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 

Abstract—The acquisition of Global Navigation Satellite 

Systems signals using Code Division Multiple Access can be 

performed through classical correlation or using a Fourier 

transform. These methods are well known but what is missing is a 

comparison of their performance for a given hardware area or 

target. This paper presents this comparison for Field-

Programmable Gate Arrays, describing the different parameters 

involved in the acquisition, detailing some optimized 

implementations where hardware elements are duplicated, and 

estimating and discussing the performances. The influence of the 

Doppler effect on the code, is also discussed as it plays an 

important role, particularly for new signals using a high chipping 

rate. 

 
Index Terms—Acquisition, Architecture, CDMA, FFT, FPGA, 

GNSS 

 

I. INTRODUCTION 

LOBAL Navigation Satellite Systems (GNSSs) use 

pseudorandom noise (PRN) codes for ranging, and to 

distinguish satellites via Code Division Multiple Access 

(CDMA). The first processing step in a GNSS receiver is thus 

acquisition, which consists of the rough estimation of the 

phases of the PRN codes, as well as the Doppler frequencies 

through multiple correlations with locally generated signals 

(called replicas). 

Acquisition can require a relatively long processing time, 

due to the large number of possibilities for the two parameters 

being estimated. This is even truer for very weak signals, 

which are acquired nowadays by high-sensitivity receivers, 

since this implies very long integration times. 

Today’s technology allows very efficient acquisitions, by 

processing signals at higher frequencies, and by parallelizing 

operations by duplicating hardware elements and/or using 

Fourier transforms. However, a general question is how to 

select the best architecture for a specific application. 

In this context, this paper provides a general framework for 

hardware implementation on Field-Programmable Gate Arrays 

(FPGAs). The framework is illustrated with an example 

application in which we rank the considered architectures 
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according to their performance. In addition, this paper also 

highlights and discusses the influence of the Doppler effect on 

the code. It will be shown that it may have a great impact on 

some acquisition architectures. 

We review in Section II the acquisition principle before 

presenting the three main architectures used for the acquisition 

of CDMA signals with their advantages and drawbacks. These 

architectures are the Serial Search (SS), which is the 

traditional method; the Parallel Frequency Search (PFS), 

which uses a Fourier transform as a spectrum analyzer; and the 

Parallel Code-phase Search (PCS), which uses a Fourier 

transform to perform the correlation faster. The same section 

also presents the different parameters involved in acquisition 

and their impact on acquisition time. 

In Section III, the target devices, FPGAs, are briefly 

presented in order to provide the tools to understand the 

detailed analysis of the architectures that follows. After this 

analysis, the analytical developments about the acquisition 

time are completed. 

Finally, in Section IV, we examine a practical example 

application considering the acquisition of the Global 

Positioning System (GPS) L1 C/A signal, and discuss newer 

signals. 

Note that while a GPS L1 C/A signal is considered 

throughout this paper for illustration purposes, the proposed 

framework can easily be adapted to other GNSS signals. Only 

the code length, frequency and type (e.g. time-multiplexed, 

composite, addition of sub-carrier) need to be adapted to 

consider other GNSS signals including those from Galileo, 

GLONASS, GPS, and other forthcoming GNSSs. 

II. ACQUISITION 

A. Acquisition Principle 

The signal emitted by satellites is a combination of several 

signals : 1) a carrier; 2) a PRN code specific to each satellite 

used for multiplexing and ranging measurements, denoted c(t) 

(c(t) can also include a secondary PRN code and a subcarrier); 

and 3) navigation data which contain information for 

positioning (time, ephemeris, etc.), denoted d(t). For instance, 

the L1 C/A signal emitted by GPS satellites can be expressed 

as 

        1cos 2i L i is t a f t c t d t  (1) 

where a is the amplitude of the signal, fL1 the carrier frequency 

(1575.42 MHz), and i an index that denotes the satellite. The 
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code chipping rate is 1.023 Mchip/s (a chip refers to the signal 

corresponding to an individual term of a pseudo random 

sequence [1]), and the data rate is 50 bit/s. This signal uses a 

BPSK modulation, whereas newer signals use more advanced 

modulations (e.g. QPSK, BOC, CBOC, AltBOC). The three 

signal components, carrier, code, and data, however, are 

always present, except for pilot channels, which carry no data. 

At the receiver side, the signal is strongly attenuated, 

insomuch as the thermal noise generated by the front-end is 

even stronger than the signal, leading to a signal-to-noise ratio 

(SNR) below 0 dB. Consequently, before extracting the 

navigation data, the carrier and the PRN code have to be 

removed in order to integrate the signal over time and raise the 

signal out of the noise.  

The removal of the carrier and the code is performed by 

multiplying the input signal with local replicas, i.e. a carrier at 

the same frequency as the input carrier, which must be 

complex to cancel the influence of the unknown phase of the 

input carrier, and a PRN code with the same phase as the input 

code. 

The phase of the incoming PRN code is unknown on the 

receiver side since it depends on many quantities such as the 

transmit and travel times of the signal. Consequently, in order 

to align the replica with it, all possible phases have to be tested 

with a certain resolution. The resolution depends on the 

modulation used and on the required performance, e.g. it is 

typically ½ chip for the GPS L1 C/A signal. 

The frequency of the received signals is affected on the one 

hand by the Doppler effect due to the high speed of the 

satellites (about ± 5 kHz) and the speed of the receiver to a 

lesser extent (maximum of 1.5 Hz/(km/h) for the L1 frequency 

[2]). On the other hand, the inaccuracy of the receiver’s 

oscillator creates a Doppler-like effect through the down-

conversion from radio frequency to baseband by placing the 

signal away from its nominal intermediate frequency (which is 

typically a low Intermediate Frequency (IF) or zero-IF), but it 

affects all the satellite signals in the same way. The total range 

of the Doppler frequency is the combination of these elements 

and depends on the context [2]. Consequently, in order to align 

the frequency of the carrier replica with the input signal, this 

range, called the frequency search space, has to be explored 

with a certain resolution. This resolution depends on the 

integration time used, because, after integration, a mismatch of 

the frequencies results in degradation as a sinc function whose 

width is inversely proportional to the integration time [1]. 

A graphical representation of the time-frequency search 

space is depicted in Fig. 1, where each square represents a cell, 

i.e. a code-phase/carrier frequency bin. The acquisition 

consists thus in the evaluation of a 2D correlation function, 

called the Ambiguity Function [3]. 

To increase the integration time (and thus the SNR) without 

affecting the resolution of the frequency search, non-coherent 

integrations can be performed. They consist of summing the 

magnitude (or the power) of many complex correlation values 

of the same cell. The integration performed before the 

computation of the magnitude (or the power) is called the 

coherent integration. Non-coherent integrations can also be 

used to extend the limit imposed by the data bits. Indeed, if 

there is a data bit transition during a coherent integration, it 

will result in a loss. More details about coherent and non-

coherent integration can be found in [2, 4]. 

To help with the acquisition process, a receiver can get 

information (time, position, ephemeris, etc.) from another 

source (mobile network, internet, etc.). This can help the 

receiver 1) to know which satellites are in view; 2) to reduce 

the frequency search space (knowing the approximate time, 

and receiver and satellites positions, the corresponding 

Doppler frequencies can be estimated); and 3) to reduce the 

code-phase search space if fine time (time known to better than 

one code period, e.g. 1 ms for the GPS L1 C/A signal) is 

available. 

In this paper, in addition to the stand-alone case, we 

consider frequency assistance. This is the most common 

assistance type and also the easiest to set up. It is also similar 

to the warm start of a receiver where the almanac and position 

have been memorized during the last use and the time is 

coarsely known. 

Considering L satellites seen by the receiver, the nth sample 

of the received signal after in-phase and quadrature (I/Q) 

conversion and sampling to an IF (or zero-IF) can be written 

as 
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where fIF is the intermediate frequency, fD,i the Doppler 

frequency of the i
th

 satellite, TS the sampling period, θi the 

phase of the carrier of the i
th

 satellite, τi the phase of the PRN 

code of the i
th

 satellite, and ηIF the noise component. 

The different satellite signals can be processed in parallel 

through several acquisition channels or sequentially using only 

one acquisition channel. In this paper, we consider a system 

with one acquisition channel, because it is more efficient in 

terms of resource sharing. However, the proposed framework 

can be applied as well for several channels. Once a signal is 

acquired, it can be tracked using closed loops, the navigation 

data bits can be extracted, and as soon as this is performed for 

at least four satellites, the position of the receiver can be 

computed. Detailed information about GNSS signals structure 

and processing can be found in [5, 6]. 
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Fig. 1.  Time-frequency search space 

 

B. Acquisition Architectures 

In this section, three well-known architectures widely used 

to perform acquisition [7] are presented with their properties, 

advantages, and drawbacks. In the following figures, NC and 

NNC are related to the coherent and non-coherent integration 

time, respectively (their formal definition is provided after the 

description of the architectures). Simple arrows are used for 

scalars, whereas arrows with a slash are used for vectors, with 

the size of the vector specified if modified by the previous 

operation. The operation that holds samples to form a vector is 

not shown in the figures (like, for example, between the 

coherent accumulator and the FFT in Fig. 3). 

1) Serial Search 

The first and oldest acquisition method is called the serial 

search and its block diagram is shown in Fig. 2. There are five 

main steps : 1) multiplication of the complex input signal (s[n] 

= sI[n] + j sQ[n]) with the local code replica; 2) multiplication 

with the local complex carrier replica; 3) coherent integration 

through an accumulator (also called integrate and dump 

process [6]); 4) magnitude computation; and 5) non-coherent 

integration of consecutive results. 

