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Abstract

Most of today’s chromatic adaptation transforms (CATs) are based on a modified

form of the von Kries chromatic adaptation model, which states that chromatic

adaptation is an independent gain regulation of the three photoreceptors in the

human visual system. However, modern CATs apply the scaling not in cone space,

but use “sharper” sensors, i.e. sensors that have a narrower shape than cones. The

recommended transforms currently in use are derived by minimizing perceptual error

over experimentally obtained corresponding color data sets.

We show that these sensors are still not optimally sharp. Using different com-

putational approaches, we obtain sensors that are even more narrowband. In a first

experiment, we derive a CAT by using spectral sharpening on Lam’s corresponding

color data set. The resulting Sharp CAT, which minimizes XYZ errors, performs as

well as the current most popular CATs when tested on several corresponding color

data sets and evaluating perceptual error. Designing a spherical sampling technique,

we can indeed show that these CAT sensors are not unique, and that there exist a

large number of sensors that perform just as well as CAT02, the chromatic adap-

tation transform used in CIECAM02 and the ICC color management framework.

We speculate that in order to make a final decision on a single CAT, we should

consider secondary factors, such as their applicability in a color imaging workflow.

We show that sharp sensors are very appropriate for color encodings, as they pro-

vide excellent gamut coverage and hue constancy. Finally, we derive sensors for a

CAT that provide stable color ratios over different illuminants, i.e. that only model

physical responses, which still can predict experimentally obtained appearance data.

The resulting sensors are sharp.
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2. G.D. Finlayson and S. Süsstrunk, Performance of a Chromatic Adaptation

Transform based on Spectral Sharpening, Proceedings of IS&T/SID 8th Color

Imaging Conference, pp. 49-55, 2000.
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Chapter 1

Introduction

Chromatic Adaptation is the ability of the human visual system to approximately

preserve the appearance of an object color, no matter which light “color” illuminates

a particular scene. We perceive a white piece of paper as white, regardless whether

viewed under a bluish daylight or yellowish tungsten light source. Similar effects

can be observed with other color hues.

Figure 1.1 illustrates this visual phenomenon. The left image is the same image

as the middle image, except that it is overlayed by a bluish filter. While the image

seems to have a color cast, i.e. we perceive all the colors to be too blue, we still can

clearly identify the original hues. For example, the helmet still appears yellowish.

In the right image, the filter was just overlayed on the helmet, which now appears

greenish.

Figure 1.1: An example of chromatic adaptation. See text for explanation.

1
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Image capturing systems, such as scanners and digital cameras, do not have the

ability to adapt to an illumination source like the human visual system, as illustrated

in Figure 1.2. The left image shows an object, the Macbeth color rendition chart

[MMD76], captured under a tungsten light source. When we view an image, we

adapt to the prelevant illuminant inherent in the viewing conditions. The image

will appear to have a color cast if we are not adapted to the same light source

the object was illuminated with when the image was taken. The right image was

transformed to the viewing illuminant we usually adapt to when we view an image

on a CRT monitor and appears more natural to us.

Figure 1.2: Left: An object imaged under a tungsten illuminant. Right: The same

image transformed to appear correctly under monitor viewing conditions.

If the two helmets in the left and middle images of Figure 1.1 looked identical, we

would have perfect color constancy. That is, we would be able to totally discount the

effect of the blue filter, and the appearance of the helmet would depend only on its

surface characteristics. However, as illustrated, that is not always the case. Indeed,

the level of color constancy changes according to actual surface color, the viewing

conditions, the scene composition, and the adaptation period. The appearance of

a color under two different illuminants can therefore not simply be predicted by

calculating only illumination change.

Figure 1.3 graphically illustrates this concept.1 A surface color under one adapt-

ing illuminant can be described with coordinates (ABC)1 in a coordinate system that

is based on some three-dimensional sensor space. Changing the illuminant will re-

sult in coordinates (ABC)2. However, the appearance of the surface color under the

1This figure is similar to a corresponding color illustration of R.W.G. Hunt, which he used in

his keynote presentation at the 8th Color Imaging Conference in Scottsdale, AZ, 2000.
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second illuminant is best described with coordinates (ABC)3. The corresponding

color coordinates of the surface color are (ABC)1 and (ABC)3, the distance between

(ABC)2 and (ABC)3 is an indicator of the color inconstancy of the given surface

color.

Figure 1.3: A graphical illustration of color constancy: If the human visual system

is perfectly color constant, the effect of the illuminant could be discounted by simply

modeling illumination change. However, most colors exhibit some degree of color

inconstancy. The corresponding color of the sample under the reference illuminant

(ABC)1, i.e. the color coordinates that best describe its appearance under the test

illuminant, are given by (ABC)3.

To faithfully reproduce the appearance of image colors, it thus follows that all

image processing systems need to apply a transform that converts the input colors

captured under the input illuminant to the corresponding output colors under the

output illuminant. This can be achieved by using a chromatic adaptation transform

(CAT). Indeed, the prelevant color management framework used in color image ap-

plications, developed by the International Color Consortium (ICC) [ICC04], contains

a chromatic adaptation transform. Similarly in color science, when the appearance

of a color under a different illuminant needs to be predicted, a color appearance

model [MFH+02] containing a CAT is used. Basically, applying a chromatic adap-

tation transform to the color values under one adapting light source predicts the

corresponding color values under another adapting light source.
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In this thesis, we investigate different computational approaches to derive such

chromatic adaptation transforms, which can be used in color science and color image

processing. All our transforms are based on the von Kries model, which states

that chromatic adaptation can be modeled as an independent gain control of three

different sensor responses (see chapter 2). Mathematically, it can be implemented as

a diagonal-matrix transform (DMT) that maps a color response matrix under one

illuminant to a corresponding color response matrix under a different illuminant. Let

Wa be the (3×n) color response matrix under illuminant a and Wb the (3×n) color

response matrix under illuminant b. n is the number of color responses considered.

With respect to Figure 1.3, (ABC)1 is a column vector in Wa, and (ABC)3 is a

column vector in Wb. The von Kries chromatic adaptation model can be written

as:

Wb = Db,aWa (1.1)

Db,a is a diagonal transform that contains the scaling coefficients gb,a
1 , gb,a

2 , gb,a
3 , one

for the response of each sensor:

Db,a =











gb,a
1 0 0

0 gb,a
2 0

0 0 gb,a
3











Von Kries originally assumed that the color responses should correspond to cone

responses, but subsequent research has found that a diagonal mapping in cone space

is not accurate enough to predict corresponding colors under different illuminants.

Thus, cone responses need first to be transformed to color responses in another

sensor space before the scaling is applied. In modern CATs, this is done with a

linear transform, and thus eq. 1.1 can be extended to:

Wb = M−1Db,aMWa (1.2)

where M is a nonsingular (3x3) matrix linearly transforming cone responses to color

responses in another sensor space. However, which sensor space (i.e. which sensor

transformation matrix M) is most appropriate is still under investigation, and we

aim to provide some answers in this thesis.
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In chapter 3, we derive a chromatic adaptation transform based on the spectral

sharpening of Lam’s corresponding color data [Lam85] and show that it performs

just as well as other CAT’s from the literature [Lam85, Fai01, LLRH02]. These

CATs are all derived by minimizing perceptual error ∆E over one or more sets of

corresponding color data. Spectral sharpening, on the other hand, is a mathematical

approach that optimizes the transformation of these color response (XYZ) data sets,

subject to a von Kries type DMT, by minimizing least-squares error [FDF94b].

There are two advantages to minimizing a physical error. First, the mathe-

matics is more tractable and we arrive at an elegant closed form solution. Second,

the problem of light change is physical and so, from an engineering perspective, we

expect that the human visual system (HVS) must accomodate the scene physics.

Thus, why not assume that the HVS can also deal with physics optimally?

