
SLICC: Self-Assembly of Instruction Cache Collectives for OLTP Workloads

Islam Atta† Pınar Tözün‡ Anastasia Ailamaki‡ Andreas Moshovos†

‡École Polytechnique Fédérale de Lausanne †University of Toronto
{pinar.tozun, anastasia.ailamaki}@epfl.ch {iatta, moshovos}@eecg.toronto.edu

Abstract

Online transaction processing (OLTP) is at the core of many data
center applications. OLTP workloads are known to have large in-
struction footprints that foil existing L1 instruction caches resulting
in poor overall performance. Prefetching can reduce the impact of
such instruction cache miss stalls; however, state-of-the-art solutions
require large dedicated hardware tables on the order of 40KB in size.

SLICC is a programmer transparent, low cost technique to min-
imize instruction cache misses when executing OLTP workloads.
SLICC migrates threads, spreading their instruction footprint over
several L1 caches. It exploits repetition within and across transac-
tions, where a transaction’s first iteration prefetches the instructions
for subsequent iterations or similar subsequent transactions. SLICC
reduces instruction misses by 58% on average for TPC-C and TPC-
E, thereby improving performance by 68%. When compared to a
state-of-the-art prefetcher, and notwithstanding the increased storage
overheads (42× as compared to SLICC), performance using SLICC
is 21% higher for TPC-E and within 2% for TPC-C.

1. Introduction

Online transaction processing (OLTP) is a multi-billion dollar indus-
try that increases 10% annually [7]. OLTP needs have been driving
innovations by both database management system and hardware ven-
dors, and OLTP performance has been a major metric of comparison
across vendors [11, 31, 32]. Unfortunately, modern cloud and server
infrastructures are not tailored well for the characteristics of OLTP
applications [4]. Literature shows that OLTP workloads are memory
bound; memory access stalls account for 80% of execution time, most
of which are due to first-level instruction cache misses [15, 4, 28].
Software [9] and hardware [14, 26, 3, 5] efforts are trying to alleviate
stall time related to instruction misses.

Transactions of canonical OLTP systems are randomly assigned
to worker threads, each of which usually runs on one core of a
modern multi-core system. The instruction footprint of a typical
transaction does not fit into a single L1-I cache, thus thrashing the
cache and incurring a high instruction miss rate. Although L2 and
L3 caches are growing in size, today’s technology and CPU clock
cycle constraints prevent deploying L1-I caches larger than 32KB. As
this work demonstrates, the instruction footprint of a typical OLTP
transaction fits comfortably in the aggregate L1-I cache capacity of
modern many-core chips. Provided that there is sufficient code reuse,
spreading the footprint of transactions over multiple L1-I caches
would reduce instruction cache misses. Fortunately, as corroborated
by our experimental results, OLTP workloads exhibit a high-degree
of instruction reuse both within a transaction and across concurrently
running transactions [3, 9].

This paper proposes SLICC (Self-Assembly of Instruction Cache
Collectives), a hardware technique that utilizes thread migration to
minimize instruction misses for OLTP workloads. SLICC divides the
instruction footprint of a transaction into smaller code segments and

spreads them over multiple cores, so that each L1-I cache holds part
of the instruction footprint. As part of this process the L1-I caches
self-assemble to form a collective that reduces the instruction misses
for this transaction and other similar ones. SLICC exploits intra- and
inter-thread instruction locality in two orthogonal ways: (1) A thread
looping over multiple code segments spread over multiple caches
observes a lower miss rate (as opposed to a conventional system in
which each segment would evict the others from the cache), thereby
avoiding thrashing. (2) A preamble thread effectively prefetches and
distributes common code segments for subsequent threads, thereby
reducing the total miss rate. As execution progresses, old cache
collectives are naturally disassembled and new ones are formed to
hold the footprints of new transactions.

As opposed to previous OLTP instruction miss reduction tech-
niques, SLICC is a hardware solution, that avoids undesirable in-
strumentation, utilizes available core and cache capacity resources,
covers user as well as system-level code, and requires no changes to
the existing user code or software system. SLICC incurs overheads
due to thread migration; thus, context switching and increases in
data misses must be amortized to improve performance. A hardware
thread migration mechanism provides a programmer transparent so-
lution that has low context switching overheads, and the positive
impact of the reduction in instruction misses outpaces the extra data
misses.

To evaluate SLICC, we execute two popular transactional bench-
marks, TPC-C [29] and TPC-E [30], as well as a MapReduce [4]
cloud workload. Our experiments show that, on average, thread mi-
gration eliminates 56% of the L1 instruction misses resulting in a
68% overall performance improvement over the baseline (described
in Section 5.1). Compared to PIF [5], a state-of-the-art instruction
prefetcher, SLICC improves performance by 21% for TPC-E and
comes within 2% for TPC-C, with only 2.4% of relative storage area
overhead. SLICC is also robust as it does not affect the performance
of MapReduce [4], a cloud workload, which has a relatively small
instruction footprint. In summary, this paper makes the following
contributions:

- It characterizes the memory behavior of TPC-C [29] and
TPC-E [30] showing that transactions suffer from instruction
misses, and that their instruction streams exhibit intra- and inter-
transaction recurring patterns leading to eviction of useful blocks
that are re-accessed (96% of capacity misses are for instructions).

- It demonstrates that recently proposed cache replacement poli-
cies [24, 12] reduce instruction misses by 8% on average for the
best policy, but leave ample room for improvement.

- It presents SLICC, a hardware thread migration algorithm, and
shows that it reduces instruction misses by 56% on average with
an overall 68% performance improvement for OLTP.

The remaining of this document is organized as follows. Section 2
analyzes the nature of the problem and Section 3 sets the require-
ments for an ideal solution. Section 4 describes the automated thread

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147990718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

10

20

30

40

50

60
1

6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Cache Size (KB)

S
p

e
e

d
u

p

M
P

K
I

Conflict Capacity

Compulsory Speedup

L1-I L1-D

TPC-C TPC-E

L1-I L1-D L1-DL1-I

MapReduce

Figure 1: Instruction and data L1 misses and relative performance as
a function of cache size.

migration algorithm SLICC. Section 5 demonstrates experimentally
the performance benefits of SLICC. Sections 6 reviews related work,
while Section 7 presents our conclusions.

2. Instruction MISS Analysis
This section examines the OLTP memory behavior that motivates
thread migration for instruction cache miss reduction. The analysis
targets TPC-C [29] and TPC-E [30], which resemble state-of-the-
art commercial OLTP applications. We contrast their behavior with
MapReduce [4], a data center workload which has a smaller instruc-
tion footprint. We find that for OLTP transactions:
1. Most instruction misses are due to limited cache capacity, whereas

most data misses are compulsory.
2. The instruction footprint of most transactions would fit in the

aggregate L1 instruction cache capacity of even small scale chip
multiprocessors (eight cores). The same is not true for data foot-
prints.

3. Existing non-LRU cache replacement policies reduce the instruc-
tion miss rate, but only by a fraction of what would be possible
with larger caches.

