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Abstract
In the intracellular signaling networks that regulate important cell processes, the base pattern
comprises the cycle of reversible phosphorylation of a protein, catalyzed by kinases and
opposing phosphatases. Mathematical modeling and analysis have been used for gaining a
better understanding of their functions and to capture the rules governing system behavior.
Since biochemical parameters in signaling pathways are not easily accessible experimentally,
it is necessary to explore possibilities for both steady-state and dynamic responses in these
systems. While a number of studies have focused on analyzing these properties separately, it is
necessary to take into account both of these responses simultaneously in order to be able to
interpret a broader range of phenotypes. This paper investigates the trade-offs between optimal
characteristics of both steady-state and dynamic responses. Following an inverse sensitivity
analysis approach, we use systematic optimization methods to find the biochemical and
biophysical parameters that simultaneously achieve optimal steady-state and dynamic
performance. Remarkably, we find that even a single covalent modification cycle can
simultaneously and robustly achieve high ultrasensitivity, high amplification and rapid signal
transduction. We also find that the response rise and decay times can be modulated
independently by varying the activating- and deactivating-enzyme-to-interconvertible-protein
ratios.

S Online supplementary data available from stacks.iop.org/PhysBio/9/045010/mmedia

Introduction

In signaling networks, the basic units are covalent
modification cycles, which comprise the activation and
deactivation of proteins by other proteins. Protein
modification in cell signaling—typically a phosphorylation
and dephosphorylation—is a general mechanism responsible
for the transfer of a wide variety of chemical signals
in biological systems. Although the concept does not
seem to be complex from a biochemical point of view,

these simple systems can nevertheless provide a large
diapason of dynamical responses and are therefore ubiquitous
building blocks of signaling pathways. Mitogen-activated
protein kinase cascades (MAPK)—an example of chains of
interconvertible proteins—have been shown to drive many
developmental processes and are also implicated in various
diseases [1, 2].

Mathematical modeling and analysis of signaling units
and networks have been used to understand the functions of
these proteins (see [3–5] for review) and to study emergent
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phenomena, such as switch-like input–output responses
[6, 7], bistability [8–12] and oscillatory behavior [13, 14].
A number of theoretical studies have elucidated some of the
design principles of signaling networks and have proved useful
for interpreting various experimental observations [15–20].

Parametric sensitivity analysis provides a powerful
framework to help relate the structure to the function in
complex networks. There exist two types of parametric
sensitivity analyses, namely direct sensitivity analysis
and inverse sensitivity analysis [21, 22]. These methods
have been used for the analysis of both metabolic and
signal transduction pathways. Direct sensitivity analysis—
the consideration of changes in the system due to a variation
in the model parameters—has been widely applied [23–28].
Inverse sensitivity analysis—the identification of the
corresponding parameter values needed to achieve a desired
functional behavior—has also been occasionally used in
studies of metabolic networks to identify the relationship
between model parameters and functions [29–31]. This second
type involves solving constrained optimization problems and
it is well adapted for studying biochemical networks, due to
its ability to deal with large-scale models [32–34]. Moreover,
the inverse approach leads to efficient parametric analysis and
identification, contrary to an exhaustive parameter search.

In this paper, we investigate multiple steady-state and
dynamic properties and their combinations using an inverse
parametric sensitivity formulation. We consider covalent
modification cycles with minimal number of degrees of
freedom, and without assuming any feedback interaction or
multiple phosphorylation occurrences. We identify the best
combinations of model parameter values, achieving desired
functional characteristics, such as high ultrasensitivity, low
signal transduction time and high signal amplification. This
approach is found to be particularly well suited for translating
parameter values into design principles of signaling pathways.
Furthermore, we account for inherent variability of cell
components and discuss the optimal design for covalent
modification cycles that are robust to such fluctuations.

Materials and methods

Mechanistic modeling framework

The system under consideration consists of three elements:
(i) a kinase, (ii) an activating enzyme, which can be a
receptor stimulated by a ligand or an activated kinase, and
(iii) a deactivating enzyme, usually a phosphatase. The active
receptor initiates the internal signaling cascade, including
a series of protein phosphorylation state changes, which
represents the basic unit in signal transduction networks.

The development of our mathematical models relies on the
following assumptions that are commonly used in biochemical
networks:

• the activation step involves the reversible binding of the
activating enzyme to inactive kinase and the complex is
irreversibly released;

• the inactivation step involves the reversible binding of the
deactivating enzyme to active kinase and the complex is
irreversibly released;

Figure 1. Schematic representation of a covalent modification cycle.
A cycle is composed of two states of the same protein, namely the
inactive state X and the active state X

∗
. The activation and

deactivation reactions are catalyzed by the enzymes S
∗

and P,
respectively.

• the total amount of kinase is taken to be constant for the
signaling time scale considered;

• the rates of the various processes follow mass-action
kinetics;

• the dynamics can be described by ordinary differential
equations.

A commonly used simplification considers that the
concentration in intermediate enzyme–substrate complex is
small compared to the substrate concentrations and can
therefore be neglected [6, 10, 13], leading to simpler
mathematical models. This simplification has been used
mainly to reduce the computational effort or to obtain an exact
analytical solution to the problem. However, it has been shown,
and we found in our studies too, that if we neglect the so-called
substrate sequestration in the form of intermediate enzyme–
substrate complexes, the analysis may lead to incorrect model
predictions [35–37]. Besides its effect on model prediction
accuracy, substrate sequestration has been shown to induce
both positive and negative feedback mechanisms in signaling
cascades [12, 19]. One key advantage of our computational
approach is that it does not require such simplifications and,
accordingly, substrate sequestration is fully considered here.

Mathematical models

The covalent modification cycle represented in figure 1
comprises seven species S, S

∗
, X, X

∗
, P, X:S

∗
and X

∗
:P. The

receptor changes its own state from susceptible S to active S
∗
.