The Sharp CAT that we derive uses sensors that are significantly different from

the other CATs. The sensors are much “sharper,” i.e. more narrow-band, than the

cone sensitivities or the sensors used in the published CATs. Yet, we show that

they perform statistically equivalently to the other CATs currently proposed in the

literature and adopted in the color science and color imaging community.

The differences in sensor shape between those we derived for the Sharp CAT

and those used in published CATs inspired us to investigate if there are other sensor

spaces that might perform just as well. We develop a spherical sampling algorithm

(see chapter 4) that lets us sample a three-dimensional space and find not just one,

but all solutions for a given optimization criterion. We used the linear Bradford

CAT [Lam85], the Sharp CAT derived in chapter 3, and CAT02 [MFH+02], the chro-

matic adaptation transform used in the latest color appearance model CIECAM02

[MFH+02] and the ICC color management specifications [ICC04] for performance

comparison on Lam’s corresponding color data. With our sampling technique, we

found thousands of different sensor combinations, respectively thousands of different

chromatic adaptation transforms, which performed equivalently based on a percep-

tual error criterion (RMS ∆E94). Evaluating statistical significance with respect to

CAT02 still resulted in 1056 different CATs.
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Finding such a large number of CATs that are similarly able to predict cor-

responding colors under different illuminants led us to investigate if other factors

should be considered in the choice of the most appropriate chromatic adaptation

transform, such as its relevance in a color image workflow. In chapter 5, we investi-

gate if the different sensor combinations found in the previous chapter exhibit good

gamut coverage and hue properties. If yes, these sensors could be used in color im-

age encodings. These colorimetric RGB encodings are considered to be white-point

independent, because the image RGB values are equal to post-adaptation sensor

responses. Based on a gamut of surface colors [SSSS02], we found many sensor

combinations that have better useful and encodable gamut coverage than ROMM

RGB [ANS02b] and sRGB [IEC99] sensors. Evaluating those with respect to hue

constancy, we found similar behavior compared to the other color sensors. We show

that the best sensors in terms of chromatic adaptation, gamut coverage, and hue

constancy are sharp.

In chapter 6, we derive CAT sensors that are based only on physical scene mea-

surements and not psychophysically derived corresponding color data. Inspired by

the retinex model of color vision that predicts that not absolute color appearance,

but color response ratios calculated over scene colors remain constant, we derive sen-

sors with the spherical sampling technique discussed in chapter 4 that optimally keep

color ratios stable over a range of illuminants. We tested two reflectance data sets,

Macbeth [MMD76] and Munsell [Mun76], under several illuminants ranging from A

to D100. Comparing the corresponding CATs with CAT02 on Lam’s corresponding

color data, we found that their performance was statistically equivalent.

All the sensors we derive through our algorithms are thus much “sharper,”

i.e. have narrower shapes than the cone sensitivities or the sensors used in the

published CATs. While we approach the problem of mapping corresponding col-

ors from a mathematical perspective and thus our sensors are not based on visual

experiments, they do seem to be psychophysically relevant and we refer to the ap-

propriate literature throughout this thesis. Sharp sensors have also been found to

be very effective in other color image processing tasks, such as color constancy al-

gorithms, visual efficiency, and color image encodings. With our results, we thus
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present more evidence that sharp sensors are very appropriate when modeling visual

tasks in machine vision systems.

1.1 Image Formation

Image formation is about a sensor’s response to radiation. In this thesis, we are

concerned only with the part of the radiation spectrum (approx. 360 − 780 nm)

that the human visual system is sensitive to. Equally, the sensors considered are

sensitive only to such radiation.

We now introduce the basic models, sensors, and transforms of human vision,

color science and color imaging related to the concepts described in the subsequent

chapters. We start with an introduction into the notations and equations of the

physical image formation model, followed by a discussion of the sensors associated

with the human visual system: color matching functions, cone fundamentals, and

opponent color sensitivities. The last section summarizes the different standards

and recommendations pertaining to Colorimetry, i.e. the part of color science that

deals with the measurement of physically defined color stimuli and their numerical

representation.

1.1.1 Illuminants

Visible radiation, i.e. “light,” can be characterized by its Spectral Power Distrib-

ution (SPD) E(λ). An illuminant SPD denotes the radiant power given at each

wavelength per wavelength interval of the visible spectrum, and can be measured

with a radiometer. When modeling the human visual or an imaging system, how-

ever, we are often more interested in relative than absolute responses. Consequently,

it suffices to use relative spectral power distributions that are normalized to 100 at

560 nm [WS82].

The Commission International de L’Eclairage (CIE) recommendations for col-

orimetry [CIE86] specify relative spectral power distributions of typical phases of

daylight illuminants. These illuminant SPDs are calculated according to a method
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proposed by Judd et al. [JMW64], based on the mean and first two principal com-

ponents of a series of daylight measurements.

It is common usage to call these illuminants by the letter “D” for daylight,

and the first two numbers of the corresponding correlated color temperature. The

term correlated color temperature is defined as the temperature of a blackbody

(Planckian) radiator whose perceived color most closely resembles that of the given

selective radiator at the same brightness and under specified viewing conditions

[WS82]. For example, D55 is an illuminant calculated according to the method

proposed in [JMW64], respectively [CIE86], with a correlated color temperature of

5,500 Kelvin. Figure 1.4 illustrates different daylight illuminants, ranging from D45

to D75.
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Figure 1.4: Relative spectral power distributions (SPD) of CIE daylight illuminants

and standard colorimetry illuminants A and D65.

For the purpose of colorimetry (see section 1.3), the International Organization

for Standardization (ISO) and the CIE have standardized two specific illuminants,

D65 and A [ISO98]. D65 is a daylight illuminant with a correlated color temperature

of 6,500 Kelvin, A is a tungsten-filament illuminant whose relative SPD is that of a

Planckian radiator at a temperature of 2,856 K. With reference back to Figure 1.2,

the top image was taken under a light source that approximated illuminant A, and

rendered to illuminant D65 (bottom image).
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1.1.2 Reflectance

The color of a (non-transparent) object is characterized by its surface reflectance

S(λ), (S(λ) ∈ [0, 1]). For each wavelength or wavelength interval, a reflectance factor

indicates how much of the incoming radiation is reflected. S(λ) = 1 means that all

incoming radiation is reflected, while S(λ) = 0 indicates that all incoming radiation

is absorbed. Figure 1.5 illustrates three reflectances of the Macbeth color checker

rendition chart [MMD76].
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Figure 1.5: Left: the Macbeth ColorChecker. Right: reflectance spectra of color

patches 13 (blue), 14 (green), and 15 (red).

1.1.3 Sensors

For the purpose of this thesis, a sensor is an entity that reacts to light. The term

is also used to denote the sensitivity function R(λ) that indicates the sensor’s re-

sponsiveness to radiation at a given wavelength per wavelength interval. In general,

sensors are considered to be physical entities, such as CCD or CMOS photo sites

or the cones in the human retina (see section 1.2), which physically exist and give

a positive response when radiation is detected. We assume throughout this docu-

ment, however, that sensors do not need to be physical and will also allow sensors

that have negative sensitivities. From a conceptual point of view, these sensors are

the result of some “processing,” either by the human visual system or an imaging

system. For an extended discussion on HVS sensors, see section 1.2.
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1.1.4 Physical Image Formation

In case of imaging an object, the radiation falling on the sensor is the product of the

reflectance and relative illuminant SPD,2 which is called the color signal or color

stimulus C(λ). The color response ρk of a sensor k with sensitivity Rk(λ) at spatial

position x can therefore be expressed as:

ρk(x) =

∫

ω

C(x, λ)Rk(λ)dλ (1.3)

or

ρk(x) =

∫

ω

S(x, λ)E(x, λ)Rk(λ)dλ (1.4)

where ω indicates the visible spectrum. For the purpose of this thesis, Rk(λ),

C(x, λ), E(x, λ) and S(x, λ), can be adequately represented by samples taken at

∆λ = 10nm intervals over the spectral range of 400-700 nm [SSS92]. The integral

in eq. (1.3) can thus be replaced by summation:

ρk(x) = ν
31

∑

λ=1

C(x, λ)Rk(λ) = ν
31

∑

λ=1

S(x, λ)E(x, λ)Rk(λ) (1.5)

where ν is a normalization factor, which usually either normalizes the response ρk(x)

depending on the number of samples used (ν = 1
31

), or ensures that max(ρk(x)) = 1.

