than

one code period, e.g. 1 ms for the GPS L1 C/A signal) is

available.

In this paper, in addition to the stand-alone case, we

consider frequency assistance. This is the most common

assistance type and also the easiest to set up. It is also similar

to the warm start of a receiver where the almanac and position

have been memorized during the last use and the time is

coarsely known.

Considering L satellites seen by the receiver, the nth sample

of the received signal after in-phase and quadrature (I/Q)

conversion and sampling to an IF (or zero-IF) can be written

as

  

 

.

.

,

1

,

1

[] exp 2

1 [

.

]

.L

i IF D i S i

i

D i

i S i i S i IF

L

s n a j f f nT

f
c nT d nT n

f

 

  



      


   
     







 








(2)

where fIF is the intermediate frequency, fD,i the Doppler

frequency of the i
th

 satellite, TS the sampling period, θi the

phase of the carrier of the i
th

 satellite, τi the phase of the PRN

code of the i
th

 satellite, and ηIF the noise component.

The different satellite signals can be processed in parallel

through several acquisition channels or sequentially using only

one acquisition channel. In this paper, we consider a system

with one acquisition channel, because it is more efficient in

terms of resource sharing. However, the proposed framework

can be applied as well for several channels. Once a signal is

acquired, it can be tracked using closed loops, the navigation

data bits can be extracted, and as soon as this is performed for

at least four satellites, the position of the receiver can be

computed. Detailed information about GNSS signals structure

and processing can be found in [5, 6].

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

3

Fig. 1. Time-frequency search space

B. Acquisition Architectures

In this section, three well-known architectures widely used

to perform acquisition [7] are presented with their properties,

advantages, and drawbacks. In the following figures, NC and

NNC are related to the coherent and non-coherent integration

time, respectively (their formal definition is provided after the

description of the architectures). Simple arrows are used for

scalars, whereas arrows with a slash are used for vectors, with

the size of the vector specified if modified by the previous

operation. The operation that holds samples to form a vector is

not shown in the figures (like, for example, between the

coherent accumulator and the FFT in Fig. 3).

1) Serial Search

The first and oldest acquisition method is called the serial

search and its block diagram is shown in Fig. 2. There are five

main steps : 1) multiplication of the complex input signal (s[n]

= sI[n] + j sQ[n]) with the local code replica; 2) multiplication

with the local complex carrier replica; 3) coherent integration

through an accumulator (also called integrate and dump

process [6]); 4) magnitude computation; and 5) non-coherent

integration of consecutive results.

Fig. 2. Diagram of Serial Search (SS) acquisition

In this architecture, all possibilities for carrier frequency and

code phase are tested sequentially. Looking at Fig. 1, this

means that the cells are tested one after the other. The

advantage of this architecture is its simplicity, but its drawback

is the time needed to acquire the signal which is relatively

long, since there are thousands of code phases to search and

the number of frequency bins can be from dozens (e.g. a span

of ± 5 kHz with steps of 500 Hz gives 21 bins) to hundreds

(e.g. a span of ± 5 kHz with steps of 50 Hz gives 201 bins),

which leads to numerous combinations.

2) Parallel Frequency Search

One solution to reduce acquisition time is to parallelize the

search in the frequency space. The idea consists of performing

the coherent integration on a small part of the signal (typically

less than the PRN code period), and then using a Fourier

transform (implemented as a Fast Fourier Transform, or FFT)

on consecutive accumulation results. This allows the test of

NFFT frequency bins at once, which may cover the entire

frequency search space [8]. After the FFT, the magnitude

computation and the non-coherent integration are performed

on each frequency bin, their inputs and outputs are thus

vectors. This architecture is depicted in Fig. 3. In this case, the

carrier replica is generated only to remove the intermediate

frequency or for rough compensation of the Doppler, and the

different code phases are tested sequentially. Looking at Fig.

1, this means that the columns are tested one after the other.

Fig. 3. Diagram of Parallel Frequency Search (PFS) acquisition

The advantage of this architecture is the large reduction in

processing time, since it is equivalent to having as many

correlators as there are points in the FFT (each point being

equivalent to a frequency bin). In addition, the relatively small

number of points in the FFT (dozens to hundreds) makes it

easily implementable in many contexts.

However, this architecture has three main drawbacks. The

first is a sensitivity loss for frequencies away from the center

[9, 10]. Indeed, while the aim of performing the coherent

accumulation before the FFT is to reduce the size of the FFT,

this will also cause a loss proportional to sinc(π fD NC / fS),

where fD is the Doppler frequency, NC the number of samples

used by the coherent accumulator per accumulation, and fS the

sampling frequency. The frequencies searched by the FFT are

from – fS / (2 NC) + fS / NFFT,S to fS / (2 NC), where NFFT,S is the

number of signal samples used by the FFT. At the highest

positive frequency bin, the loss is maximum and is sinc(π /2),

i.e. about 3.9 dB. To reduce this loss, NC must be decreased.

For instance, the loss will be reduced to about 0.9 dB if the

maximum Doppler frequency corresponds to fS / (4 NC). The

price paid in this case is the extra computation of the

frequency bins outside the search space, which will not be

subsequently used.

A second drawback is the extra loss (called scalloping loss)

that occurs when the Doppler frequency falls in between two

FFT bins. This loss can attain a maximum value of about 3.9

dB if the signal frequency is exactly in the middle of two FFT

bins (for more details the reader is referred to [9, 10]). A

simple but efficient mitigation solution is the use of zero

padding. For example, padding the signal with as many zeros

as there are samples (i.e. doubling the number of bins, NFFT = 2

NFFT,S) will bring the maximum loss down to about 0.9 dB.

This is the method that we consider in this paper (note that

other techniques exist, such as windowing [11]).

The third drawback is the loss linked to the mismatch

between the replica code chipping rate and the received code

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

4

chipping rate which is also affected by the Doppler effect.

Indeed, several carrier frequencies are tested through the FFT

whereas there is only one code chipping rate tested. For

example, with the GPS L1 C/A signal, if the carrier frequency

is shifted by 5 kHz due to the Doppler effect, the code

chipping rate will be shifted by about 3.25 chip/s (i.e.,

5000×1.023/1575.42). This means that the code replica and

the received code will shift by about 3.25 chips every second,

or one quarter of a chip every 77 ms. To reduce this effect, the

frequency search space must be cut into several smaller spaces

[12].

3) Parallel Code-phase Search

A second solution to reduce the acquisition time is to

parallelize the search in the code-phase space. Thanks to the

relationship between the convolution in the time domain and

the multiplication in the Fourier domain, it is possible to

compute the circular cross-correlation of two signals, s[n] and

c[n], using the FFT and the Inverse FFT (IFFT) as shown by

(3).

     *IFFT FFT [] F[FT] []scr s cn n n (3)

The corresponding architecture is illustrated in Fig. 4 where

the FFTs and the IFFT are typically performed on one period

of the code (corresponding to NCB samples here, which is

defined in Section II.C) [13]. Note that multiple periods of the

code could be used, but this would not bring any advantage.

Moreover, using lengths shorter than one code period with a

technique such as overlap-and-add is also possible, but adds

complexity [14] (which is why it is not considered in this

paper). The IFFT results are then added to perform the

coherent integration. The magnitude computation and the non-

coherent integration are then performed. Except for the carrier

replica multiplication, all the operations are performed on

vectors. In this case, only the different carrier frequencies are

tested sequentially. Looking at Fig. 1, this means that the rows

are tested one after the other.

The advantage of this architecture is its very high gain in

processing time, since it is equivalent to have as many

correlators as there are points in the FFT (each point being

equivalent to a code bin).

Fig. 4. Diagram of Parallel Code-phase Search (PCS) acquisition

A first drawback of this architecture is the limited number of

choices for the sampling frequency. Indeed, the usual radix-2

FFT algorithm can be performed only with sequences of 2
N

points. In this case, zero padding can be used with the

following constraint : the number of points should be at least

twice the number of samples in one period of the code, to

ensure that there will not be any loss [15]. For the GPS L1 C/A

signal with a sampling frequency of 4 MHz, the signal should

be padded to obtain sequences of 8192 points and the replica

should contain two periods (padding only to 4096 points

would potentially result in losses by spreading the peak over

several code bins if the zeros are not padded to the beginning

or the end of the code period 16]). This of course increases the

complexity of the FFT. This problem can also be solved by

other means, including performing a traditional sample rate

conversion [17], using GNSS specific signal compression

algorithms [18, 19], or using other FFT algorithms that can be

applied to sequences whose length is not a power of two [20].

However, these algorithms are typically more difficult to

implement.

A second drawback of this architecture is the relatively large

size of the FFT, which depends on the sampling frequency and

on the code length, and can be too big for some

implementations. This problem can be circumvented by using

a smaller FFT with the overlap-and-add technique [14],

performing decimation [17], or using a signal compression

algorithm [18, 19]. In this paper, we consider sampling

frequencies for which the number of samples per code period

is a power of two, and no signal decimation or compression.

However any other choice can be easily handled.

The third drawback is a loss linked to a potential bit

transition due to data or secondary code inside the input

sequence used for the correlation, since the sequence does not

start necessarily at the first chip of the code. This problem

does not occur for the two other architectures, which always

start the integration at the first chip of the code. It can be

resolved by doubling the FFT size and zero-padding the code

replica, or with other algorithms [21].

4) Integration Time

In the three architectures, there is an accumulator involved

in the coherent integration and an accumulator for the non-

coherent integration. The number of samples used by the non-

coherent accumulator for one integration and dump for one

bin, NNC, is identical for the three architectures. However, the

number of samples used by the coherent accumulator for one

integration and dump for one bin, NC, is different. Therefore,

to make a distinction between the architectures, we define NC

 {NC,SS, NC,PFS, NC,PCS}.