Since our focus is on the dynamics of the internal module,
the activation/deactivation of the receptor is assumed to occur
under very fast kinetics. The kinetic mechanism and the initial
conditions for the system are detailed in the appendix. The
variables X and X

∗
represent the two interconvertible forms of

one protein, e.g. the phosphorylated and dephosphorylated
forms of a kinase. The proteins S

∗
and P catalyze the

activation and deactivation reactions and are both referred to as
enzymes subsequently. The activation steps proceed through
the formation of intermediate enzyme–substrate complexes
X:S

∗
and X

∗
:P. The enzyme S

∗
can be either the activating
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Table 1. Dimensionless variables and parameters in the dynamic model (7)–(12).

Concentrations
Inactive and active forms of interconvertible
protein

x := [X]
[XT ] x∗ := [X∗]

[XT ]

Inactive and active forms of signaling enzyme,
and enzyme–substrate complex

s := [S]
[ST ] s∗ := [S∗]

[ST ] {x : s∗} := [X :S∗]
[ST ]

Phosphatase, and phosphatase–substrate complex p := [P]
[PT ] {x∗ : p} := [X∗ :P]

[PT ]
Kinetic parameters
Complex dissociation rate constants d̃X := dX

kX∗ d̃X∗ := dX∗
kX∗ k̃X := kX

kX∗
Complex formation rate constants ãX := aX

kX∗ [XT ] ãX∗ := aX∗
kX∗ [XT ]

Concentration ratios
Input signaling enzyme to interconvertible
protein, and phosphatase to interconvertible
protein

ρS/X := [ST ]
[XT ] ρP/X := [PT ]

[XT ]

Time τ := kX∗ t

kinase of an upstream cycle or the receptor responding to an
external input signal (e.g. growth factor or hormone level),
while the enzyme P corresponds to a phosphatase.

The total amount of interconvertible protein XT, as well
as the total amounts of the activation/deactivation proteins
ST and PT, is considered to be constant in the time scale
considered. The corresponding conservation equations relating
the concentrations of the seven species read

[XT ] = [X] + [X∗] + [X : S∗] + [X∗ : P],

with
d[XT ]

dt
= 0, (1)

[ST ] = [S] + [S∗] + [X : S∗], with
d[ST ]

dt
= 0, (2)

[PT ] = [P] + [X∗ : P], with
d[PT ]

dt
= 0. (3)

The conservation laws (1)–(3) relate the concentrations of the
species in the system. Three additional (independent) relations
can be obtained by writing the mass-balance equations for X

∗
,

X:S
∗

and X
∗
:P as

d[X∗]

dt
= −aX∗ [X∗][P] + kX [X : S∗] + dX [X∗ : P], (4)

d[X : S∗]

dt
= aX [X][S∗] − (dX + kX )[X : S∗], (5)

d[X∗ : P]

dt
= aX∗ [X∗][P] − (dX∗ + kX∗ )[X∗ : P], (6)

where aX, dX, kX, aX∗, dX∗ and kX∗ are the parameters of the
mass-action kinetic laws, as shown in figure 1.

The basic structure of signaling cycles is well conserved
in cells, even though it can generate a high variety of biological
responses. In order to facilitate the discovery of such general
features, it is useful to consider dimensionless parameters and
variables, rather than focussing on a particular system [6].
Table 1 gives the dimensionless variables and parameters used
to conduct the analysis. The following dimensionless set of
differential algebraic equations (DAEs) is obtained:

dx∗

dτ
= ρS/X k̃X {x : s∗} + ρP/X (d̃X∗ {x∗ : p} − ãX∗x∗ p) (7)

d{x : s∗}
dτ

= ãX xs∗ − (d̃X + k̃X ){x : s∗} (8)

d[x∗ : p]

dτ
= ãX∗x∗ p − (d̃X∗ + 1){x∗ : p} (9)

1 = x + x∗ + ρS/X {x : s∗} + ρP/X {x∗ : p} (10)

1 = s + s∗ + {x : s∗} (11)

1 = p + {x∗ : p}. (12)

When the system is at steady state and assuming that all of
signaling enzyme is in its active form s = 0, the dynamic model
(7)–(12) reduces to the following set of algebraic equations:

0 = {x : s∗} − x

K̃X + x
(13)

0 = {x∗ : p} − x∗

K̃X∗ + x∗ (14)

0 = {x∗ : p} − αX {x : s∗} (15)

1 = x + x∗ + ρS/X {x : s∗} + ρP/X {x∗ : p} (16)

1 = s∗ + {x : s∗} (17)

1 = p + {x∗ : p}, (18)

where (·) indicates a variable at steady state, and K̃X = ãX +̃kX

d̃X
,

K̃X∗ = ãX∗ +1
d̃X∗

and αX = k̃X
ρS/X

ρP/X are the new parameters.

Design parameters

The foregoing steady-state formulation (13)–(18) identifies
two dimensionless Michaelis–Menten constants K̃X and
K̃X∗ , which have been shown to determine the most
important features of steady-state responses. They are in turn
nonlinear combinations of the dimensionless kinetic rates
ãX , ãX∗ , d̃X , d̃X∗ , k̃X , and thus provide the link between steady-
state and dynamic responses.

Furthermore, the parameter αX represents the activation
potential of the cycle and describes the balance between
activation and deactivation of the kinase. It has been shown
that in the special case, when all the corresponding parameters
of the upper and lower branch in the cycle are the same and
αX = 1, the system is at or very close to its inflection point
[6]. In the formulation above, we have included the balance
of the first signaling input (in this case the receptor) in order
to capture changes in the activating input due to changes in
protein amount.
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(a) (b)

(c) (d)

Figure 2. Design criteria. (a) The ultrasensitivity coefficient nH provides a measure of the sensitivity of substrate activity to changes in input
signal activity, at steady state. (b) The amplification gain � is a measure of the relative strength of the response to a given input level, at
steady state. (c) The rise time τr is a measure of the speed at which a stimulation signal is transduced. (d) The decay time τd provides a
measure of the speed at which an activated state vanishes upon canceling the stimulation signal.