We will assume from now on that such a normalization factor is used, and not note

it explicitly.

Using algebraic notations, color signal C(x, λ), reflectance S(x, λ), illumination

E(x, λ) and sensor sensitivity Rk(λ) can thus be expressed as 31× 1 vectors cx, sx,

ex, and rk, respectively. Eq. (1.5) becomes:

ρk(x) = cT
xrk = sT

xdiag(ex)rk (1.6)

where T is the transpose and “diag” is an operator that turns ex into a diagonal

matrix:

diag(ex) =























e1,x 0 · · · · · · 0

0 e2,x 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · · · · · · · e31,x























2Note that in case of imaging “light,” the reflectance factor S(λ) = 1 and C(λ) = E(λ).
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Any physical sensor can have a number of filters (or channels) with different

sensitivities Rk(λ). For the human visual system and trichromatic imaging systems,

k = 1, 2, 3. Thus, the total color response at position x of a system with three

sensors is a vector with three entries: ρ(x) = [ρ1(x), ρ2(x), ρ3(x)]T . In general,

the letters R,G,B will be used for color responses with sensors that have their

peak sensitivities in the red (long), green (medium), or blue (short) wavelength

part of the visible spectrum, respectively, X,Y, Z when the sensors correspond to

the CIE color matching functions, and L,M, S when the sensors correspond to

cone fundamentals (see section 1.2). The position index x will be used only when

necessary to distinguish between two spatially different sensor responses.

The physical image formation model of eqs. (1.3-1.6) is a simplified model, as

it does not take into account any physical illuminant, surface or sensor properties.

In fact, it is applicable only to a “flat world” with no shadows, a single source il-

luminant, no surface reflectance interactions, and Lambertian surfaces that reflect

incoming light equally in all directions.3 However, this model is sufficient for the

purpose of the simulations described in the subsequent chapters. Many of the cor-

responding color data sets we use for our computations (chapter 2), as well as the

chromatic adaptation transforms derived based on stable color ratios (chapter 6)

assume this kind of simplified model. For a discussion on extended image formation

models, see [Hur98, Hor99, Mal01].

1.2 Sensors of the Human Visual System

For the purpose of modeling the human visual system (HVS), several different sensor

sensitivities can be considered, derived from physiological and/or psychophysical

properties of the human visual system. It will be evident from the subsequent

discussion that several “sensors” are active in the visual processing chain. The

“sensors” that we will derive in the subsequent chapters, namely those that allow

us to model chromatic adaptation as a simple gain control, are not among them.

3Such scene arrangements are usually called Mondrians, so named by Edwin Land to describe

his experimental set-up that resembled the paintings of Dutch artist Piet Mondrian.
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However, some characteristics of these sensors can also be found in human vision

models, as explained later.

Physiologically, the photoreceptors or light sensitive elements of the human

visual system are the rods and cones. They contain light-sensitive photo-chemicals,

converting light quanta into an electrical potential that is transmitted to the brain

in a chain of neural interactions. They are located in the retina, the curved surface

at the back of the eye (see Figure 1.6). The names are derived from their typical

shape.

Figure 1.6: Left: cross-section of the human eye. Right: a close-up of the retinal

cell layers (note that the light enters from the bottom). Both illustrations are taken

from [KFN01].

Rods and cones are not uniformly distributed in the retina. Cones are primarily

concentrated in the fovea, the area of the retina at the end of the optical axis that

covers approximately 2◦ of visual angle. Beyond 10◦, there are almost no cones.

Rods, on the other hand, are primarily located outside of the fovea [Ost35, CSP+87].

There are three types of cones, called L (long), M (middle) and S (short) for

their relative spectral positions of their peak sensitivities (see Figure 1.10). There

is only one type of rod. The activities of the rods and cones are driven by the

overall luminance level of a stimulus. Photopic vision (> 10 cd/m2) refers to visual

sensations when only the cones are active, scotopic vision (< 0.01 cd/m2) when only

the rods are active. Mesopic vision refers to the luminance range where both cones

and rods are active [HF86]. Consequently, the ability to differentiate color signals is
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possible only in photopic or mesopic vision conditions, and we will always assume

these conditions for the subsequent simulations.

The cones are connected through several cell layers with the ganglion cells,

which transport the visual information through the optic nerve to the visual cor-

tex (see Figure 1.6). Horizontal cells make connections to both photoreceptors and

bipolar cells. Each horizontal cell is also connected to its neighbors. The response

of any given horizontal cell is determined by the spatially weighted average of the

signals of the cells surrounding it. Bipolar cells receive input from photorecep-

tors and horizontal cells and then produce a signal proportional to the difference

between the two. Bipolar cells respond to light stimulation with either hyperpolar-

ization (OFF-center) or depolarization (ON-center). Information from the bipolar

cell passes through the amacrine cell layer to the ganglion cells.

The response of ganglion cells is usually described with receptive fields. A vi-

sual receptive field is defined as the area of the retina that influences the response

of a single cell. Ganglion cells can respond to color stimuli in one of two ways:

color opponent responses (P-cells or midget cells, and K-cells or giant bistratified

ganglion cells) and luminance responses (M-cells or parasol cells) [Lee01]. Color

opponent receptive fields each have centers and surrounds with separate color op-

ponent properties: red (L) center with green (M) surround, green (M) center with

red (L) surround, and blue (S) center with yellow (L + M) surround. A positive

input in the center will inhibit the surrounding area (ON-center, OFF-surround),

and vice versa (OFF-center, ON-surround). The receptive fields overlap, i.e. cones

in the retina usually provide input to several neighboring receptive fields. Similarly,

luminance receptive fields have an antagonism between high (white) and low (black)

luminance.4

The separation of color opponent and luminance receptive fields can also be

extended to the Lateral Geniculate Nucleus (LCN) and the primary visual cortex

(also called V1 or striate cortex) [DSKK58, DKL84, LH88, Hub95]. P-cells project

to the parvocellular layers, M-cells to the magnocellular layers, and K-cells to the

4Note that there is still discussion about the influence of the S cone to the luminance signal.

The distribution of the S cone in the retina is very sparse compared to L and M , and color vision

modeling often assumes that luminance depends only on the L and M cone responses [Boy96].
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koniocellular layers. These three pathways differ in the type of visual information

they are sensitive to. Cells in the M-layers are orientation and movement selective

but lack color sensitivity. Cells in the P-layers and K-layers are either color or bright-

ness selective, but do not react to orientation. Many of them are also considered

to be double-opponency, i.e. they have spatial antagonism between the same cone

mechanism acting on the center and surround of their receptive fields. For example,

L cones responding to a stimulus excite the cell and L cones responding to its back-

ground inhibit the cell. This inhibition normalizes the response over space because

it creates a difference between the responses of different retinal areas [Gou01]. One

can hypothesize that the ability of the human visual system to disregard illuminant

gradients and to preserve local contrast, as assumed by the lightness algorithms, is

due to these double-opponent cells in the visual cortex.