4. There is intra-thread locality, but over code regions that are larger
than a typical L1 cache size.

5. There is significant inter-thread locality, particularly across threads
of the same transaction type.

2.1. OLTP Instructions and Data Misses

In typical multi-threaded OLTP systems, a transaction is assigned to
a worker thread. Thus multiple similar transactions (threads) usually
run concurrently. Individual threads, whose memory footprints do not
fit in the L1 cache, suffer from high miss rates. Ferdman et al. show
that in OLTP, memory stalls account for up to 80% of the execution
time [4], while Tözün et al. show that instruction stalls account for
70–85% of the overall stall cycles [28].
2.1.1. L1 Miss Breakdown We further analyze instruction and data
L1 misses. Figure 1 shows the number of misses per kilo-instructions
(MPKI) for a range of L1 instruction (L1-I) and data (L1-D) cache
sizes. Section 5 details the experimental methodology. We first vary
the L1-I cache size (16KB–512KB) while keeping the L1-D cache
size at 32KB (our baseline), and then we vary the L1-D cache size
while keeping the L1-I at 32KB. CACTI 6 [20] is used to model the
access latencies of different cache sizes. Figure 1 shows a breakdown
of instruction and data L1 misses into three categories: capacity,
conflict and compulsory [10]. By identifying where most misses
come from, we highlight the reasons behind the memory stalls; is it
cache size, associativity, or cold misses?

 

0

5

10

15

20

25

30

35

40

TPC-C TPC-E MapReduce

L
1

 I
n

s
t
r
u

c
ti

o
n

 M
P

K
I

LRU LIP BIP DIP SRRIP BRRIP DRRIP

Figure 2: MPKI with different cache replacement policies.

Figure 1 shows that for OLTP workloads, capacity misses dominate
instruction misses. This implies that the instruction footprint does
not fit in the cache and has lots of reuse; cache blocks are evicted
from the cache before they are re-referenced. Hence larger L1-I
caches, which can hold cache blocks for longer periods, can reduce
instruction misses. To keep up with the CPU clock speeds, technology
constraints have limited the sizes of L1 instruction caches to about
32KB today. With 32KB caches, instruction capacity misses are
an order of magnitude more than data capacity misses. Compulsory
misses, which occur for the first reference to each unique cache block,
dominate data misses. Thus, larger data caches can do little to reduce
data misses. For 32KB caches, compulsory data misses are an order
of magnitude more than compulsory instruction misses. Unless data
is prefetched, data misses cannot be reduced.

MapReduce is a cloud workload featuring a relatively smaller
instruction footprint [4]. Since 71% of the total L1 misses are com-
pulsory for 32KB caches, larger L1 instructions or data caches are
not as beneficial.

Figure 1 also shows overall performance improvement normalized
to the 32KB baseline. Performance improvements with larger L1-D
caches are negligible at 1%, but can be as high as 16% with larger L1-I
caches (MapReduce shows less than 3% improvement). If increasing
cache size did not also increase latency, performance improvements
would be higher; for example, a 512KB L1-I with the latency of
a 32KB L1-I would result in a 61% performance improvement for
TPC-C.

We conclude that (a) OLTP transactions have instruction footprints
that, while larger than typical L1-I caches, could fit in the aggregate
L1-I capacity of modern multi-cores. (b) OLTP data footprints are
much larger and cannot fit onto the aggregate L1-D capacity of
modern multi-cores. Additionally, (c) OLTP instruction streams
exhibit a significant reuse over regions that exceed typical L1-I cache
sizes leading to the eviction of useful blocks that are re-accessed.

2.1.2. Replacement Policies Conventional caches often use some
approximation of LRU replacement. Qureshi et al. show that some
workloads, including those that have long-term reuse, are not LRU-
friendly [24]. For such workloads, LRU cycles through a large
footprint while it would be best to keep at least some part of the
footprint cache resident. They modify LRU by introducing new
static (LIP, BIP) and dynamic (DIP) insertion policies where newly
accessed blocks are not necessarily inserted at the most-recently-used
position of the LRU stack. Jaleel et al. propose the SRRIP, BRRIP,
and DRRIP re-reference interval based insertion policies [12]. Their
Re-reference Insertion Prediction (RRIP) chain represents the order
in which blocks are predicted to be re-referenced. The block at the



 

0%

20%

40%

60%

80%

100%

Global Per Transaction Global Per Transaction

TPC-C TPC-E

In
s
tr

u
c
ti

o
n

 R
a

t
io

Single Few Most

Figure 3: Breakdown of accesses accordingly to instruction block
reuse.

head of the RRIP chain is predicted to have a near-immediate re-
reference interval, while the block at the tail of the RRIP chain is
predicted to have a distant re-reference interval. On a cache miss,
a distant block is replaced. Re-references to a block promote its
position towards the head of the chain.

Figure 2 reports the MPKI for these replacement policies for the
baseline 32KB L1-I cache. BRRIP and DRRIP perform best reducing
misses by an average of 8% over LRU. This reduction is only a
fraction of what is possible with larger caches as Figure 1 showed.

Thrashing applications favor Bimodal RRIP (BRRIP), which pre-
dicts a distant re-reference interval for most blocks [12]. Dynamic
RRIP (DRRIP) selects the best policy from Static RRIP (SRRIP)
and BRRIP at runtime. Figure 2 shows that DRRIP chose BRRIP
most of the time. Contrary to the Least Insertion Policy (LIP), which
promotes a referenced block to the MRU position, BRRIP uses access
frequency to promote cache blocks gradually towards the head of the
chain.

Thus, we see that the recurring patterns exhibited by OLTP instruc-
tion streams have relatively long periods that cannot be fully captured
by existing insertion/replacement policies. Nevertheless, replacement
policies are orthogonal to thread migration.
2.1.3. Redundancy Across Threads Chakraborty et al. profile
OLTP instruction accesses and report an 80% redundancy across
multiple cores for user and OS code [3]. Figure 3 corroborates these
results and further shows that 98% of the instruction cache blocks
are common among threads executing the same transaction type;
although similar transactions do not follow the exact same control
flow path, they have common code segments at a coarser granularity.
Figure 3 shows a breakdown of all instruction cache accesses classi-
fied according to the reuse experienced by the accessed block over
the duration of the application. The figure presents three coarse reuse
categories: single, few and most that correspond to blocks accessed by
only one thread, at most, or more than 60% of all the threads, respec-
tively. This behavior highlights an opportunity to reduce instruction
misses by exploiting temporal locality across multiple threads, partic-
ularly threads of the same transaction type.

3. Thread Migration for OLTP

SLICC exploits the aggregate L1-I cache capacity of many cores and
the availability of multiple concurrent threads with inherent code
commonality. It is a hardware transaction scheduling algorithm that
spreads the instruction code footprint across multiple L1-I caches.
SLICC dynamically pipelines and migrates threads to cores that are
predicted to hold the code blocks to be accessed next. By migrating

Figure 4: Thread migration common code segment reuse example.
Left: T1-3 and T4-5 are threads running similar transactions.
Right: 8-core system. The shaded area is the cache activity
(thick border = warm-up phase).

threads, SLICC virtually increases the cache capacity observed by
a thread, and thus, the reuse of instruction blocks brought in to the
cache, avoiding thrashing.

The observations of Section 2.1 support SLICC’s approach: (a) it
can avoid many instruction misses by virtually increasing the L1-I
cache size per thread; and (b) it can effectively increase locality by
grouping similar transactions together. SLICC tends to increase intra-
and inter-thread instruction locality.

3.1. Example Scenario

Figure 4 exemplifies how thread migration can reduce instruction
misses. Threads T1-T5 are scheduled to run on an 8-core system,
where T1-T3 and T4-T5 execute respectively transactions of the same
type. The transactions’ footprints are divided into code segments,
where each segment fits in the L1-I cache of a single core, but two
segments would not fit together. T1 executes the following code
segments in order: A-B-C-A. Thus, its instruction footprint is 3×
larger than the L1-I cache size. Since T2 and T3 are of the same
type as T1, they share common segments with T1, but their execution
paths are not identical. A conventional system would schedule T1,
T2, and T3 on separate cores, and since their footprints are larger than
the L1-I cache size, each thread would suffer all instruction misses.