In the SS architecture, the coherent integration is performed

only by the coherent accumulator, consequently NC,SS

corresponds to the number of samples during the coherent

integration time and is defined as

 ,
C

C SS C S

S

T
N T f

T
  (4)

where TC is the coherent integration time in seconds, fS the

sampling frequency in hertz, and TS the sampling period in

seconds.

In the PFS architecture, the coherent integration is

performed in two steps, with the coherent accumulator

followed by the FFT. NC,PFS can thus be expressed as

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

5

 ,

, ,

C S C
C PFS

FFT S FFT S S

T f T
N

N N T
  (5)

where NFFT,S is the number of signal samples used in the FFT.

The values of NC,PFS and NFFT,S are chosen according to the

size of the frequency search space and the integration time to

minimize the losses previously described [9, 10]. Note that

their product is equal to NC,SS.

In the PCS architecture, the coherent integration is also

performed in two steps, with the FFTs performing the

correlation over one period of the PRN code (Tcode), followed

by the coherent accumulator. NC,PCS can thus be written as

 , .C
C PCS

code

T
N

T
 (6)

To clarify this, we consider an example. For the stand-alone

case with the GPS L1 C/A signal (Tcode = 1 ms), a coherent

integration time TC = 10 ms and a sampling frequency fS =

4.096 MHz, we obtain the values listed in Table I. It can be

seen that the values are very different : relatively high for the

SS architecture, small for the PCS architecture, and in between

for the PFS architecture.
TABLE I

COHERENT INTEGRATION PARAMETERS EXAMPLE

Architecture Coherent Parameters

SS NC = 40 960

PFS NC = 160 ; NFFT,S = 256

PCS NC = 10

During the coherent integration time, there are thus 40,960

samples to process. The coherent accumulator of the SS will

perform thus 40959 accumulations, the one of the PFS will

perform 256×159=40704 accumulations, and the one of the

PCS will perform 9×4096= 36864 accumulations.

The values of NC and NNC also have an impact on the design,

since they influence the resolution of the output of the

accumulators (the details are provided in appendices).

5) Summary

A simple summary of the complexity and search parallelism

of the three architectures depicted in Figs. 2, 3 and 4 is given

in Table II.
TABLE II

ACQUISITION ARCHITECTURES COMPARISON

Architecture Complexity Search Parallelism

SS low no

PFS medium medium

PCS high high

We note that PCS provides the highest parallelism.

Therefore, it is not surprising that most research groups that

have developed hardware GNSS receivers in the past years

have selected it for implementation. However, despite

providing the best parallelism, it is also the most demanding in

terms of complexity or hardware resources. Consequently, it

may be important to consider the other architectures as well, as

they may provide a better trade-off between implementation

complexity and search parallelism. Towards this goal, we

explore here hardware duplication and different optimizations

for each architecture to enhance its search parallelism, and

compare the architectures assuming a given hardware resource

usage.

C. Acquisition Parameters

Now, we present the different parameters that have an

impact on acquisition. They are classified into two classes : 1)

the primary parameters that are given by the context

(application and hardware); and 2) the secondary parameters

that are derived from the primary ones. These parameters

finally lead to the computation of the acquisition time. The

relationship between these parameters is depicted in Fig. 5,

where a solid line means that the link is present for all the

architectures; a dashed line means that the link is present only

for the PCS architecture; and a dotted line means that the link

is present only for the PFS architecture.

1) Primary Parameters

a) Code-phase Resolution ΔC

This is the minimum step between two tested code-phases. It

depends on the signal modulation and the precision required.

With the PCS architecture, the resolution is typically linked to

the sampling frequency and corresponds to one sample, but it

can be different if a preprocessing step, like decimation or

averaging, has been used. It impacts the number of code bins

and the integration time [2]. It is denoted as ΔC and can be

expressed in chip or in sample, i.e. ΔC  {ΔC,chip, ΔC,sample}.

b) Sensitivity

This is the desired minimum received signal power in dBm

that can be detected. The carrier-to-noise ratio, denoted C/N0

and expressed in dB Hz, can be used instead equivalently. The

sensitivity impacts the integration time [2].

c) Frequency Search Space fSS

This is the frequency range where signals can be found. It

impacts the number of frequency bins. It is denoted as fSS and

expressed in Hz.

d) FPGA

This is the target chip. The family of the FPGA impacts the

maximum FPGA frequency, and the resources inside the

FPGA impacts the parallelization that can be applied. More

details about FPGAs are provided in Section III.A.

e) FPGA Frequency fFPGA

This is the frequency of the clock inside the FPGA at which

the acquisition channel runs. It directly impacts the FPGA

processing gain. The higher it is, the faster the processing will

be, as detailed in Section III.B. It is denoted as fFPGA and

expressed in Hz.

f) Sampling Frequency fS

This is the frequency at which the signal is sampled. It

impacts the parallelization that can be applied and the FPGA

processing gain since, the higher it is, the more data there will

be to process. With the PCS architecture, it can also impact the

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

6

code-phase resolution. It is denoted as fS and expressed in Hz.

2) Secondary Parameters

a) Number of Code Bins NCB

This is the number of bins to test in the code-phase space. It

is denoted as NCB, is without units and is defined as

, ,

chip sample

CB

C chip C sample

N N
N  

 
 (7)

where Nchip is the number of chips and Nsample the number of

samples in the code-phase search space. When there is no

assistance to provide fine time information, the code-phase

search space corresponds to the entire PRN code.

b) Integration Time TC and TT

There are two components for this parameter, the coherent

integration time and the total integration time (which includes

the non-coherent additions). They are denoted as TC and TT,

respectively, and expressed in seconds. They can be computed

using the detailed method presented in [2]. They have an

impact on several parameters. The coherent integration time

impacts the frequency resolution as described in the next

paragraph. The total integration time directly impacts the

acquisition time, since the quantity of data to process is

proportional to it. Finally, they both influence the

parallelization that can be applied because they impact the

resolution of the signals in several functions, such as in the

coherent and non-coherent accumulators.

Fig. 5. Diagram of acquisition parameters

c) Frequency Resolution ΔF

This is the minimum step between two frequencies tested. It

is linked to the coherent integration time TC, denoted as ΔF and

expressed in Hz.

As described in Section II, after coherent integration over a

time TC, the result is shaped as a sinc function whose width is

inversely proportional to TC and reaches zero at 1 / TC. Most of

the time, ΔF is chosen as 2 / (3 TC) or 1 / (2 TC). The second

case leads to more bins to test but as the maximum loss is

lower, the total integration time needed is also lower, and at

the end both values give approximately the same averaged

performance.

In the PFS architecture, applying the FFT on the signal

without zero-padding is equivalent to having a frequency

resolution of 1 / TC, while zero-padding the signal with as

many zeros as there are samples is equivalent to having a

frequency resolution of 1 / (2 TC).

For consistency between the architectures, we will thus

consider a resolution of ΔF = 1 / (2 TC) in the following.

d) Number of Frequency Bins NFB

This is the number of bins to test in the frequency search

space fSS. It is denoted as NFB, without units and defined as

 2 1.
2

SS F
FB

F

f
N

 
  

 
 (8)

This formula allows a frequency bin centered on a desired

frequency and the same number of frequency bins to test above

and below this frequency. With the value previously chosen

for ΔF, (8) can be written as

1

2 1.
2

FB SS CN f T
 

   
 

 (9)

This parameter can impact the parallelization applied in the

PFS architecture if the frequency space is searched entirely,

since it corresponds to the minimum number of points of the

FFT.

The number of cells of the search space is given by the

number of the code bins times the number of frequency bins,

i.e. Ncell = NCB NFB.

e) Parallelization PX

The comparison between the architectures will be based on

this parameter denoted as PX where X denotes the architecture

(SS, PFS or PCS). It corresponds to the number of cells of the

search space that are tested simultaneously and includes the

parallelization brought by the FFT and by the duplication of

the elements. It depends on many other parameters and will be

determined in Section III.G.

f) FPGA Processing Gain GFPGA

This is the gain in processing time given by the ratio of the

FPGA frequency to the sampling frequency. It is denoted as

GFPGA, without units and defined as

 .FPGA
FPGA

S

f
G

f
 (10)

3) Acquisition Time

a) Search Time of the Full Time-Frequency Space TF,X

The time to explore the whole time-frequency search space

is given by

 ,
CB FBT

F X

FPGA X

N NT
T

G P


 (11)

where
2, for alternate half-bits method

.
1, for other methods

 




The alternate half-bits method consists of creating two sets

of alternate portions of the signal in order to have one without

a data bit transition (a transition can occur when one bit of data

lasts more than a period of the PRN code) [22]. This requires

doubling the length of the signal used to keep the same SNR

after the integration. There are two other methods that do not

require an extra length of signal. The first, called the full-bits

method, consists of integrating the signal for all the

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

7

possibilities for the data bit transition (e.g. 20 for GPS L1

C/A) so that at least one will be free of data transitions [22].

The second method simply ignores the data bit transition and

counts it as a loss in the SNR balance sheet [2].

β TT / GFPGA corresponds to the time to process the signal

recorded at the FPGA rate. In order to explore the entire

search space, the signal is processed several times, depending

on the number of cells making up the search space and the

implemented parallelization.

Note that the time to load a new code, or to modify the

carrier and code frequencies on the channel, and the latency in

the processing are not taken into account in this formula.

Indeed, the loading time is very small, typically on the order of

dozens of cycles. The latency is mainly due to the FFTs and

corresponds to the size of the elements, i.e. a few thousands of

clock cycles, whereas the input signal used is typically

composed of hundreds of thousands of samples if high-

sensitivity is intended. Therefore the latency represents only a

very low percentage of TF,X.

b) Mean Acquisition Time ,A XT

Of course, it is usually not necessary to explore the whole

search space to find a satellite. Regarding the code-phase

space, the phase of the code is completely random and follows

a uniform distribution. Regarding the frequency space, the

distribution of the Doppler frequency depends on the context,

i.e. the user position (latitude/longitude) as well as the

constellation. This implies that the global distribution of

Doppler frequencies does not allow a particular strategy.