Design criteria

Several criteria have been considered to assess signal
transduction properties. Ultrasensitivity (figure 2(a)) and gain
amplification (figure 2(b)) are steady-state criteria, whereas
rise time (figure 2(c)), decay time (figure 2(d)) and signal
duration are transient criteria. Since the last criterion is more
relevant in the analysis in the study of signaling cascades, we
do not consider it in this study.

Ultrasensitivity. Signaling pathways with ultrasensitive
input–output characteristics convert gradual changes in all or
nothing type decisions. This property is defined as the response
of a system that is more sensitive to the input concentration
than a normal hyperbolic Michaelis–Menten response [6]. For
instance, to increase the reaction rate 9-fold from 10% to
90% of the maximum activation, a typical Michaelis–Menten
response requires 81-fold increase in input concentration. An
ultrasensitive response should need less ligand concentration
change to accomplish the same. The degree of ultrasensitivity
depends on the size of the input window within which the
response changes from nothing to all.

The ability of signaling cycles to produce ultrasensitive
response has been observed experimentally, and it has been
suggested that many physiological phenomena such as cancer
progression and morphogenesis are associated with this
feature (see, e.g., [7]). Several mechanisms can lead to
switch-like stimulus-response curves, examples of which are
the cooperative allosteric effect of multisite protein [38],
saturation of enzymes [6] and positive feedback [9]. When
combined with negative feedback, ultrasensitive modules can
lead to oscillations [13], but these modules also add robustness
against stochastic fluctuations [39].

Goldbeter and Koshland [6] introduced a measure of
ultrasensitivity in signaling cycles based on the similarity of
the ultrasensitive response with the sigmoidal (Hill) kinetics
of allosteric proteins. They quantified ultrasensitivity by the
apparent Hill coefficient nH of the output response as

nH = ln(81)

ln
(
α90

X

) − (
α10

X

) , (19)

where the variables α10
X and α90

X are the activation potentials
of the signaling kinase required to achieve 10% and
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90%, respectively, of the maximal activation of the output
(figure 2(a)),

α10
X : x∗(α10

X

) = 0.1 lim
αX →∞ x∗(αX ) (20)

α90
X : x∗(α90

X

) = 0.9 lim
αX →∞ x∗(αX ). (21)

In general, this measure does not require the response curve to
be point symmetric, and the larger the apparent Hill coefficient
in (19), the more ultrasensitive the system.

Determining the apparent Hill coefficients in complex
signaling cycles can be computationally demanding, especially
considering that the study of design criteria involves
exhaustive parameter search. To facilitate this computation,
it is advantageous to transform the steady-state model (13)–
(18) into a set of DAEs in αX —see model (A.3)–(A.8)
in the appendix. This way, the values of α10

X and α90
X

defined implicitly via relations (20) and (21) can be obtained
using numerical continuation [40] and well-established event
detection techniques in DAEs [41].

Amplification. The amplification gain in signaling cycles
defines a measure of response strength. It is a relevant
biological characteristic because the response produced by
a signaling cycle must exceed a certain magnitude in order
to trigger downstream reactions. However, a very large
amplification may not always be warranted for a signal to
be transmitted to its final target.

The amplification gain is defined as the ratio of activated
substrate concentration to input concentration at steady state.
We consider that the relevant input concentration accounts
for the active form of the receptor, either in free or
complexed form, thus giving the definition of a dimensionless
amplification gain,

� := x∗

ρS/X
, (22)

where x∗ stands for the steady-state substrate activity
corresponding to a given level of signaling enzyme
(figure 2(b)). From this definition, it is clear that higher
amplification gains are favored by the smaller signaling
enzyme-to-substrate ratios, ρS/X � 1. This also explains why
those models ignoring intermediate complex formation tend
to overestimate amplification (see [6]).

Signaling times. The time needed for an output signal to
reach a certain threshold with respect to a reference state in
response to an input signal is an important characteristic of
signaling cycles and, more generally, of signal transduction
pathways. It has been proposed that short signaling time is
a desirable characteristic in various biological pathways [15,
42]. Here, we consider two different signaling times.

• The rise time τr is a measure of how fast an activation
signal propagates through a cycle. We specifically define
τr as the time needed to reach 90% of the steady-state
substrate activation in response to sustained step activation
of the input, starting from the reference (inactive) state
(figure 2(c)):

τr : x∗(τr) = 0.9x∗, with x∗(0) = 0. (23)

Note that this definition of signaling time differs from
the one in [15], which considers the average time
needed to activate the substrate. This latter measure
would be inappropriate here, as the activation time grows
unbounded in the case of a permanently activated pathway.

• The decay time τd is the time needed for the substrate
activity of interconvertible kinase, starting from the
steady-state activation level, to decrease to within 10%
of this initial activity after the stimulus has been ceased
(figure 2d):

τd : x∗(τd ) = 0.1x∗, with x∗(0) = x∗. (24)

The above definitions assume step inputs. Alternatively,
one could also consider exponential, impulse or rectangular
inputs, although this would require redefining (23) and (24).

Results and discussion

Optimal design for ultrasensitivity

The ultrasensitivity of covalent modification cycles has been
studied extensively since its discovery by Goldbeter and
Koshland [6]. Their classical results suggest that a monocyclic
cascade can display ultrasensitive responses even though
the interconversion steps follow Michaelis–Menten kinetics.
Since then, a number of studies have elaborated further on
these results [43–45].