Figure 4 (right) demonstrates an ideal scenario for thread migration.
Initially (at time t0), T1 runs on core-0. When it is done with code
segment A, and so all cache blocks for A have been brought in to
the cache, T1 migrates to core-1 (at t1), where it continues execution
fetching cache blocks of segment B. At the same time, T2 can be
scheduled to start execution on core-0 (at t1), ideally reusing all
blocks in A (miss rate close to zero). We refer to this as inter-thread
reuse. The process continues and T1 warms-up caches 1 and 2 with
B and C, respectively. At t3, when T1 goes back to A, it migrates to
core-0 benefiting from intra-thread reuse.

Migration is beneficial even if T1-T3 do not follow identical paths,
as segment D illustrates. Since T1 did not touch segment D, T2 will
suffer due to the corresponding misses while executing on core-3. If
T3 follows suit on core-3, it will not suffer any instruction misses for
segment D.

T4-T5 that access different code segments benefit as well if they
get assigned to a different set of cores, avoiding conflicts with T1-
T3. This process applies to all subsequent threads: if they touch a
code segment that exists in some L1-I cache, they migrate to the
corresponding core and avoid missing for these segments.



Without thread migration multiple requests would be repeatedly
sent out for the same cache block from multiple cores. With thread
migration, an instruction cache block is, under the ideal scenario,
requested only once, and reused multiple times.

3.2. SLICC Requirements

Based on our preceding discussion we identify three requirements for
SLICC. SLICC should dynamically detect: (a) When a thread should
migrate, i.e., when is the current cache full; and (b) where the thread
should migrate to, i.e., which remote cache, if any, holds the code
segment the thread will touch next. Since transactions vary in their
control flow, SLICC should (c) not impose any specific pipelining,
i.e., it should not restrict similar threads to follow the exact same
path.

In order to meet these requirements, SLICC needs to maintain
runtime information about caches and individual threads to be able to
make judicious migration decisions. First, SLICC needs a mechanism
to determine whether the cache is filled-up with useful cache blocks
or not. In addition, with respect to a given core, SLICC should be
able to predict which remote core holds the cache blocks that will be
touched next.

The basic SLICC design is a type-oblivious algorithm, i.e., no infor-
mation is provided about which threads resemble the same transaction
type. Information about thread types could enhance SLICC’s process.
Thus, there are several alternatives. On one extreme, the hardware
can dynamically migrate threads to cores irrespective of their types.
On the other extreme, the software layer can transfer knowledge
about thread types. In between, threads can be pre-processed to de-
tect threads with similar starting address ranges. We detail the three
alternatives in Section 4.

3.3. Effect on Data Misses

When a thread migrates, it leaves data that might be reused behind.
This may increase the data miss rate. Section 5 shows that while
SLICC does increase the data miss rate, the benefit from reducing
instruction misses outpaces the performance loss due to data miss
increase.

Intuitively, depending on the workload, instruction misses can
impact performance more than data misses. For example, modern
architectures use instruction level parallelism (ILP) to hide data miss
latencies. Instruction misses restrict instruction supply, rendering
such ILP techniques less effective. Existing core architectures make
no effort to balance the relative cost of the two types of misses.
SLICC provides a way of balancing the relative costs of data vs.
instruction misses. In Section 5 we show that SLICC reduces the
overall L1 miss rate.

4. SLICC Design

SLICC exploits intra- and inter-thread locality. (1) It virtually in-
creases the L1-I cache capacity observed by a thread; thus, it improves
locality within a thread. (2) It pipelines similar threads, such that
one thread fetches instruction cache blocks that are reused by many
threads.

This work presents three different SLICC designs. The first design
(SLICC) is transaction-type-oblivious, while the other two exploit
transaction type information. Given that threads of the same trans-
action type tend to have similar footprints, knowing each thread’s
transaction type can lead to better migration decisions. The transac-
tion type information is either provided by the software (SLICC-SW),

or detected at runtime by the hardware based on the initial instruction
sequence each thread executes (SLICC-Pp). These implementations
represent the two extremes and an in-between solution in terms of
hardware/software co-operation. Future work may look at other
alternatives.

4.1. Transaction-Type-Oblivious SLICC

SLICC is a dynamic hardware thread scheduling and migration algo-
rithm that is programmer transparent. SLICC attempts to partition
on-the-fly the instruction footprint of transactions into several seg-
ments where each segment fits in the L1-I cache, but two segments
do not fit together. Ideally: (1) a thread will migrate to another core
when it starts touching a different segment, and (2) the destination
core will already have the segment cached.

Figure 5 shows the sequence of events that lead to thread migration.
In the steady state, each core has a running thread and a hardware
queue of waiting threads. Using a naïve load-balancing strategy,
newly arrived threads are scheduled to the least congested core (i.e.,
the core with the least number of waiting threads). A SLICC agent
at each core continuously monitors execution locally in order to
determine whether (Q.1) the local cache is filled-up with useful
instruction blocks, if so, (Q.2) whether these blocks are useful to the
current thread and for how long, and (Q.3) where to migrate to if
needed.

(Q.1) Is the cache full with useful blocks? As a thread starts
executing on a core it may experience many misses. If the cache
contains a segment that may be useful for other threads, it is best to
migrate the current thread to another core. Otherwise, it is best to
allow the current thread to load a new segment in the cache. SLICC
uses a “cache full” detection heuristic to make this decision. Initially,
all caches are “empty”. To detect whether a cache has been filled
up with a segment, SLICC counts the number of misses using a
resettable, saturating miss counter (MC) local to each core. When
the number of misses exceeds the threshold, fill-up_t, the cache is
considered full. In the long run, all MCs will saturate, preventing
new segments from being cached effectively due to premature thread
migration. To create opportunities for loading new segments, SLICC
resets the MC when the core’s thread queue becomes empty. The
currently cached blocks are not flushed, so if a subsequent thread
requires the same segment it will still find it there. However, a thread
touching a new segment will be given the opportunity to cache it.

(Q.2) Are the current cache contents useful to this thread and
for how long? When running a thread on a full cache, SLICC tries
to determine whether the thread is going over the cached segment,
or whether it is about to move to a new segment. For this purpose
SLICC measures miss dilution, that is, the recent frequency of misses
(detailed in Section 4.2.2). If miss dilution is low, then SLICC
predicts that thread is only temporarily diverting away from the
cached segment. Since the thread will converge again soon, it is best
to not migrate to benefit from the forthcoming instruction reuse. If
miss dilution is high, then SLICC predicts that the thread is moving
to a different segment. If it continues execution on this core it will
evict useful cache blocks, which could be reused by other threads.
SLICC predicts that it might be better to migrate the thread elsewhere.
The question at this point becomes where to go?

(Q.3) Where to migrate to? Ideally, SLICC would migrate a
thread to a cache that has the thread’s next segment. SLICC attempts
the following in order: (1) If the thread is going to touch a code
segment that is available on another core, the thread migrates there.



Figure 5: Thread Migration Algorithm.

Figure 6: SLICC Architecture.

(2) Otherwise, the thread migrates to an idle core, if any. (3) The
thread stays put. In the last case, migrating the thread would incur
overheads and would evict remotely cached segments that may be
useful for other threads. SLICC opts for incurring the instruction
misses locally avoiding the migration overhead.

To detect which, if any, remote cache has the next segment, SLICC
uses a short sequence of matched_t number of tags of recent misses,
predicting that they form the preamble of the next segment. Concep-
tually, once SLICC decides to try to migrate a thread, it searches all
remote L1-I caches for these recently missed tags. Section 4.2.3 ex-
plains how this search can be implemented including an incremental
method that uses the existing coherence protocol responses.

