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Numerical algorithm for feedback linearizable systems
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Abstract. A numerical algorithm that achieves asymptotic stability feedback linearizable systems is presented. The
nonlinear systems can be represented in various formgitiatie differential equations, simulated physical modelsokup
tables. The proposed algorithm is based on a quotient methdgroceeds iteratively. At each step, the dynamic system i
desensitized with respect to the current input vector fi€ldntrol is obtained by tracking a desired value along theitinp
vector field at each step. The numerical algorithm uses tieetiin on the tangent manifold at a given point and its viania
around that point. This enables the algorithm to producérobvalues simply using a simulator of the nonlinear system
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Feedback linearization is an effective method to handldimear systems. However, it requires exact knowledge of
the system and, furthermore, there exist conditions forrdinear system to be feedback linearizable (FL). Moreover,
for feedback linearization, an output function of relatdegreen must be known [1, 2], wherga is the dimension
of the system. Computing such an output requires a systemacedure, such as the one proposed in [3, 4], which
proceeds by successively generating quotients that aemsitized with respect to the input vector field. This method
has been extended to produce a control design techniqueapplto FL input-affine single-input systems of the form

[5]:
x = f(x)+g(x)u. (1)

For non-FL systems, the method requires approximationg][@Jowever, for some non-FL systems, the system of
equations turns out to be so complicated that, even afteroappations, the method is not applicable due to the
lack of closed-form solutions to some of the equations. @ifficulty has motivated the use of humerical algorithms
to compute the control input. This paper presents a numeigarithm that computes the input for a given state
of the system. The algorithm requires the time derivativethe states at particular state and input values. The
time derivatives can be obtained from the system’s difféaéequations (through traditional modeling) or through
advanced computer-generated physical modeling. Competegrated physical modeling is an interactive technique
that connects electro-mechanical components to simulatardical systems [8]. Simscape™ is such a simulation
tool. With it, a designer can simulate complicated electrechanical systems without having full knowledge of the
underlying differential equations. The inability of thetmmls to provide the governing differential equations make
them unsuited for developing nonlinear control laws. Ushgproposed numerical algorithm, it is possible to harness
the simulation capabilities of such tools. Moreover, if s@@d data are available for a system, it is also possible to
compute the derivatives via numerical differentiation asd that for the proposed numerical algorithm

NUMERICAL QUOTIENT ALGORITHM

The numerical version encompasses the forward decompositage and backward control design stage of the
guotient method [5]. The numerical algorithm assumes tiexretexists a procedure to compute the time derivatives of
the states for given state and input values. That is, it israesl that there exists a black box that simulates

X = @(x,u). (2)

The algorithm is oblivious of the way the dervatives are glated. However, the time derivatives should be smooth

with respect to small variations of the states and input. ésfide implementation of the algorithm is shown in Figure
1. The decomposition stage creates a realization of theatifbrphism that locally converts (2) into feedback form
[9]. In the control design stage, the control errors arewatald sequentially in order to generate the control input.
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FIGURE 1. The various elements of the control scheme: the back boxgsz, while the numerical algorithm computas

Forward decomposition stage

A transformation matrix is sought that locally transforn23 into feedback form. The forward stage generates a
system of the following form:

vio= futoue
yo = fy2+0y0€3
: ()
V-1 = fyn-1+0yn-1en
Yo = fyn+oynu,

The complete stage requiregs— 1 steps. Every step involves computing a orthogonal mafrisuch that
Tg(x) = (0,...,0,%)T. This Transformation matrix along with first order finite @ifence helps in determining all the
termsin (3).

The algorithmAt the beginning of the algorithm, the current staie known. The implementation of the algorithm
proceeds as follows:

- Initialization:
— Computegy, by evaluating (2) af; = @(x,Au) andf_ = ¢(x, —Au) and using the central-difference formula

f,—f_
2Au

whereAu is a small number appropriate for the system under congideralhis step approximates the
computation of

On=

Iy (x,u)
g0 = ==
— Computefy, by evaluating (2) af, = @(x,0). This step is equivalent to computirigx) = @(x,0).
. lterative steps: At the beginning of th& iteration, the twop = (n+ 1 — k)—dimensional vector$, andgp are
available. An orthogondh x n) transformation matrixX is also available (it is the identity matrix fér= 1).
— Compute the orthogonal matrig for gp such that

ToOn — :
p9p 0
|19pl|

Tp is a transformation that bringg, to canonical form. This step is equivalentto computing thefpforward
operator to obtain the normal form of the input vector field.