In this subsection, we apply the inverse sensitivity analysis
in order to identify the subdomains of the parameter space that
lead to ultrasensitive responses. We vary the dimensionless
Michaelis–Menten constants K̃X , K̃X∗ and the concentration
ratios ρS/X , ρP/X and measure how the input signal s∗ affects
the relative concentration of protein in active state x∗ based on
the steady-state model (A.3)–(A.8).

Figure 3 illustrates how ultrasensitivity is determined by
the values of K̃X and K̃X∗ for fixed values of ρS/X and ρP/X .
This behavior is in good agreement with the main conclusions
in [6], namely

• ultrasensitivity is promoted by low values of the
dimensionless Michaelis–Menten constants K̃X and K̃X∗ ;

• ultrasensitivity is only possible when the total
concentration in activating enzyme [ST] and the total
concentration in deactivating enzyme [PT] are small
compared to the total concentration in interconvertible
protein [XT], i.e. ρS/X and ρP/X � 1;

• the stimulus response is point symmetric when K̃X = K̃X∗

and ρS/X , ρP/X → 0.

Next, we consider the inverse sensitivity approach
and solve the following optimization problem in order to
determine optimal values of the dimensionless Michaelis–
Menten constants K̃X and K̃X∗ ,

find K̃X , K̃X∗ that
maximize nH (19)

subject to steady–state model (A.3)–(A.8). (P1)

The parameters K̃X and K̃X∗ are taken in the range [10−2, 102],
which was found to be wide enough from comparisons with
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larger parameter ranges. Moreover, following the observations
in figure 3, the concentration ratios ρS/X and ρP/X are taken in
the range [10−2, 1].

The results shown in figure 4 lead to the following
observations.

• Significant ultrasensitivity (nH > 6) can only be achieved
(i) for values of the dimensionless Michaelis–Menten
constants K̃X and K̃X∗ lower than 10−1 and (ii) for small
values of the two concentration ratios ρS/X , ρP/X � 1.

• Ultrasensitivity can accommodate higher phosphatase
levels (ρP/X < 0.5) than activating enzyme levels (ρS/X <

0.1).

The first observation is not a new result for it was
suggested as a design criterion for ultrasensitivity already by
[6]. On the other hand, the interplay and relative effect of the
activation and deactivation steps constitute a new observation
that follows from the proposed optimization methodology.
In particular, this result also suggests that overexpression in
activating proteins, such as receptors relative to target kinases,
might lead to (pathological) loss of ultrasensitivity.

Optimal design for signaling times under the amplification
constraint

In this subsection, we follow the inverse approach and
formulate an optimization problem to identify the kinetic
parameter values that minimize the response time, while at the
same time satisfying a given amplification level �. Separate

formulations are considered for the rise time τr (P2) and for
the decay time τd (P3),

find ãX , ãX∗ , d̃X , d̃X∗ , k̃X that
minimize rise time τr (23)

subject to amplification gain � (22)

transient model (7)–(12), (P2)

and

find ãX , ãX∗ , d̃X , d̃X∗ , k̃X that
minimize decay time τd (24)

subject to amplification gain � (22)

transient model (7)–(12). (P3)

The model parameters ãX , ãX∗ , d̃X , d̃X∗ , k̃X are all taken in
the range [10−3, 103] subsequently. Recall that model (7)–
(12) was made dimensionless, and so a kinetic parameter
whose value is either at its lower bound 10−3 or at its
upper bound 103 reflects a very small or very large value
relative to other parameters. To confirm that this parameter
range is large enough to reveal the actual set of behaviors,
we performed similar computations with wider parameter
ranges as [10−5, 105] (see figure S1 in the supporting material
available at stacks.iop.org/PhysBio/9/045010/mmedia). It was
found that the general trend is conserved in that the parameters
that were at their lower/upper bounds remained at their
bounds, and those taking intermediate values also remained
intermediate; moreover, optimization with wider parameter
ranges only leads to marginal improvements in signaling times.
We also performed additional computations with more narrow

6

http://stacks.iop.org/PhysBio/9/045010/mmedia


Phys. Biol. 9 (2012) 045010 A Radivojevic et al

 0

20

40

 60

80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100
 0.0001

 0.001
0.01
 0.1

 1
10

 100
 1000

 10000

 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3

 0

 2

 4

 6

 8

10

12

 0  1  2  3  4  5  6  7  8  9

ki
ne

tic
 p

ar
am

et
er

s
ki

ne
tic

 p
ar

am
et

er
s

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

,

,

 0 10 20 30 40 50 60 70 80 90 100  0 10 20 30 40 50 60 70 80 90 100

 0.0001
 0.001

0.01
 0.1

 1
10

 100
 1000

 10000

 0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5  6  7  8  9

ki
ne

tic
 p

ar
am

et
er

s
ki

ne
tic

 p
ar

am
et

er
s

 0
10

 20
 30
 40
50

 60
70

 80
 90

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 2
 2.01
 2.02
 2.03
 2.04
 2.05
 2.06
 2.07
 2.08

,,

 0 10 20 30 40 50 60 70 80 90 100  0 10 20 30 40 50 60 70 80 90 100  0 10 20 30 40 50 60 70 80 90 100
 0.0001

 0.001
0.01
 0.1

 1
10

 100
 1000

 10000

 0.0001
 0.001

0.01
 0.1

 1
10

 100
 1000

 10000

 2
 2.01
 2.02
 2.03
 2.04
 2.05
 2.06
 2.07

 2.08

 0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5  6  7  8  9

gain, Γ gain, Γ gain, Γ

gain, Γ gain, Γ gain, Γ

gain, Γ gain, Γ gain, Γ

gain, Γ gain, Γ gain, Γ

d
~

X*

aX
~

d
~

X k
~

X

a
~

X*

d
~

X k
~

X

aX
~

a
~

X*

d
~

X*

nH

nHr

r

d

d

d
~

X*

d
~

X*

aX
~

aX
~

a
~

X* d
~

X k
~

X

,,a
~

X* d
~

X k
~

X

nH

nH

(a)