Intuitively, it is evident that accurate sensitivities of the human visual system

are difficult to establish. It is very complex to “measure” the sensitivity at the differ-

ent processing stages in a living human, although several studies have measured cone

photocurrents [BNS87, SS95, SS01a] or neural responses at different stages of visual

processing in animals [DSKK58, DKL84, Hub95]. The most common approach is

to establish psychophysical testing procedures that isolate the responses of interest

from other responses. In visual psychophysics, different stimuli pertaining to a HVS

model are presented to human observers, and the responses of the observers are

statistically evaluated. The following sections shortly describe two models of the

human visual system, their corresponding psychophysical studies, and the resulting

sensitivities that are used today in color science, color imaging, and human visual

system modeling. Note that they do correspond to physiological mechanisms, as

outlined above.

1.2.1 Trichromatic Theory of Color Vision

The trichromatic theory of color vision, also referred to as the Young-Helmholtz

three component theory [You70, vH62], assumes that the signals generated in the

three cone types, which are independent and have different spectral sensitivities,

are transmitted directly to the brain where “color sensations” are experienced that
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correlate in a simple and direct way to the three cone signals. This theory has

been found to hold in a series of color matching experiments (for an overview,

see [WS82]). The experimental laws of color matching assume that for a given

observation condition, test color stimulus Ct(λ) can be matched completely by an

additive mixture of three fixed primary stimuli Cr(λ), Cg(λ), Cb(λ) with adjustable

radiant power:

Ct(λ) = RCr(λ) + GCg(λ) + BCb(λ) (1.7)

R,G,B are the relative intensities of Cr(λ), Cg(λ), Cb(λ), respectively, and are called

the tristimulus values of Ct(λ). Any set of primaries can be used, as long as none

of the primaries can be color matched with a mixture of the other two.

The results of color matches obey certain linearity laws, as first formulated by

Grassman in 1853 [WS82]. If C1(λ), C2(λ), C3(λ), and C4(λ) are color stimuli and

the symbol ≡ has the meaning of “visual match,” then:

• Symmetry Law: if C1(λ) ≡ C2(λ), then C2(λ) ≡ C1(λ)

• Transitivity Law: if C1(λ) ≡ C2(λ) and C2(λ) ≡ C3(λ), then C1(λ) ≡ C3(λ)

• Proportionality Law: if C1(λ) ≡ C2(λ), then αC1(λ) ≡ αC2(λ), where α is a

positive factor that increases or reduces the radiant power of the color stimulus

while its relative SPD remains the same.

• Additivity Law: if C1(λ) ≡ C2(λ) and C3(λ) ≡ C4(λ), then (C1(λ)+C3(λ)) ≡
(C2(λ) + C4(λ))

These generalized laws of trichromacy ignore the dependence of color matches

on the observational conditions, such as different radiant power, viewing eccentricity,

stimulus surround, and adaptation to previous stimuli. To control viewing condi-

tions, color matching experiments are therefore usually done with a colorimeter. A

colorimeter is a device with a partitioned viewing area, where one half displays the

reference color stimulus and the other half the mixture of the three primaries that

can be adjusted by the observer to match the reference (see Figure 1.7).
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Figure 1.7: Typical colorimeter set-up for color matching experiments.

Color Matching Functions

In 1931, the CIE (Commission Internationale de l’Eclairage) standardized a set of

Color Matching Functions (CMFs) based on color matching experiments by Wright

and Guild [WS82] using a colorimeter with a 2◦ bipartite field. Assuming that

additivity holds and the luminous efficiency function V (λ) of the HVS is a linear

combination of the CMFs, they established a set of r, g, b color matching functions

with “real” red Cr(λ) (λ = 700 nm), green Cg(λ) (λ = 546.1 nm), and blue Cb(λ)

(λ = 435.8 nm) monochromatic primaries based on the chromaticity coordinates

of their experimental primaries. These r, g, b CMFs [CIE86] illustrate the relative

amount R,G,B of primaries Cr, Cg, and Cb needed to additively mix a monochro-

matic light source at a given wavelength (see Figure 1.8).
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Figure 1.8: CIE 1931 2◦ r, g, b color matching functions.
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The CIE additionally standardized a set of x, y, z color matching functions,

based on imaginary X,Y, Z primaries, which are a linear combination of the color

matching functions derived from the original primaries. The transform was designed

so that the x, y, z CMFs do not contain any negative values, primarily to design

physical measuring devices, and that the y color matching function corresponds to

V (λ) [WS82, Hun98].

These x, y, z color matching functions are also called the CIE 1931 standard

observer and are used for colorimetric calculations (see section 1.3) when the size of

the stimulus does not extend 4◦ of visual angle. These CMFs are still an interna-

tional standard today, even though Judd [Jud51] and later Vos [Vos78] proposed a

modification based on a corrected luminous efficiency function, called VM(λ). The

original V (λ) of 1924 used in the derivation of the CIE 1931 CMFs underestimates

the sensitivities at wavelength below 460 nm. Today, the color vision research com-

munity almost exclusively uses the Judd-Vos modified 2◦ CMFs [SS01b], while the

color science and color imaging communities still use the original CIE 1931 2◦ CMFs

(see Figure 1.9).
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Figure 1.9: CIE 1931 2◦ x, y, z CMFs (solid line) and Judd-Vos modified 2◦ x, y, z

CMFs (dotted line).

In 1964, the x10, y10, z10 color matching functions for the CIE 1964 supple-

mentary standard observer were developed by Judd [WS82], based on experimental

investigations by Stiles and Burch [SB59] and Speranskaya [Spe59] with stimuli sizes

of 10◦.
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Cone Fundamentals

The color matching functions described above are not cone sensitivities, i.e. absorp-

tion spectra of the cone pigments. They are based on color matching experiments,

and their shape is determined by the choice of the primaries. However, if we as-

sume that the basic principle of the trichromatic theory of color vision is correct,

then cone responses also behave additively, and the cone sensitivities (also called

cone fundamentals) are a linear combination of color matching functions (divided

by intra-ocular medium absorption spectra). While this assumption is somewhat

questionable when considering the complexity of the HVS, there are advantages

when modeling visual processing. Physical measurements (see section 1.1.4) can

easily be linearly transformed into cone responses.

Using color matching data and experimental data of color deficient observers,

several sets of cone fundamentals that are linear combinations of either 2◦ or 10◦

CMFs were published (see [SS01b] for an overview and [SS03] for data). Vos and

Walraven [VW71] and Smith and Pokorny [SP75] base their cone sensitivities on

the modified 2◦ X,Y, Z color matching functions. Stockman and Sharpe [SS00] base

their 2◦ and 10◦ cone fundamentals on the Stiles and Burch 10◦ CMFs. Figure 1.10

illustrates the different 2◦ cone fundamentals.
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Figure 1.10: The normalized cone fundamentals of Stockman and Sharpe (solid line),

Smith and Pokorny (dashed line), and Vos and Walraven (dotted line).

As can be seen in Figure 1.10, the L and M cone sensitivities are very correlated,

i.e. their spectral distributions overlap significantly. Additionally, they have a broad
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base. From the point of view of quantum efficiency, broad-band sensors are able to

capture more quanta and are thus overall more sensitive to radiation. However,

from the point of view of coding efficiency, having two nearly identical sensors is

inefficient as they both carry similar information [DB91]. As discussed below, the

human visual system has found a way to de-correlate these sensor responses by its

ability to encode the difference of the signals instead of the absolute responses.

1.2.2 Opponent Color Modulations

The theory of opponent colors is commonly attributed to Hering [Her78], although

Goethe (1832) [vG91] previously discussed the concept. They both observed that

certain colors are never perceived together, i.e. their names do not mix. We never see

bluish-yellows or reddish-greens, where as bluish-greens (turquoise) and yellowish-

reds (orange) are very common mixture descriptions. Hering also observed that

there is a distinct pattern to the color of after-images. For example, if one looks

at a unique red patch for a certain amount of time, and then switches to look at a

homogeneous white area, one will perceive a green patch in the white area. Hering

hypothesized that this antagonism between colors occurred in the retina, and that

there are two major opponent classes of processing: spectrally opponent processes

(red vs. green and yellow vs. blue) and spectrally non-opponent processes (black

vs. white).