— Computef, = Tp fp., which bringsf, to the transformed coordinate wheygis in canonical form.
— Compute a new by composingl, andT:

T 0
Thew= ( P px(n—p) )T .
On-pyxp ln-pxin—p / O
— The next few steps computes the input vector for the nextitan.

+ Compute the point correspondingxan the transformed coordinate= Tx and perturb this vector at
the p" element ofz to obtainz, = z+Azandz_ =z — Az

+ Transform the pointg, andz_ back usingT 1 =TT to obtainx, =TTz, andx_ =T"z_.
= Computef for the pointsx; andx_ and bring them back to the transformed space:

fzr =TY(x4,0) andf, = Ty(x_,0).
+ Compute

for — fpo

9= "2n;

— This iteration generates:
+ fp_1 : the firstp — 1 terms of thef, vector. This is required for the next iteration.
* gp-1 - the firstp — 1 terms of they, vector. This is required for the next iteration.
+ The transformation matriX required for the next iteration.
+ Ineq. (3),9y,p = ||9p||- This is required for the backward stage.

= In eq. (3),fy,p is thep'" term of f,. This is required for the backward stage.
- Termination: The forward process terminates wien 1.

The forward decomposition transforms the nonlinear systEmwhich is a local realization of (2), into the local

feedback representation (3). Next, the backward stagedeiirmine the control input based on this local feedback
representation.

Backward control design stage

The forward decomposition stage provides the valuef of.. ., fy, andgy1,...,9yn in €qg. (3). In addition, it also
provides the transformation matrix, which is a local realization of the push-forward operatmuired to obtain the
feedback form of the system (1). Equipped with these valheshackward stage computes the input value.

- Initialization:

— Computey = Ax andy = A(x, Up), whereuy is the control input calculated at the previous time sample

— Sete; = —L1y;, wherey; is the first element of the vectgrandL; is the proportional feedback gain.
- lteration steps: At the beginning of & iteration,e andy are known.
— Computesy. There are two ways to compute this value:

+ Use the values ad from previous time samples to estimaie For example,
& — &1
= 4
AT 4

whereAT is the sampling period. This is computationally fast, busiapproximate and it creates
difficulties at the initialization stage.

&

+ Use the central-difference formulato compdfs| and use; = 2%x= 2%| y(x, up). Thisis a better
X X
estimate ofy, which however is computationally very demanding.

— Implementingex = —L&x and rearranging gives:

& + Yk + L& — fyk
= . (5)
gy,k
Here,Ly is a positive gain angk is thek™ element ofy.

€+1



- Termination: Aftem iterations, we obtaily,, 1, which is the required control input.

The accuracy of the algorithm suffers since central-défifiee is used to compute the partial derivatives. It resttic
algorithm to slowly varying systems. A fast varying systeimud require adaptive gradient estimation to determine
the partial derivatives required during the forward anddagrd stages. Other approximations that effects the acgura
of the algorithm are

- The forward stage introduces approximations for computiegnput vector field. The transformation matifix
is used to map the points on the base manifold. However, ffeodiorphism and the inverse diffeomorphism
must be used for this mapping. Here, it is assumed that tfeodiforphism isAx, which is only true when the
system under consideration is linear.

- During the backward stage, computieg= —L1y1 is an approximation. The reason is the same as stated above:
the value ofy is obtained using a linear transformationkgfvhereay should be obtained using a diffeomorphism
atx.

CONCLUSIONS

A numerical algorithm based on the quotient method has bessepted for stabilizing feedback linearizable systems.
The algorithm involves two stages. The forward stage tamns$ the system in order to (i) successively desensitize it
with respect to the current input vector, and (ii) reducelitaension. The result is a feedback form. The backward
stage constructs a succession of proportional contrdtberst each step, track the error between a transformed state
and its desired value. The numerical algorithm requirestithe derivatives of the states for given state and input
values. These time derivatives can be obtained througbhwsmeans, such as traditional models based on differential
equations or computer-generated physical modeling. Balysiodeling provides the opportunity to deal with complex
electro-mechanical systems, for which it is difficult to abtthe governing differential equations. The numerical
algorithm requires various approximations, which retrine domain of attraction of the resulting control schelfne.
the underlying system is linear, this algorithm is globaltiyactive. If the system is feedback linearizable, theatigm

is capable of stabilizing a large domain of initial conditsp and in some cases, it can also be globally attractive.

This algorithm represents an initial attempt to develop erioal algorithms for the stabilization of a wider class of
nonlinear systems. In fact, it can be regarded as an attengtténd Miminis-Paige algorithm to nonlinear systems
[10]. This work requires further research to fine tune th@athm and investigate numerical issues. Further research
is also required regarding the effect of replacing the pripoal linear feedback with various types of nonlinear
feedback.
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