Consequently its distribution is often considered as uniform

and the search starts with the frequencies near the one

expected without a Doppler effect (corresponding to the

highest elevation satellites) and finishes with the farthest

frequencies (corresponding to the lowest elevation satellites).

Note that if assistance is available (for code or frequency), the

uniform distribution may no longer be applicable.

The last parameters involved in the acquisition time are the

probabilities of detection and false alarm. Indeed, it is possible

to miss a satellite after having explored the whole search space

(no detection), or to have seemingly found a satellite where

one is not (false alarm), which leads to bad tracking and re-

acquisition after a certain time.

The detection test is performed when the output of the

architecture is available, i.e. when a portion of the search

space (portion of a row for the SS, several rows for the PCS,

and a rectangular area for the PFS) is available. The mean

acquisition time ,A XT for Nsat satellites, taking into account

signal buffering, is adapted from [23] and can be approximated

by

  

,

,

2
1 1 1

2

X

A X T

PD
FPGA FA F X sat

D

T T

P
k G P T N

P

 

    
  

(12)

where X denotes the architecture (SS, PFS or PCS), PD the

probability of detection, PFA the probability of false alarm, and

k a penalty factor characterizing the time to detect a false

alarm. The reader can also refer to [24, 25] for more details on

acquisition time and probabilities.

III. DETAILED ANALYSIS OF ARCHITECTURES

In this section, the hardware implementation of each

architecture is analyzed in detail. First, some basic information

regarding FPGAs is provided. Second, buffering of the input

signal and high frequency processing are presented. Third,

possible ways to parallelize processes are explored for each

architecture. After this, some important points regarding the

FFT are discussed, and finally the determination of the

parallelization and of the search time of the full space is

provided.

A. FPGA Considerations

An FPGA is a programmable device containing three main

types of elements :

- Logical block : This is a small block containing a Look-

Up Table (LUT) allowing the creation of logic functions,

a full adder, and one or several registers. This basis block

is different for each manufacturer and even between some

FPGA families.

- Memory block : This is a memory of small size (typically

between 0.5 and 128 Kibit), consisting of multiple ports.

- Digital Signal Processing (DSP) block : This is a block

containing hardware multipliers (typically 18 × 18 bits).

To optimize the implementation, the usage of these elements

has to be balanced. It is relatively easy to estimate resource

usage for the memory and DSP blocks because it is easy to

determine the number of bits and the number of multiplications

required in a system. However, for the logical blocks, resource

usage is more difficult to estimate for several reasons. 1) These

blocks contain logic and registers, and a block can use one or

the other or both, depending on the function implemented. For

example, a counter or an accumulator needs as many registers

as it has bits and this gives the number of logical blocks

necessary, whereas for functions like multiplexing or

magnitude computation, the number of blocks required is not

so straightforward and empirical formulas have to be used. 2)

The compilation tools perform various optimizations that can

affect the final implementation. 3) These blocks are different

according to the manufacturer or even between different

families with different performances, which means that it is not

possible to make a universal estimation.

In this paper, we base our estimate on FPGAs from Altera,

first on the Cyclone series which have Logical Element (LE)

basis blocks, and then on the Stratix series which have

Adaptive Logic Module (ALM) basis blocks. The same

estimation can be performed with FPGAs from other

manufacturers, and approximate conversions can be applied

between them although this is not undertaken here. The details

of the resource estimates of the architectures are given in

Appendix 1 in order to not overload the body of this article.

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

8

B. Signal Buffering

The simplest way to perform the correlation is to process the

streaming signal at the sampling rate. However, another well-

known way to proceed is to first buffer the streaming signal

before processing it fast enough to still allow real-time

processing, as depicted in Fig. 6. This method allows a great

gain in processing time. For example if the sampling frequency

is 5 MHz and the FPGA frequency is 200 MHz, the processing

time will be divided by 40.

Fig. 6. Overview of a GNSS receiver using signal buffering

Signal buffering does not necessarily affect the tracking

channels that process the signal at the sampling rate. However,

in some cases, a tracking channel can also work at higher

frequency in order to process the signals from different

satellites and to save hardware resources.

C. Serial Search

The SS architecture depicted in Fig. 2 tests a single code-

phase/carrier frequency bin at once. In order to improve

processing speed the blocks can be duplicated in order to have

several branches (denoted as NB in the following) testing

different frequencies or different code-phases at the same time.

The code and carrier replicas are generated using a

Numerically Controlled Oscillator (NCO), which is a counter

in which the increment specifies the output frequency. The size

of this counter is typically 32 bits, which requires 64 registers

(32 for the increment value and 32 for the counter value).

Generating different carrier frequencies requires as many

NCOs as there are frequencies. Generating shifted versions of

the code replica demands only one NCO and one register per

delay. Consequently it is clearly more efficient to test several

code-phases rather than several frequencies. The

implementation of such duplication, which is similar to that in

[26] with the addition of the multiplexer and non-coherent

integration, is depicted in Fig. 7. At the bottom of the figure,

the data rate is shown; a bar above a value indicates an

average.

The mixers as well as the coherent accumulators run at the

frequency fFPGA. The rate at the output of the coherent

accumulators is then divided by NC = TC fS. Since the

accumulation of the different accumulators starts and ends at

different clock cycles (an accumulation always starts at the

first sample of the code), multiplexing the next blocks, i.e.

magnitude computation and non-coherent accumulation, is

possible. Note that the non-coherent accumulator’s input and

output are not shown as vectors since the samples arrive

serially, i.e. at each clock cycle. To differentiate this block

from the traditional accumulator’s block, we added the letter

M in the bottom right corner of the block, (M for memory,

since it uses memory as detailed in the next paragraph). The

same applies for Figs. 9, 10 and 11.

Fig. 7. Implementation of the Serial Search (SS) architecture with duplication

To study more deeply the implementation, we note that

although the mixers perform a multiplication, they are

implemented with logical blocks instead of DSP blocks.

Indeed, the signals are quantized with few bits (typically two

or three), and mixing with the code replica consists simply of

changing the sign of the signal (except if the code has more

than two levels). The coherent accumulators are classical

adders implemented with logical blocks. It is possible to

optimize the implementation by fusing a code mixer and an

accumulator into an accumulator that can add or subtract the

input value according to the value of the code. This

optimization is discussed in Appendix 1. The multiplexer is

implemented with logical blocks. The magnitude computation

can be performed with different algorithms, the simplest being

the Robertson approximation [17]. Finally, the non-coherent

accumulator is implemented with memory blocks in order to

save logical blocks, using only one adder and one multiplexer,

as depicted in Fig. 8. Each address is associated with a sample

of the cross-correlation function, and is written and read NNC –

1 times to perform the accumulation. The memory has thus NB

addresses. With a memory-based accumulator, the data rate is

reduced in average only, because there are NNC times fewer

samples in the output than in the input, but the output rate is

the same as the input rate.

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

9

Fig. 8. Diagram of a memory-based accumulator

In the SS architecture, the duplicated elements are the code

mixer and the coherent accumulator, and the multiplexer is

proportional to the number of branches. The most-used

resources are clearly the logical blocks, as the memory is used

only with the non-coherent accumulator and to store the PRN

code, and the DSP blocks are not used at all.

D. Parallel Frequency Search

Following the same idea, the structure depicted in Fig. 3 can

be duplicated in order to test several code-phases at the same

time. Such implementation of the PFS architecture is depicted

in Fig. 9. The carrier and code NCOs and mixers, the coherent

accumulators and the multiplexer are identical to the ones seen

previously. Remember that in this architecture the coherent

accumulator does not accumulate for the entire coherent

integration time but as defined by (5). Then there is a

particular buffer, which has a writing order different from the

reading order. This is because after the multiplexer there are

first the first points of each branch, then the second points of

each branch, etc., whereas the FFT should be first fed with all

the points of the first branch, then with all the points of the

second branch, etc. Moreover, since data can be written at

addresses not yet read, it is necessary to use two buffers, one

being read while the other is written to, which alternate their

roles (a ping-pong buffer). Next is the FFT block which uses

logical, DSP and memory blocks. As mentioned in Section II,

according to the NC and NFFT,S values selected, only a portion

of the FFT bins may be necessary to cover the search space.

The number of bins kept is denoted NFT, which is equal to NFB

only if the entire frequency search space is covered by the

FFT. The rate after the FFT is thus reduced by NFFT / NFT.

Finally there are the magnitude computation and the non-

coherent accumulator based on memory blocks. The memory

inside the non-coherent accumulator has NB NFT addresses in

this case.

Fig. 9. Implementation of the Parallel Frequency Search (PFS) architecture

with duplication

In this implementation the resource usage of the logical

elements is relatively similar to the SS architecture because the

accumulators are a little bit smaller and there is just one

supplementary FFT, but the memory is used far more.

However, there are two limitations with the direct

implementation depicted in Fig. 9.

First, the number of branches is limited by the number of

accumulations performed by the coherent accumulator. Indeed

after the accumulator stage the rate is divided by NC, and after

the multiplexer the rate is multiplied by NB. Since the rate after

the multiplexer cannot be superior to the initial FPGA rate, NB

≤ NC. However, this limit may be easily circumvented by

implementing several multiplexer chains (multiplexer, FFT,

etc.).