(b)

(c)

(d)

Figure 5. Design for minimal signaling times subject to given amplification. Optimal rise time τr (a and b) and decay time τd (c and d),
corresponding kinetic parameters ãX , ãX∗ , d̃X , d̃X∗ , k̃X (middle plots) and Hill coefficient nH (right plots) versus amplification gain, for the
concentration ratio regime ρS/X = ρP/X = 10−2 (a and c) and concentration ratio regime ρS/X = ρP/X = 10−1 (b and d).

parameter ranges as [10−2, 102], which again led to essentially
the same trade-offs and minor differences in signaling times.

Figure 5 (left plots) displays the optimal signaling times
as a function of the amplification gain �, for two different
regimes of concentration ratios ρS/X = ρP/X = 10−2 and
ρS/X = ρP/X = 10−1. Qualitatively, the optimization results
appear to be very similar in both regimes. The feasible range
of amplification gains is much wider with the lower values
of concentration ratios—as expected from the relative gain
definition in (22). The rise time τr (figures 5(a) and (b)) first
increases monotonically with � for low amplification. Beyond
a certain amplification threshold, the rise time then decreases
monotonically with �, thus indicating that the system can
respond faster while achieving higher levels of amplification.
This amplification threshold depends on the concentration
ratios ρS/X and ρP/X ; it is close to � ≈ 40 in the operating
regime ρS/X = ρP/X = 10−2 (figure 5(a)) and around � ≈
3.3 in the regime ρS/X = ρP/X = 10−1 (figure 5(b)). On the
other hand, the decay time τd (figures 5(c) and (d)) increases
linearly with the amplification gain �. This is due to the fact

that higher amplification leads to higher concentrations in
activated protein form, which in turn takes more time to return
to inactive state. Moreover, higher concentration ratios ρS/X

and ρP/X lead to lower maximal possible levels of free active
protein and, consequently, decay times are almost ten times
shorter in the regime ρS/X = ρP/X = 10−1 compared to the
regime ρS/X = ρP/X = 10−2 (figures 5(b), (d) versus (a), (c)).
Such nonlinear relationships between various design criteria
demonstrate the need for systematic optimization methods to
analyze signaling pathways in a comprehensive manner.

In order to better understand these relationships, figure 5
(middle plots) displays the optimal kinetic parameter values
ãX , ãX∗ , d̃X , d̃X∗ , k̃X leading to minimal signaling times as a
function of the amplification gain �. Both dissociation rate
constants d̃X and k̃X of the kinase complex X : S∗ into x
and x∗, respectively, stay at their upper bounds and the rate
constant d̃X∗ of the phosphatase complex X∗ : P into x∗

remains at its lower bound in all cases and regardless of
the amplification level �. Particularly counter-intuitive is the
finding that minimum response times are not achieved when
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the rate of formation ãX of the kinase complex X : S∗ is
maximum, which suggests that faster signal propagation with
amplification is promoted by a more unstable complex X : S∗.
These findings are in good agreement with the computational
results for a covalent modification cycle obtained in [34]. It is
also observed that higher levels of amplification together with
shorter rise and decay times are achieved for an increasing
value of the complex formation rate constant ãX , which
suggests that ãX is the primary determining parameter for
minimal signaling times under amplification constraints.

Nevertheless, signaling cycles so designed do not promote
high ultrasensitivity as seen from figure 5 (right plots). This
is because the constraints imposed on the kinetic parameters
correspond to the values of K̃X and K̃X∗ at which the Hill
coefficient is no larger than nH ≈ 2. It is therefore critical to
take the ultrasensitivity criterion into account simultaneously
with the response time and amplification criteria in analyzing
the design of signaling cycles.

Optimal design for signaling times under amplification and
ultrasensitivity constraints

The ability of monocyclic cascades to achieve a high Hill
coefficient for small values of the Michaelis–Menten constants
is one of the most basic findings since their early study
in the 1980s [6]. But with such a design, the system may
exhibit excessively long response times as well as low signal
amplification. In this subsection, we investigate whether a
simple covalent modification cycle can simultaneously achieve
fast signaling, high amplification and high ultrasensitivity.

A previous analysis has underpinned the strong
dependence of ultrasensitivity with respect to the parameters
K̃X and K̃X∗ , which are themselves functions of the dynamic
model parameters,

d̃X + k̃X

ãX
= K̃X and

d̃X∗ + 1

ãX∗
= K̃X∗ . (25)

Incorporating an ultrasensitivity objective in the optimization
problems (P2) and (P3) can be done in either one of the two
ways.

(1) Optimize the steady-state and transient kinetic parameters
jointly and enforce constraints (25) directly. This requires
accounting for both the transient model (7)–(12) and
the steady-state model (A.3)–(A.8) in the optimization
problem.

(2) Optimize the transient kinetic parameters only, while
enforcing an ultrasensitivity target indirectly via fixing
the Michaelis–Menten constants to the values κ̃X , κ̃X∗

as

d̃X + k̃X − κ̃X ãX = 0 (26)

d̃X∗ + 1 − κ̃X∗ ãX∗ = 0. (27)

This no longer requires the steady-state model (A.3)–(A.8)
in the optimization problem and, besides, the foregoing
constraints (26) and (27) are linear.