 
Fig. 2.  Diagram of Serial Search (SS) acquisition 

 

In this architecture, all possibilities for carrier frequency and 

code phase are tested sequentially. Looking at Fig. 1, this 

means that the cells are tested one after the other. The 

advantage of this architecture is its simplicity, but its drawback 

is the time needed to acquire the signal which is relatively 

long, since there are thousands of code phases to search and 

the number of frequency bins can be from dozens (e.g. a span 

of ± 5 kHz with steps of 500 Hz gives 21 bins) to hundreds 

(e.g. a span of ± 5 kHz with steps of 50 Hz gives 201 bins), 

which leads to numerous combinations. 

2) Parallel Frequency Search 

One solution to reduce acquisition time is to parallelize the 

search in the frequency space. The idea consists of performing 

the coherent integration on a small part of the signal (typically 

less than the PRN code period), and then using a Fourier 

transform (implemented as a Fast Fourier Transform, or FFT) 

on consecutive accumulation results. This allows the test of 

NFFT frequency bins at once, which may cover the entire 

frequency search space [8]. After the FFT, the magnitude 

computation and the non-coherent integration are performed 

on each frequency bin, their inputs and outputs are thus 

vectors. This architecture is depicted in Fig. 3. In this case, the 

carrier replica is generated only to remove the intermediate 

frequency or for rough compensation of the Doppler, and the 

different code phases are tested sequentially. Looking at Fig. 

1, this means that the columns are tested one after the other. 

 
Fig. 3.  Diagram of Parallel Frequency Search (PFS) acquisition 

 

The advantage of this architecture is the large reduction in 

processing time, since it is equivalent to having as many 

correlators as there are points in the FFT (each point being 

equivalent to a frequency bin). In addition, the relatively small 

number of points in the FFT (dozens to hundreds) makes it 

easily implementable in many contexts. 

However, this architecture has three main drawbacks. The 

first is a sensitivity loss for frequencies away from the center 

[9, 10]. Indeed, while the aim of performing the coherent 

accumulation before the FFT is to reduce the size of the FFT, 

this will also cause a loss proportional to sinc(π fD NC / fS), 

where fD is the Doppler frequency, NC the number of samples 

used by the coherent accumulator per accumulation, and fS the 

sampling frequency. The frequencies searched by the FFT are 

from – fS / (2 NC) + fS / NFFT,S to fS / (2 NC), where NFFT,S is the 

number of signal samples used by the FFT. At the highest 

positive frequency bin, the loss is maximum and is sinc(π /2), 

i.e. about 3.9 dB. To reduce this loss, NC must be decreased. 

For instance, the loss will be reduced to about 0.9 dB if the 

maximum Doppler frequency corresponds to fS / (4 NC). The 

price paid in this case is the extra computation of the 

frequency bins outside the search space, which will not be 

subsequently used. 

A second drawback is the extra loss (called scalloping loss) 

that occurs when the Doppler frequency falls in between two 

FFT bins. This loss can attain a maximum value of about 3.9 

dB if the signal frequency is exactly in the middle of two FFT 

bins (for more details the reader is referred to [9, 10]). A 

simple but efficient mitigation solution is the use of zero 

padding. For example, padding the signal with as many zeros 

as there are samples (i.e. doubling the number of bins, NFFT = 2 

NFFT,S) will bring the maximum loss down to about 0.9 dB. 

This is the method that we consider in this paper (note that 

other techniques exist, such as windowing [11]). 

The third drawback is the loss linked to the mismatch 

between the replica code chipping rate and the received code 
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chipping rate which is also affected by the Doppler effect. 

Indeed, several carrier frequencies are tested through the FFT 

whereas there is only one code chipping rate tested. For 

example, with the GPS L1 C/A signal, if the carrier frequency 

is shifted by 5 kHz due to the Doppler effect, the code 

chipping rate will be shifted by about 3.25 chip/s (i.e., 

5000×1.023/1575.42). This means that the code replica and 

the received code will shift by about 3.25 chips every second, 

or one quarter of a chip every 77 ms. To reduce this effect, the 

frequency search space must be cut into several smaller spaces 

[12]. 

3) Parallel Code-phase Search 

A second solution to reduce the acquisition time is to 

parallelize the search in the code-phase space. Thanks to the 

relationship between the convolution in the time domain and 

the multiplication in the Fourier domain, it is possible to 

compute the circular cross-correlation of two signals, s[n] and 

c[n], using the FFT and the Inverse FFT (IFFT) as shown by 

(3). 

     *IFFT FFT [ ]  F[ FT] [ ]scr s cn n n  (3) 

The corresponding architecture is illustrated in Fig. 4 where 

the FFTs and the IFFT are typically performed on one period 

of the code (corresponding to NCB samples here, which is 

defined in Section II.C) [13]. Note that multiple periods of the 

code could be used, but this would not bring any advantage. 

Moreover, using lengths shorter than one code period with a 

technique such as overlap-and-add is also possible, but adds 

complexity [14] (which is why it is not considered in this 

paper). The IFFT results are then added to perform the 

coherent integration. The magnitude computation and the non-

coherent integration are then performed. Except for the carrier 

replica multiplication, all the operations are performed on 

vectors. In this case, only the different carrier frequencies are 

tested sequentially. Looking at Fig. 1, this means that the rows 

are tested one after the other. 

The advantage of this architecture is its very high gain in 

processing time, since it is equivalent to have as many 

correlators as there are points in the FFT (each point being 

equivalent to a code bin). 

 
Fig. 4.  Diagram of Parallel Code-phase Search (PCS) acquisition 

 

A first drawback of this architecture is the limited number of 

choices for the sampling frequency. Indeed, the usual radix-2 

FFT algorithm can be performed only with sequences of 2
N
 

points. In this case, zero padding can be used with the 

following constraint : the number of points should be at least 

twice the number of samples in one period of the code, to 

ensure that there will not be any loss [15]. For the GPS L1 C/A 

signal with a sampling frequency of 4 MHz, the signal should 

be padded to obtain sequences of 8192 points and the replica 

should contain two periods (padding only to 4096 points 

would potentially result in losses by spreading the peak over 

several code bins if the zeros are not padded to the beginning 

or the end of the code period 16]). This of course increases the 

complexity of the FFT. This problem can also be solved by 

other means, including performing a traditional sample rate 

conversion [17], using GNSS specific signal compression 

algorithms [18, 19], or using other FFT algorithms that can be 

applied to sequences whose length is not a power of two [20]. 

However, these algorithms are typically more difficult to 

implement. 

A second drawback of this architecture is the relatively large 

size of the FFT, which depends on the sampling frequency and 

on the code length, and can be too big for some 

implementations. This problem can be circumvented by using 

a smaller FFT with the overlap-and-add technique [14], 

performing decimation [17], or using a signal compression 

algorithm [18, 19]. In this paper, we consider sampling 

frequencies for which the number of samples per code period 

is a power of two, and no signal decimation or compression. 

However any other choice can be easily handled. 

The third drawback is a loss linked to a potential bit 

transition due to data or secondary code inside the input 

sequence used for the correlation, since the sequence does not 

start necessarily at the first chip of the code. This problem 

does not occur for the two other architectures, which always 

start the integration at the first chip of the code. It can be 

resolved by doubling the FFT size and zero-padding the code 

replica, or with other algorithms [21]. 

4) Integration Time 

In the three architectures, there is an accumulator involved 

in the coherent integration and an accumulator for the non-

coherent integration. The number of samples used by the non-

coherent accumulator for one integration and dump for one 

bin, NNC, is identical for the three architectures. However, the 

number of samples used by the coherent accumulator for one 

integration and dump for one bin, NC, is different. Therefore, 

to make a distinction between the architectures, we define NC 

 {NC,SS, NC,PFS, NC,PCS}. 

In the SS architecture, the coherent integration is performed 

only by the coherent accumulator, consequently NC,SS 

corresponds to the number of samples during the coherent 

integration time and is defined as 

 ,
C

C SS C S

S

T
N T f

T
   (4) 

where TC is the coherent integration time in seconds, fS the 

sampling frequency in hertz, and TS the sampling period in 

seconds. 

In the PFS architecture, the coherent integration is 

performed in two steps, with the coherent accumulator 

followed by the FFT. NC,PFS can thus be expressed as 
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 ,

, ,

C S C
C PFS

FFT S FFT S S

T f T
N

N N T
   (5) 

where NFFT,S is the number of signal samples used in the FFT. 

The values of NC,PFS and NFFT,S are chosen according to the 

size of the frequency search space and the integration time to 

minimize the losses previously described [9, 10]. Note that 

their product is equal to NC,SS. 

In the PCS architecture, the coherent integration is also 

performed in two steps, with the FFTs performing the 

correlation over one period of the PRN code (Tcode), followed 

by the coherent accumulator. NC,PCS can thus be written as 

 , .C
C PCS

code

T
N

T
  (6) 

To clarify this, we consider an example. For the stand-alone 

case with the GPS L1 C/A signal (Tcode = 1 ms), a coherent 

integration time TC = 10 ms and a sampling frequency fS = 

4.096 MHz, we obtain the values listed in Table I. It can be 

seen that the values are very different : relatively high for the 

SS architecture, small for the PCS architecture, and in between 

for the PFS architecture. 
TABLE I 

COHERENT INTEGRATION PARAMETERS EXAMPLE 

Architecture Coherent Parameters 

SS NC = 40 960 

PFS NC = 160   ;   NFFT,S = 256 

PCS NC = 10 

 

During the coherent integration time, there are thus 40,960 

samples to process. The coherent accumulator of the SS will 

perform thus 40959 accumulations, the one of the PFS will 

perform 256×159=40704 accumulations, and the one of the 

PCS will perform 9×4096= 36864 accumulations. 

The values of NC and NNC also have an impact on the design, 

since they influence the resolution of the output of the 

accumulators (the details are provided in appendices). 

5) Summary 

A simple summary of the complexity and search parallelism 

of the three architectures depicted in Figs. 2, 3 and 4 is given 

in Table II. 
TABLE II 

ACQUISITION ARCHITECTURES COMPARISON 

Architecture Complexity Search Parallelism 

SS low no 

PFS medium medium 

PCS high high 

 

We note that PCS provides the highest parallelism. 