The second limitation is that if zero-padding is used, which

is common, the data rate after the FFT is superior to the data

rate before. Consequently, in one multiplexer chain, the

number of branches is limited according to the following

equation,

,

, ,

,

FFT S

B C

FFT S FFT Z

FFT S

C

FFT

N
N N

N N

N
N

N






 (13)

where NFFT,S is the number of points of signal used for the FFT

and NFFT,Z the number of zeros padded (the total number of

points of the FFT being NFFT = NFFT,S + NFFT,Z). This limit can

be circumvented in the same manner as before by

implementing several multiplexer chains.

E. Parallel Code-phase Search

Still following the same idea, the structure depicted in Fig. 4

can be duplicated to test several carrier frequencies at the same

time since all the code-phases are already tested. Such

implementation of the PCS architecture is depicted in Fig. 10.

The carrier and code NCOs and the carrier mixer are identical

to those seen previously. The FFT block is similar to the one

in the PFS architecture, but larger. The complex multipliers in

the frequency domain use DSP blocks. And now, both

accumulators (coherent and non-coherent) are implemented

with memory blocks, which have NCB addresses in this case. In

this architecture, no multiplexing can be performed since all

the data operate at the FPGA frequency, even after the

coherent accumulator where the data rate is reduced in average

only. But the accumulators’ addressing can be shared since the

FFTs start and finish at the same time.

Fig. 10. Implementation of the Parallel Code-phase Search (PCS) architecture

with duplication

This architecture is the one that best balances the use of the

different elements, since it uses the logical blocks and DSP

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

10

blocks with the FFT, and the memory blocks with the FFT and

the accumulators.

The problem described with the PFS regarding the influence

of the Doppler effect on the code is present here also, but to a

lesser extent, since several carrier frequencies are tested and

only one code chipping rate is generated. Indeed, the carrier

frequencies generated at the same time in this case generally

cover just a portion of the frequency search space and are

relatively close to each other. For example, still considering

the GPS L1 C/A signal, if the carrier frequencies cover a

Doppler range of ± 150 Hz, the maximum Doppler shift on the

code chipping rate will be about 0.097 chip/s, which implies a

shift of about one quarter of a chip every 2.6 seconds only.

Moreover, here the effect can be removed by generating a

code for each carrier frequency tested, at the expense of

additional FFTs, or more usually by applying a correction

during the coherent accumulation stage (shift of the IFFT

outputs or multiplication by a carrier in the frequency domain)

[27].

An optimization of this architecture is possible if the

frequency search space is wide enough. Instead of multiplying

the input signal by different carrier replicas and performing

several FFTs, only one carrier replica and two FFTs (one for

the input signal, one for the code replica) can be used, and the

multiplication by the different carriers is replaced by shifts of

the FFT output. A shift of one sample is equivalent to a

multiplication by a 1 kHz carrier if the FFT length is 1 ms

thanks to the DFT shifting theorem [17]. For example,

considering five branches, it means that it would be possible to

test simultaneously the carrier frequency bins {0, 1000, -1000,

2000, -2000} Hz, and if no signal is found, to continue with

the followings, i.e., {50, 1050, -950, 2050, -1950} Hz, etc.

With this optimization the architecture would require 2 FFTs

instead of NB + 1, and still NB IFFT, as shown in Fig. 11. This

optimization is also considered in the example application in

Section IV, referred as PCS* architecture.

Fig. 11. Implementation of the Parallel Code-phase Search (PCS) architecture

with duplication and shifting in frequency domain (referred to as “PCS*” in

the text and Table V to differentiate it from Fig. 10)

F. FFT Considerations

The FFT algorithm can handle data in normal order or bit-

reversed order, as shown in Table III [17]. Traditionally the

order of the input and output are the same, but the order should

be different to minimize resource usage and latency.

For the PFS architecture, it is not important if the data at the

output of the FFT are in the bit-reversed order because

reordering can be done through addressing of the non-coherent

accumulator memory. Since it consists only of reversing the

bits it costs nothing in terms of resources. For the PCS

architecture, the reordering can be naturally done because the

FFT is followed by an IFFT. This is also valid for software

receivers.
TABLE III

DATA ORDER OF AN 8-POINT SIGNAL

Normal order of index n Bit-reversed order of index n

0 (000) 0 (000)

1 (001) 4 (100)

2 (010) 2 (010)

3 (011) 6 (110)

4 (100) 1 (001)

5 (101) 5 (101)

6 (110) 3 (011)

7 (111) 7 (111)

The implementation of an FFT is very flexible, with a large

number of parameters including data and twiddle factor

resolution, arithmetic type (integer or block floating point),

fixed or variable length, etc. These have different impacts on

the logic, memory and DSP usage, and should be well studied

for optimal performance for each specific context.

G. Parallelization

Now that the architectures have been analyzed, we can

compute the parallelization and the search time of the full

space for each one, which then provides the mean acquisition

time through (12).

1) Serial Search

Parallelization of the SS architecture comes from hardware

duplication and corresponds to the number of branches

implemented.

 ,SS B SSP N (14)

Applying this to (11) gives

 ,

,

.CB FBT
F SS

FPGA B SS

N NT
T

G N


 (15)

2) Parallel Frequency Search

Regarding the PFS architecture, there are two components

to parallelization. The first comes from hardware duplication

like for the SS architecture and corresponds to the number of

branches implemented. The second comes from the FFT that

allows the search of several or all the frequency bins at one

time.

 ,PFS B PFS FTP N N (16)

Applying this to (11) gives

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

11

 ,

,

.CB FBT
F PFS

FPGA B PFS FT

N NT
T

G N N


 (17)

3) Parallel Code-phase Search

In the same way, the PCS architecture also has two

components to its parallelization. The first comes from

hardware duplication like for the other architectures and

corresponds to the number of branches implemented. The

second comes from the FFT that allows the search of all the

code bins at one time.

 ,PCS B PCS CBP N N (18)

Applying this to (11) gives

 ,

,

.T FB
F PCS

FPGA B PCS

T N
T

G N


 (19)

IV. RESULTS

A. Application

Now that the different parameters and implementations have

been described, the performance of the three architectures is

compared through an example. A low-cost FPGA (Altera

Cyclone III EP3C120) and a high-end FPGA (Altera Stratix III

EP3SE260) are investigated. For each architecture, we select

the implementation that maximizes the use of the FPGA

resources. Note that it is not possible to entirely fill an FPGA

due to routing constraints; we thus consider the use of 85 % of

the logical blocks inside the FPGAs [28].

The analysis has been applied to two cases using the GPS

L1 C/A signal for two cases : a stand-alone case where the

receiver has no a priori information, and an assisted case

where the receiver has a priori information on the Doppler

frequency of the satellites, which reduces the frequency search

space [16]. A sensitivity of – 150 dBm is assumed, since this is

the start of high sensitivity; the required integration times are

obtained with the method from [2], applying the half-bit

method for managing the data bit transitions (β = 2). A

sampling frequency of 4.096 MHz is a good compromise

between induced complexity and accuracy. The FPGA

frequencies selected are multiples of the sampling frequency,

and realistic values obtained from real designs. All the

acquisition parameters are given in Table IV.

The search space is composed of 905 216 cells in the stand-

alone case, and of 118 784 cells in the assisted case.
TABLE IV

PARAMETERS SELECTED FOR THE ACQUISITION OF GPS L1 C/A SIGNALS

Primary Parameters Secondary Parameters

ΔC = 1 sample NCB = 4096

Sensitivity = – 150 dBm
TC = 10 ms

TT = 400 ms

fSS = 11 020 Hz (stand-alone)

 = 1360 Hz (assisted)
ΔF = 50 Hz

FPGA = Altera EP3C120

 = Altera EP3SE260

NFB = 221 (stand-alone)

 = 29 (assisted)

fFPGA = 98.304 MHz (EP3C120)

 = 196.608 MHz (EP3SE260)
PX = (cf Table V)

fS = 4.096 MHz
GFPGA = 24 (EP3C120)

 = 48 (EP3SE260)

With such a long integration time, the maximum error in the

code chipping rate allowed, to have a shift smaller than half a

sample, is about 0.156 chip/s. The PFS can thus search only ±

240 Hz of the frequency search space simultaneously, i.e. NFT

= 11.

The details of the calculations are provided in Appendix 2,

and results for the number of branches, parallelization and

search time of the full space are given in Table V. The number

of branches gives the degree of duplication in the architectures

depicted in Figs. 7, 9, 10 and 11. The parallelization is the

number of cells tested simultaneously and is used to compare

the architectures. Besides this value, the percentage of cells

tested over the total number of cells of the time-frequency

search space is given in parenthesis. The search time of the full

space is maybe more meaningful for GNSS users since it gives

an idea of the processing time, and it can also be used to

compare the architectures.
TABLE V

IMPLEMENTATION RESULTS FOR THE NUMBER OF BRANCHES,

PARALLELIZATION AND SEARCH TIME OF THE FULL TIME-FREQUENCY SPACE,

FOR THE GPS L1 C/A SIGNAL.

THE VALUES IN PARENTHESES REPRESENT THE PERCENTAGE OF THE TIME-

FREQUENCY SPACE SEARCHED SIMULTANEOUSLY (100 PX / NCELL).

Parameter

Low-cost FPGA

Altera EP3C120

High-end FPGA

Altera EP3SE260

Assisted

Case

Stand-alone

Case

Assisted

Case

Stand-alone

Case

NB,SS 971 2911

NB,PFS 1095 3385

NB,PCS 2 8

NB,PCS
* - 4 - 11

PSS
971

(0.8 %)

971

(0.1 %)

2911

(2.5 %)

2911

(0.3 %)

PPFS
12 045

(10.1 %)

12 045

(1.3 %)

37 235

(31.3 %)

37 235

(4.1 %)

PPCS
8192

(6.9 %)

8192

(0.9 %)

32 768

(27.6 %)

32 768

(3.6 %)

PPCS
* -

16 384

(1.8 %)
-

45 056

(5.0 %)

TF,SS (ms) 4078 31 075 680.1 5183

TF,PFS (ms) 328.7 2505 53.17 405.2

TF,PCS (ms) 483.3 3683 60.42 460.4

TF,PCS
* (ms) - 1842 - 334.8

The mean acquisition time for different numbers of satellites

is depicted in Fig. 12 for the EP3SE260 FPGA, a probability

of false alarm PFA of 10
–8

 (common for high-sensitivity

receivers [2]), which gives a probability of detection PD of

about 0.92, and a penalty factor k of 10.