The second approach is considered next. Note that there
remains flexibility in the choice of the kinetic parameters
after enforcing constraints (26) and (27)—three remaining

degrees of freedom out of five, thereby leaving significant
freedom for optimization. As previously, separate optimization
formulations are considered for minimizing the rise time τr (P4)
and the decay time τd (P5),

find ãX , ãX∗ , d̃X , d̃X∗ , k̃X that
minimize rise time τr (23)

subject to amplification gain � (22)

target nH (26)−(27)

transient model (7)−(12) (P4)

and

find ãX , ãX∗ , d̃X , d̃X∗ , k̃X

minimize decay time τd (24)

subject to amplification gain � (22)

target nH (26)−(27)

transient model (7)−(12). (P5)

The Michaelis–Menten constant κ̃X∗ is set to 10−3 and
the value of κ̃X is then chosen in order to meet a
desired ultrasensitivity target nH ∈ {3, 4, 6, 8, 10, 12, 16}
(see figure S2 in the supporting material available at
stacks.iop.org/PhysBio/9/045010/mmedia). The influence of
the amplification and ultrasensitivity constraints on the
minimal signaling times is considered in the operating regime
ρS/X = ρP/X = 10−1 and for the kinetic parameters
ãX , ãX∗ , d̃X , d̃X∗ , k̃X varying in the range [10−3, 103].

Figure 6 (left plots) displays the optimal signaling times as
a function of the amplification gain �. The optimal rise time τr

exhibits a non-monotonic relationship with the amplification
gain and increases with the Hill coefficient target for a constant
gain. In contrast, the ultrasensitivity requirement has a limited
effect on the design for minimal decay time τd . It is also
found that the kinetic parameters ãX and ãX∗ stay at their
upper bounds and d̃X∗ at its lower bound in all cases. On the
other hand, the optimal values of the dissociation rate constant
d̃X of the kinase complex X : S∗ decrease significantly with
increasing nH, unlike those of the dissociation rate constant k̃X .
This is attributed to the fact that high ultrasensitivity requires
small values of the Michaelis–Menten constant K̃X —the value
of the other Michaelis–Menten constant K̃X∗ being fixed at
10−3, which requires that d̃X � ãX − k̃X according to (25).

Perhaps the most striking finding from this inverse
sensitivity analysis is that simple covalent modification cycles
can be designed in such a way that they achieve high
amplification and high ultrasensitivity, along with relatively
short signaling times, on the order of 10 to 100 times
the characteristic time (̃kX )−1 of the dissociation of the
X∗ : P complex. It has often been postulated that multiple
cycles in signaling cascades are needed to achieve multiple
objectives [15], but interestingly, our results show that even
a single interconvertible cycle can already meet several goals
simultaneously.

Designing flexible covalent modification cycles

Due to the inherent variability of chemical reactions and
cell components, the concentration levels in cells are subject
to large fluctuations. This subsection addresses the question
whether simple covalent modification cycles can be designed
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so that multiple objectives are met simultaneously in spite
of large variations in the enzyme-to-interconvertible-protein
ratio ρS/X and in the phosphatase-to-interconvertible-protein
ratio ρP/X .

Flexibility of nominal design to variations in the operating
regime. The robustness of a covalent modification cycle,
optimized under nominal conditions as in the previous
subsection, is investigated first. The results in figure 7 are
for the parameter values

ãX = ãX∗ = 103, d̃X = 53, d̃X∗ = 10−3, k̃X = 1.42,

which minimize response time for amplification and
ultrasensitivity objectives of � = 7 and nH = 6, respectively,
under the nominal regime ρS/X = ρP/X = 10−1(see figure 6).
Represented on these plots are all the other concentration
regimes ρS/X , ρP/X in the range [10−3, 1] for which the
constraints � � 7 and nH � 6 hold (unshaded area), together

with the contour lines for the rise time objective (left plot) and
the decay time objective (right plot).

Observe that the subset of operating regimes for which
such a cycle achieves fast response times—for instance,
both the rise time τ r and the decay time τ d less than 20
or 50—corresponds to a rather narrow region around the
nominal regime ρS/X = ρP/X = 10−1. Similar behavior was
observed for different nominal regimes and with different
amplification/ultrasensitivity thresholds (results not shown).
This analysis clearly points out that a signaling cycle, which
is designed to meet multiple objectives under a given nominal
regime, may not be tolerant to large fluctuations around that
particular regime. In other words, a nominally designed cycle
would typically lack robustness, which arguably constitutes
a strong barrier for their suitable implementation by living
organisms.
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Robust design to accommodate variations in the operating
regime. To circumvent the lack of flexibility inherent to
the nominal optimization problems (P4, P5), the optimization
formulation can be modified to explicitly account for the
variability in concentration ratios ρS/X , ρP/X . In the field of
optimization, such optimization problems fall into the scope
of robust optimization [46, 47].

The robust optimization counterpart of problems (P4, P5)
formulates as follows:
find ãX , ãX∗ , d̃X , d̃X∗ , k̃X that
minimize expected signaling time E(τr + τd ),

subject to lower bound on amplification gain,
� � �L for all ρS/X , ρP/X

lower bound on Hill coefficient,
nH � nL

H for all ρS/X , ρP/X

transient model (7)−(12).

steady-state model (A.3)–(A.8) (P6)

for the concentration ratios taking their values in a specified
range ρS/X ∈ [ρS/XL

, ρS/XU
] and ρP/X ∈ [ρP/XL

, ρP/XU
]. A

uniform probability distribution is assumed here for ρS/X ,
ρP/X over their entire ranges. The objective function in (P6)
is to minimize the expected value of the total signaling time
(τ r + τ d) over the range of ρS/X , ρP/X , rather than the total
signaling time for a particular (nominal) regime as previously.
Moreover, the inequality constraints on amplification and
ultrasensitivity too must be satisfied over the entire range of
ρS/X , ρP/X .