Therefore, it is not surprising that most research groups that 

have developed hardware GNSS receivers in the past years 

have selected it for implementation. However, despite 

providing the best parallelism, it is also the most demanding in 

terms of complexity or hardware resources. Consequently, it 

may be important to consider the other architectures as well, as 

they may provide a better trade-off between implementation 

complexity and search parallelism. Towards this goal, we 

explore here hardware duplication and different optimizations 

for each architecture to enhance its search parallelism, and 

compare the architectures assuming a given hardware resource 

usage. 

C. Acquisition Parameters 

Now, we present the different parameters that have an 

impact on acquisition. They are classified into two classes : 1) 

the primary parameters that are given by the context 

(application and hardware); and 2) the secondary parameters 

that are derived from the primary ones. These parameters 

finally lead to the computation of the acquisition time. The 

relationship between these parameters is depicted in Fig. 5, 

where a solid line means that the link is present for all the 

architectures; a dashed line means that the link is present only 

for the PCS architecture; and a dotted line means that the link 

is present only for the PFS architecture. 

1) Primary Parameters 

a) Code-phase Resolution ΔC 

This is the minimum step between two tested code-phases. It 

depends on the signal modulation and the precision required. 

With the PCS architecture, the resolution is typically linked to 

the sampling frequency and corresponds to one sample, but it 

can be different if a preprocessing step, like decimation or 

averaging, has been used. It impacts the number of code bins 

and the integration time [2]. It is denoted as ΔC and can be 

expressed in chip or in sample, i.e. ΔC  {ΔC,chip, ΔC,sample}. 

b) Sensitivity 

This is the desired minimum received signal power in dBm 

that can be detected. The carrier-to-noise ratio, denoted C/N0 

and expressed in dB Hz, can be used instead equivalently. The 

sensitivity impacts the integration time [2]. 

c) Frequency Search Space fSS 

This is the frequency range where signals can be found. It 

impacts the number of frequency bins. It is denoted as fSS and 

expressed in Hz. 

d) FPGA 

This is the target chip. The family of the FPGA impacts the 

maximum FPGA frequency, and the resources inside the 

FPGA impacts the parallelization that can be applied. More 

details about FPGAs are provided in Section III.A. 

e) FPGA Frequency fFPGA 

This is the frequency of the clock inside the FPGA at which 

the acquisition channel runs. It directly impacts the FPGA 

processing gain. The higher it is, the faster the processing will 

be, as detailed in Section III.B. It is denoted as fFPGA and 

expressed in Hz. 

f) Sampling Frequency fS 

This is the frequency at which the signal is sampled. It 

impacts the parallelization that can be applied and the FPGA 

processing gain since, the higher it is, the more data there will 

be to process. With the PCS architecture, it can also impact the 
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code-phase resolution. It is denoted as fS and expressed in Hz. 

2) Secondary Parameters 

a) Number of Code Bins NCB 

This is the number of bins to test in the code-phase space. It 

is denoted as NCB, is without units and is defined as 

 

, ,

chip sample

CB

C chip C sample

N N
N  

 
 (7) 

where Nchip is the number of chips and Nsample the number of 

samples in the code-phase search space. When there is no 

assistance to provide fine time information, the code-phase 

search space corresponds to the entire PRN code. 

b) Integration Time TC and TT 

There are two components for this parameter, the coherent 

integration time and the total integration time (which includes 

the non-coherent additions). They are denoted as TC and TT, 

respectively, and expressed in seconds. They can be computed 

using the detailed method presented in [2]. They have an 

impact on several parameters. The coherent integration time 

impacts the frequency resolution as described in the next 

paragraph. The total integration time directly impacts the 

acquisition time, since the quantity of data to process is 

proportional to it. Finally, they both influence the 

parallelization that can be applied because they impact the 

resolution of the signals in several functions, such as in the 

coherent and non-coherent accumulators. 

 
Fig. 5.  Diagram of acquisition parameters 

 

c) Frequency Resolution ΔF 

This is the minimum step between two frequencies tested. It 

is linked to the coherent integration time TC, denoted as ΔF and 

expressed in Hz. 

As described in Section II, after coherent integration over a 

time TC, the result is shaped as a sinc function whose width is 

inversely proportional to TC and reaches zero at 1 / TC. Most of 

the time, ΔF is chosen as 2 / (3 TC) or 1 / (2 TC). The second 

case leads to more bins to test but as the maximum loss is 

lower, the total integration time needed is also lower, and at 

the end both values give approximately the same averaged 

performance. 

In the PFS architecture, applying the FFT on the signal 

without zero-padding is equivalent to having a frequency 

resolution of 1 / TC, while zero-padding the signal with as 

many zeros as there are samples is equivalent to having a 

frequency resolution of 1 / (2 TC). 

For consistency between the architectures, we will thus 

consider a resolution of ΔF = 1 / (2 TC) in the following. 

d) Number of Frequency Bins NFB 

This is the number of bins to test in the frequency search 

space fSS. It is denoted as NFB, without units and defined as 

 2 1.
2

SS F
FB

F

f
N

 
  

 
 (8) 

This formula allows a frequency bin centered on a desired 

frequency and the same number of frequency bins to test above 

and below this frequency. With the value previously chosen 

for ΔF, (8) can be written as 

 
1

2 1.
2

FB SS CN f T
 

   
 

 (9) 

This parameter can impact the parallelization applied in the 

PFS architecture if the frequency space is searched entirely, 

since it corresponds to the minimum number of points of the 

FFT. 

The number of cells of the search space is given by the 

number of the code bins times the number of frequency bins, 

i.e. Ncell = NCB NFB. 

e) Parallelization PX 

The comparison between the architectures will be based on 

this parameter denoted as PX where X denotes the architecture 

(SS, PFS or PCS). It corresponds to the number of cells of the 

search space that are tested simultaneously and includes the 

parallelization brought by the FFT and by the duplication of 

the elements. It depends on many other parameters and will be 

determined in Section III.G. 

f) FPGA Processing Gain GFPGA 

This is the gain in processing time given by the ratio of the 

FPGA frequency to the sampling frequency. It is denoted as 

GFPGA, without units and defined as 

 .FPGA
FPGA

S

f
G

f
  (10) 

3) Acquisition Time 

a) Search Time of the Full Time-Frequency Space TF,X  

The time to explore the whole time-frequency search space 

is given by 

 ,
CB FBT

F X

FPGA X

N NT
T

G P


  (11) 

where 
2, for alternate half-bits method

.
1, for other methods                 

 




 

The alternate half-bits method consists of creating two sets 

of alternate portions of the signal in order to have one without 

a data bit transition (a transition can occur when one bit of data 

lasts more than a period of the PRN code) [22]. This requires 

doubling the length of the signal used to keep the same SNR 

after the integration. There are two other methods that do not 

require an extra length of signal. The first, called the full-bits 

method, consists of integrating the signal for all the 
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possibilities for the data bit transition (e.g. 20 for GPS L1 

C/A) so that at least one will be free of data transitions [22]. 

The second method simply ignores the data bit transition and 

counts it as a loss in the SNR balance sheet [2]. 

β TT / GFPGA corresponds to the time to process the signal 

recorded at the FPGA rate. In order to explore the entire 

search space, the signal is processed several times, depending 

on the number of cells making up the search space and the 

implemented parallelization. 

Note that the time to load a new code, or to modify the 

carrier and code frequencies on the channel, and the latency in 

the processing are not taken into account in this formula. 

Indeed, the loading time is very small, typically on the order of 

dozens of cycles. The latency is mainly due to the FFTs and 

corresponds to the size of the elements, i.e. a few thousands of 

clock cycles, whereas the input signal used is typically 

composed of hundreds of thousands of samples if high-

sensitivity is intended. Therefore the latency represents only a 

very low percentage of TF,X. 

b) Mean Acquisition Time ,A XT  

Of course, it is usually not necessary to explore the whole 

search space to find a satellite. Regarding the code-phase 

space, the phase of the code is completely random and follows 

a uniform distribution. Regarding the frequency space, the 

distribution of the Doppler frequency depends on the context, 

i.e. the user position (latitude/longitude) as well as the 

constellation. This implies that the global distribution of  

Doppler frequencies does not allow a particular strategy. 

Consequently its distribution is often considered as uniform 

and the search starts with the frequencies near the one 

expected without a Doppler effect (corresponding to the 

highest elevation satellites) and finishes with the farthest 

frequencies (corresponding to the lowest elevation satellites). 

Note that if assistance is available (for code or frequency), the 

uniform distribution may no longer be applicable. 

The last parameters involved in the acquisition time are the 

probabilities of detection and false alarm. Indeed, it is possible 

to miss a satellite after having explored the whole search space 

(no detection), or to have seemingly found a satellite where 

one is not (false alarm), which leads to bad tracking and re-

acquisition after a certain time. 

The detection test is performed when the output of the 

architecture is available, i.e. when a portion of the search 

space (portion of a row for the SS, several rows for the PCS, 

and a rectangular area for the PFS) is available. The mean 

acquisition time ,A XT  for Nsat satellites, taking into account 

signal buffering, is adapted from [23] and can be approximated 

by 

 
  

,

,
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 
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(12) 

where X denotes the architecture (SS, PFS or PCS), PD the 

probability of detection, PFA the probability of false alarm, and 

k a penalty factor characterizing the time to detect a false 

alarm. The reader can also refer to [24, 25] for more details on 

acquisition time and probabilities. 

III. DETAILED ANALYSIS OF ARCHITECTURES 

In this section, the hardware implementation of each 

architecture is analyzed in detail. First, some basic information 

regarding FPGAs is provided. Second, buffering of the input 

signal and high frequency processing are presented. Third, 

possible ways to parallelize processes are explored for each 

architecture. After this, some important points regarding the 

FFT are discussed, and finally the determination of the 

parallelization and of the search time of the full space is 

provided. 