From Table V and Fig. 12, it can be seen that the SS

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

12

architecture is the least efficient of the three; even with

assistance the result is worse than for the other architectures in

the stand-alone case. The PFS architecture is slightly more

efficient than the PCS architecture. If the PCS architecture is

optimized with shift in the frequency domain (PCS*

architecture), then it becomes slightly better than PFS for the

stand-alone case. In the assisted case, most of the frequencies

that can be tested through the different branches fall outside of

the frequency search space, and are thus useless.

Fig. 12. Mean acquisition time of GPS L1 C/A signals assuming the

parameters of Table IV, a PFA = 10–8 and a penalty factor k = 10

B. Observations

1) Why the PFS and PCS are better than the SS

Looking at Figs. 7 and 9, we note that the SS and PFS

architectures are identical on the left, except that the

accumulators of the PFS are smaller since the integration

length is smaller. However, the PFS has a supplementary FFT.

The resource usage of the logical elements is then almost

equivalent between the two architectures. In fact, the better

efficiency of the PFS over the SS architecture arises because

the PFS architecture takes advantage of the memory of the

ping-pong buffer and the non-coherent accumulator, whereas

the SS does so only for the non-coherent accumulator.

Regarding the superior performance of the PCS over the SS

architecture, it is well known that performing a convolution

using an FFT is more efficient than with traditional large filters

[14].

2) Comparison of the PFS with the PCS

Looking at Figs. 9 and 10, the two architectures are now

completely different. The first point about the PCS

architecture is that a lot of DSP blocks are used with the FFTs

due to their large size and their number. Although the FPGA

used was very rich in DSP blocks, it can be the element

limiting the duplication (cf. Appendix 2). The second point is

that the resolution of the data inside the FFT in the PCS

architecture needs to be higher than in the PFS because of the

longer chain to compute the correlation (FFTs, multiplication

and then IFFT), resulting in a propagation of the quantization

errors. The third point is that in the PCS architecture the main

part of the memory is used by the FFTs, the rest being reserved

for the storage of data. By contrast, the memory used in the

PFS architecture is almost only for storage, not for

computation (except for the relatively small FFT), which

means that more data can be stored. This explains the better

efficiency of the PFS over the PCS architecture. However, if

the optimized PCS can be used, several FFTs are saved, and in

this case this architecture becomes more slightly efficient than

the PFS.

Moreover, there are two points that make the PFS more

flexible and attractive than the PCS. The first concerns the

impact of the sampling frequency. With the PFS architecture,

doubling the sampling frequency would result in adding one

bit in the coherent accumulators, i.e. R+1 bits to store instead

of R. Thus we can interpolate roughly by saying that keeping

the same hardware resources, the number of branches would

be divided by (R+1)/R. On the other hand, with the PCS

architecture, doubling the sampling frequency would double

the size of the FFT and of the accumulators; consequently, the

number of branches would be divided by 2 (except if a

resampling block is included in the acquisition channel). So

the PFS is far less sensitive to sampling frequency than the

PCS. The second point concerns the resolution of the code-

phase space. It is imposed by the sampling frequency in the

PCS architecture and can lead to a very high and not

necessarily useful precision (unless a resampling has been

performed), whereas the resolution can be freely chosen in the

PFS architecture. Note that in our application we considered a

sampling frequency with a number of samples per code period

which is a power of two, and no signal decimation or

compression. If signal decimation or compression was applied,

the complexity of the architectures would be reduced,

particularly for the PCS. On the contrary, without decimation

or compression, selecting a sampling frequency that does not

allow the direct use of an FFT algorithm will increase the

complexity of the PCS architecture.

A little disadvantage of the PFS compared to the PCS is the

sensitivity loss because of the integration preceding the FFT.

This loss can reach 0.9 dB for the largest magnitude Doppler

frequencies in our application.

The weakness of the PFS lies in its sensitivity to the

Doppler effect on the code. If the code chipping rate was not

altered, the entire frequency search space would be covered by

the FFT, regardless of the total integration time used, and the

PFS would be clearly better than the PCS. But in our

application, where a relatively long total integration time is

considered, the PFS searches only 11 frequency bins at the

same time while the frequency space contains 221 bins in the

stand-alone case. If we consider the new GNSS signals that use

higher code frequencies, the effect will be amplified. If the

shift is 3.25 Hz with a 1.023 MHz code, it will be of 32.5 Hz

with a 10.23 MHz code. For the same integration time, the

space covered by the FFT should thus be reduced in the same

proportion to test only one or a few bins. The performance of

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

13

the PFS would then degrade and become closer to that of the

SS, and thus be worse than the PCS.

3) Influence of FPGA

From Table V, we can see that despite the large differences

in the absolute results for the two FPGAs, the ranking of the

architectures is the same.

Generally, inside an FPGA family, the ratio between the

different types of resources is very similar, i.e. using a bigger

FPGA will provide an equivalent increase of the logical,

memory and DSP blocks. Consequently for different FPGAs

of the same family, we do not expect the ranking to change

significantly.

Between different families, the ratios between logical and

memory, as well as logical and DSP blocks, are different. For

the same amount of logical blocks, a high-end FPGA will have

more memory and DSP blocks than a low-cost FPGA. High-

end FPGAs are consequently more suited for FFT-based

architectures. However, this should not impact the ranking

since the SS architecture is far inferior to the others in terms of

performance. High-end FPGAs also accept a higher clock

frequency, which improves the performance of all the

architectures in the same manner.

V. CONCLUSION

In this paper, we have presented a framework to compare

the main GNSS signals acquisition architectures on FPGAs.

The implementations have been optimized towards achieving

maximum parallelization for a single acquisition channel and

fixed resources. It has been shown that the two FFT-based

architectures are far more efficient than simple duplication of

mixers and accumulators. Between these two architectures,

considering the GPS L1 C/A signal with long integration times

(10 ms of coherent, 400 ms of non-coherent, total of 800 ms of

data due to half-bit method for managing the data bit

transitions), the Parallel Frequency Search has been shown to

provide slightly smaller mean acquisition time (3.62 s against

3.95 s for 10 satellites) and greater flexibility regarding the

sampling frequency than the Parallel Code-phase Search.

Nevertheless, if the frequency search space is wide enough, the

Parallel Code-phase Search can be further optimized by using

shifting in the frequency domain, providing then a smaller

mean acquisition time than the Parallel Frequency Search

architecture (3.21 s against 3.62 s for 10 satellites). However,

if GNSS signals with higher code frequencies are considered,

the Doppler effect on codes with moderate or long integration

times is fatal to the PFS architecture, which loses much of its

interest since the FFT will only be able to search a few bins. In

this case, the PCS will then provide better performance.

The comparison carried out in this article is based on the

three classical well-known architectures where no special

techniques are used. Those who wish to compare a particular

version of an architecture (like is sometimes the case with the

PCS in order to reduce the size of the FFT in exchange for

reduced SNR) can do so easily since all the formulas as well as

an example are provided in Appendices 1 and 2, respectively.

APPENDIX 1

In this section, we provide details of the resource usage

estimates of the different functions, and combine them to

estimate the resources of the complete architectures. The

estimates are based on FPGAs from Altera. They consist of

two different basis blocks, a Logical Element (LE) used in the

Cyclone and old Stratix series, and an Adaptive Logic Module

(ALM) used in recent Cyclone, Arria and Stratix series. An LE

consists of one register and a 4-input LUT, whereas an ALM

consists of two registers and two 4-input ALUTs (Adaptive

LUTs). The following conversion ratio is stated by Altera : 1

ALM = 2.5 LEs, but it is not an exact formula that works all

the time. According to our experience, the ratio tends to be 1

ALM = 2 LEs most of the time, which is the ratio of their

registers. In order to obtain the most accurate results possible,

the estimate of the different functions is done for both basis

blocks.

The formulas provided here are empirical and obtained by

analysis and verifications of compilation. Implementation

inside a complete system would affect the real resources usage

as well as the different optimizations performed during

compilation (e.g. maximizing the clock frequency, or

minimizing the area). Note that the most important estimates

are those of duplicated functions (or those linked to

duplication), namely the code mixer, the coherent accumulator,

the multiplexer, the FFT, and the coherent and non-coherent

memory-based accumulators, which are not the most difficult

functions to estimate.

In the following equations, we use the following notations :

NX : An integer (e.g. point, chip, sample)

LX : Resource in terms of logical blocks

MX : Resource in terms of memory blocks

DX : Resource in terms of DSP blocks

RX : Resolution of a signal (bits)

R0 : Resolution after the carrier mixer (bits)

RC : Resolution after the coherent accumulator (bits)

RFFT : Resolution after the FFT (bits)

RNC : Resolution after the non-coherent accumulator (bits)

Note that the resolution of the output of an accumulator

performing K accumulations is

  2logOutAcc InAccR R K     (20)

where RInAcc is the resolution of the input signal in bits.