Experimental psychophysical support for Hering’s theory was first provided by

Jameson and Hurvich [JH55, HJ57]. They conducted a set of hue-cancellation ex-

periments, where observers used monochromatic opponent light to “cancel” any hue

that was not perceived as unique: red was canceled with green, blue was canceled

with yellow, and vice versa. Repeating the experiment for all spectral lights and us-

ing the amount of opponent light needed as an indicator, they established opponent

color curves over the visible spectrum.

Subsequent physiological experiments (see above, i.e. [DSKK58, DKL84, LH88,

Hub95]) corroborated the presence of an opponent encoding mechanism in the hu-

man visual system. Additional psychophysical experiments [CKL75, WW82, SH88,

PW93] have shown that such a representation correlates much better with experi-
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mental color discrimination and color appearance data than the additive theory of

color vision. Figure 1.11 illustrates the opponent color responses Poirson and Wan-

dell [PW93] derived from a color appearance experiment involving spatial patterns.

400 450 500 550 600 650 700
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

wavelength

re
la

tiv
e 

se
ns

iti
vi

ty

luminance
red−green
blue−yellow

Figure 1.11: The normalized opponent sensitivities of Poirson and Wandell [PW93].

Luminance and opponent color sensitivities are considered to be orthogonal,

and are generally modeled as a de-correlating transformation of cone fundamentals

[EMG01]. Using the image formation model of eqs. 1.3-1.6, this assumption allows

us to derive opponent color representations from physical measurements. The red-

green opponent channel is usually a function of L − M , the blue-yellow channel of

(L + M) − S, and luminance of L + M .

However, the color opponent responses are not directly related to quantum

catches of the cones, due to the neural interactions in the retina. Opponency works

on cone contrast, i.e. the relative cone responses compared to the environment.

Contrast can either be taken into account with a Weber-type contrast function where

the difference of stimulus and environmental (background) stimulus is normalized

by the environmental stimulus. These contrast signals are then linearly transformed

to opponent signals. DKL, an opponent representation used by the color vision

community [DKL84, Bra96], is an example of such an encoding. In color science

and computer vision, contrast is usually modeled by a logarithmic or power function.

Color responses are normalized by the color response of the environment (a white

surface or the illuminant) and then non-linearly encoded to account for lightness
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perception before being transformed to opponent signals (CIELAB, see section 1.3

and YCC, see Appendix D.1.)

1.3 CIE Colorimetry

Colorimetry is the part of color science that deals with the measurement of physically

defined color stimuli and their numerical representation. The CIE [CIE78, CIE86,

CIE95, ISO98] has published several standards and recommendations pertaining to

colorimetry that are summarized below. However, note that the basic principles of

colorimetry remain the same, regardless if standardized or modified color matching

functions are used (see section 1.2.1).

A color response can be characterized by its relative tristimulus values X,Y, Z

according to the image formation model of eqs. 1.3-1.6, using physical measurements

E(λ) and S(λ) of illuminant and surface reflectance, respectively. Sensors are either

the color matching functions of the CIE 1931 standard observers (2◦) or the CIE

1964 supplementary standard observer (10◦), dependent on the stimuli size. The

CIE X,Y, Z tristimulus values follow the trichromatic color matching laws described

in section 1.2.1. For example, two stimuli with equal specification will look the

same when viewed by observers with normal color vision under identical observation

conditions, i.e. they color match.

For the purpose of emphasizing relative magnitudes of the tristimulus values,

which are related to color attributes, the X,Y, Z tristimulus values are often nor-

malized by dividing by the sum of their components:

x = X
X+Y +Z

y = Y
X+Y +Z

z = Z
X+Y +Z

= 1 − x − y

(1.8)

The x, y, z chromaticity values therefore represent the percentage of X,Y, Z of a

particular color response. x, y chromaticity values are often used to graphically

represent tristimulus values. For example, the x, y chromaticity coordinates of the

CIE 1931 standard observer spectral X,Y, Z tristimulus values graphically indicate

the two-dimensional gamut of the human visual system, i.e. the color coordinates
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that are visually achievable. In the case of CIE 1931 or CIE 1964 r, g, b and x, y,

z CMFs, the color gamut boundary is called the spectral locus. The gamut of any

RGB sensors whose transformation from RGB to XYZ is known can, of course, also

be plotted.

When modeling visual or imaging systems and evaluating psychophysical exper-

iments, it is often more useful to measure or predict the difference of color responses

rather than their actual or relative values. The X,Y, Z and x, y, z color represen-

tations are not perceptually uniform, i.e. equal Euclidean distances do not equate

to equal perceptual color differences [Mac43, Mac44]. In 1976, the CIE therefore

published additional, more perceptually uniform representations to facilitate the

interpretation of color differences: CIE u
′

,v
′

chromaticity diagram, CIE L∗, u∗, v∗

(CIELUV), and CIE L∗, a∗, b∗ (CIELAB) [CIE78].

The CIE u
′

,v
′

chromaticity values are derived from X,Y, Z and x, y as follows

[Hun98]:

u
′

= 4X
X+15Y +3Z

= 4x
−2x+12y+3

v
′

= 9Y
X+15Y +3Z

= 9y
−2x+12y+3

(1.9)

In the CIE u
′

,v
′

chromaticity diagram, perceptually equal color differences result

in (almost) equal Euclidean distances. Figure 1.12 shows a comparison of small color

differences in the x, y and u
′

,v
′

chromaticity diagrams, based on experimental data

of Wright [Wri41] and illustrated by Hunt [Hun98]. Each line is three times the

length of a distance representing a just noticeable difference (JND) in a 2◦ field.

Both CIELAB and CIELUV are opponent color spaces, where L∗ represents

the lightness of a color response, a∗ or u∗ its red-greenness, and b∗ or v∗ its yellow-

blueness. The CIELUV system is commonly used for lighting and display, where as

the CIELAB system is more often used for reflecting stimuli, although the CIE did

not specify any preferred usage [Rob90]. As the color differences in the subsequent

chapters are calculated based on CIELAB, the reader is referred to [WS82, CIE86,

Hun98] for further information on CIELUV.
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Figure 1.12: Equal color differences in the x, y (left) and u
′

,v
′

(right) chromaticity

diagrams. The illustration is taken from [Hun98].

The transformation from X,Y, Z tristimulus values to CIELAB values is as

follows [Hun98]:

L∗ = 116
(

Y
Yn

)
1
3 − 16 ∀ Y

Yn
> 0.008856

L∗ = 903.3 Y
Yn

∀ Y
Yn

≤ 0.008856

a∗ = 500

[

(

X
Xn

)
1
3 −

(

Y
Yn

)
1
3

]

b∗ = 200

[

(

Y
Yn

)
1
3 −

(

Z
Zn

)
1
3

]

∀ X
Xn

, Y
Yn

, Z
Zn

> 0.008856

(1.10)

where Xn, Yn, Zn are the tristimulus values of the nominally white object-color stim-

ulus, usually the illuminant normalized to Yn = 100. If X
Xn

, Y
Yn

, Z
Zn

≤ 0.008856, then
(

X
Xn

)
1
3

,
(

Y
Yn

)
1
3

,
(

Z
Zn

)
1
3

in eq. 1.10 are replaced with 7.787F + 16
116

, where F is

X
Xn

, Y
Yn

, Z
Zn

, respectively.