A. FPGA Considerations 

An FPGA is a programmable device containing three main 

types of elements : 

- Logical block : This is a small block containing a Look-

Up Table (LUT) allowing the creation of logic functions, 

a full adder, and one or several registers. This basis block 

is different for each manufacturer and even between some 

FPGA families. 

- Memory block : This is a memory of small size (typically 

between 0.5 and 128 Kibit), consisting of multiple ports. 

- Digital Signal Processing (DSP) block : This is a block 

containing hardware multipliers (typically 18 × 18 bits). 

To optimize the implementation, the usage of these elements 

has to be balanced. It is relatively easy to estimate resource 

usage for the memory and DSP blocks because it is easy to 

determine the number of bits and the number of multiplications 

required in a system. However, for the logical blocks, resource 

usage is more difficult to estimate for several reasons. 1) These 

blocks contain logic and registers, and a block can use one or 

the other or both, depending on the function implemented. For 

example, a counter or an accumulator needs as many registers 

as it has bits and this gives the number of logical blocks 

necessary, whereas for functions like multiplexing or 

magnitude computation, the number of blocks required  is not 

so straightforward and empirical formulas have to be used. 2) 

The compilation tools perform various optimizations that can 

affect the final implementation. 3) These blocks are different 

according to the manufacturer or even between different 

families with different performances, which means that it is not 

possible to make a universal estimation. 

In this paper, we base our estimate on FPGAs from Altera, 

first on the Cyclone series which have Logical Element (LE) 

basis blocks, and then on the Stratix series which have 

Adaptive Logic Module (ALM) basis blocks. The same 

estimation can be performed with FPGAs from other 

manufacturers, and approximate conversions can be applied 

between them although this is not undertaken here. The details 

of the resource estimates of the architectures are given in 

Appendix 1 in order to not overload the body of this article. 
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B. Signal Buffering 

The simplest way to perform the correlation is to process the 

streaming signal at the sampling rate. However, another well-

known way to proceed is to first buffer the streaming signal 

before processing it fast enough to still allow real-time 

processing, as depicted in Fig. 6. This method allows a great 

gain in processing time. For example if the sampling frequency 

is 5 MHz and the FPGA frequency is 200 MHz, the processing 

time will be divided by 40. 

 

 
Fig. 6.  Overview of a GNSS receiver using signal buffering 

 

Signal buffering does not necessarily affect the tracking 

channels that process the signal at the sampling rate. However, 

in some cases, a tracking channel can also work at higher 

frequency in order to process the signals from different 

satellites and to save hardware resources. 

C. Serial Search 

The SS architecture depicted in Fig. 2 tests a single code-

phase/carrier frequency bin at once. In order to improve 

processing speed the blocks can be duplicated in order to have 

several branches (denoted as NB in the following) testing 

different frequencies or different code-phases at the same time. 

The code and carrier replicas are generated using a 

Numerically Controlled Oscillator (NCO), which is a counter 

in which the increment specifies the output frequency. The size 

of this counter is typically 32 bits, which requires 64 registers 

(32 for the increment value and 32 for the counter value). 

Generating different carrier frequencies requires as many 

NCOs as there are frequencies. Generating shifted versions of 

the code replica demands only one NCO and one register per 

delay. Consequently it is clearly more efficient to test several 

code-phases rather than several frequencies. The 

implementation of such duplication, which is similar to that in 

[26] with the addition of the multiplexer and non-coherent 

integration, is depicted in Fig. 7. At the bottom of the figure, 

the data rate is shown; a bar above a value indicates an 

average. 

The mixers as well as the coherent accumulators run at the 

frequency fFPGA. The rate at the output of the coherent 

accumulators is then divided by NC = TC fS. Since the 

accumulation of the different accumulators starts and ends at 

different clock cycles (an accumulation always starts at the 

first sample of the code), multiplexing the next blocks, i.e. 

magnitude computation and non-coherent accumulation, is 

possible. Note that the non-coherent accumulator’s input and 

output are not shown as vectors since the samples arrive 

serially, i.e. at each clock cycle. To differentiate this block 

from the traditional accumulator’s block, we added the letter 

M in the bottom right corner of the block, (M for memory, 

since it uses memory as detailed in the next paragraph). The 

same applies for Figs. 9, 10 and 11. 

 
Fig. 7.  Implementation of the Serial Search (SS) architecture with duplication 

 

To study more deeply the implementation, we note that 

although the mixers perform a multiplication, they are 

implemented with logical blocks instead of DSP blocks. 

Indeed, the signals are quantized with few bits (typically two 

or three), and mixing with the code replica consists simply of 

changing the sign of the signal (except if the code has more 

than two levels). The coherent accumulators are classical 

adders implemented with logical blocks. It is possible to 

optimize the implementation by fusing a code mixer and an 

accumulator into an accumulator that can add or subtract the 

input value according to the value of the code. This 

optimization is discussed in Appendix 1. The multiplexer is 

implemented with logical blocks. The magnitude computation 

can be performed with different algorithms, the simplest being 

the Robertson approximation [17]. Finally, the non-coherent 

accumulator is implemented with memory blocks in order to 

save logical blocks, using only one adder and one multiplexer, 

as depicted in Fig. 8. Each address is associated with a sample 

of the cross-correlation function, and is written and read NNC – 

1 times to perform the accumulation. The memory has thus NB 

addresses. With a memory-based accumulator, the data rate is 

reduced in average only, because there are NNC times fewer 

samples in the output than in the input, but the output rate is 

the same as the input rate. 
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Fig. 8.  Diagram of a memory-based accumulator 

 

In the SS architecture, the duplicated elements are the code 

mixer and the coherent accumulator, and the multiplexer is 

proportional to the number of branches. The most-used 

resources are clearly the logical blocks, as the memory is used 

only with the non-coherent accumulator and to store the PRN 

code, and the DSP blocks are not used at all. 

D. Parallel Frequency Search 

Following the same idea, the structure depicted in Fig. 3 can 

be duplicated in order to test several code-phases at the same 

time. Such implementation of the PFS architecture is depicted 

in Fig. 9. The carrier and code NCOs and mixers, the coherent 

accumulators and the multiplexer are identical to the ones seen 

previously. Remember that in this architecture the coherent 

accumulator does not accumulate for the entire coherent 

integration time but as defined by (5). Then there is a 

particular buffer, which has a writing order different from the 

reading order. This is because after the multiplexer there are 

first the first points of each branch, then the second points of 

each branch, etc., whereas the FFT should be first fed with all 

the points of the first branch, then with all the points of the 

second branch, etc. Moreover, since data can be written at 

addresses not yet read, it is necessary to use two buffers, one 

being read while the other is written to, which alternate their 

roles (a ping-pong buffer). Next is the FFT block which uses 

logical, DSP and memory blocks. As mentioned in Section II, 

according to the NC and NFFT,S values selected, only a portion 

of the FFT bins may be necessary to cover the search space. 

The number of bins kept is denoted NFT, which is equal to NFB 

only if the entire frequency search space is covered by the 

FFT. The rate after the FFT is thus reduced by NFFT / NFT. 

Finally there are the magnitude computation and the non-

coherent accumulator based on memory blocks. The memory 

inside the non-coherent accumulator has NB NFT addresses in 

this case. 

 
Fig. 9.  Implementation of the Parallel Frequency Search (PFS) architecture 

with duplication 

 

In this implementation the resource usage of the logical 

elements is relatively similar to the SS architecture because the 

accumulators are a little bit smaller and there is just one 

supplementary FFT, but the memory is used far more. 

However, there are two limitations with the direct 

implementation depicted in Fig. 9. 

First, the number of branches is limited by the number of 

accumulations performed by the coherent accumulator. Indeed 

after the accumulator stage the rate is divided by NC, and after 

the multiplexer the rate is multiplied by NB. Since the rate after 

the multiplexer cannot be superior to the initial FPGA rate, NB 

≤ NC. However, this limit may be easily circumvented by 

implementing several multiplexer chains (multiplexer, FFT, 

etc.). 

The second limitation is that if zero-padding is used, which 

is common, the data rate after the FFT is superior to the data 

rate before. Consequently, in one multiplexer chain, the 

number of branches is limited according to the following 

equation, 
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where NFFT,S is the number of points of signal used for the FFT 

and NFFT,Z the number of zeros padded (the total number of 

points of the FFT being NFFT = NFFT,S + NFFT,Z). This limit can 

be circumvented in the same manner as before by 

implementing several multiplexer chains. 

E. Parallel Code-phase Search 

Still following the same idea, the structure depicted in Fig. 4 

can be duplicated to test several carrier frequencies at the same 

time since all the code-phases are already tested. Such 

implementation of the PCS architecture is depicted in Fig. 10. 

The carrier and code NCOs and the carrier mixer are identical 

to those seen previously. The FFT block is similar to the one 

in the PFS architecture, but larger. The complex multipliers in 

the frequency domain use DSP blocks. And now, both 

accumulators (coherent and non-coherent) are implemented 

with memory blocks, which have NCB addresses in this case. In 

this architecture, no multiplexing can be performed since all 

the data operate at the FPGA frequency, even after the 

coherent accumulator where the data rate is reduced in average 

only. But the accumulators’ addressing can be shared since the 

FFTs start and finish at the same time. 

 
Fig. 10.  Implementation of the Parallel Code-phase Search (PCS) architecture 

with duplication 

This architecture is the one that best balances the use of the 

different elements, since it uses the logical blocks and DSP 
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blocks with the FFT, and the memory blocks with the FFT and 

the accumulators. 

The problem described with the PFS regarding the influence 

of the Doppler effect on the code is present here also, but to a 

lesser extent, since several carrier frequencies are tested and 

only one code chipping rate is generated. Indeed, the carrier 

frequencies generated at the same time in this case generally 

cover just a portion of the frequency search space and are 

relatively close to each other. For example, still considering 

the GPS L1 C/A signal, if the carrier frequencies cover a 

Doppler range of ± 150 Hz, the maximum Doppler shift on the 

code chipping rate will be about 0.097 chip/s, which implies a 

shift of about one quarter of a chip every 2.6 seconds only. 

