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Abstract

The operation of dynamic processes can be optimized using models that predict
the system behavior well, in particular its optimality features. In practice, however,
process models are often structurally inaccurate, and on-line adaptation is typically
required for appropriate prediction and optimization. Furthermore, it is difficult
to identify process model parameters on-line during optimization because of lack
of persistent excitation. This paper addresses the modeling issue for the purpose
of real-time optimization. It will be shown that the models used for real-time
optimization need not be valid as a whole; instead, it suffices that they represent the
optimality conditions well. Two types of models are considered, namely, the traditional
”plant models” and the tailor-made ”solution models”. The features of each type, in
particular their ability to be adapted using on-line measurements, are discussed and
illustrated through a simple car example.
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Introduction

Optimization is important in science and engineering
as a way of finding ”optimal” situations, designs or op-
erating conditions. Optimization is typically performed
on the basis of a mathematical model of the object of
attention. In engineering, we are concerned with the
optimal operation of processes that either operate at
steady state or undergo transient changes. The object
of attention, or reality, is called the ”plant”, whereas the
”model” is a set of algebraic, differential or differential-
algebraic equations.

In practice, optimization is complicated by the presence
of uncertainty in the form of plant-model mismatch
and unknown disturbances. Without uncertainty, one
could use the model at hand, optimize it numerically
off-line and implement the optimal inputs in an open-
loop fashion. However, because of uncertainty, addi-
tional information such as uncertainty description or
plant measurements must be included. In the former
case, robust optimization computes a set of inputs that
guarantees feasibility either for all possible realizations
or with a desired probability, however at the expense
of a conservative solution (Srinivasan et al. (2003)).
In the latter case, the inputs are updated in real-time
based on measurements. This is the field of real-time

optimization, which is labeled RTO for static optimiza-
tion problems (Marlin & Hrymak (1997)) and DRTO
for dynamic optimization problems (Biegler (2009)).
This paper deals with DRTO, although some of the
arguments also hold for RTO.

DRTO has two major implementation issues, namely,
computational aspects and model quality.

Regarding computational aspects, there has been con-
siderable efforts in recent years to speed up the com-
putations by considering convex optimization prob-
lems and algorithms that exploit the structure of
the problem (Wang & Boyd (2010)). Furthermore,
recent trends in DRTO have included attempts to
move the heavy computations off-line, where time and
computational power are more available, and limit
the on-line operations to quick decisions or easy com-
putations. For example, multi-parametric program-
ming generates off-line a lookup table of control laws,
which are then used on-line based on the estimated
states of the plant (Bemporad et al. (2002)). NCO
tracking uses a parameterized model of the solution
determined off-line to design a multivariable feedback
scheme that tracks the first-order necessary condi-
tions of optimality (NCO), thereby pushing the sys-
tem toward optimality (Srinivasan & Bonvin (2007)).
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The issue of model quality raises an important ques-
tion: Does good performance require a good model?
This is not necessarily the case for control, since
errors resulting from a poor model are offset by the
action of feedback. In optimization, without feedback
to make up for modeling errors, the model needs
to represent the reality rather well, in particular
the optimality conditions of the plant. The situation
is slightly different in real-time optimization since
the measurements used on-line represent some form
of feedback. However, this feedback is limited and
cannot possibly lead to a model that is valid as a
whole. Hence, it is important to adapt there, where
it matters most for the purpose of optimization. As
an alternative to plant models, solution models can
be developed, whereby the structure of the optimal
solution is determined and parameterized in terms
of input arcs and parameters. This paper considers
the realistic case of structural plant-model mismatch,
that is, when the plant is not in the model set. Hence,
adaptation using measurement is necessary. Plant
and solution models will be compared in their ability
to process on-line measurements to lead to optimality.

The paper is organized as follows. The next section
reviews strategies that use measurements on-line for the
purpose of optimization. The following section discusses
plant models and the features that a model tailored to
optimization should possess; this will naturally lead to
the topic of solution model. Finally, the various ideas
developed in this paper are illustrated through a simple
car example.

Adaptation Strategies for DRTO

In real-time optimization, the model is a vehicle to
process the available measurements and move toward
optimality. The inputs that are applied to the plant are
computed using a (possibly) inaccurate model and a
limited number of on-line measurements. The on-line
measurements are used to update the plant model or
the solution model as follows:

(1) Plant model: use measurements to adapt the model
parameters and estimate the current states, then
repeat the optimization with the updated model.
The estimated states serve as initial conditions
for the optimization performed repeatedly on-line
(Eaton & Rawlings (1990)). This scheme is also
known as the two-step approach of repeated pa-
rameter identification and performance optimiza-
tion.