Figure 5 summarizes the execution stages of a thread on a core
until it migrates, or completes execution.

4.2. Implementation Requirements

Figure 6 shows that SLICC’s implementation comprises: (a) a cache
full detector, (b) a miss dilution tracker, and (c) a remote cache
segment search unit. SLICC uses hardware thread migration, and
thus, interacts with the OS as Section 4.4 explains in more detail. The
three aforementioned units, described subsequently, track all cache
accesses, including speculative ones.

4.2.1. Cache Full Detection A log2(L1I cache blocks) wide satu-
rating miss counter (MC) continuously counts the number of misses.
When MC saturates at a value of fill-up_t SLICC assumes that the
cache has now captured a full segment and may trigger migrations
accordingly. We experimentally found that using a value in the order
of cache size

2 for the fill-up_t threshold works reasonably well, with
little sensitivity to the exact value of this parameter. Other fill-up
detection mechanisms may be possible but are beyond the scope of
this paper.
4.2.2. Miss Dilution Tracking It is not always beneficial to migrate
threads immediately after a cache becomes full or when a thread
incurs a few misses. SLICC must predict whether the thread is only
temporarily diverging due to conditional control flow or whether it
is moving to a completely different segment. Furthermore, since
threads have to miss for a few blocks before migrating (matched_t
tags must be located on a remote cache), a few useful cache blocks
may be evicted, creating gaps in the exiting segment and causing a
corresponding number of misses for subsequent threads. Finally, a
thread may immediately loop back to the same code segment or may
temporarily follow a somewhat different path after being selected for
migration.

SLICC handles these cases by considering the frequency of instruc-
tion misses; it restricts migration to the cases when a thread starts to
miss more frequently. If the thread is moving to a new segment, it
will incur more misses than hits. SLICC counts the number of misses
in a window of recent accesses. When this count is above the dilution
threshold, dilution_t, migration is enabled. The miss shift-vector
(MSV) is a 100-bit FIFO shift vector recording the hit/miss history
for the last 100 cache accesses (enabled when cache is filled-up). A
logic-0 and logic-1 represent a cache hit and miss, respectively. When
the number of logic-1 bits reaches a threshold (dilution_t), SLICC
enables migration. SLICC resets the MSV with every migration.
4.2.3. Remote Cache Segment Search When SLICC decides to
migrate a thread it has to determine which cache, if any, contains the
segment the thread is executing. To do so, SLICC records recently
missed tags in the Missed Tag Queue (MTQ), which is a matched_t
entry FIFO of n-bit entries, where n is the number of cores. A
logic-1 on bit index C for MTQ entry i indicates that the ith recently
missed cache block was cached at core C. Thus, by ANDing all bits
at index C we know whether core C holds all the recently missed
cache blocks. This information does not have to be exact or accurate,
since it is used by a prediction mechanism. SLICC gathers this
information incrementally as misses occur and stores it in the MTQ.
The remote cache segment search is distributed and the decision is
made locally by the core we migrate from. A directory coherence
protocol could report the complete or partial sharing vector for misses
that are tracked by the MTQ.

Alternatively, or if the coherence protocol is snoop-based, SLICC
could broadcast the missed tags as they occur and explicitly request
that remote cores identify themselves. On snoop coherence systems,
these requests can piggyback on the existing snoop requests. Search-
ing remote L1-I caches requires extra bandwidth on the remote caches
that is proportional to the number of missed tags and cores.

To avoid this bandwidth overhead, we use an approximate cache
signature in the form of a partial-address bloom filter that supports
evictions [23]. When the index size of the bloom filter is larger than
the cache set index, collisions occur only within sets. Hence on
evictions, only the set of the evicted block is checked for collisions.
Every core maintains such a filter, representing a superset of the



currently cached blocks. In this design, once migration is triggered,
remote-cache search requests are answered by the approximate sig-
nature, avoiding contention with the original cache references of the
remote core. In Section 5.3, we evaluate the tradeoff of the bloom
filter’s accuracy versus its size. We find that for a 32KB cache, a
256B bloom filter is sufficient.

If no matching remote cache is found, SLICC will attempt to find
an idle core. SLICC either broadcasts a request for idle cores to
report, or piggy-backs this information on the responses received
during the miss tag search phase. Thread migrations are relatively
infrequent (every 3.2K instructions on average), reducing the relative
overhead of remote cache segment and idle core searching.

4.3. Exploiting Transaction Type Information

Section 2.1.3 showed that the instruction footprint overlap is higher
among threads of the same transaction type. The basic SLICC does
not directly exploit this phenomenon. It tries to detect, on-the-fly,
whether a thread matches the segment on the core it is currently
executing. Thus, a thread of type X may partially kick-out cache
blocks used by threads of type Y. If the transaction type for each
thread were known, SLICC could schedule similar threads on the
same set of cores to reduce conflicts. We propose two SLICC variants
that exploit such thread transaction type information.
4.3.1. Assigning Transaction Types SLICC-SW relies on the OLTP
software layer to annotate each thread upon launch with a transaction
type. This guarantees correctness, but requires some modifications to
the software/hardware interface.

Alternatively, SLICC-Pp uses a hardware preprocessing phase to
assign types to threads as they launch. SLICC-Pp exploits the obser-
vation that in OLTP the first few instructions executed are the same
for same-type threads, while they differ across different-type threads.
SLICC-Pp only needs to know when a new thread is launched. A
middle-ware layer assigns threads in groups to a core devoted for
this purpose (scout core). There, each thread executes a few tens
of instructions, while the instruction addresses are hashed. The re-
sulting values are used as thread type identifiers. Experiments show
that SLICC-Pp is 100% accurate when executing a small number of
instructions. SLICC-Pp dedicates one core for pre-processing.
4.3.2. Type-Aware Migration Using thread type information,
SLICC groups similar threads into teams. Creating teams is use-
ful for two reasons: (1) it groups similar transactions to improve
opportunities for co-scheduling and overlap, and (2) it helps schedul-
ing reduce waiting times. For each thread SLICC records a unique
numerical ID, a type ID, and an arrival timestamp. The timestamp
of a team is that of its oldest thread. The oldest team is scheduled,
without pre-emption if possible.

We intuitively design a scheduling algorithm that maximizes the
core utilization and reduces the queuing delay of threads. Team sizes
differ and for an N-core architecture we categorize them into large
(1.5× to 2× N threads), medium (0.5× to 1.5× N threads), and small
(less than 0.5×N threads) teams. Cores are time-multiplexed among
teams. When large teams are scheduled, they are allowed to execute
on all cores. Medium size teams are limited to half the resources
(0.5×N cores). Threads of a small team are treated as stray threads,
and are not grouped. Rather, stray threads are scheduled, individually,
to idle cores, or in parallel with a medium team. For SLICC-SW
and SLICC-Pp, when a team of threads completes execution, SLICC
resets all MCs, MTQs and MSVs.

Table 1: Workload Parameters.

TPC-C-1 1 warehouse, 84 MB
Wholesale supplier

TPC-C-10 10 warehouses, 1 GB
Wholesale supplier

TPC-E 1000 customers, 20 GB
Brokerage house

MapReduce Hadoop 0.20.2, Mahout 0.4 library
Wikipedia page articles (12 GB)

4.4. Support for Thread Migration

To allow for queuing threads, the thread migration performed in
SLICC transfers architectural register files as in Thread Motion [25].
The thread’s context is saved in the L2 cache closest to the target core
and is then retrieved at the target core. This minimizes the set-up
time for the thread. Since modern commercial processor technologies
(e.g., Intel Virtualization (VT) [33] and AMD Secure Virtual Machine
(SVM) [1]) provide hardware support for thread migration, minimal
modifications are required to make the migration process transparent
to higher software layers.