Moreover, here the effect can be removed by generating a 

code for each carrier frequency tested, at the expense of 

additional FFTs, or more usually by applying a correction 

during the coherent accumulation stage (shift of the IFFT 

outputs or multiplication by a carrier in the frequency domain) 

[27]. 

An optimization of this architecture is possible if the 

frequency search space is wide enough. Instead of multiplying 

the input signal by different carrier replicas and performing 

several FFTs, only one carrier replica and two FFTs (one for 

the input signal, one for the code replica) can be used, and the 

multiplication by the different carriers is replaced by shifts of 

the FFT output. A shift of one sample is equivalent to a 

multiplication by a 1 kHz carrier if the FFT length is 1 ms 

thanks to the DFT shifting theorem [17]. For example, 

considering five branches, it means that it would be possible to 

test simultaneously the carrier frequency bins {0, 1000, -1000, 

2000, -2000} Hz, and if no signal is found, to continue with 

the followings, i.e., {50, 1050, -950, 2050, -1950} Hz, etc. 

With this optimization the architecture would require 2 FFTs 

instead of NB + 1, and still NB IFFT, as shown in Fig. 11. This 

optimization is also considered in the example application in 

Section IV, referred as PCS* architecture. 

 
Fig. 11.  Implementation of the Parallel Code-phase Search (PCS) architecture 

with duplication and shifting in frequency domain (referred to as “PCS*” in 

the text and Table V to differentiate it from Fig. 10) 

F. FFT Considerations 

The FFT algorithm can handle data in normal order or bit-

reversed order, as shown in Table III [17]. Traditionally the 

order of the input and output are the same, but the order should 

be different to minimize resource usage and latency. 

For the PFS architecture, it is not important if the data at the 

output of the FFT are in the bit-reversed order because 

reordering can be done through addressing of the non-coherent 

accumulator memory. Since it consists only of reversing the 

bits it costs nothing in terms of resources. For the PCS 

architecture, the reordering can be naturally done because the 

FFT is followed by an IFFT. This is also valid for software 

receivers. 
TABLE III 

DATA ORDER OF AN 8-POINT SIGNAL 

Normal order of index n Bit-reversed order of index n 

0 (000) 0 (000) 

1 (001) 4 (100) 

2 (010) 2 (010) 

3 (011) 6 (110) 

4 (100) 1 (001) 

5 (101) 5 (101) 

6 (110) 3 (011) 

7 (111) 7 (111) 

 

The implementation of an FFT is very flexible, with a large 

number of parameters including data and twiddle factor 

resolution, arithmetic type (integer or block floating point), 

fixed or variable length, etc. These have different impacts on 

the logic, memory and DSP usage, and should be well studied 

for optimal performance for each specific context. 

G. Parallelization 

Now that the architectures have been analyzed, we can 

compute the parallelization and the search time of the full 

space for each one, which then provides the mean acquisition 

time through (12). 

1) Serial Search 

Parallelization of the SS architecture comes from hardware 

duplication and corresponds to the number of branches 

implemented. 

 ,SS B SSP N  (14) 

Applying this to (11) gives 

 ,

,

.CB FBT
F SS

FPGA B SS

N NT
T

G N


  (15) 

2) Parallel Frequency Search 

Regarding the PFS architecture, there are two components 

to parallelization. The first comes from hardware duplication 

like for the SS architecture and corresponds to the number of 

branches implemented. The second comes from the FFT that 

allows the search of several or all the frequency bins at one 

time. 

 ,PFS B PFS FTP N N  (16) 

Applying this to (11) gives 
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3) Parallel Code-phase Search 

In the same way, the PCS architecture also has two 

components to its parallelization. The first comes from 

hardware duplication like for the other architectures and 

corresponds to the number of branches implemented. The 

second comes from the FFT that allows the search of all the 

code bins at one time. 

 ,PCS B PCS CBP N N  (18) 

Applying this to (11) gives 
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IV. RESULTS 

A. Application 

Now that the different parameters and implementations have 

been described, the performance of the three architectures is 

compared through an example. A low-cost FPGA (Altera 

Cyclone III EP3C120) and a high-end FPGA (Altera Stratix III 

EP3SE260) are investigated. For each architecture, we select 

the implementation that maximizes the use of the FPGA 

resources. Note that it is not possible to entirely fill an FPGA 

due to routing constraints; we thus consider the use of 85 % of 

the logical blocks inside the FPGAs [28]. 

The analysis has been applied to two cases using the GPS 

L1 C/A signal for two cases : a stand-alone case where the 

receiver has no a priori information, and an assisted case 

where the receiver has a priori information on the Doppler 

frequency of the satellites, which reduces the frequency search 

space [16]. A sensitivity of – 150 dBm is assumed, since this is 

the start of high sensitivity; the required integration times are 

obtained with the method from [2], applying the half-bit 

method for managing the data bit transitions (β = 2). A 

sampling frequency of 4.096 MHz is a good compromise 

between induced complexity and accuracy. The FPGA 

frequencies selected are multiples of the sampling frequency, 

and realistic values obtained from real designs. All the 

acquisition parameters are given in Table IV. 

The search space is composed of 905 216 cells in the stand-

alone case, and of 118 784 cells in the assisted case. 
TABLE IV 

PARAMETERS SELECTED FOR THE ACQUISITION OF GPS L1 C/A SIGNALS 

Primary Parameters Secondary Parameters 

ΔC = 1 sample NCB = 4096 

Sensitivity = – 150 dBm 
TC = 10 ms 

TT = 400 ms 

fSS = 11 020 Hz (stand-alone) 

     = 1360 Hz (assisted) 
ΔF = 50 Hz 

FPGA = Altera EP3C120 

           = Altera EP3SE260 

NFB = 221 (stand-alone) 

       = 29 (assisted) 

fFPGA = 98.304 MHz (EP3C120) 

         = 196.608 MHz (EP3SE260) 
PX = (cf Table V) 

fS = 4.096 MHz 
GFPGA = 24 (EP3C120) 

           = 48 (EP3SE260) 

 

With such a long integration time, the maximum error in the 

code chipping rate allowed, to have a shift smaller than half a 

sample, is about 0.156 chip/s. The PFS can thus search only ± 

240 Hz of the frequency search space simultaneously, i.e. NFT 

= 11. 

The details of the calculations are provided in Appendix 2, 

and results for the number of branches, parallelization and 

search time of the full space are given in Table V. The number 

of branches gives the degree of duplication in the architectures 

depicted in Figs. 7, 9, 10 and 11. The parallelization is the 

number of cells tested simultaneously and is used to compare 

the architectures. Besides this value, the percentage of cells 

tested over the total number of cells of the time-frequency 

search space is given in parenthesis. The search time of the full 

space is maybe more meaningful for GNSS users since it gives 

an idea of the processing time, and it can also be used to 

compare the architectures. 
TABLE V 

IMPLEMENTATION RESULTS FOR THE NUMBER OF BRANCHES, 

PARALLELIZATION AND SEARCH TIME OF THE FULL TIME-FREQUENCY SPACE, 

FOR THE GPS L1 C/A SIGNAL. 

THE VALUES IN PARENTHESES REPRESENT THE PERCENTAGE OF THE TIME-

FREQUENCY SPACE SEARCHED SIMULTANEOUSLY (100 PX / NCELL). 

Parameter 

Low-cost FPGA 

Altera EP3C120 

High-end FPGA 

Altera EP3SE260 

Assisted 

Case 

Stand-alone 

Case 

Assisted 

Case 

Stand-alone 

Case 

NB,SS 971 2911 

NB,PFS 1095 3385 

NB,PCS 2 8 

NB,PCS
* - 4 - 11 

PSS 
971 

(0.8 %) 

971 

(0.1 %) 

2911 

(2.5 %) 

2911 

(0.3 %) 

PPFS 
12 045 

(10.1 %) 

12 045 

(1.3 %) 

37 235 

(31.3 %) 

37 235 

(4.1 %) 

PPCS 
8192 

(6.9 %) 

8192 

(0.9 %) 

32 768 

(27.6 %) 

32 768 

(3.6 %) 

PPCS
* - 

16 384 

(1.8 %) 
- 

45 056 

(5.0 %) 

TF,SS (ms) 4078 31 075 680.1 5183 

TF,PFS (ms) 328.7 2505 53.17 405.2 

TF,PCS (ms) 483.3 3683 60.42 460.4 

TF,PCS
* (ms) - 1842 - 334.8 

 

The mean acquisition time for different numbers of satellites 

is depicted in Fig. 12 for the EP3SE260 FPGA, a probability 

of false alarm PFA of 10
–8

 (common for high-sensitivity 

receivers [2]), which gives a probability of detection PD of 

about 0.92, and a penalty factor k of 10. 

From Table V and Fig. 12, it can be seen that the SS 
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architecture is the least efficient of the three; even with 

assistance the result is worse than for the other architectures in 

the stand-alone case. The PFS architecture is slightly more 

efficient than the PCS architecture. If the PCS architecture is 

optimized with shift in the frequency domain (PCS* 

architecture), then it becomes slightly better than PFS for the 

stand-alone case. In the assisted case, most of the frequencies 

that can be tested through the different branches fall outside of 

the frequency search space, and are thus useless. 

 
Fig. 12.  Mean acquisition time of GPS L1 C/A signals assuming the 

parameters of Table IV, a PFA = 10–8 and a penalty factor k = 10 

 

B. Observations 

1) Why the PFS and PCS are better than the SS 

Looking at Figs. 7 and 9, we note that the SS and PFS 

architectures are identical on the left, except that the 

accumulators of the PFS are smaller since the integration 

length is smaller. However, the PFS has a supplementary FFT. 