(2) Solution model: use measurements to adapt the
inputs. This implies using feedback to update the
plant inputs. The control scheme is set up using
information regarding the structure of the opti-
mal solution (in particular the active constraints),
which can be determined off-line by optimization
of the nominal plant model. This knowledge about
the solution is collected in a ”solution model”
(Srinivasan & Bonvin (2007)).

Models for Optimization

This section starts with a discussion on plant models
and develops the idea that the validity of a model de-
pends on its intended use, then introduces the concept
of solution model, and finally elaborates on the way each
model can be adapted.

Plant Models

To construct a mathematical model, the modeler typi-
cally uses both prior information on and measurements
from the plant. The modeler goes through several steps
that include (i) abstraction from the reality to define the
”system”, (ii) simplification to arrive at a mathematical
model of manageable complexity, (iii) parameter iden-
tification to fit the model to the plant, and (iv) model
validation to ensure that the model will be useful for its
intended goal. Since the later steps influence the early
ones, this procedure is typically iterative.

The model validation step is very important. How can
we ensure that the model will be adequate for solv-
ing the optimization problem at hand. Model identi-
fication and validation are often done by comparing
model prediction with observed data, typically plant
outputs. This is convenient because the outputs are,
by definition, available. Furthermore, it is fully justified
if the model’s main purpose is to predict the outputs,
for example in a simulation study. But is it still justified
if the model is used for optimization? This question is
addressed next.

It is well known that the two-step approach works well
provided that (i) there is no structural plant-model
mismatch, i.e. the plant lies in the model set, and (ii)
the operating conditions yield sufficient excitation for
all the uncertain model parameters to be estimated.
Yet, these conditions are rarely met in practice. Re-
garding the latter condition, in particular, the situation
is somewhat similar to that found in the area of sys-
tem identification and control, where the two tasks of
identification and control are typically conflicting (dual
control problem, Aström & Wittenmark (1995)).

A way of improving the synergy between the identifica-
tion and optimization steps is to reconcile the objective
functions of these two problems. Consider the optimal-
ity conditions for a dynamic optimization problem:

0 =
∂Hp

∂u
︸ ︷︷ ︸

=
∂H

∂u
︸︷︷︸

+
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, (1)

objective optimization identification

where H denotes the Hamiltonian of the optimization
problem and u the vector of input or decision variables.
Optimality of the plant implies zeroing the gradient

of the Hamiltonian,
∂Hp

∂u
. For its part, numerical op-

timization of the model enforces ∂H
∂u

= 0. Hence, if

the identification step can ensure that (
∂Hp

∂u
− ∂H

∂u
)

is negligible, the identified model will be suited for
optimization. One possibility is to minimize a filtered
version of the output prediction error, with the filter



designed to make the output prediction error resemble

(
∂Hp

∂u
− ∂H

∂u
). Along these lines, Srinivasan & Bonvin

(2002) proposed to modify the objective function of the
identification problem so as to include the cost func-
tion and the constraints of the optimization problem.
The approach has been inspired by the work done in
”identification for control” (see for example, Aström
(1993)) and could therefore be labeled ”modeling for
optimization”.

Solution Models

A solution model is a parameterized model of the op-
timal inputs that can be used to implement optimizing
control. The development of a solution model involves
three steps: (i) the characterization of the optimal solu-
tion in terms of the types and sequence of arcs, (ii) the
selection of the manipulated and controlled variables for
the control problem, and (iii) model validation to ensure
that the model will be useful for its intended goal. If
the resulting errors are too large, it is necessary to
rethink the structure of the solution model and repeat
the procedure.

The optimal solution is typically characterized via op-
timization of the available (possibly inaccurate) plant
model. A robustness analysis should then be performed
to assess the validity of the solution structure with
respect to parametric variations and disturbances. The
optimal inputs are parameterized in terms of the vari-
ous arcs and switching times that are affected by un-
certainty. The solution model formally expresses the
NCO (path constraints, path sensitivities, terminal con-
straints and terminal sensitivities) that need to be en-
forced for optimality. The various NCO elements can be
implemented with various degrees of ease or difficulty:
a path constraint can often be enforced on-line via
constraint control; a path sensitivity is more difficult to
implement as it involves the adjoint variables, which are
not available on-line without the use of a plant model;
the terminal constraints and sensitivities call for predic-
tion, which requires some model, or else they can be met
iteratively over several runs. To ease implementation,
it is often possible to approximate the optimal inputs
with simpler profiles. This represents the strength of
the approach, as the approximations introduced at the
solution level can be assessed in terms of optimality loss.