A. Resource Estimates of Blocks

1) Carrier Generator

The carrier generator is composed of an NCO and a

mapping to generate sine and cosine waveforms. Taking a 32-

bit counter, the NCO thus needs 64 bits (32 bits for the counter

increment and 32 bits for the counter value). The mapping is a

very simple combinatorial function, and requires nothing or

just a few elements and is neglected here. The resources can

thus be estimated as

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

14

64 LEs

32 ALMs.

CaGeL 


 (21)

2) Carrier Mixer

The carrier mixer is composed of four mixers, one adder

and one subtractor (if the input signal is real, only two mixers

are required). The resolution after the adder and the subtracter

is denoted as R0, and the resolution at the output of the mixers

is then R0 – 1. This directly provides the number of LEs, but

the number of ALMs is the same as the number of LEs for the

mixers. The resources can thus be estimated as

 

 

0 0 0

0 0 0

2 4 1 6 4 LEs

4 1 5 4 ALMs.

CaMiL R R R

R R R

    

    
 (22)

3) Code Generator

Like for the carrier generator, the code generator is

composed of an NCO, plus a memory where the code is stored.

This necessitates more logic elements to access the memory. If

several shifted versions have to be generated (denoted as NB in

the formula since it corresponds to the number of branches in

the architectures), this will require one register per replica. The

resources can thus be estimated as

 

 

2

4

64 log LEs

32 log ALMs.
2

CoGe B chip

B
chip

L N N

N
N

  

  
 (23)

Regarding the memory, we need as many bits as there are

chips in the code (insofar as the code has only two levels) :

 bitsCoGe chipM N . (24)

4) Code Mixer & Coherent Accumulator (logic-based)

These blocks are used only in the SS and PFS architectures.

The code mixer consists in inverting the I and Q signals

according to the value of the code, and it is followed by a

complex accumulator. In order to optimize the

implementation, both blocks can be combined to build an

accumulator that adds or subtracts the input value according to

the value of the code. This optimization works well with

ALM-based FPGAs since it does not require more resources

than the accumulator alone. However, for LE-based FPGAs, it

uses slightly more resources than the two blocks apart, so in

this case it is better to keep them separate. The accumulators

also need a signal to start/restart the integration. The resources

can thus be estimated as

02 LEs

2 1 LEs

0.5 ALMs.

CoMi

CoAcc C

CoMiAcc C

L R

L R

L R



 

 

 (25)

5) Multiplexer

This block is used only in the SS and PFS architectures. The

multiplexer is fully combinatorial; consequently its resource

estimate has been evaluated empirically. The resources with N

inputs of RC bits can be estimated as

LEs
0.75

= ALMs.
1.5

C
MUX

C

N R
L

N R



 (26)

6) Magnitude Calculator

There are many possible algorithms for the computation of

the magnitude. Here we consider the Robertson

approximation. The estimate has been obtained empirically,

and it is a piecewise linear function depending on the

resolution of the input, R.

 

 

1

2

3 LEs

1.5 ALMs

MagL R f R

R f R

 

 
 (27)

with

  1

33, for 10 16

67, for 17 32

99, for 33 40

R

f R R

R

 


  
  

 (28)

  2

22, for 12 20
.

42, for 21 40

R
f R

R

 
 

 
 (29)

7) Complex Multiplier

This function is used only in the PCS architecture. It

consists of four multiplications and addition/subtraction. This

is done by a DSP block. If the resolution of the input is less

than or equal to the basis DSP elements (18 bits for Altera

FPGAs), it requires four blocks, otherwise it requires sixteen

blocks.

4, for 18

DSP elements.
16, for 18

CMul

R
D

R


 


 (30)

8) Ping-Pong Buffer

This function is used only in the PFS architecture. It is

composed of two memories. The number of addresses of each

buffer corresponds to the number of branches multiplied by the

number of signal points in the FFT, and four address buses are

needed to write and read both buffers.

 

 
2 ,

2 ,

4log LEs

2log ALMs.

PPB B FFT S

B FFT S

L N N

N N




 (31)

The number of bits needed corresponds to the number of

addresses multiplied by four times the resolution of the input

signal (I & Q path, in two memories to avoid the overwriting

of data not yet read).

 , bits4 .PPB B FFT S CRM N N (32)

9) Coherent Accumulator (memory-based)

This function is used only in the PCS architecture. It

consists for each signal path (I and Q) of a memory, an adder

and a 2-input multiplexer. We also count the read and write

address buses needed to access the memory.

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

15

   

 

 

 

2

2

2

2

2 2log

4 2 log LEs

2 log
2 2

2 log ALMs.

CoAcc C C FFT

C FFT

C C
FFT

C FFT

L R R N

R N

R R
N

R N

  

 

 
   

 

 

 (33)

The number of bits corresponds to the number of points in

the FFT multiplied by twice the resolution of the input signal

(I & Q path).

 2 bits.CoAcc FFT CM N R (34)

10) Non-Coherent Accumulator (memory-based)

This is the same block as the coherent accumulator except

that there is now only one input signal instead of two.

 

 

2 @

2 @

2 2log LEs

log ALMs

NoCoAcc NC

NC

L R N

R N

 

 
 (35)

where N@ is the number of addresses and is defined as

 @

, for the SS architecture

, for the PFS architecture .

, for the PCS architecture

B

B FT

FFT

N

N N N

N




 



 (36)

The number of bits corresponds to the number of addresses

multiplied by the resolution of the input signal.

 @ bitsNoCoAcc NCM N R (37)

11) FFT

The resource usage of the FFT depends on a lot of

parameters, and is estimated with the tools provided by the

manufacturer or after a compilation.

B. Resource Estimates of Architectures

1) Serial Search

The functions present in the SS architecture and their sizes

in terms of logical blocks are summarized in Table VI for NB

branches.
TABLE VI

LOGICAL RESOURCE ESTIMATES OF SS ARCHITECTURE

Function Number of LEs Number of ALMs

Carrier

Generator
64 32

Carrier Mixer 6 R0 – 4 5 R0 – 4

Code

Generator
NB + 64 + log2 (Nchip) NB/2 + 32 + log4 (Nchip)

Code Mixers 2 NB R0

NB (RC + 0.5)
Coherent

Accumulators
NB (2 RC + 1)

Multiplexer NB RC / 0.75 NB RC / 1.5

Magnitude

Calculator
3 RC + f1(RC) 1.5 RC + f2(RC)

Non-Coherent

Accumulator
2 RNC + 2 log2 (NB) RNC + log2 (NB)

The total number of logical blocks of the SS architecture is

obtained by summing all the elements of Table VI and is given

by (38) for LE-based FPGAs and (39) for ALM-based FPGAs.

 

 

 

, 0 2

0 1

2

10
2 2 2log

3

6 3 2

log 124

SS LE B C B

C C NC

chip

L N R R N

R R f R R

N

 
    

 

   

 

 (38)

 

 

 

, 2

0 2

4

5
1 log

3

5 1.5

log 60

SS ALM B C B

C C NC

chip

L N R N

R R f R R

N

 
   

 

   

 

 (39)

The memory blocks are used only by the non-coherent

accumulator, and the total number of bits is

 .SS B NCM N R (40)

2) Parallel Frequency Search

The functions present in the PFS architecture and their sizes

in terms of logical blocks are summarized in Table VII for NB

branches.
TABLE VII

LOGICAL RESOURCE ESTIMATES OF PFS ARCHITECTURE

Function Number of LEs Number of ALMs

Carrier

Generator
64 32

Carrier Mixer 6 R0 – 4 5 R0 – 4

Code

Generator
NB + 64 + log2 (Nchip) NB/2 + 32 + log4 (Nchip)

Code Mixers 2 NB R0

NB (RC + 0.5)
Coherent

Accumulators
NB (2 RC + 1)

Multiplexer NB RC / 0.75 NB RC / 1.5

Ping-Pong

Buffer
4 log2 (NB NFFT,S) 2 log2 (NB NFFT,S)

FFT LFFT,LE LFFT,ALM

Magnitude

Calculator
3 RFFT + f1(RFFT) 1.5 RFFT + f2(RFFT)

Non-Coherent

Accumulator
2 RNC + 2 log2 (NB NFT) RNC + log2 (NB NFT)

The total number of logical blocks of the PFS architecture is

obtained by summing all the elements of Table VII and is

given by (41) for LE-based FPGAs and (42) for ALM-based

FPGAs.

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

16

 

   

 

 

, 0 2

, 2 , 2

0 1

2

10
2 2 6log

3

4log 2log

6 3 2

log 124

PFS LE B C B

FFT LE FFT S FT

FFT FFT NC

chip

L N R R N

L N N

R R f R R

N

 
    

 

  

   

 

 (41)

 

   

 

 

, 2

, 2 , 2

0 2

4

5
1 3log

3

2log log

5 1.5

log 60

PFS ALM B C B

FFT ALM FFT S FT

FFT FFT NC

chip

L N R N

L N N

R R f R R

N

 
   

 

  

   

 

 (42)

The functions present in the PFS architecture and their sizes

in terms of memory blocks are summarized in Table VIII for

NB branches.
TABLE VIII

MEMORY RESOURCE ESTIMATES OF PFS ARCHITECTURE

Function Number of bits

Code

Generator
Nchip

Ping-Pong

Buffer
4 NB NFFT,S RC

FFT MFFT

Non-Coherent

Accumulator
NB NFT RNC

The total number of bits of the PFS architecture is obtained

by summing all the elements of Table VIII and is given by

(43).

 ,4

 bits

PFS B FFT S C FT NC

FFT chip

M N N R N R

M N

 

 
 (43)

3) Parallel Code-phase Search

The functions present in the PCS architecture and their sizes

in terms of logical blocks are summarized in Table IX for NB

branches.
TABLE IX

LOGIC RESOURCE ESTIMATES OF PCS ARCHITECTURE

Function Number of LEs Number of ALMs

Carrier

Generator
64 NB 32 NB

Carrier

Mixers
NB (6 R0 – 4) NB (5 R0 – 4)

Code

Generator
65 + log2 (Nchip) 32.5 + log4 (Nchip)

FFTs (NB +1) LFFT,LE (NB +1) LFFT,ALM

Complex

Multipliers
0 0

IFFTs NB LIFFT,LE NB LIFFT,ALM

Coherent

Accumulators
4 NB RC + 2 log2(NFFT) 2 NB RC + log2(NFFT)

Magnitude

Calculators
NB [3 RC + f1(RC)] NB [1.5 RC + f2(RC)]

Non-Coherent

Accumulators
NB 2 RNC + 2 log2(NFFT) NB RNC + log2(NFFT)

The total number of logical blocks of the PCS architecture

is obtained by summing all the elements of Table IX and is

given by (44) for LE-based FPGAs and (45) for ALM-based

FPGAs.