Color differences ∆E are then expressed as the Euclidean distance between the

CIELAB coordinates:

∆E =
√

(∆L)2 + (∆a)2 + (∆b)2 (1.11)

or

∆E =
√

(∆L)2 + (∆H)2 + (∆C)2 (1.12)

where ∆H is a measure of hue difference:

∆H =
√

(∆a)2 + (∆b)2 − (∆C)2
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The hue angle h and chroma C are defined as:

h = arctan
(

b
a

)

C =
√

a2 + b2
(1.13)

In 1994, the CIE introduced a modified color difference formula, CIE ∆E94

[CIE95], which correlates better with visual perception of small color differences.

It decreases the weights given to differences in ∆C and ∆H with increasing C.

Equation (1.12) is modified as follows:

∆E94 =

√

(

∆L

kLSL

)2

+

(

∆C

kCSC

)2

+

(

∆H

kHSH

)2

(1.14)

where SL = 1, SC = 1+0.045
√

C1C2, SH = 1+0.015
√

C1C2 and kL = kC = kH = 1.

C1 and C2 refer to the chroma of the two color responses under consideration.

We use ∆E94 in the subsequent chapters as the preferred error metric.

1.4 Conclusions

In this chapter, the basic concepts in image formation, both from a computational

and human visual system point of view, have been discussed. We will use the

basic image formation model and the perceptual error metrics ∆E and ∆E94 in the

calculations to derive the best chromatic adaptation transform. The HVS sensors

encountered in the literature, derived either through physiological or psychophysical

modeling, were introduced. While the “sharp” chromatic adaptation sensors that

we will derive in the subsequent chapters, based on a simple von Kries scaling model,

are not represented here, some physiological and psychophysical evidence exists that

they are at least plausible.

In the next chapter, the literature related to chromatic adaptation is reviewed.

We present the basic von Kries model, on which we base our chromatic adaptation

transforms, and its parameters. Other models of chromatic adaptation, based on

physiological models and psychophysical experiments are also introduced. Related

physical models, mostly used in color constancy, are discussed as they are relevant

for the experiments described in the subsequent chapters. We also summarize the

experimentally derived color responses, i.e. corresponding colors, that describe the

appearance of the same surface color viewed under two different illuminants.



Chapter 2

Chromatic Adaptation

Chromatic adaptation can be described as the mechanism of the human visual system

to discount the influence of the illuminant SPD and to approximately preserve the

appearance of object colors [Fai98]. Color constancy is achieved when the appearance

of an object is determined only by its surface spectral reflectance [Mal01]. Thus,

chromatic adaptation refers to a process of the human visual system, while color

constancy refers to the physical state under which the process works. While we

often assume that the visual system is “approximately color constant,” given by our

daily visual experiences, there are also instances when color constancy fails [LW96,

BRK97]. Such an example is illustrated in Figures 1.1 and 1.3.

Chromatic adaptation research has therefore been primarily concerned with

finding a chromatic adaptation model, based on physiological knowledge of the hu-

man visual system and psychophysical experiments. Chromatic adaptation models

(or transforms) aim to predict the appearance of a surface color under different

illuminant conditions. Color constancy algorithms, on the other hand, aim to re-

cover the physical illuminant, reflectances and/or sensor characteristics necessary to

achieve color constancy.

In this thesis, we aim to develop mathematical tools to model chromatic adap-

tation, i.e. to map color responses under a reference illuminant to color responses

under a test illuminant, such that the resulting color response appears to come from

the same object. We are not concerned with recovering illuminants or reflectances,

as provided by color constancy algorithms. However, we base our results in part

25
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on color constancy research, which has provided elegant and closed form solutions

for physical data, i.e. physical measurements of color responses under different il-

luminants. Our goal here is not to model psychophysical data, but to best account

for scene physics and then to relate our algorithms to psychophysical data. We find

that we are able to predict psychophysical measurements using our models.

In this chapter, we visit the chromatic adaptation and color constancy literature

relevant to this thesis. We first briefly touch on how chromatic adaptation models

are evaluated. Then, the original von Kries chromatic adaptation model is explained

(section 2.2). Section 2.3 discusses how the the scaling coefficients of the von Kries

model parameters were derived based on the experimental studies. Sections 2.4 and

2.5 then present the different chromatic adaptation transforms and models found

in the literature. The discussion is restricted to “simple” von Kries linear and

non-linear model extensions, we do not consider here two-stage adaptation models

proposed by authors who studied color discrimination [HJ57, YSP93, WM94, AH01].

Section 2.6 discusses relational color constancy, which is based on the premise that

the human visual system retains color ratios over changes in illuminant as opposed

to absolute color measurements. Section 2.7 introduces spectral sharpening, a tech-

nique successfully used in color constancy algorithms that we will use for chromatic

adaptation modeling. In section 2.8, we finally discuss the psychophysical studies

that have resulted in experimental data (corresponding colors) used to investigate

chromatic adaptation.

2.1 Performance Measure

In the following sections, we introduce the chromatic adaptation models that were

derived based on different experimental methods, starting with the von Kries model.

The goal of a chromatic adaptation model, equivalently a chromatic adaptation

transform (CAT), is to predict as well as possible the corresponding color of a stim-

ulus ρ
b under a test adaptation condition Ab, given the experimental measurements

ρ
a under a reference adaptation condition Aa:

ρ
b ≈ CAT(ρa) (2.1)
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In other words, when applying a model or transform we obtain an estimate ρ̃
b of

the corresponding colors under the test conditions:

ρ̃
b = CAT(ρa) (2.2)

The difference of ρ̃
b to ρ

b is an indicator of the appropriateness of a given model

or transform. In general, the quality of a chromatic adaptation model or transform,

i.e. the prediction errors, is evaluated using Euclidean distances in a perceptually

uniform color space, either in CIELUV [BW92, Bäu95], CIE u
′

, v
′

[CW95, LW96,

Bra98] or in CIELAB [Lam85, BBS97, Fai01, SHF01, LLRH02, MFH+02]. We use

CIELAB ∆E prediction error measures (see section 1.3) throughout this thesis.

2.2 Von Kries Chromatic Adaptation Model

Johannes von Kries is generally considered to be the first who attempted to de-

scribe the visual phenomenon of chromatic adaptation with a model. In [vK02], he

investigates the additivity laws (see section 1.2) under different adaptation condi-

tions and concludes that certain properties hold. He studied the effect of chromatic

adaptation using an asymmetric matching experiment.

As illustrated in Figure 2.1, the basic concept of (simultaneous) asymmetric

matching is to expose the observer to color stimuli under different adaptation condi-

tions Aa and Ab [WS82]. The difference in adaptation conditions is usually limited

to using a uniform, often neutral surround illuminated by two different illuminants,

Ea(λ) and Eb(λ). The observer, using a colorimetric like device (see Figures 1.7)

with two viewing areas matches under Ab the perceived color stimulus C1(λ) under

Aa. One eye is looking at the reference stimulus C1(λ) under Aa, and the other eye

is looking at a viewing area under Ab, which contains a field with a mixture of red,

green and blue primaries that are adjusted by the observer to match the reference

stimulus. The resulting match is C2(λ). C1(λ) and C2(λ) are corresponding color

signals.

Note that for such an experimental set-up, the color appearance mode is aper-

ture color, i.e. primary lights are used to match a test light source. The experiment

does not involve evaluating illuminant changes on surface reflectances.
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Figure 2.1: A simple asymmetric matching experiment. See text for explanation.

Von Kries observed that if C1(λ)Aa under adaptation condition Aa has the same

appearance as C2(λ)Ab under adaptation condition Ab, and equivalently for C3(λ)Aa

and C4(λ)Ab, then (C1(λ)+C3(λ))Aa has the same appearance as (C2(λ)+C4(λ))Ab.

Equally, αC1(λ)Aa matches αC2(λ)Ab.