Canonical OS kernels are responsible for assigning threads to cores.
Hardware support for thread migration that is transparent to higher
layers avoids any software overhead. Otherwise, the OS scheduler
must be informed about these migrations. An alternative is a hybrid
system in which hardware mechanisms provide counters and migra-
tion acceleration, while leaving the policy choice to software. This
enables easier integration between existing schedulers and platforms
with virtualization support.

5. Evaluation

Our evaluation: (1) Studies the configuration thresholds for SLICC
(Section 5.2). (2) Determines the trade-off between bloom filter size
and remote cache segment search accuracy (Section 5.3). (3) Demon-
strates SLICC’s effect on instruction (Section 5.4) and data misses
(Section 5.5), compared to the baseline. (4) Reports the performance
improvement with the different flavors of SLICC compared to the
baseline and to a state-of-the-art instruction prefetcher, PIF [5] (Sec-
tion 5.6). (5) Estimates the HW cost for SLICC’s components (Sec-
tion 5.7). (6) Reports statistics about remote cache segment search
activity (Section 5.8).

5.1. Methodology

Current operating systems do not support thread migration at the
hardware level. The OS kernel assumes full control over thread as-
signment in multicore environments. To work around this limitation,
we extract x86 execution traces using PIN [18], which are annotated
to identify transactions. We then replay traces, modeling the tim-
ing of all events and maintaining the original thread sequence. We
modify the Zesto x86 multicore architecture simulator [17]. Previ-
ous work shows that migrating threads to a set of dedicated cores
to execute system level code improves performance [3]. While this
work studies migration of user-level code, SLICC is generic and can
apply to system level code as well. We model thread migrations by
injecting writes and reads for all architectural state and thread context
information.

We examine one scale-out workload and two server workloads as
described in Table 1 [4]. TPC-C [29] and TPC-E [30] run on top



 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

10

20

30

40

50

60

70
B

a
se

1
2

8

2
5

6

3
8

4

5
1

2

1
2

8

2
5

6

3
8

4

5
1

2

1
2

8

2
5

6

3
8

4

5
1

2

1
2

8

2
5

6

3
8

4

5
1

2

1
2

8

2
5

6

3
8

4

5
1

2

B
a

se

1
2

8

2
5

6

3
8

4

5
1

2

1
2

8

2
5

6

3
8

4

5
1

2

1
2

8

2
5

6

3
8

4

5
1

2

1
2

8

2
5

6

3
8

4

5
1

2

1
2

8

2
5

6

3
8

4

5
1

2

2 4 6 8 10 2 4 6 8 10

TPC-C TPC-E

S
p

e
e

d
u

p

M
P

K
I

X-Axis labels: Fill-up_t (top), Matched_t (bottom)

D-MPKI I-MPKI Speedup

Figure 7: MPKI and relative performance as a function of fill-up_t and matched_t thresholds.

Table 2: System Parameters.

Processing 16 OoO cores, 2.5GHz
Cores 6-wide Fetch/Decode/Issue

128-entry ROB, 80-entry LSQ
BTAC (4-way, 512-entry)

TAGE (5-tables, 512-entry, 2K-bimod)

Private L1 32KB, 64B blocks, 8-way
Caches 3-cycle load-to-use, 32 MSHRs

MESI-coherence for L1-D

L2 NUCA Shared, 1MB per core, 16-way
Cache 64B blocks, 16 banks

16-cycle hit latency, 64 MSHRs

Interconnect 4×4 2D Torus, 1-cycle hop latency

Memory DDR3 1.6GHz, 800MHz Bus, 42ns latency
2 Channels / 1 Rank / 8 Banks

8B Bus Width, Open Page Policy
tCAS-10, tRCD-10, tRP-10, tRAS-35

tRC47.5, tWR-15, tWTR-7.5
tRTRS-1, tCCD-4, tCWD-9.5

of the scalable open-source storage manager Shore-MT [13]. The
client-driver and the database are kept on the same machine, the
buffer-pool is set big-enough to keep the whole database in memory,
and due to the unavailability of a sufficiently fast I/O subsystem
we flush the log to RAM. We simulate 1K tasks or approximately
1.1B instructions. We use two different databases in TPC-C-1 and
TPC-C-10 to demonstrate that SLICC remains effective even with a
larger database. TPC-C and TPC-E have larger instruction and data
footprints compared to other scale-out workloads [4]. To demon-
strate SLICC’s robustness, we study the MapReduce CloudSuite
workload [22], which does not have a large instruction footprint [4].
MapReduce divides the full input dataset across 300 threads, each per-
forming a single map/reduce task. We focus most of our evaluation
on TPC-C-1 (referred as TPC-C) and TPC-E.

Table 2 details the baseline architecture. We use misses per kilo
instructions (MPKI) as our metric for instruction (I-MPKI) and data
(D-MPKI) misses. We measure performance by counting the number
of cycles it takes to execute all transactions. With N-core, our baseline
architecture can run up to N concurrent threads with the OS making
thread scheduling decisions. SLICC manages a thread pool of up to
2N threads. Unless otherwise indicated, all SLICC results are for the
SLICC-SW configuration – i.e., the SW layer transfers knowledge
about thread types to the HW layer.

5.2. Exploring SLICC’s Parameter Space

SLICC utilizes three thresholds to make thread migration decisions:
fill-up_t, matched_t and dilution_t. This section explores their effect
on L1 cache misses and overall performance. As defined in Section 4,
fill-up_t sets the threshold for the initial fill-up period for an L1-I
cache, during which instructions are brought in until the cache is
almost full. When the miss counter (MC) is lower than fill-up_t,
a thread is not allowed to migrate. Matched_t sets the minimum
number of tags that should be found on a remote cache before a thread
migrates to it. Larger matched_t limits migration, while smaller
values trigger too frequent migrations. Dilution_t is the minimum
number of misses in the last 100 accesses to allow migration. It
tends to restrict migration to the cases when more frequent misses
are observed by a thread. The parameter choices could be thought of
as a 3D space. To simplify, we first keep dilution_t value at zero, and
explore the parameter space of fill-up_t and matched_t. In addition,
we assume zero-overhead to search for remote tags. We later model
an actual search mechanism.

Figure 7 reports I-MPKI, D-MPKI and performance relative to the
baseline as a function of fill-up_t and matched_t. The fill-up_t values
shown correspond to fractions of the L1-I cache capacity (512 cache
blocks): 1⁄4, 1⁄2, 3⁄4, and one. The matched_t range shown is 2− 10;
larger matched_t values further degrade performance. SLICC reduces
instruction misses and increases data misses. Since instruction stalls,
for OLTP workloads, account for 70% of overall cycle stalls [28],
reducing instruction misses has a major effect on performance.

The results show that SLICC is not sensitive to different values of
fill-up_t. Fill-up_t is actually a proxy for warming-up the caches; it af-
fects only the first migration from a core. Thus with more migrations,
the effect of fill-up_t diminishes. TPC-C and TPC-E transactions
have large instruction counts and migrations. Figure 7 demonstrates
that for matched_t values larger than four, performance benefits drop.
On the other hand, although the overall MPKI at two is lower, per-
formance at four is higher due to fewer migrations, and thus, lower
overhead.