The resource usage of the logical elements is then almost 

equivalent between the two architectures. In fact, the better 

efficiency of the PFS over the SS architecture arises because 

the PFS architecture takes advantage of the memory of the 

ping-pong buffer and the non-coherent accumulator, whereas 

the SS does so only for the non-coherent accumulator. 

Regarding the superior performance of the PCS over the SS 

architecture, it is well known that performing a convolution 

using an FFT is more efficient than with traditional large filters 

[14]. 

2) Comparison of the PFS with the PCS 

Looking at Figs. 9 and 10, the two architectures are now 

completely different. The first point about the PCS 

architecture is that a lot of DSP blocks are used with the FFTs 

due to their large size and their number. Although the FPGA 

used was very rich in DSP blocks, it can be the element 

limiting the duplication (cf. Appendix 2). The second point is 

that the resolution of the data inside the FFT in the PCS 

architecture needs to be higher than in the PFS because of the 

longer chain to compute the correlation (FFTs, multiplication 

and then IFFT), resulting in a propagation of the quantization 

errors. The third point is that in the PCS architecture the main 

part of the memory is used by the FFTs, the rest being reserved 

for the storage of data. By contrast, the memory used in the 

PFS architecture is almost only for storage, not for 

computation (except for the relatively small FFT), which 

means that more data can be stored. This explains the better 

efficiency of the PFS over the PCS architecture. However, if 

the optimized PCS can be used, several FFTs are saved, and in 

this case this architecture becomes more slightly efficient than 

the PFS. 

Moreover, there are two points that make the PFS more 

flexible and attractive than the PCS. The first concerns the 

impact of the sampling frequency. With the PFS architecture, 

doubling the sampling frequency would result in adding one 

bit in the coherent accumulators, i.e. R+1 bits to store instead 

of R. Thus we can interpolate roughly by saying that keeping 

the same hardware resources, the number of branches would 

be divided by (R+1)/R. On the other hand, with the PCS 

architecture, doubling the sampling frequency would double 

the size of the FFT and of the accumulators; consequently, the 

number of branches would be divided by 2 (except if a 

resampling block is included in the acquisition channel). So 

the PFS is far less sensitive to sampling frequency than the 

PCS. The second point concerns the resolution of the code-

phase space. It is imposed by the sampling frequency in the 

PCS architecture and can lead to a very high and not 

necessarily useful precision (unless a resampling has been 

performed), whereas the resolution can be freely chosen in the 

PFS architecture. Note that in our application we considered a 

sampling frequency with a number of samples per code period 

which is a power of two, and no signal decimation or 

compression. If signal decimation or compression was applied, 

the complexity of the architectures would be reduced, 

particularly for the PCS. On the contrary, without decimation 

or compression, selecting a sampling frequency that does not 

allow the direct use of an FFT algorithm will increase the 

complexity of the PCS architecture. 

A little disadvantage of the PFS compared to the PCS is the 

sensitivity loss because of the integration preceding the FFT. 

This loss can reach 0.9 dB for the largest magnitude Doppler 

frequencies in our application. 

The weakness of the PFS lies in its sensitivity to the 

Doppler effect on the code. If the code chipping rate was not 

altered, the entire frequency search space would be covered by 

the FFT, regardless of the total integration time used, and the 

PFS would be clearly better than the PCS. But in our 

application, where a relatively long total integration time is 

considered, the PFS searches only 11 frequency bins at the 

same time while the frequency space contains 221 bins in the 

stand-alone case. If we consider the new GNSS signals that use 

higher code frequencies, the effect will be amplified. If the 

shift is 3.25 Hz with a 1.023 MHz code, it will be of 32.5 Hz 

with a 10.23 MHz code. For the same integration time, the 

space covered by the FFT should thus be reduced in the same 

proportion to test only one or a few bins. The performance of 
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the PFS would then degrade and become closer to that of the 

SS, and thus be worse than the PCS. 

3) Influence of FPGA 

From Table V, we can see that despite the large differences 

in the absolute results for the two FPGAs, the ranking of the 

architectures is the same. 

Generally, inside an FPGA family, the ratio between the 

different types of resources is very similar, i.e. using a bigger 

FPGA will provide an equivalent increase of the logical, 

memory and DSP blocks. Consequently for different FPGAs 

of the same family, we do not expect the ranking to change 

significantly. 

Between different families, the ratios between logical and 

memory, as well as logical and DSP blocks, are different. For 

the same amount of logical blocks, a high-end FPGA will have 

more memory and DSP blocks than a low-cost FPGA. High-

end FPGAs are consequently more suited for FFT-based 

architectures. However, this should not impact the ranking 

since the SS architecture is far inferior to the others in terms of 

performance. High-end FPGAs also accept a higher clock 

frequency, which improves the performance of all the 

architectures in the same manner. 

V. CONCLUSION 

In this paper, we have presented a framework to compare 

the main GNSS signals acquisition architectures on FPGAs. 

The implementations have been optimized towards achieving 

maximum parallelization for a single acquisition channel and 

fixed resources. It has been shown that the two FFT-based 

architectures are far more efficient than simple duplication of 

mixers and accumulators. Between these two architectures, 

considering the GPS L1 C/A signal with long integration times 

(10 ms of coherent, 400 ms of non-coherent, total of 800 ms of 

data due to half-bit method for managing the data bit 

transitions), the Parallel Frequency Search has been shown to 

provide slightly smaller mean acquisition time (3.62 s against 

3.95 s for 10 satellites) and greater flexibility regarding the 

sampling frequency than the Parallel Code-phase Search. 

Nevertheless, if the frequency search space is wide enough, the 

Parallel Code-phase Search can be further optimized by using 

shifting in the frequency domain, providing then a smaller 

mean acquisition time than the Parallel Frequency Search 

architecture (3.21 s against 3.62 s for 10 satellites). However, 

if GNSS signals with higher code frequencies are considered, 

the Doppler effect on codes with moderate or long integration 

times is fatal to the PFS architecture, which loses much of its 

interest since the FFT will only be able to search a few bins. In 

this case, the PCS will then provide better performance. 

The comparison carried out in this article is based on the 

three classical well-known architectures where no special 

techniques are used. Those who wish to compare a particular 

version of an architecture (like is sometimes the case with the 

PCS in order to reduce the size of the FFT in exchange for 

reduced SNR) can do so easily since all the formulas as well as 

an example are provided in Appendices 1 and 2, respectively. 

APPENDIX 1 

In this section, we provide details of the resource usage 

estimates of the different functions, and combine them to 

estimate the resources of the complete architectures. The 

estimates are based on FPGAs from Altera. They consist of 

two different basis blocks, a Logical Element (LE) used in the 

Cyclone and old Stratix series, and an Adaptive Logic Module 

(ALM) used in recent Cyclone, Arria and Stratix series. An LE 

consists of one register and a 4-input LUT, whereas an ALM 

consists of two registers and two 4-input ALUTs (Adaptive 

LUTs). The following conversion ratio is stated by Altera : 1 

ALM = 2.5 LEs, but it is not an exact formula that works all 

the time. According to our experience, the ratio tends to be 1 

ALM = 2 LEs most of the time, which is the ratio of their 

registers. In order to obtain the most accurate results possible, 

the estimate of the different functions is done for both basis 

blocks. 

The formulas provided here are empirical and obtained by 

analysis and verifications of compilation. Implementation 

inside a complete system would affect the real resources usage 

as well as the different optimizations performed during 

compilation (e.g. maximizing the clock frequency, or 

minimizing the area). Note that the most important estimates 

are those of duplicated functions (or those linked to 

duplication), namely the code mixer, the coherent accumulator, 

the multiplexer, the FFT, and the coherent and non-coherent 

memory-based accumulators, which are not the most difficult 

functions to estimate. 

In the following equations, we use the following notations : 

NX : An integer (e.g. point, chip, sample) 

LX : Resource in terms of logical blocks 

MX : Resource in terms of memory blocks 

DX : Resource in terms of DSP blocks 

RX : Resolution of a signal (bits) 

R0 : Resolution after the carrier mixer (bits) 

RC : Resolution after the coherent accumulator (bits) 

RFFT : Resolution after the FFT (bits) 

RNC : Resolution after the non-coherent accumulator (bits) 

 

Note that the resolution of the output of an accumulator 

performing K accumulations is 

  2logOutAcc InAccR R K      (20) 

where RInAcc is the resolution of the input signal in bits. 

A. Resource Estimates of Blocks 

1) Carrier Generator 

The carrier generator is composed of an NCO and a 

mapping to generate sine and cosine waveforms. Taking a 32-

bit counter, the NCO thus needs 64 bits (32 bits for the counter 

increment and 32 bits for the counter value). The mapping is a 

very simple combinatorial function, and requires nothing or 

just a few elements and is neglected here. The resources can 

thus be estimated as 
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64 LEs

32 ALMs.

CaGeL 


 (21) 

2) Carrier Mixer 

The carrier mixer is composed of four mixers, one adder 

and one subtractor (if the input signal is real, only two mixers 

are required). The resolution after the adder and the subtracter 

is denoted as R0, and the resolution at the output of the mixers 

is then R0 – 1. This directly provides the number of LEs, but 

the number of ALMs is the same as the number of LEs for the 

mixers. The resources can thus be estimated as 

 
 

 

0 0 0

0 0 0

2 4 1 6 4 LEs

4 1 5 4 ALMs.

CaMiL R R R

R R R

    

    
 (22) 

3) Code Generator 

Like for the carrier generator, the code generator is 

composed of an NCO, plus a memory where the code is stored. 

This necessitates more logic elements to access the memory. If 

several shifted versions have to be generated (denoted as NB in 

the formula since it corresponds to the number of branches in 

the architectures), this will require one register per replica. The 

resources can thus be estimated as 

 

 

 

2

4

64 log LEs

32 log ALMs.
2

CoGe B chip

B
chip

L N N

N
N

  

  
 (23) 

Regarding the memory, we need as many bits as there are 

chips in the code (insofar as the code has only two levels) : 

 bitsCoGe chipM N . (24) 

4) Code Mixer & Coherent Accumulator (logic-based) 

These blocks are used only in the SS and PFS architectures. 