Comparing his theorem of proportionality [vK02] with the trichromacy laws (see

section 1.2.1), von Kries deduced that additivity and proportionality hold for color

responses independent of adaptation, if adaptation can be modeled by modifying

the sensor sensitivities. He concluded that color changes caused by adaptation can

be explained as a modification of the spectral sensitivities of the cone fundamentals,

i.e. Aa 7→ {La,Ma, Sa} and Ab 7→ {Lb,M b, Sb}. He further assumes that the cone

responses are independent from one another, each adapting exclusively to its own

function. In [vK70], he states that the change of stimuli appearances can be modeled

by a multiplicative coefficient that is a function of the higher or lower excitability of

the individual cones. Von Kries does not explicitly state how the coefficients should

be calculated, except to say that they are dependent on the adaptation condition.

He also mentions that his model is a simplifications that might not hold for all

conditions.

The von Kries’s chromatic adaptation model can therefore be expressed as

follows: the cone responses La,Ma, Sa of a color stimulus under adaptation condi-

tion Aa can be mapped to its illuminant-invariant descriptors do
1, d

o
2, d

o
3 with three

adaptation dependent gain factors ga
1 , g

a
2 , g

a
3 that are independent for each channel.
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Mathematically, it follows that:

do
1 = ga

1L
a

do
2 = ga

2M
a

do
3 = ga

3S
a

(2.3)

or, expressed as a Diagonal Matrix Transformation (DMT):
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(2.4)

Equivalently, La,Ma, Sa and Lb,M b, Sb of two color stimuli that appear identical

when regarded under the two different adaptation conditions Aa and Ab are related

by the ratio of their coefficients:
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(2.5)

Von Kries assumes that his model is valid for cone responses. Thus, to use his model

with any colorimetric measurements, i.e. tristimulus values XYZ (see section 1.3)

or colorimetric RGB values (see Appendix D), eq. 2.4 can be extended to:
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= M−1DM











Ra

Ga
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(2.6)

where M is a nonsingular (3x3) matrix linearly transforming XYZ or RGB values

to cone responses, M−1 its inverse and D the diagonal matrix containing the gain

coefficients.

It is generally accepted today that a von Kries chromatic adaptation model is,

at first approximation, able to model chromatic adaptation [BW92, Bäu94, Bäu95,

CW95, Wue96, BBS97]. By defining all the parameters of the model described in eq.

2.6, it is possible to design a chromatic adaptation transform (CAT) that predicts

color appearance under different illuminants.

However, there is no general agreement on how to define the specific parameters.

Recall from eqs. 2.3-2.6, the mapping from color responses ρ
a = [Ra, Ga, Ba]T under
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illuminant Ea(λ) to illuminant independent descriptors do = [do
1, d

o
2, d

o
3]

T according

to the von Kries model is as follows:

do = DMρ
a (2.7)

The parameters to define are the linear transform M and the scaling coefficients

ga
1 , g

a
2 , g

a
2 contained in the 3 × 3 diagonal matrix D. Many chromatic adaptation

transforms assume that the linear transform M is used to map from tristimulus

values XYZ or colorimetric RGB values to cone responses. In other words, the

sensors are broad band and are equal (or at least close) to cone fundamentals.

While this makes sense from the point of view of human visual processing, we will

show in chapters 3, 4, and 6 that other sensors might be more optimal. We delay the

discussion of how M is derived to these chapters. Note that for the models discussed

in the subsequent sections (2.3 - 2.5.1), the authors of these studies assume that the

scaling is applicable in cone space if not otherwise noted.

2.3 Scaling Coefficients

As discussed in section 2.2, von Kries states that the scaling coefficients are depen-

dent on the adaptation condition, but are independent for each visual channel. Since

von Kries, many researchers have studied what these adaptation conditions A are.

Depending on their experimental data, they have either based the chromatic adap-

tation model on illuminant information alone, or taken the surround of a stimulus

into consideration. It is known that both have an effect on the color appearance of

a stimulus, but are both adaptation phenomena, or is just the influence of the the

illuminant important?

Ives [Ive12] early on hypothesized, without mentioning von Kries, that adap-

tation is a function of the illuminant “color.” Long exposure to one color decreases

the cone sensitivity, while the other sensitivities increase. Land and McCann (see

section 2.4.1) and West and Brill [WB82] follow this assumption by defining the

scaling coefficients to be the inverse of the color response of a white patch within

the scene. Thus, the illuminant independent descriptor do
k(x) of a surface at posi-

tion x with cone response ρa
k(x) in channel k under illuminant Ea(λ) is calculated
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as follows:

do
k(x) =

1

ρw
k

ρa
k(x) (2.8)

where ρw
k is the cone response in channel k of the white patch. If, for that surface,

S(λ) = 1 is valid over the whole visible spectrum, the color response is dependent

only on the SPD of the illuminant. This adaptation is often referred to as the von

Kries-Ives model [Mal01] and is used in modern color science and color imaging

CATs [Fai98, Fai01, CF01, ICC04, MFH+02]. We will use these DMT coefficients

when we derive new chromatic adaptation transforms in chapters 3, 4, and 6.

From a human visual processing point of view, however, this way of calculating

the coefficients seems too simple. It is well known that the surround of a stimulus has

a strong influence on its appearance, an effect known as simultaneous contrast. Thus,

it seems unreasonable to neglect the effect of the surround. Helson [Hel34, Hel38]

proposed that the coefficients should be calculated as the inverse of the average cone

responses, independently for each cone class, of the visual field. Thus,

do
k(x) =

1

ρk

ρa
k(x) (2.9)

where ρk is the arithmetic mean of the color response in channel k. Note that if

the average of the surround reflectances is neutral, then the difference in average

cone response and the cone response of the adapting illuminant is a scale factor that

cancels out if responses are mapped from one illuminant to another.1

Helson’s hypothesis has been validated for simple scenes, such as found in si-

multaneous asymmetric matching experiments using a colorimeter with neutral and

colored, but uniform surrounds [CW95, Wue96]. However, other studies have clearly

indicated that the average of surround cannot alone account for chromatic adap-

tation. For example, Bäuml found that when the test stimulus was surrounded by

other surfaces, calculating the scaling coefficients using the mean of the surrounding

surface reflectances did not predict his experimental data, obtained by a achromatic

matching experiment [Bäu94] or asymmetric matching experiment [Bäu95]. He con-

cluded that the visual system’s adjustment to illuminant changes does not depend

1In a later study using a memory matching experiment, Helson et al. [HJW52] use the von

Kries-Ives model (i.e. illuminant-dependent coefficients) in their chromatic adapatation transform.
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on the surface reflectances. Brainard [Bra98] found similar results in achromatic

matching where the observers saw the stimuli in a three dimensional surround. Ob-

servers achieved good color constancy when the illuminant was varied, but not when

the background surface against which the test surface is seen is changed.

Both the von Kries-Ives and von Kries-Helson model assume the coefficients

are dependent only on signals from the same channel, and are not influenced by the

responses of the other channels. In recent literature [BW92, DB00], this assumption

is called the strong von Kries coefficient model (see Figure 2.2). Some studies,

however, found better predictions if they relaxed the independence criterion and

allowed for signals from other channels to influence the gain factors for one cone class.

Several authors [WW82, Bäu95, DB00] found that there is a significant influence of

L and M cone signals on the gain factor of the S cone signals. Similarly, Shevell and

Humanski [SH88] showed that the red-green color appearance of a test light seen

only by the L and M cones is modulated by changes in a background field that is

visible only to the S cones.

Brainard and Wandell [BW92] therefore formulated a more general linear model,

which they call the weak form of the von Kries coefficient model. As illustrated in

Figure 2.2, they allow for the gain factors to be determined by signals from all

three color channels. In their interpretation, the gain factors are only dependent on

the illuminant’s cone responses. More generally, the weak von Kries model can be

expressed as:

do
k(x) = 1

ga
k

ρa
k(x); ga

k = f(ρw
r , ρw

g , ρw
b ) (2.10)

where the scaling coefficient ga
k is a function of ρw

r , ρw
g , ρw

b , the color signals of the

illuminant (see section 2.5.1).