Next, we explore the parameter space of dilution_t. Using a small
value for dilution_t triggers more frequent migrations. Using too
large a value for dilution_t reduces migration overhead, but with a
possible I-MPKI increase since it results in partial cache thrashing.
Figure 8 shows L1 MPKI and relative to the baseline performance for
dilution_t values 1 through 30 when fill-up_t = 256 and matched_t =
4 (best configuration from Figure 7). As dilution_t increases, instruc-
tion misses are reduced improving performance up to a point. After-
wards, larger dilution_t leads to fewer migrations, lesser overhead,
but higher I-MPKI. There is a tradeoff between reducing instruction



 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

10

20

30

40

50

60
2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

S
p
e
e
d
u
p

M
P
K
I

Dilution_t

D-MPKI I-MPKI Speedup

TPC-C TPC-E

Figure 8: MPKI and relative performance as a function of dilution_t.

 

96.5

97

97.5

98

98.5

99

99.5

100

5
1

2

1
K

2
K

4
K

8
K

5
1

2

1
K

2
K

4
K

8
K

TPC-C TPC-E

A
cc

u
ra

cy
 (

%
)

Bloom Filter Size (bits)

Figure 9: Partial-address bloom filter accuracy.

misses, and reducing migration overhead. Beyond dilution_t val-
ues of 28 (TPC-C) and 24 (TPC-E), although the overall MKPI is
reduced, the performance degrades due to more limited migration.
At even higher dilution_t values, migrations seize and performance
drops below the baseline (for SLICC-SW, teams of transactions are
injected to start on the same initial core, thus when migration stops
some cores are underutilized).

In the remaining parts of this evaluation, we use dilution_t = 10,
fill-up_t = 256 and matched_t = 4. The last parameter means that
the MTQ needs to keep track of only the four most recent misses,
and that remote cache segment searching only requires finding where
those four blocks are cached.

5.3. Cache Signature Accuracy

Section 4.2.3 explained that using a partial-address bloom filter re-
duces the overhead of remote cache segment searching. Figure 9
shows the accuracy of bloom filters of different sizes. The smallest
bloom filter requires 512 bits to support evictions for a 32KB cache,
with 64B blocks, and 512-sets. Accuracy is measured for all cache
accesses and an access is accurate if the bloom filter and the cache
agree on whether this is a hit or a miss. The trend is similar for
TPC-C and TPC-E. In the rest of this paper, we experiment with
2K-bits filters as their effect on performance is less than 0.5% (99.3%
accuracy).

5.4. Instruction Miss Change

Having determined a good SLICC configuration, this section shows
that the three SLICC variants are able to reduce instruction misses
much more than they increase data misses. Figure 10 shows the L1
I-MPKI for the baseline, SLICC, SLICC-SW, and SLICC-Pp. For
MapReduce, since the instruction footprint fits in a 32KB cache,
SLICC does not affect instruction or data misses.

Focusing on the other workloads, SLICC-SW reduces I-MPKI
more than SLICC or SLICC-Pp. Compared to the baseline, SLICC-
SW reduces I-MPKI by 56% and 61% for TPC-C and TPC-E, respec-
tively. I-MPKI reductions are slightly lower with SLICC-Pp, more so
for TPC-E than TPC-C, for the following reason: SLICC-Pp devotes
one core to preprocessing. Given the transaction mix and transaction
footprint sizes, having that extra core can be more important. All
three variants of SLICC are sometimes forced to overcommit the
caches by concurrently running transactions whose aggregate foot-
print does not fit on the total available L1 cache capacity. When
overcommitting the caches, it is best to use stray threads since little
opportunity for instruction reuse is lost when overcommitting with
stray threads (a stray thread by definition is one that has few, if any,
other ready threads sharing the same footprint). Overcommitting
with non-stray threads happens more often for TPC-E than TPC-C
partly because only 3% of TPC-E threads are stray compared to 12%
of TPC-C threads. Furthermore, the need for stray threads is higher
for TPC-E than TPC-C; SLICC spreads the transactions of TPC-E
across 8−10 cores, while TPC-C’s transactions are spread across up
to 14 cores.

SLICC improves I-MPKI less than the thread-type-aware alterna-
tives, as it has to predict which is the next segment a thread will exe-
cute and where that segment currently is, using only a small preamble
of the segment. The difference in reduction is more pronounced for
TPC-C than TPC-E. TPC-C’s overall instruction footprint is larger,
resulting in higher variability in the instruction stream. Nevertheless,
SLICC reduces instruction misses by 40.5%, on average.

As a comparison of the results for TPC-C-10 to those for TPC-C-1
shows, I-MPKI reductions persist mostly unaffected with the larger
database.

5.5. Data Miss Change

During thread migration from core-A to core-B, three possible scenar-
ios lead to extra data misses that would not have occurred otherwise:
(1) a thread may read data on core-B that it fetched on core-A (extra
misses on core-B for the same data blocks), (2) data writes on core-B
to blocks fetched on core-A lead to invalidations that would not have
occurred without migration (extra misses on core-B and invalidations
on core-A), and (3) when a thread returns to core-A, it may find that
data it originally fetched has since been evicted by another thread, or
invalidated by itself (extra miss on core-A). Section 5.6 shows that
instruction misses are more expensive than data misses performance-
wise. Most data misses that result from migrations are served on-chip,
allowing out-of-order execution to mostly absorb their latency.

Figure 10 reports the D-MPKI for all three SLICC variants and
shows that SLICC-SW incurs an increase in D-MPKI of 11%, 1%
and 4% over the baseline for TPC-C-1, TPC-C-10 and TPC-E, re-
spectively. The other two variants exhibit a similar trend in D-MPKI
increase. There is less locality and sharing in the larger data set of
TPC-C-10, reducing the D-MPKI overhead when migrating.

Most of the increase in D-MPKI is for stores, which form 45%
of total memory accesses, while loads are nearly unaffected. Due
to slightly fewer migrations, SLICC-Pp increases D-MPKI less than
SLICC-SW. As expected, SLICC is worse with an average D-MPKI
increase of 9%.

We examined data prefetching to mitigate the increase in data
misses. For each thread, we recorded the tags of the last n-referenced
data blocks and then prefetched those blocks to the core the thread
migrated to. This prefetcher did not improve performance, and past a



 

0

5

10

15

20

25

30

35

40

B
a

se

S
LI

C
C

S
LI

C
C

-P
p

S
LI

C
C

-S
W

B
a

se

S
LI

C
C

S
LI

C
C

-P
p

S
LI

C
C

-S
W

B
a

se

S
LI

C
C

S
LI

C
C

-P
p

S
LI

C
C

-S
W

B
a

se

S
LI

C
C

S
LI

C
C

-P
p

S
LI

C
C

-S
W

TPCC-1 TPC-C-10 TPCE-1 MapReduce

M
P
K
I

I-MPKI D-MPKI

Figure 10: L1 I- and D-MPKI.

value of n, it hurts performance. There are several reasons why this
prefetching proved ineffective. (1) The prefetched data increased the
bandwidth on lower cache levels, which affects overall performance
when n is high. (2) When n is low, there was not enough reuse. (3)
Not all prefetched blocks are referenced again. (4) Finally, since 45%
of the data accesses are stores, prefetching causes invalidations that
would not have occurred otherwise.

This section showed that all SLICC variants improve I-MPKI
significantly with a minor increase in D-MPKI, which is negligible
with the larger database for TPC-C. These results suggest that SLICC
can improve performance if, as expected, instruction cache misses
degrade performance more than data cache misses; data misses can
be partially overlapped with out-of-order execution. If this is the case,
SLICC has the potential to offer a better balance of instruction vs.
data cache misses over a conventional architecture.

Similar to D-MPKI, D-TLB misses increase on average by 11%
and 8% with SLICC and SLICC-SW, respectively. I-TLB misses are
within +/- 0.5% of the baseline.
5.6. Performance
This section reports the overall performance of SLICC relative to
the baseline, a next-line instruction prefetcher, and a state-of-the-art
prefetcher, PIF [5]. Figure 11 shows a 1.6× and 1.79× performance
improvement over the baseline for SLICC-SW, on TPC-C-1 and
TPC-E, respectively. On average, SLICC-SW and SLICC improve
performance by 1.64× and 1.52× over the baseline, and 1.43× and
1.29× over a next-line instruction prefetcher.