The results in figure 8 are for the parameter values

ãX = ãX∗ = 103, d̃X = d̃X∗ = 10−3, k̃X = 22.6,

which minimize the expected total response time for
amplification and ultrasensitivity thresholds of �L = 7 and
nL

H = 6, respectively, under the set of operating regimes
ρS/X = 10−1 ± 50% and ρP/X = 10−1. Represented on these
plots are again all the other regimes ρS/X , ρP/X in the range
[10−3, 1] for which the constraints � � 7 and nH � 6 hold
(unshaded area), together with the contour lines for the rise
time objective (left plot) and the decay time objective (right
plot).

The subset of operating regimes for which such a robustly
designed cycle achieves fast signaling times—e.g., both the
rise time τr and the decay time τd less than 20 or 50—is now
much larger than that for the nominal design counterpart in
figure 7, spanning more than one order of magnitude in both
ρS/X and ρP/X . Equally remarkable is the clear decoupling
between τr and ρP/X , on the one hand, and between τd and ρS/X ,
on the other hand. Such decoupling would, for instance, allow
a pathway to maintain a fast signal rise time, while modulating
its decay time by several orders of magnitude, and this simply
by varying the phosphatase-to-interconvertible-protein ratio
ρP/X —arguably a very appealing feature that would enable
flexibility and promote adaptedness in signaling cycles.

In a robustly designed cycle, the formation rates and
the dissociation rates of the complexes X : S∗ and X∗ : P
are pushed to their upper and lower bounds, respectively.
Therefore, the only trade-off in the robust design lies in the
choice of the kinetic parameter k̃X . It is found that a small value
of k̃X promotes higher ultrasensitivity, whereas a large value
of k̃X favors faster signaling times—both rise time and decay
time—together with higher amplification gains. This trend is
illustrated in figure S3 (see the supporting material available
at stacks.iop.org/PhysBio/9/045010/mmedia), which depicts
the same design objectives as in figure 8, but in the case
of a twofold increase in the kinetic parameter value as k̃X

= 50. These results also confirm that the foregoing features
of robustly designed cycles, including their flexibility, are
conserved through a wide range of values for k̃X .

Concluding remarks

A particularly insightful finding of the analysis conducted
in this paper is that, upon judicious selection of the kinetic
parameters ãX , ãX∗ , d̃X , d̃X∗ , k̃X , a single covalent modification
cycle not only has the ability to meet multiple objectives
simultaneously, but that these objectives can also be made
robust to large variations in the enzyme-to-interconvertible-
protein ratio ρS/X and in the phosphatase-to-interconvertible-
protein ratio ρP/X . Another remarkable finding is that
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the responsiveness of a robustly designed cycle—both its
rise time and decay time—can be modulated simply via
increasing or decreasing ρS/X and ρP/X , while maintaining
high ultrasensitivity and amplification gains. Such features
of signaling cycles give them the ability to perform various
signaling functions robustly and make them versatile and
adaptable. In particular, this analysis could help explain why
signaling cycles are so ubiquitous in cell signaling.

This study also shows that optimization, and more
specifically robust optimization, is particularly well suited
for studying signaling pathways and generating hypotheses
regarding their underlying design principles. Although focused
on covalent modification cycles, there are no conceptual
barriers toward the application of the same methodology to
more complex signaling pathways, such as multi-level MAPK
cascades or JAK-Stat pathways.

Appendix. Mathematical formulations of dynamic
optimization problems

For the dynamic model, we use the compact notation

F(ξ (τ ), ξ̇ (τ ), p, r) = 0, (A.1)

where the vector of state variables is ξ :=
{x∗ s {x : s∗} {x∗ : p}}T , the vector of kinetic pa-
rameters is p : = (ãX ãX∗ d̃X d̃X∗ k̃X )T and the vector of
concentration ratios is r : = (ρS/X ρP/X )T.

In the same manner, the steady-state model is represented
as

G(ξ , αX , q, r) = 0 (A.2)

with the vector of steady-state model parameters q : =
(K̃X K̃X∗ )T.

In order to use a continuation approach [40], the steady-
state equations (13)–(15) are differentiated with respect to αX ,

0 =
•

{x : s∗}(αX ) + K̃X

(K̃X + x)2
(

•
x∗(αX )

+ ρS/X
•

{x : s∗}(αX ) + ρP/X
•

{x∗ : p}(αX )) (A.3)

0 =
•

{x∗ : p}(αX ) − K̃X∗

(K̃X∗ + x∗)2

•
x∗(αX ) (A.4)

0 =
•

{x∗ : p}(αX ) − αX

•
{x : s∗}(αX ) − {x : s∗} (A.5)

1 = x + x∗ + ρS/X {x : s∗} + ρP/X {x∗ : p} (A.6)

1 = s∗ + {x : s∗} (A.7)

1 = p + {x∗ : p}. (A.8)

The mathematical formulation of the optimization problem
(P1), where the objective is to maximize ultrasensitivity subject
to the steady-state model (A.3)–(A.8), reads

max
q,α10

X ,α90
X

nH = ln(81)

ln(α90
X ) − (α10

X )
(P1)

subject to
∂G
∂ξ

ξ̇ (αX ) + ∂G
∂αX

= 0,

0 � αX � α∞
X , G(ξ (0), 0, q, r) = 0,

x∗(α10
X ) = 0.1x∗(α∞

X ), x∗(α90
X ) = 0.9x∗(α∞

X ),

0 � α10
X � α90

X � α∞
X , 10−2 � q � 102.