The manipulated variables (MV) of the controlled prob-
lem are the handles available to reach optimality. The
controlled variables (CV) are the NCO for the selected
input parameterization. By definition of the optimality
conditions, there are as many optimality conditions as
there are degrees of freedom, thus resulting in a square
control system. The pairing of MV and CV can be done
in a centralized (multivariable control) or decentralized
way (multi-loop control). Note that there are different
ways of implementing a given solution model, for exam-
ple using alternative MV via a change of variables, using
different pairings of MV and CV, or using a plant model
for prediction, each way defining a different solution
model.

Adaptation of Plant and Solution Models

The plant model consists of dynamic equations that
include the uncertain plant parameters θ:

ẋ = f(x, u, θ), x(0) = x0. (2)

The uncertain parameters can be identified with the
optimization objective in mind as suggested in (1):

min
θ

‖
∂Hp

∂u
−

∂H(x, u, θ)

∂u
‖. (3)

In solution models, the inputs are expressed in terms of
the input arcs η(t) and parameters π:

u(t) = U(η(t), π). (4)

The input elements are adjusted using measurements to
drive the plant to optimality:

∂Hp

∂η(t)
→ 0,

∂Hp

∂π
→ 0. (5)

Two issues affect the validity of the approaches:

(1) Are the quantities to be estimated good handles to
drive the plant to optimality?

(2) How easy is it to identify these quantities, that is,
how much excitation is required for identification?

With plant models, both issues might be problematic.
Although the uncertain parameters can be adapted for
the model to predict the plant outputs rather well, the
resulting model might not be able to push the plant to
the optimum, an indication that the model does not ad-
equately represent the optimality conditions of the plant
(Srinivasan & Bonvin (2002)). Furthermore, it is well
known that parameter identification is a difficult task in
the presence of structural plant-model mismatch, that
is, when the plant does not belong to the model set
(Ljung (1999)). In this case, parameter identification
requires appropriate experimental design (Montgomery
(2005)) and persistency of excitation (Walter & Pron-
zato (1997)).

With solution models, the situation is clearly different.
The uncertain input elements define the optimal solu-
tion and are therefore directly linked to the NCO. In
essence, the optimization problem has been reformu-
lated in such a way that all uncertain elements are inti-
mately connected to the NCO. Hence, there is no risk of
wasting excitation to identify quantities that are not rel-
evant to the optimization. On the other hand, since the
parameters are obtained from measurement/estimation
of NCO elements, the difficulty in this approach lies
in estimating these NCO elements, namely, the active
plant constraints and the reduced plant gradients.

Illustrative Example

The use of solution models for real-time optimization
will be illustrated on the simple car example that is
presented next:

• System: Movement of a car from one point to
another.



• Uncertainty: Slope of the road: ± 5%.
• Objective: Minimize final time.
• Manipulated input: Accelerating/braking force.
• Path constraints: Input bounds; speed limit.
• Terminal constraints: Zero velocity at final time;

cover at least the prescribed distance.

Problem Formulation

Variables and parameters

x: position, v: velocity, u: accelerating/braking force, s:
slope of the road, f : friction coefficient, g: gravitational
constant, m: mass of the car.

Model equations

ẋ = v , x(0) = 0 , (6)

v̇ =
u − fv2

m
− s(x)g , v(0) = 0 . (7)

m 1300 kg

f 0.5
Ns2

m2

umin −8000 N
umax 3600 N

vmax 40
m

s
xdes 1000 m

Table 1. Model parameters and operating bounds

The nominal model assumes zero slope, i.e. s(x) = 0,
while in reality the unknown elevation profile, which is
the integral of the slope profile, is as shown in Figure 1.
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Figure 1. Elevation profile

Optimization problem
The optimization problem can be formulated mathe-
matically as follows:

min
u(t), tf

J = tf (8)

s.t. dynamic system (6) − (7)

umin ≤ u(t) ≤ umax

v(t) ≤ vmax

v(tf ) = 0

x(tf ) ≥ xdes .