Ferdman et al. report that PIF has nearly perfect coverage of L1-I
misses [5]. Thus, we model an upper bound for PIF using a 512KB
cache, with the delay of a 32KB cache. PIF’s storage requirements
are ∼40 KB per core. For TPC-C, SLICC-SW is within 2% of PIF’s
performance, with only 2.4% of PIF’s storage requirements (see next
section) per core. For TPC-E, SLICC-SW outperforms PIF by 21%.
SLICC’s speedup compared to PIF (and also the baseline) is a result
of intelligent thread scheduling. Current schedulers assign threads
to cores irrespective of their inherent-locality. Thus, even for larger
caches, multiple similar threads run concurrently on different cores,
each observing its own set of misses, for the same cache blocks. By
pipelining similar threads, SLICC increases temporal inter-thread
locality, hence it decreases overall miss rate observed by multiple
threads.

MapReduce, which has an instruction footprint that fits in the L1-I
cache, remains practically unaffected with SLICC.
5.7. Hardware Cost
Table 3 details the cost of all SLICC’s hardware components. Sec-
tion 4.2 described some of the components. In addition, SLICC

Table 3: Hardware Component Storage Costs.

Cache Monitor Unit
Missed-Tag Queue 60-bits

(MTQ) (16-core, matched_t = 4)

Miss Shift-Vector 100-bits
(MSV)

Cache Signature 2K-bits
(Bloom Filter)

Total 2208 bits (276 Bytes)

Thread Scheduler
Thread Queue 30-entries (12-bits numerical ID,

48-bits pointer to thread context
4-bits core ID)

Total 1920 bits (240 Bytes)

Team Formation (SLICC-SW & SLICC-Pp)
Team Management 60-entries (12-bits numerical ID,

table 32-bits timestamp, 4-bits type ID,
4-bits team ID, 8-bits team index)

Total 3600 bits (450 Bytes)

Grand Total 7728 bits (966 Bytes)

requires a thread queue that holds threads waiting for cores. Each
entry contains a unique numerical ID, a pointer to the threads’ con-
text, and a core ID. The thread queues can be local to each core, or
centralized to one core. The table shows the cost for a centralized
queue. Fewer entries are required when the queues are local to each
core. The team management table is responsible for forming teams
of similar threads (not required by SLICC). Each entry consists of:
a unique numerical ID, a type ID, a team ID, index within a team,
and a timestamp. The team management table is best thought of as
being centralized, since every core needs to know which cores are
assigned to which teams. We can either have one centralized copy, or
per core copies that are kept coherent. For this work we simulated
a centralized copy at one of the cores and modeled the necessary
traffic.

On each core, a SLICC agent is responsible for managing the
thread queue. The thread queue is a circular FIFO buffer and the first
entry is executed until it migrates, completes, or gets blocked for I/O.
On the latter case, the thread is moved to the end of the queue. With
an over-provisioned thread queue of 30 threads, and a copy of the
team management table, per core, SLICC requires a maximum of
966 bytes in addition to logic. All logic operations for SLICC are not
on the critical path.

5.8. Remote Cache Segment Search Activity

As per the description of Section 4.2.3, a thread that wants to migrate
has to find which cache, if any, holds the next code segment. Our
results, thus, far modeled this searching by including separate mes-
sages for the corresponding miss messages using separate broadcasts.
We do so to obtain an upper limit of the overhead these messages may
induce. We report the frequency of these messages as Broadcasts
per Kilo Instructions (BPKI) and find that it is very low. For TPC-C,
BPKI is 2.204 for SLICC and 0.28 for SLICC-SW and SLICC-Pp.
For TPC-E, BPKI is 1.328 for SLICC and 0.367 for SLICC-SW and
SLICC-Pp. As Section 4.2.3 explained these requests are required



 

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

TPC-C-1 TPC-C-10 TPC-E MapReduce

S
p
e
e
d
u
p

Base Next-Line SLICC SLICC-Pp SLICC-SW PIF

Figure 11: Performance.

anyhow for normal miss processing. The ownership information
required by SLICC is either already available or should be possible
to piggyback on existing responses.

6. Related Work
Instruction prefetching solutions have evolved from simple stream
buffers [14, 26] to highly accurate, sophisticated stream predic-
tors [6, 5]. Accurate prefetchers for OLTP are expensive, requiring
∼40KB of extra storage per L1 cache. Since these prefetchers track
execution sequences, their storage requirements should increase with
the instruction footprint. In addition, they neglect the possible pres-
ence of idle cores, and do not avoid code and prediction redundancy,
under-utilizing on-chip resources. In this work we compared SLICC
to PIF [5], a state-of-the art prefetcher that achieves near optimal in-
struction miss coverage. We showed that SLICC was able to achieve
98% of PIF’s performance for TPC-C, using only 2.4% of the storage
area overhead, while outperforming it by 21% for TPC-E.

Chakraborty et al. show a high-degree of redundancy in instruction
fragments across threads concurrently running on multiple cores [3].
They propose CSP, which employs thread migration to distribute
the dissimilar instruction code segments and group the similar ones
together. For system code, which is commonly used by multiple
threads, CSP fragments and distributes the code across a group of
dedicated cores. CSP then migrates threads to these dedicated cores
to execute system code. When threads are done, they return back
to their original cores to resume execution for the user-level code.
Thus CSP is limited to fragmenting OS code, losing opportunities of
fragmentation within user code. SLICC generalizes thread migration
to include interleaved user-OS code fragmentation points. In addition,
thread migration in SLICC is managed by the hardware, while with
CSP, the OS performs the migrations.

Atta et al. suggested using thread migration for reducing instruc-
tion misses in OLTP and demonstrated its potential to reduce I-MPKI
without presenting a solution [2]. No performance analysis was con-
ducted. This work presents a working solution and demonstrates its
performance benefits.

STEPS [9] aims to minimize instruction misses from the software
side. Like SLICC, it groups threads executing similar transactions
into teams. It, either manually or by using a profiling tool, breaks each
transaction’s instruction footprint into smaller instruction chunks in a
way that each chunk can fit in the L1-I cache. Then, all the threads in
the same team execute the first chunk, rather than executing the whole
transaction without any interruption, on the same core by context
switching to the other thread when one completes the execution of
the chunk. STEPS repeats this process for all the chunks, allowing in-
struction re-use across many threads for each chunk. SLICC exploits

the same way of re-using the instructions already brought into the
cache by previous threads. However, rather than context-switching
on the same core, SLICC migrates threads to another core so that
they can continue their execution. Moreover, SLICC dynamically
detects the synchronization points in a transaction rather than using
a priori manual or profiling based software instrumentation. Future
work may look at combining the time-domain pipelining of STEPS
with the space-domain pipelining of SLICC.

Data-oriented transaction execution (DORA) indirectly affects the
instruction footprint of a transaction [21]. It divides a transaction
into smaller actions based on the data being accessed at a particular
transaction part. Then, each of those actions are sent to their corre-
sponding worker threads, reducing the overall number instructions
executed by a single thread per transaction. Such a design might not
necessarily break a transaction into instruction parts that can fit in
L1-I. However, if combined with SLICC, it can give better hints on
where to migrate or reduce the total number of migrations needed to
be done per worker thread.