The code mixer consists in inverting the I and Q signals 

according to the value of the code, and it is followed by a 

complex accumulator. In order to optimize the 

implementation, both blocks can be combined to build an 

accumulator that adds or subtracts the input value according to 

the value of the code. This optimization works well with 

ALM-based FPGAs since it does not require more resources 

than the accumulator alone. However, for LE-based FPGAs, it 

uses slightly more resources than the two blocks apart, so in 

this case it is better to keep them separate. The accumulators 

also need a signal to start/restart the integration. The resources 

can thus be estimated as 

 

02 LEs

2 1 LEs

0.5 ALMs.

CoMi

CoAcc C

CoMiAcc C

L R

L R

L R



 

 

 (25) 

5) Multiplexer 

This block is used only in the SS and PFS architectures. The 

multiplexer is fully combinatorial; consequently its resource 

estimate has been evaluated empirically. The resources with N 

inputs of RC bits can be estimated as 

 

LEs
0.75

= ALMs.
1.5

C
MUX

C

N R
L

N R



 (26) 

6) Magnitude Calculator 

There are many possible algorithms for the computation of 

the magnitude. Here we consider the Robertson 

approximation. The estimate has been obtained empirically, 

and it is a piecewise linear function depending on the 

resolution of the input, R. 

 
 

 

1

2

3 LEs

1.5 ALMs

MagL R f R

R f R

 

 
 (27) 

with 

  1

33,  for 10 16

67,  for 17 32

99,  for 33 40

R

f R R

R

 


  
  

 (28) 

  2

22,  for 12 20
.

42,  for 21 40

R
f R

R

 
 

 
 (29) 

7) Complex Multiplier 

This function is used only in the PCS architecture. It 

consists of four multiplications and addition/subtraction. This 

is done by a DSP block. If the resolution of the input is less 

than or equal to the basis DSP elements (18 bits for Altera 

FPGAs), it requires four blocks, otherwise it requires sixteen 

blocks. 

 
4,  for 18

DSP elements.
16,  for 18

CMul

R
D

R


 


 (30) 

8) Ping-Pong Buffer 

This function is used only in the PFS architecture. It is 

composed of two memories. The number of addresses of each 

buffer corresponds to the number of branches multiplied by the 

number of signal points in the FFT, and four address buses are 

needed to write and read both buffers. 

 
 

 
2 ,

2 ,

4log   LEs

2log   ALMs.

PPB B FFT S

B FFT S

L N N

N N




 (31) 

The number of bits needed corresponds to the number of 

addresses multiplied by four times the resolution of the input 

signal (I & Q path, in two memories to avoid the overwriting 

of data not yet read). 

 , bits4 .PPB B FFT S CRM N N  (32) 

9) Coherent Accumulator (memory-based) 

This function is used only in the PCS architecture. It 

consists for each signal path (I and Q) of a memory, an adder 

and a 2-input multiplexer. We also count the read and write 

address buses needed to access the memory. 
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   

 

 

 

2

2

2

2

2 2log

4  2 log  LEs

2 log
2 2

2  log  ALMs.

CoAcc C C FFT

C FFT

C C
FFT

C FFT

L R R N

R N

R R
N

R N

  

 

 
   

 

 

 (33) 

The number of bits corresponds to the number of points in 

the FFT multiplied by twice the resolution of the input signal 

(I & Q path). 

 2 bits.CoAcc FFT CM N R  (34) 

10) Non-Coherent Accumulator (memory-based) 

This is the same block as the coherent accumulator except 

that there is now only one input signal instead of two. 

 
 

 

2 @

2 @

2  2log   LEs

log   ALMs

NoCoAcc NC

NC

L R N

R N

 

 
 (35) 

where N@ is the number of addresses and is defined as 

 @

,  for the SS architecture

,  for the PFS architecture .

,  for the PCS architecture

B

B FT

FFT

N

N N N

N




 



 (36) 

The number of bits corresponds to the number of addresses 

multiplied by the resolution of the input signal. 

 @   bitsNoCoAcc NCM N R  (37) 

11) FFT 

The resource usage of the FFT depends on a lot of 

parameters, and is estimated with the tools provided by the 

manufacturer or after a compilation. 

B. Resource Estimates of Architectures 

1) Serial Search 

The functions present in the SS architecture and their sizes 

in terms of logical blocks are summarized in Table VI for NB 

branches. 
TABLE VI 

LOGICAL RESOURCE ESTIMATES OF SS ARCHITECTURE 

Function Number of LEs Number of ALMs 

Carrier 

Generator 
64 32 

Carrier Mixer 6 R0 – 4 5 R0 – 4 

Code 

Generator 
NB + 64 + log2 (Nchip) NB/2 + 32 + log4 (Nchip) 

Code Mixers 2 NB R0 

NB (RC + 0.5) 
Coherent 

Accumulators 
NB (2 RC + 1) 

Multiplexer NB RC / 0.75 NB RC / 1.5 

Magnitude 

Calculator 
3 RC + f1(RC) 1.5 RC + f2(RC) 

Non-Coherent 

Accumulator 
2 RNC + 2 log2 (NB) RNC + log2 (NB) 

 

The total number of logical blocks of the SS architecture is 

obtained by summing all the elements of Table VI and is given 

by (38) for LE-based FPGAs and (39) for ALM-based FPGAs. 

 

 

 

 

, 0 2
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2

10
2  2 2log
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log 124
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C C NC

chip

L N R R N

R R f R R

N

 
    

 

   

 

 (38) 

 

 

 

 

, 2

0 2

4

5
1 log

3

5  1.5 

log 60

SS ALM B C B

C C NC

chip

L N R N

R R f R R

N

 
   

 

   

 

 (39) 

The memory blocks are used only by the non-coherent 

accumulator, and the total number of bits is 

 .SS B NCM N R  (40) 

2) Parallel Frequency Search 

The functions present in the PFS architecture and their sizes 

in terms of logical blocks are summarized in Table VII for NB 

branches. 
TABLE VII 

LOGICAL RESOURCE ESTIMATES OF PFS ARCHITECTURE 

Function Number of LEs Number of ALMs 

Carrier 

Generator 
64 32 

Carrier Mixer 6 R0 – 4 5 R0 – 4 

Code 

Generator 
NB + 64 + log2 (Nchip) NB/2 + 32 + log4 (Nchip) 

Code Mixers 2 NB R0 

NB (RC + 0.5) 
Coherent 

Accumulators 
NB (2 RC + 1) 

Multiplexer NB RC / 0.75 NB RC / 1.5 

Ping-Pong 

Buffer 
4 log2 (NB NFFT,S) 2 log2 (NB NFFT,S) 

FFT LFFT,LE LFFT,ALM 

Magnitude 

Calculator 
3 RFFT + f1(RFFT) 1.5 RFFT + f2(RFFT) 

Non-Coherent 

Accumulator 
2 RNC + 2 log2 (NB NFT) RNC + log2 (NB NFT) 

 

The total number of logical blocks of the PFS architecture is 

obtained by summing all the elements of Table VII and is 

given by (41) for LE-based FPGAs and (42) for ALM-based 

FPGAs. 
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log 124
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FFT LE FFT S FT

FFT FFT NC

chip
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L N N

R R f R R
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 

 (41) 

 
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 
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3

2log log

5  1.5 

log 60

PFS ALM B C B

FFT ALM FFT S FT

FFT FFT NC
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L N R N

L N N

R R f R R

N

 
   

 

  

   

 

 (42) 

The functions present in the PFS architecture and their sizes 

in terms of memory blocks are summarized in Table VIII for 

NB branches. 
TABLE VIII 

MEMORY RESOURCE ESTIMATES OF PFS ARCHITECTURE 

Function Number of bits 

Code 

Generator 
Nchip 

Ping-Pong 

Buffer 
4 NB NFFT,S RC 

FFT MFFT 

Non-Coherent 

Accumulator 
NB NFT RNC 

 

The total number of bits of the PFS architecture is obtained 

by summing all the elements of Table VIII and is given by 

(43). 

 
 ,4    

 bits

PFS B FFT S C FT NC

FFT chip

M N N R N R

M N

 

 
 (43) 

3) Parallel Code-phase Search 

The functions present in the PCS architecture and their sizes 

in terms of logical blocks are summarized in Table IX for NB 

branches. 
TABLE IX 

LOGIC RESOURCE ESTIMATES OF PCS ARCHITECTURE 

Function Number of LEs Number of ALMs 

Carrier 

Generator 
64 NB  32 NB  

Carrier 

Mixers 
NB (6 R0 – 4) NB (5 R0 – 4) 

Code 

Generator 
65 + log2 (Nchip) 32.5 + log4 (Nchip) 

FFTs (NB +1) LFFT,LE (NB +1) LFFT,ALM 

Complex 

Multipliers 
0 0 

IFFTs NB LIFFT,LE NB LIFFT,ALM 

Coherent 

Accumulators 
4 NB RC + 2 log2(NFFT) 2 NB RC + log2(NFFT) 

Magnitude 

Calculators 
NB [3 RC + f1(RC)] NB [1.5 RC + f2(RC)] 

Non-Coherent 

Accumulators 
NB 2 RNC + 2 log2(NFFT) NB RNC + log2(NFFT) 

 

The total number of logical blocks of the PCS architecture 

is obtained by summing all the elements of Table IX and is 

given by (44) for LE-based FPGAs and (45) for ALM-based 

FPGAs. 