If the elevation profile were known, the minimal time
would be J∗ = 34.68 s.

Characterization of the Optimal Solution

Figure 2 shows that the nominal optimal solution con-
sists of three arcs, with the successive inputs umax, upath

and umin:

• The first arc umax corresponds to maximum ac-
celeration in order to reach vmax as quickly as
possible. The duration of this arc, t1, depends
on the slope, which is uncertain. However, t1 can
be determined implicitly upon reaching vmax, i.e.
v(t1) = vmax.

• The second arc keeps the velocity at vmax, for
which the corresponding input value upath can be
determined as upath = fv2

max + s(x)mg. The value
upath is also a function of the uncertain slope.

• The third arc corresponds to full braking in or-
der to achieve v(tf ) = 0. The switching time t2
between the second and third arcs is chosen so
that x(tf ) = xdes, i.e. the desired distance will
be exactly covered when the velocity goes to zero.
The final time is determined upon reaching zero
velocity, i.e. v(tf ) = 0.
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Figure 2. Input u, velocity v and position x profiles for
the nominal optimal solution (s = 0)

Remarks

(1) This car example does not involve sensitivities,
i.e. the optimal solution is entirely determined by
active constraints. The reader is referred to Srini-
vasan & Bonvin (2007) for cases where sensitivities
are involved.

(2) The types and sequence of arcs (umax followed by
upath and then umin) hold for any car regardless
of its weight and acceleration or braking power.
They even hold generically for a bicycle, for which
the second arc vanishes (t1 does not exist). This
generic aspect of the optimal solution provides
much robustness to the solution-model approach.

Selection of Manipulated and Controlled Variables

Input parameterization is straightforward in this prob-
lem, with the input elements affected by uncertainty



chosen as handles, here η(t) = upath(t) and π =
[t1 t2 tf ]T . We present next three solution models that
correspond to different ways of meeting the NCO.

Solution model A
The pairing of MV (t1, upath(t), t2 and tf ) and CV
(v(t1) = vmax, v(t) = vmax, x(tf ) = xdes, v(tf ) = 0)
follows directly from the characterization of the optimal
solution and is given in Table 2. As mentioned above,
t1 and tf are determined implicitly upon reaching the
velocities vmax and 0, respectively. Since there is a
prediction involved in the pairing t2 7→ x(tf ) = xdes,
meeting this constraint will either require a predictive
model or be implemented over several runs. In the
absence of a predictive model, NCO tracking will use
on-line control to enforce v(t) = vmax in the second
arc and run-to-run control to adapt t2 so as to enforce
x(tf ) = xdes over several runs.

Path objectives Terminal objectives

Constraints
t1 : v(t1) = vmax t2 7→ x(tf ) = xdes

upath(t) : v(t) = vmax tf : v(tf ) = 0

Sensitivities – –

Table 2. Pairing of MV and CV in Solution model A

Solution model B
The error resulting from not meeting the terminal
constraint x(tf ) = xdes in the initial runs can be
reduced by re-parameterization of the problem. The
switching time t2 is determined upon reaching the
position xbrake, which becomes a decision variable. 1

On-line control is used to implement v(t) = vmax in
the second arc and run-to-run control to adapt xbrake

so as to enforce x(tf ) = xdes. The pairing of MV and
CV is given in Table 3.

Path objectives Terminal objectives

Constraints
t1 : v(t1) = vmax xbrake 7→ x(tf ) = xdes

upath(t) : v(t) = vmax tf : v(tf ) = 0

Sensitivities – –

Table 3. Pairing of MV and CV in Solution model B

Solution model C
To avoid having to optimize over several runs, one needs
to be able to predict the final position x(tf ) during the
run in order to initiate the breaking action. This can be
done using the plant model on-line as discussed next.

The characterization of the optimal solution has led
to a rather parsimonious parameterization of the input
compared to the infinite dimension of u(t). For example,
based on the solution model given in Table 2, t1, upath(t)
and tf can be determined by their corresponding NCO
during simulation (integration) of the dynamic model.
The switching time t2 remains a decision variable since
its determination requires prediction of the final posi-
tion, which cannot be done ”on-line” during a single

1 We choose here to advance with the position x rather than with
the time t. This is possible because x in monotonic with respect
to t. The position x is more representative of the state of the car
than the time t as it has ”felt” all past disturbances.

simulation. It follows that the optimization problem (8)
can be rewritten as:

min
t2

J = tf (9)

s.t. dynamic system (6) − (7)

u(t) =







umax for 0 ≤ t < t1
fv2

max + s(x(t))mg for t1 ≤ t < t2
umin for t2 ≤ t < tf

t1 : v(t1) = vmax

tf : v(tf ) = 0.