As noted, the initial conditions ξ (0) are determined from
G(ξ (0), 0, q, r) = 0. Equations (A.7) and (A.8) give x

∗
(0) =

{x
∗
:p}(0) = 0 and p(0) = 1; the remaining initial concentrations

x(0), s
∗
(0) and {x:s

∗}(0) depend on the kinetic constant K̃X and
the concentration ratio ρS/X only and are given by

0 = x(0)2 + (K̃X + ρS/X − 1)x(0) − K̃X (A.9)

{x : s∗}(0) = 1 − x(0)

ρS/X
(A.10)

s∗(0) = 1 − 1 − x(0)

ρS/X
. (A.11)

The forward and backward step inputs in the transient studies
require two different formulations of the fraction of inactive
receptor as

s :=
{

1,

0,

τ � 0
τ > 0,

(A.12)

and

s :=
{

0,

1,

τ � 0
τ > 0.

(A.13)

Moreover, the activation/deactivation of the receptor is
assumed to occur under very fast kinetics (i.e. v = 1000)
and is modeled as

ds

dτ
= −vs, (A.14)

and
ds

dτ
= vs∗. (A.15)

We append (A.12) and (A.14) to the transient model when
analyzing signaling rise time and (A.13) and (A.15) when
analyzing signaling decay time.

The optimization problems (P2) and (P3) determine the
kinetic parameter values that minimize the signaling times
(the rise time τr and the decay time τd , respectively), subject
to a fixed amplification constraint �,

min
p,τr

τr (P2)

subject to Fr(ξ (τ ), ξ̇ (τ ), p, r) = 0,

0 � τ � τ∞, ξ (0) = ξr0 ,

x∗(τr) − 0.9x∗(τ∞) = 0,

�ρS/X − x∗(τ∞) = 0,

10−3 � p � 103,

and

min
p,τd

τd (P3)

subject to Fd(ξ (τ ), ξ̇ (τ ), p, r) = 0,

0 � τ � τ∞, ξ (0) = ξd0 ,

x∗(τd ) − 0.1x∗(τ∞) = 0,

�ρS/X − x∗(0) = 0,

10−3 � p � 103,

The previous optimization formulations are then extended
to include additional constraints. The goal of the resulting
optimization problems (P4) and (P5) is to determine the kinetic
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parameter values that minimize the signaling times, subject to
given amplification and ultrasensitivity thresholds,

min
p,τr

τr (P4)

subject to Fr(ξ (τ ), ξ̇ (τ ), p, r) = 0,

0 � τ � τ∞, ξ (0) = ξr0 ,

x∗(τr) − 0.9x∗(τ∞) = 0,

�ρS/X − x∗(τ∞) = 0,

d̃X + k̃X − κ̃X ãX = 0,

d̃X∗ + 1 − κ̃X∗ ãX∗ = 0,

10−3 � p � 103.

and
min
p,τd

τd (P5)

subject to Fd(ξ (τ ), ξ̇ (τ ), p, r) = 0,

0 � τ � τ∞, ξ (0) = ξd0 ,

x∗(τd ) − 0.1x∗(τ∞) = 0,

�ρS/X − x∗(0) = 0,

d̃X + k̃X − κ̃X ãX = 0,

d̃X∗ + 1 − κ̃X∗ ãX∗ = 0,

10−3 � p � 103.

To account for the inherent variability of the concentration
ratios r, we use a robust optimization framework. The
optimization problem (P6) determines the kinetic parameter
values that minimize the expected signal propagation times,
subject to lower bounds on amplification and ultrasensitivity,

min
p,τr,τd ,q,α10

X ,α90
X

∫ rU

rL

[τr(r) + τd (r)] dr (P6)

subject to Fr(ξ (τ ), ξ̇ (τ ), p, r) = 0,

0 � τ � τ∞, ξ (0) = ξr0 ,

x∗
r (τr) − 0.9x∗

r (τ
∞) = 0,

Fd(ξ (τ ), ξ̇ (τ ), p, r) = 0,

0 � τ � τ∞, ξ (0) = ξd0 ,

x∗
d(τd ) − 0.1x∗

d (τ∞) = 0,

x∗
r (τ

∞)

ρS/X
� �L,∀r ∈ [rL, rU ],

∂G
∂ξ

ξ̇ (αX ) + ∂G
∂αX

= 0,

0 � αX � α∞
X , G(ξ (0), 0, q, r) = 0

x∗(α10
X ) = 0.1x∗(α∞

X ), x∗(α90
X ) = 0.9x∗(α∞

X ),

K̃X = d̃X + k̃X

ãX
, K̃X∗ = d̃X∗ + 1

ãX∗
,

ln(81)

ln(α90
X ) − ln(α90

X )
� nL

H ,∀r ∈ [
rL, rU

]
,

0 � τr, τd � τ∞, 0 � α10
X � α90

X � α∞
X ,

10−3 � p � 103, 10−2 � q � 102.

Problems (P1)–(P5) are dynamic optimization problems. The
goal of dynamic optimization (DO) is to find the optimal
input parameters and/or profiles of a dynamic system.
Optimality is defined as the minimization or maximization of
an objective function, subject to specified constraints. Part of
these constraints are given in the form of differential equations.

We solve these problems using the sequential method
of dynamic optimization. The NLP subproblems are solved
with the SQP solver SNOPT [48]. We have used the solver

DSL48S [49], which is part of DAEPACK [50] and for
solving the initial-value problems (IVPs) in DAEs. This
package is well suited for large-scale problems. DAEPACK
is also used for consistent initialization and for calculating
first-order parametric sensitivities. Finally, all the necessary
differentiations (of the models, the objective functions and the
constraint functions) are generated using the capabilities of
DAEPACK. In order to avoid local solutions that can be very
misleading, we systematically perform the optimization from
multiple randomly generated starting points.

Problem (P6) is a robust dynamic optimization problem.
The goal of robust optimization (RO) is to search for designs
and solutions that are immune to the effect of parametric
uncertainty.

We solve this problem by using the so-called DAEs inside
DAE approach, where the inner set of DAEs describes the
system and the outer set describes the uncertainty [51].
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