 

   

, , ,

1 0 ,

2 2
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4log log 65

[

]

PCS LE B FFT LE IFFT LE C
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L N L L R
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N N
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  

 (44) 

 

   

, , ,

2 0 ,
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2log log 32.5

]

[PCS ALM B FFT ALM IFFT ALM C
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FFT chip

L N L L R

R f R R L

N N
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    
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 (45) 

The functions present in the PCS architecture and their sizes 

in terms of memory blocks are summarized in Table X for NB 

branches. 
TABLE X 

MEMORY RESOURCE ESTIMATES OF PCS ARCHITECTURE 

Function Number of bits 

Code 

Generator 
Nchip 

FFTs (NB + 1) MFFT 

IFFTs NB MIFFT 

Coherent 

Accumulators 
2 NB NFFT RC 

Non-Coherent 

Accumulators 
NB NFFT RNC 

 

The total number of bits of the PCS architecture is obtained 

by summing all the elements of Table X and is given by (46). 

2 

 bits

( )[ ]PCS B FFT IFFT FFT C NC

FFT chip

M N M M N R R

M N 

  
 (46) 

The functions present in the PCS architecture and their sizes 

in terms of DSP blocks are summarized in Table XI for NB 

branches. 
TABLE XI 

DSP RESOURCE ESTIMATES OF PCS ARCHITECTURE 

Function DSP 18-bit elements 

FFTs (NB + 1) DFFT 

Complex 

Multipliers 
NB DCMUL 
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IFFTs NB DIFFT 

 

The total number of DSP elements of the PCS architecture 

is obtained by summing all the elements of Table XI and is 

given by (47). 

  PCS B FFT IFFT CMUL FFTD N D D D D     (47) 

APPENDIX 2 

In this section, we provide the details of the application 

example used in Section IV with the acquisition parameters 

summarized in Table IV. First, the target FPGA is presented, 

then for each architecture all values (number of accumulations, 

resolution of signals and size of FFTs) are specified, and the 

formulas of Appendix 1 are used to determine the number of 

branches that can be implemented. The results are summarized 

in Table V. 

A. Application with a Low-Cost FPGA Series : Cyclone III 

The target chip considered is the EP3C120 with the 

following resources : 

- 119 088 LEs 

- 432 blocks of 9216 bits (9216 bits = 1 M9K) 

- 288 18-bit multipliers 

Taking into account that only 85 % of the FPGA logical 

blocks can be used, and considering the other functions in the 

FPGA such as the tracking channels, the management, the 

processor, etc. (evaluated to 20 000 LEs according to our 

experience), we arrive at about 80 000 LEs available for the 

acquisition channel. Note that the assumptions made here 

impact the absolute results (i.e. performances), but not the 

comparison between the different architectures (i.e. the 

ranking). 

1) Serial Search 

The characteristics are summarized in Table XII. 
TABLE XII 

SS ARCHITECTURE PARAMETERS 

Parameter Value 

R0 5 bits 

NC 40 960 

RC 21 bits 

NNC 40 

RNC 27 bits 

 

Using (38), we obtain 

  280000 82  2log 348B BN N    (48) 

from which we deduce that the maximum number of branches 

implementable is NB = 971. 

2) Parallel Frequency Search 

The characteristics are summarized in Table XIII. For an 

FFT of this size, the implementation that uses the natural and 

bit-reversed order requires fewer logic and memory resources 

(but more DSP resources) than the implementation that uses 

only the natural order; consequently the evaluation is made for 

the first implementation (DSP resources are not critical with 

this architecture). 
TABLE XIII 

PFS ARCHITECTURE PARAMETERS WITH CYCLONE III FPGA 

Parameter Value 

R0 5 bits 

NC / fS 625 µs 

NC 2560 

RC 17 bits 

NFFT,S 16 

NFFT 32 

RFFT 18 bits 

NNC 40 

RNC 24 bits 

LFFT 4359 LEs 

MFFT 6 M9Ks = 55 296 bits 

 

Using (41), we obtain 

  2

206
80000 6log 4716

3
B BN N    (49) 

from which we deduce that the maximum number of branches 

implementable due to the logic resources is NB = 1095. Using 

(43), we obtain 

 425 9216 1352  BN   (50) 

from which we deduce that the maximum number of branches 

implementable due to the memory resources is NB = 2897. 

Consequently the limitation comes from the logical blocks. 

3) Parallel Code-phase Search 

The characteristics are summarized in Table XIV. 
TABLE XIV 

PCS SEARCH ARCHITECTURE PARAMETERS WITH CYCLONE III FPGA 

Parameter Value 

R0 5 bits 

NFFT 4096 

RFFT 18 bits 

NC 10 

RC 22 bits 

NNC 40 

RNC 28 bits 

FFT with input 

and output in 

natural order 

LFFT , LIFFT 7756 LEs 

MFFT , MIFFT 76 M9Ks = 700 416 bits 

DFFT , DIFFT 24 DSP elements 

FFT with input LFFT 9962 LEs 
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in natural order 

and output in 

bit-reversed 

order 

MFFT 37 M9Ks = 340 992 bits 

DFFT 40 DSP elements 

IFFT with input 

in bit-reversed 

order and 

output in 

natural order 

LIFFT 10 149 LEs 

MIFFT 48 M9Ks = 442 368 bits 

DIFFT 40 DSP elements 

 

Let’s consider first the FFTs with only the natural order. 

Using (44), we obtain 

 80000 15879 7879BN   (51) 

from which we deduce that the maximum number of branches 

implementable due to the logic resources is NB = 4. Using (46), 

we obtain 

 355 9216 1695744  BN   (52) 

from which we deduce that the maximum number of branches 

implementable due to the memory resources is NB = 1. Using 

(47), we obtain 

 288 52  24BN   (53) 

from which we deduce that the maximum number of branches 

implementable due to the DSP resources is NB = 5. 

Consequently the limitation comes from the memory 

resources. Now, let’s consider the FFTs with the natural and 

bit-reversed order. Using (44), we obtain 

 80000 20478 10085BN   (54) 

from which we deduce that the maximum number of branches 

implementable due to the logic resources is NB = 3. Using (46), 

we obtain 

 394 9216 1078272  BN   (55) 

from which we deduce that the maximum number of branches 

implementable due to the memory resources is NB = 3. Using 

(47), we obtain 

 288 84  40BN   (56) 

from which we deduce that the maximum number of branches 

implementable due to the DSP resources is NB = 2. In this 

case, the limitation comes from the DSP blocks. We note that 

this implementation of the FFT is better since two branches 

can be implemented instead of one. 

B. Application with a High-End FPGA Series : Stratix III 

Now, the target chip considered is the EP3SE260 with the 

following resources : 

- 135 200ALMs 

- 864 blocks of 9216 bits (M9K) 

- 48 blocks of 147 456 bits (M144K = 16 M9K) 

- 768 18-bit multipliers 

The remark made before regarding the space in the FPGA 

remains valid here, and we consider that 105 000 ALMs are 

available for the acquisition channel. The number of 

accumulations and the resolution of signals are identical to 

those already indicated and are not repeated here. 

1) Serial Search 

Using (39), we obtain 

  2105000 36  log 191B BN N    (57) 

from which we deduce that the maximum number of branches 

implementable is NB = 2911. 

2) Parallel Frequency Search 

The characteristics are summarized in Table XV. 
TABLE XV 

PFS ARCHITECTURE PARAMETERS WITH STRATIX III FPGA 

Parameter Value 

LFFT 1790 ALMs 

MFFT 2 M9Ks = 18 432 bits 

 

Using (42), we obtain 

  2

88
105000 3log 1970

3
B BN N    (58) 

from which we deduce that the maximum number of branches 

implementable due to the logic resources is NB = 3511. Using 

(43), we obtain 

 1629 9216 1352  BN   (59) 

from which we deduce that the maximum number of branches 

implementable due to the memory resources is NB = 11104. 

Consequently the limitation comes from the logic resources. 

Due to the limitation in the multiplexing described in Section 

III.D, it is necessary to use three multiplexer chains. Taking 

this into account, there are 3385 branches that can be 

implemented. 

 

3) Parallel Code-phase Search 

The characteristics are summarized in Table XVI. 
TABLE XVI 

PCS ARCHITECTURE PARAMETERS WITH STRATIX III FPGA 

Parameter Value 

FFT with input 

and output in 

natural order 

LFFT , LIFFT 3806 ALMs 

MFFT , MIFFT 76 M9Ks = 700 416 bits 

DFFT , DIFFT 24 DSP elements 

FFT with input 

in natural order 

and output in 

bit-reversed 

order 

LFFT 5083 ALMs 

MFFT 31 M9Ks = 285 696 bits 

DFFT 40 DSP elements 

IFFT with input 

in bit-reversed 

order and 

output in 

natural order 

LIFFT 5146 ALMs 

MIFFT 42 M9Ks = 387 072 bits 

DIFFT 40 DSP elements 

 

Let’s consider first the FFTs with only the natural order. 

Using (45), we obtain 

 105000 7812 3868BN   (60) 

from which we deduce that the maximum number of branches 

implementable due to the logic resources is NB = 12. Using 
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(46), we obtain 

 1555 9216 1695744  BN   (61) 

from which we deduce that the maximum number of branches 

implementable due to the memory resources is NB = 8. Using 

(47), we obtain 

 768 52  24BN   (62) 

from which we deduce that the maximum number of branches 

implementable due to the DSP resources is NB = 14. 

Consequently the limitation comes from the memory 

resources. Now, let’s consider the FFTs with the natural and 

bit-reversed order. Using (45), we obtain 

 105000 10429 5145BN   (63) 

from which we deduce that the maximum number of branches 

implementable due to the logic resources is NB = 9. Using (46), 

we obtain 

 1600 9216 967680  BN   (64) 

from which we deduce that the maximum number of branches 

implementable due to the memory resources is NB = 15. Using 

(47), we obtain 

 768 84  40BN   (65) 

from which we deduce that the maximum number of branches 

implementable due to the DSP resources is NB = 8. In this 

case, the limitation comes from the DSP blocks. We note that 

both implementations of the FFT provide equivalent 

performance; the limitation may come from the memory or the 

DSP resources. 
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