 

   

, , ,

1 0 ,

2 2

7

2 6 60

4log log 65

[

]

PCS LE B FFT LE IFFT LE C

NC C FFT LE

FFT chip

L N L L R

R f R R L

N N

  

    

  

 (44)

 

   

, , ,

2 0 ,

2 4

3.5

5 28

2log log 32.5

]

[PCS ALM B FFT ALM IFFT ALM C

NC C FFT ALM

FFT chip

L N L L R

R f R R L

N N

  

    

  

 (45)

The functions present in the PCS architecture and their sizes

in terms of memory blocks are summarized in Table X for NB

branches.
TABLE X

MEMORY RESOURCE ESTIMATES OF PCS ARCHITECTURE

Function Number of bits

Code

Generator
Nchip

FFTs (NB + 1) MFFT

IFFTs NB MIFFT

Coherent

Accumulators
2 NB NFFT RC

Non-Coherent

Accumulators
NB NFFT RNC

The total number of bits of the PCS architecture is obtained

by summing all the elements of Table X and is given by (46).

2

 bits

()[]PCS B FFT IFFT FFT C NC

FFT chip

M N M M N R R

M N 

  
 (46)

The functions present in the PCS architecture and their sizes

in terms of DSP blocks are summarized in Table XI for NB

branches.
TABLE XI

DSP RESOURCE ESTIMATES OF PCS ARCHITECTURE

Function DSP 18-bit elements

FFTs (NB + 1) DFFT

Complex

Multipliers
NB DCMUL

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

17

IFFTs NB DIFFT

The total number of DSP elements of the PCS architecture

is obtained by summing all the elements of Table XI and is

given by (47).

  PCS B FFT IFFT CMUL FFTD N D D D D    (47)

APPENDIX 2

In this section, we provide the details of the application

example used in Section IV with the acquisition parameters

summarized in Table IV. First, the target FPGA is presented,

then for each architecture all values (number of accumulations,

resolution of signals and size of FFTs) are specified, and the

formulas of Appendix 1 are used to determine the number of

branches that can be implemented. The results are summarized

in Table V.

A. Application with a Low-Cost FPGA Series : Cyclone III

The target chip considered is the EP3C120 with the

following resources :

- 119 088 LEs

- 432 blocks of 9216 bits (9216 bits = 1 M9K)

- 288 18-bit multipliers

Taking into account that only 85 % of the FPGA logical

blocks can be used, and considering the other functions in the

FPGA such as the tracking channels, the management, the

processor, etc. (evaluated to 20 000 LEs according to our

experience), we arrive at about 80 000 LEs available for the

acquisition channel. Note that the assumptions made here

impact the absolute results (i.e. performances), but not the

comparison between the different architectures (i.e. the

ranking).

1) Serial Search

The characteristics are summarized in Table XII.
TABLE XII

SS ARCHITECTURE PARAMETERS

Parameter Value

R0 5 bits

NC 40 960

RC 21 bits

NNC 40

RNC 27 bits

Using (38), we obtain

  280000 82 2log 348B BN N   (48)

from which we deduce that the maximum number of branches

implementable is NB = 971.

2) Parallel Frequency Search

The characteristics are summarized in Table XIII. For an

FFT of this size, the implementation that uses the natural and

bit-reversed order requires fewer logic and memory resources

(but more DSP resources) than the implementation that uses

only the natural order; consequently the evaluation is made for

the first implementation (DSP resources are not critical with

this architecture).
TABLE XIII

PFS ARCHITECTURE PARAMETERS WITH CYCLONE III FPGA

Parameter Value

R0 5 bits

NC / fS 625 µs

NC 2560

RC 17 bits

NFFT,S 16

NFFT 32

RFFT 18 bits

NNC 40

RNC 24 bits

LFFT 4359 LEs

MFFT 6 M9Ks = 55 296 bits

Using (41), we obtain

  2

206
80000 6log 4716

3
B BN N   (49)

from which we deduce that the maximum number of branches

implementable due to the logic resources is NB = 1095. Using

(43), we obtain

 425 9216 1352 BN  (50)

from which we deduce that the maximum number of branches

implementable due to the memory resources is NB = 2897.

Consequently the limitation comes from the logical blocks.

3) Parallel Code-phase Search

The characteristics are summarized in Table XIV.
TABLE XIV

PCS SEARCH ARCHITECTURE PARAMETERS WITH CYCLONE III FPGA

Parameter Value

R0 5 bits

NFFT 4096

RFFT 18 bits

NC 10

RC 22 bits

NNC 40

RNC 28 bits

FFT with input

and output in

natural order

LFFT , LIFFT 7756 LEs

MFFT , MIFFT 76 M9Ks = 700 416 bits

DFFT , DIFFT 24 DSP elements

FFT with input LFFT 9962 LEs

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

18

in natural order

and output in

bit-reversed

order

MFFT 37 M9Ks = 340 992 bits

DFFT 40 DSP elements

IFFT with input

in bit-reversed

order and

output in

natural order

LIFFT 10 149 LEs

MIFFT 48 M9Ks = 442 368 bits

DIFFT 40 DSP elements

Let’s consider first the FFTs with only the natural order.

Using (44), we obtain

 80000 15879 7879BN  (51)

from which we deduce that the maximum number of branches

implementable due to the logic resources is NB = 4. Using (46),

we obtain

 355 9216 1695744 BN  (52)

from which we deduce that the maximum number of branches

implementable due to the memory resources is NB = 1. Using

(47), we obtain

 288 52 24BN  (53)

from which we deduce that the maximum number of branches

implementable due to the DSP resources is NB = 5.

Consequently the limitation comes from the memory

resources. Now, let’s consider the FFTs with the natural and

bit-reversed order. Using (44), we obtain

 80000 20478 10085BN  (54)

from which we deduce that the maximum number of branches

implementable due to the logic resources is NB = 3. Using (46),

we obtain

 394 9216 1078272 BN  (55)

from which we deduce that the maximum number of branches

implementable due to the memory resources is NB = 3. Using

(47), we obtain

 288 84 40BN  (56)

from which we deduce that the maximum number of branches

implementable due to the DSP resources is NB = 2. In this

case, the limitation comes from the DSP blocks. We note that

this implementation of the FFT is better since two branches

can be implemented instead of one.

B. Application with a High-End FPGA Series : Stratix III

Now, the target chip considered is the EP3SE260 with the

following resources :

- 135 200ALMs

- 864 blocks of 9216 bits (M9K)

- 48 blocks of 147 456 bits (M144K = 16 M9K)

- 768 18-bit multipliers

The remark made before regarding the space in the FPGA

remains valid here, and we consider that 105 000 ALMs are

available for the acquisition channel. The number of

accumulations and the resolution of signals are identical to

those already indicated and are not repeated here.

1) Serial Search

Using (39), we obtain

  2105000 36 log 191B BN N   (57)

from which we deduce that the maximum number of branches

implementable is NB = 2911.

2) Parallel Frequency Search

The characteristics are summarized in Table XV.
TABLE XV

PFS ARCHITECTURE PARAMETERS WITH STRATIX III FPGA

Parameter Value

LFFT 1790 ALMs

MFFT 2 M9Ks = 18 432 bits

Using (42), we obtain

  2

88
105000 3log 1970

3
B BN N   (58)

from which we deduce that the maximum number of branches

implementable due to the logic resources is NB = 3511. Using

(43), we obtain

 1629 9216 1352 BN  (59)

from which we deduce that the maximum number of branches

implementable due to the memory resources is NB = 11104.

Consequently the limitation comes from the logic resources.

Due to the limitation in the multiplexing described in Section

III.D, it is necessary to use three multiplexer chains. Taking

this into account, there are 3385 branches that can be

implemented.

3) Parallel Code-phase Search

The characteristics are summarized in Table XVI.
TABLE XVI

PCS ARCHITECTURE PARAMETERS WITH STRATIX III FPGA

Parameter Value

FFT with input

and output in

natural order

LFFT , LIFFT 3806 ALMs

MFFT , MIFFT 76 M9Ks = 700 416 bits

DFFT , DIFFT 24 DSP elements

FFT with input

in natural order

and output in

bit-reversed

order

LFFT 5083 ALMs

MFFT 31 M9Ks = 285 696 bits

DFFT 40 DSP elements

IFFT with input

in bit-reversed

order and

output in

natural order

LIFFT 5146 ALMs

MIFFT 42 M9Ks = 387 072 bits

DIFFT 40 DSP elements

Let’s consider first the FFTs with only the natural order.

Using (45), we obtain

 105000 7812 3868BN  (60)

from which we deduce that the maximum number of branches

implementable due to the logic resources is NB = 12. Using

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

19

(46), we obtain

 1555 9216 1695744 BN  (61)

from which we deduce that the maximum number of branches

implementable due to the memory resources is NB = 8. Using

(47), we obtain

 768 52 24BN  (62)

from which we deduce that the maximum number of branches

implementable due to the DSP resources is NB = 14.