Problem (9) is simpler to solve than the original prob-
lem (8) for at least two reasons: (i) the number of
degrees of freedom has been reduced from ∞ to 1, and
(ii) the discontinuities at the switching instants can
be handled much more easily and without oscillations
(Schlegel & Marquardt (2006)).

For implementation, the current state information is
used as initial conditions for re-optimization using the
plant model. Note that the model parameters are not
updated. At each re-optimization instant, the optimal
value of t2 is computed. Breaking is then implemented
when the running time equals the value of t2 computed
last. 2 The pairing of MV and CV is given in Table 4,
where x̂(tf ) is the final distance predicted by the model.

Path objectives Terminal objectives

Constraints
t1 : v(t1) = vmax t2 7→ x̂(tf ) = xdes

upath(t) : v(t) = vmax tf : v(tf ) = 0

Sensitivities – –

Table 4. Pairing of MV and CV in Solution model C.

NCO Tracking

The performance of NCO tracking using Solution model
A is discussed next. The performance of Solution models
B and C is indistinguishably similar and therefore is
not shown here. It is assumed that the plant (the
car with varying unknown slope) will have the same
types and sequence of arcs, but different values of t1,
upath(t), t2 and tf . 3 The solution after 3 runs is shown
in Figure 3. Numerical results are given in Table 5.
Optimality in this problem is guaranteed by satisfaction
of the maximum-velocity and final-position constraints.

Run Maximum Final Final
number velocity (m/s) position (m) time (s)

1 40.0 1020 35.19
2 40.0 1002 34.72
3 40.0 1000 34.68

Table 5. Constraint and cost values with NCO tracking
based on Solution model A for various numbers of runs

2 Or, similarly, the running distance equals the value of xbrake

computed last.
3 This can be verified numerically off-line by perturbing the
nominal model and computing the corresponding optimal inputs.
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Figure 3. Input u, velocity v and position x profiles
after the 3rd run with NCO tracking based on
Solution model A. Note that Solution model C

generates nearly the same input from a single run.

Conclusions

This paper has addressed the quality of models used
for dynamic real-time optimization. According to the
quote ”All models are wrong but some are useful”
(Box (1979)), the model is not viewed as the ”truth”,
but rather as a tool that must be tailored to the op-
timization scheme. Modeling is really about making
educated approximations to arrive at a model of ac-
ceptable complexity that is adequate for optimization in
the presence of uncertainty. When dealing with a real
plant, it is important to find a good way of introducing
approximations. Is it at the plant-model level, before
going through the optimization machinery? Or is it at
the implementation level, when the user can see the
implications of selected approximations?

This paper has also presented the concept of solution
model and its use for tracking the NCO in the context
of real-time optimization. A solution model is obtained
by dissecting computed optimal input profiles and re-
lating their elements to different parts of the NCO. One
strength of NCO tracking is the possibility of combining
off-line tasks (numerical optimization based on the nom-
inal plant model to determine the active set) and on-line
activities (optimizing control that adjusts the inputs on
the basis of measurements). Another nice feature is the
possibility, if necessary, of introducing approximations
in the various profiles to ease implementation. This is
particularly effective in dealing with sensitivity-seeking
arcs, which are often difficult to compute but, at the
same time, contribute only negligibly to the cost. A
feature that distinguishes plant and solution models re-
gards the complexity of the model: indeed, the complex-
ity of solution models depends on the number of inputs,
and not on the number of states or the nonlinearity of
the plant. Hence, NCO tracking tends to work well for
problems with only a few numbers of arcs (and thus
also only a few inputs), and this regardless of the order
of the system. Finally, one can view NCO tracking as
a data-driven scheme for RTO and compare it to fully
data-driven schemes such as response surface methods
(Georgakis (2009). Instead of building the model that
will predict the plant performance from scratch, NCO

tracking starts with a robust parameterized model of
the solution and adjusts the few input elements that
are intimately linked to plant optimality.
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