Hardavellas et al. [8] observe that more than 60% of a distributed
shared L2 accesses are for instructions. They adapt a NUCA block
placement policy according to workload categorization, and allow
replication of (read-only) instructions, which shortens the distance
between L1-I caches and L2s. This reduces the L1-I miss penalty,
but does not reduce the miss rate.

Other recent thread migration proposals target power management,
data cache, or memory coherence [19, 25, 16, 27].

7. Conclusions
Literature showed that memory stalls for OLTP workloads account
for 80% of their execution time, and L1 instruction misses account for
70-85% of overall stall cycles. We corroborate these results and show
that 94% of L1 capacity misses are for instructions. Additionally,
we show that recently proposed replacement policies, which reduce
miss rates for some workloads, leave a lot of room for improvement
compared to using larger L1-I caches. Previous works tackle this
problem in software or hardware, but they are either impractical
(require code instrumentation) or relatively expensive (large on-chip
data structures).

This work presented a solution based on thread migration, SLICC.
Similar to CSP [3] and STEPS [9], we exploit the code commonality
observed across multiple concurrent threads. Unlike CSP, we do
not limit code reuse to OS code segments. Unlike STEPS, instead
of context switching on the same core, we distribute the instruction
footprint across multiple cores and migrate execution. SLICC is a
low-level hardware algorithm that requires no code instrumentation
and efficiently utilizes available cache capacity, by improving intra-
and inter-thread locality.

SLICC reduces the instruction misses for OLTP by 56% on average
at the expense of an 5% average increase in data misses. SLICC im-
proves the overall performance by 68% on average over the baseline
and performs better when the input database is larger. Compared to a
state-of-the-art instruction prefetcher (PIF), SLICC improves perfor-
mance by 21% for TPC-E and comes within 2% for TPC-C, with only
2.4% of relative area overhead. When tested on MapReduce, a cloud
workload that has a relatively small instruction footprint, SLICC was
robust and did not affect the L1 miss rates or performance.

8. Acknowledgments
We thank the members of the AENAO and DIAS laboratories, Adrian
Popescu, the reviewers, and Jared Smolens for their comments and



help. We thank Sudhakar Yalamanchili, Jun Wang, and the whole
Georgia Tech development team for providing us with the Zesto sim-
ulator. This work was partially supported by an NSERC Discovery
grant, an NSERC CRD with IBM, a Sloan research fellowship, NSF
grants CCR-0205544, IIS-0133686, and IIS-0713409, an ESF EurYI
award, and Swiss National Foundation funds.

References

[1] Advanced Micro Devices, “Secure virtual machine architecture refer-
ence manual,” May 2005.

[2] I. Atta, P. Tözün, A. Ailamaki, and A. Moshovos, “Reducing OLTP
instruction misses with thread migration,” in Proceedings of the Eighth
International Workshop on Data Management on New Hardware, 2012,
pp. 9–15.

[3] K. Chakraborty, P. M. Wells, and G. S. Sohi, “Computation spreading:
employing hardware migration to specialize CMP cores on-the-fly,”
in Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2006, pp.
283–292.

[4] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
in Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2012, pp.
37–48.

[5] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in
Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, 2011, pp. 152–162.

[6] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal instruction fetch streaming,” in Proceedings of the 41st An-
nual IEEE/ACM International Symposium on Microarchitecture, 2008,
pp. 1–10.

[7] Gartner, “Market share: Database management sys-
tem software, worldwide, 2008,” 2009, available at
http://www.gartner.com/DisplayDocument?id=1044912.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in Proceedings of the 36th Annual International Symposium on
Computer Architecture, 2009, pp. 184–195.

[9] S. Harizopoulos and A. Ailamaki, “Improving instruction cache per-
formance in OLTP,” ACM Transactions on Database Systems, vol. 31,
no. 3, pp. 887–920, Sep. 2006.

[10] M. D. Hill and A. J. Smith, “Evaluating associativity in CPU caches,”
IEEE Transactions on Computers, vol. 38, no. 12, pp. 1612–1630, Dec.
1989.

[11] IBM, “IBM breaks double digit performance barrier with 10
million transactions per minute,” 2010, available at http://www-
03.ibm.com/press/us/en/pressrelease/32328.wss.

[12] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High perfor-
mance cache replacement using re-reference interval prediction (RRIP),”
in Proceedings of the 37th Annual International Symposium on Com-
puter Architecture, 2010, pp. 60–71.

[13] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi,
“Shore-MT: a scalable storage manager for the multicore era,” in Pro-
ceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, 2009, pp. 24–35.

[14] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in
Proceedings of the 17th Annual International Symposium on Computer
Architecture, 1990, pp. 364–373.

[15] K. Keeton, D. Patterson, Y. Q. He, R. Raphael, and W. Baker, “Per-
formance characterization of a Quad Pentium Pro SMP using OLTP
workloads,” in Proceedings of the 25th Annual International Symposium
on Computer Architecture, 1998, pp. 15–26.

[16] M. Lis, K. S. Shim, M. H. Cho, O. Khan, and S. Devadas, “Directoryless
shared memory coherence using execution migration,” in Proceedings of
the 24th IASTED International Conference on Parallel and Distributed
Computing and Systems, 2011.

[17] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A cycle-level simulator
for highly detailed microarchitecture exploration,” in Proceedings of
the International Symposium on Performance Analysis of Systems and
Software, 2009, pp. 53–64.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Proceedings of the
2005 ACM SIGPLAN Conference on Programming language design and
implementation, 2005, pp. 190–200.

[19] P. Michaud, “Exploiting the cache capacity of a single-chip multi-core
processor with execution migration,” in Proceedings of the 10th Interna-
tional Symposium on High Performance Computer Architecture, 2004,
pp. 186–.

[20] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP, Tech. Rep., 2009.

[21] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki, “Data-oriented
transaction execution,” Proceedings of the VLDB Endowment, vol. 3, no.
1-2, pp. 928–939, Sep. 2010.

[22] PARSA, “Data analytics benchmark with hadoop mapreduce frame-
work,” 2012, available at http://parsa.epfl.ch/cloudsuite/analytics.html.

[23] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai, “Bloom filtering
cache misses for accurate data speculation and prefetching,” in Proceed-
ings of the 16th International Conference on Supercomputing, 2002, pp.
189–198.

[24] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” in Proceedings of the
34th Annual International Symposium on Computer Architecture, 2007,
pp. 381–391.

[25] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: fine-grained
power management for multi-core systems,” in Proceedings of the 36th
Annual International Symposium on Computer Architecture, 2009, pp.
302–313.

[26] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso, “Per-
formance of database workloads on shared-memory systems with out-of-
order processors,” in Proceedings of the Eighth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 1998, pp. 307–318.

[27] K. S. Shim, M. Lis, O. Khan, and S. Devadas, “Judicious thread migra-
tion when accessing distributed shared caches,” in Proccedings of the
Third Computer Architecture and Operating System Co-design, 2012.

[28] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki, “From A to
E: Analyzing TPC’s OLTP Benchmarks – The obsolete, the ubiquitous,
the unexplored?” EPFL, Tech. Rep., 2012.

[29] TPC, “TPC benchmark C (OLTP) standard specification, revision 5.11,”
2010, available at http://www.tpc.org/tpcc.

[30] TPC, “TPC benchmark E standard specification, revision 1.12.0,” 2010,
available at http://www.tpc.org/tpce.

[31] TPC, “TPC-C ten most recently published results,” 2012, available at
http://www.tpc.org/tpcc/results/tpcc_last_ten_results.asp.

[32] TPC, “TPC-E ten most recently published results,” 2012, available at
http://www.tpc.org/tpce/results/tpce_last_ten_results.asp.

[33] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
Virtualization Technology,” IEEE Computer, pp. 48–56, 2005.