Consequently the limitation comes from the memory

resources. Now, let’s consider the FFTs with the natural and

bit-reversed order. Using (45), we obtain

 105000 10429 5145BN  (63)

from which we deduce that the maximum number of branches

implementable due to the logic resources is NB = 9. Using (46),

we obtain

 1600 9216 967680 BN  (64)

from which we deduce that the maximum number of branches

implementable due to the memory resources is NB = 15. Using

(47), we obtain

 768 84 40BN  (65)

from which we deduce that the maximum number of branches

implementable due to the DSP resources is NB = 8. In this

case, the limitation comes from the DSP blocks. We note that

both implementations of the FFT provide equivalent

performance; the limitation may come from the memory or the

DSP resources.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for

their judicious comments which helped to greatly improve the

quality of this article.

REFERENCES

[1] A.J. Viterbi, “CDMA: Principles of Spread Spectrum Communication”,
Prentice Hall, 1995.

[2] F. van Diggelen, “A-GPS: Assisted GPS, GNSS and SBAS”, Artech
House, 2009.

[3] L. Lo Presti, B. Motella, “The math of ambiguity: what is the
acquisition ambiguity function and how is it expressed mathematically?
”, Inside GNSS, vol. 5, no. 4, pp. 20 – 28, June 2010.

[4] D. Borio, C. O’Driscoll, G. Lachapelle, “Coherent, Noncoherent, and
Differentially Coherent Combining Techniques for Acquisition of New
Composite GNSS Signals”, IEEE Transactions on Aerospace and
Electronic Systems, vol. 45, no. 3, pp. 1227 – 1240, July 2009.

[5] A. El-Rabbany, “Introduction to GPS: The Global Positioning System”,
Artech House, 2006.

[6] E. Kaplan, C. Hegarty, “Understanding GPS: Principles and
Applications”, Artech House, 2006.

[7] K. Borre, D. Akos, N. Bertelsen, P. Rinder, S.K. Jensen, “A Software-
Defined GPS and Galileo Receiver: A Single Frequency Approach”,
Birkhäuser Boston, 2006.

[8] S.M. Spangenberg, G.J.R. Povey, “Code acquisition for LEO satellite
mobile communication using a serial-parallel correlator with FFT for
Doppler estimation”, CSDSP, Sheffield, UK, April 1998.

[9] H. Mathis, P. Flammant, A. Thiel, “An analytic way to optimize the
detector of a post-c orrelation FFT acquisition algorithm”, ION
GPS/GNSS 2003, Portland, Oregon, USA, Sept. 2003.

[10] C. Botteron, G. Walchli, G. Zamuner, M. Frei, D. Manetti, F.
Chastellain, P-A. Farine, P. Brault, “A Flexible Galileo L1 Receiver
Platform for the Validation of Low Power and Rapid Acquisition
Schemes”, ION GNSS 2006, Forth Worth, Texas, USA, Sept. 2006.

[11] R. Lyons, “Reducing FFT Scalloping Loss Errors Without
Multiplication”, IEEE Signal Processing Magazine, vol. 28, no. 2, pp.
112 – 116, March 2011.

[12] U. Cheng, W.J. Hurd, J.I. Statman, “Spread-Spectrum Code Acquisition
in the Presence of Doppler Shift and Data Modulation”, IEEE
Transactions on Communications, vol. 38, no. 2, pp. 241 – 250, Feb.
1990.

[13] D.J.R. van Nee, A.J.R.M. Coenen, “New Fast GPS Code-Acquisition
Technique using FFT”, Electronics Letters, vol. 27, no. 2, pp. 158 –
160. Jan. 1991.

[14] S.W. Smith, “Digital Signal Processing: A Practical Guide for Engineers
and Scientists”, Newnes Press, 2002.

[15] L. Kurz, G. Kappen, T. Coenen, T.G. Noll, “Comparison of Massive-
Parallel and FFT Based Acquisition Architectures for GNSS-Receivers”,
ION GNSS 2010, Portland, Oregon, USA, Sept. 2010.

[16] J. Leclère, C. Botteron, P.-A. Farine, “Resource and performance
comparisons for different acquisition methods that can be applied to a
VHDL-based GPS receiver in standalone and assisted cases”, IEEE/ION
PLANS 2010, Palm Springs, California, USA, May 2010.

[17] R.G. Lyons, “Understanding Digital Signal Processing”, Prentice Hall,
2010.

[18] S.U. Qaisar, N.C. Shivaramaiah, A.G. Dempster, C. Rizos, “Filtering IF
Samples to Reduce the Computational Load of Frequency Domain
Acquisition in GNSS Receivers”, ION GNSS 2008, Savannah, Georgia,
USA, Sept. 2008.

[19] J.A. Starzyk, Z. Zhu, “Averaging correlation for C/A code acquisition
and tracking in frequency domain”, IEEE 2001 Midwest Symposium on
Circuits and Systems, Dayton, Ohio, USA, Aug. 2001.

[20] N.C. Shivaramaiah, A.G. Dempster, C. Rizos, “Application of Mixed-
radix FFT Algorithms in Multi-band GNSS Signal Acquisition
Engines”, Journal of Global Positioning Systems, vol. 8, no. 2, pp. 174
– 186, 2009.

[21] L. Lo Presti, Z. Xuefen, M. Fantino, P. Mulassano, “GNSS Signal
Acquisition in the Presence of Sign Transition”, IEEE Journal of
Selected Topics in Signal Processing, vol. 3, no. 4, pp. 557 – 570, Aug.
2009.

[22] M.L. Psiaki, “Block Acquisition of Weak GPS Signals in a Software
Receiver”, ION GPS 2001, Salt Lake City, Utah, USA, Sept. 2001.

[23] J.B. Lozow, “Analysis of Direct P(Y)-Code Acquisition”, Journal of the
Institute of Navigation, vol. 44, no. 1, pp. 89 – 98, Spring 1997.

[24] J.K. Holmes, C.C. Chen., “Acquisition Time Performance of PN
Spread-Spectrum Systems”, IEEE Transactions on Communication, vol.
25, no. 8, pp. 778 – 784, Aug. 1977.

[25] D. Borio, L. Camoriano, L. Lo Presti, “Impact of GPS Acquisition
Strategy on Decision Probabilities”, IEEE Transactions on Aerospace
and Electronic Systems, vol. 44, no. 3, pp. 996 – 1011, July 2008.

[26] N.C. Shivaramaiah, H.S. Jamadagni, M. Srikantaiah, V. Chikkabbaiah,
“Software-Aided Sequential Multi-tap Correlator for Fast Acquisition”,
ION GNSS 2004, Long Beach, California, USA, Sept. 2004.

[27] D. Akopian, “Fast FFT based GPS satellite acquisition method”, IEE
Proceedings - Radar, Sonar and Navigation, vol. 152, no. 4, pp. 277 –
286, Aug. 2005.

[28] Altera, “Designing and Using FPGAs for Double-Precision floating-
Point Math”, White Paper, 2007.

Article accepted for publication in IEEE Transactions on Aerospace and Electronic Systems.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

20

Jérôme Leclère received the Master Degree in Electronics and Signal

Processing from the ENSEEIHT, Toulouse, France, in 2008. He is currently

performing his Ph.D. thesis in the GNSS field at EPFL in the Electronics and

Signal Processing Laboratory, focusing his researches in the acquisition and

high sensitivity areas, with application to hardware receivers, especially using

FPGAs. He participated to the development of an FPGA-based high

sensitivity GPS L1 C/A receiver.

Dr. Cyril Botteron (M’99, SM06) received the Electronics Engineering

degree from the University of Applied Sciences in Le Locle, Switzerland, in

1991, and the PhD degree with specialization in wireless communications

from the University of Calgary, Canada, in 2003.

From 1991 to 2000, he worked as design engineer for different companies in

the USA, in Switzerland, and in Canada. From 2003 to 2008, he was a

lecturer and team leader at University of Neuchâtel, Switzerland, leading

research in radio frequency (RF) microelectronic circuits and wireless system

designs. Since 2009, he is working at École Polytechnique Fédérale de

Lausanne, Switzerland, leading, managing, and coaching the research and

project activities of the GNSS and UWB subgroups in the Electronics and

Signal Processing Laboratory. His current research interests comprise the

development of low-power RF integrated circuits and advanced signal

processing techniques for ultra-low-power communications and positioning

applications (using GNSS, INS, UWB, etc.). He is the author or coauthor of

more than 50 articles in international journals and conference proceedings

and 4 patent families.

Dr. Botteron has received many awards, including in 2001 a postgraduate

scholarship and a graduate fellowship from the Natural Sciences and

Engineering Research Council of Canada (NSERC) and the Alberta

Informatics Circle of Research Excellence (iCORE), respectively.

Prof. Pierre-André Farine (M’85) was born in La Chaux-de-Fonds,

Switzerland, in 1953. He received the B.Sc. degree in microtechnology from

École Technique Supérieure (ETS), Le Locle, Switzerland, in 1974 and the

M.Sc. and Ph.D. degrees in Microtechnology from the University of

Neuchâtel, Switzerland, in 1978 and 1984, respectively.

For 17 years, he was with the Swiss watch industries (Swatch Group) in the

development of high-tech products, like pagers and watches with integrated

sensors such as pressure, compass, altimeter, and temperature. He was also

involved in prototype developments for watches including GPS and cellular

phones subsystems. Between 2002 and 2009, he was professor with the

Institute of Microtechnology, University of Neuchâtel, where he was leading

the Electronics and Signal Processing Laboratory, active in the study and

implementation of low-power solutions for applications covering wireless

telecommunications, ultra-wideband, global navigation satellite systems, and

video and audio processing. Since 2009, he is full professor with the École

Polytechnique Fédérale de Lausanne (EPFL), where he is leading the

Electronics and Signal Processing Laboratory EPFL ESPLAB. He is the

author or coauthor of more than 100 publications in conference and technical

journals and more 50 patent families. Prof. Farine has served as a member of

program committees and the program chair for international conferences.