In general, modern chromatic adaptation models and transforms thus assume

that adaptation can be modeled by illuminant-dependent coefficients alone, either

independent for each channel [Ive12, HJW52, Lam85, Fai01, LLRH02, MFH+02],

or dependent on all three color responses [BW92, LW93, Bäu95, LW96, BBS97,

Bra98, DB00]. Other authors considered the surround and calculated the illuminant-

independent descriptor based on a background factor [Hel34, Hel38, Mac63, NTS81,

TSN84], or as a spatial interaction of the stimulus with many surround surfaces
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Figure 2.2: Strong and week von Kries coefficient models. Left: The strong von

Kries model assumes that the gain is dependent only on signals from the same cone

class. Right: The weak von Kries model assumes that the gain is dependent on

signals from all cone classes. The illustrations are taken from [BW92].

[Lan77, Buc80, GJT88, FNC+97]. The corresponding chromatic adaptation models

are discussed in the next sections.

The question posed in the first paragraph, i.e. if the scaling coefficients depend

only on the illuminant or if the surround surface reflectances have to be taken into

account, can probably be answered by considering the experimental conditions in

use when studying chromatic adaptation. When using a haploscopic experimental

set-up, the human visual system is in aperture color appearance mode and is able

to isolate the effect of the surround without confounding it with the influence of

the illuminant. In surface color appearance mode, when surface reflectances are

evaluated under different illuminants, the surround can have an effect on appearance.

2.4 Strong von Kries Coefficient Model

The chromatic adaptation transforms used in color imaging applications to map

from one adapting illuminant to another, such as in the color management frame-

work developed by the International Color Consortium (ICC) [ICC04], are based

on the strong von Kries-Ives coefficient model. The same applies to today’s color

appearance models [MFH+02]; when the appearance of a color under a different

illuminant needs to be predicted, the chromatic adaptation transform applied is von

Kries-Ives. However, the scaling is not applied to cone responses, but to modified
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cone responses. As mentioned above, we refer to chapter 3 for a more extensive

discussion.

The theoretical limits of the strong von Kries coefficient model has primarily

been studied in the context of computational color constancy. Computational color

constancy algorithms either try to estimate the adapting illuminant from a scene

and/or estimate surface reflectance [Buc80, MW86, For90, FHH01], to find appro-

priate sensors [FDF94b, FF96, DF00], or to render image appearance under different

illuminants [Lan77, Lan86a, Hor74, Hur86, BB87].

Mathematically, the assumption that the exact illuminant SPD and spectral

reflectances can be recovered from color responses infers that the product of a color

response of an illuminant ρE
k (x) and the color response of a surface ρS

k (x) (under

equi-energy illuminant, i.e. E(x, λ) = 1) are equal to the color response of their

product:

ρE,S
k (x) = ρE

k (x)ρS
k (x) (2.11)

However, as discussed by many authors [BW81, Lan83, Hur86, For90], this is true

only when then sensor sensitivities are independent, implying very narrow-band

filters that are in the extreme Delta functions responsive only at one wavelength.

For example, if the sensor k has non-zero response only at wavelength λi, eq. 1.3

can be written as:

ρk(x) =

∫

ω

S(x, λ)E(x, λ)δ(λi)dλ = S(x, λi)E(λi) (2.12)

In this case, a change in illuminant changes ρk(x) only by a scale factor.

However, such sensor sensitivities apply neither for the human visual system,

nor for any camera sensors that have quantum efficiency constraints. Therefore,

additional assumptions about “the world” have been investigated to model color

constancy. We will restrict the discussion to image appearance rendering, as we are

not concerned in this thesis about reflectance or illuminant recovery. For an extended

discussion on illuminant or surface reflectance recovery, see [Hur98, Hor99, Mal01].
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2.4.1 Retinex

Lightness algorithms [Lan64, Lan77, Lan86b, Hor74, Hur86, BB87] presume that

adaptation behaves according to eq. 2.3, i.e. that each receptor response is in-

dependently scaled by some scene-dependent factor. Edwin Land [Lan64, LM71,

Lan74, Lan77, Lan83, Lan86a] pioneered the work on lightness algorithms with his

retinex model of color vision. He observed during experiments with Mondrian scenes

that the perceived colors of surface reflectances do not depend on the radiant energy

of their stimuli, but that their relative lightness rank-ordering remained invariant in-

dependent of the illumination uniformity and color. For a review of his experiments

and early algorithm, see Appendix A.

In general, the lightness value for a sensor k is calculated by finding the average

ratio between the color response of a position x0 and many surrounding positions.

Early retinex algorithms calculated the ratios along a path [Lan64], while later

implementations use a weighted average of the surround [Lan86a]. As discussed

by McCann et al. [MMT76], there are some parallels to human visual processing.

The retinex algorithm contains a local normalization due to the influence of the

neighboring pixels, which could be related to the ganglion cell receptive fields. The

spatial normalization over the whole visual field could be explained by the double-

opponent fields found in the visual cortex.

Setting the paths’ lengths and the number of paths to infinity is equivalent

to normalizing the surface reflectance at position x0 by the geometric mean of all

surface reflectances [BW86a]. As the triplet of computed lightness values for the

three spectral channels should define the illuminant-independent descriptor of a

color patch, the algorithm implicitly assumes then that the mean reflectance is

the same in each channel and for every scene. This constraint, called gray-world,

assumes that the (geometric) mean surface reflectance of each scene in each spectral

channel is the same: gray. This assumption also appears in other color constancy

algorithms [Buc80, DL86, GJT88], and has been used for many color reproduction

algorithms [Hun95]. It is, in spirit, close to Helson’s [Hel34] proposal that the von

Kries coefficients ga
1 , g

a
2 , g

a
3 are inversely proportional to the (arithmetic) average

photoreceptor excitations within a cone class under adaptation condition Aa.
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The lightness values are not accurate illuminant-independent descriptors if the

mean scene reflectance is not gray. Land and McCann [LM71, MMT76] therefore in-

troduced a normalization into the path equation. To recover illuminant-independent

lightness descriptors, this normalization assumes that the brightest patch in each

channel is a perfect reflector, i.e. it reflects all illuminant energy. This maxRGB as-

sumption is close to the von Kries-Ives model, which also predicts that the coefficient

is based solely on the illuminant.

2.5 General Chromatic Adaptation Models

As mentioned above, the strong von Kries coefficient model is accurate only at

first approximation in predicting chromatic adaptation. If a simple diagonal model

mapping cone responses from one illuminant to another would suffice, then a plot

of match versus test cone coordinates would always fall along a line through the

origin: gb
kρ

b
k = ga

kρ
a
k. However, some authors observed substantial deviations. Either

because a line does not adequately describe the data, or the best fitting line is

offset from the origin. Thus, the von Kries model was extended to a 9 parameter

coefficient model, with a power function to map observations non-linearly, by an

additive factor, or some combination. We divide the discussion into two sections.

The linear affine models that use a full 9 parameter coefficient model plus additive

offset, which under some constraint can be reduced to a weak or even strong von

Kries coefficient model, and the non-linear models.

2.5.1 Linear Chromatic Adaptation Models

The linear chromatic adaptation models are based on the assumption that surface re-

flectance and illuminant SPD can be approximated with a small number of weighted

basis functions. Thus, E(λ) and S(λ) can be expressed as:

E(λ) =
m

∑

i=1

ǫiEi(λ) (2.13)
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where ǫi are unique real numbers, and Ei(λ) are the basis functions. Similarly,

surface reflectances are expressed as:

S(x, λ) =
m

∑

j=1

σj(x)Sj(λ) (2.14)

In matrix notation, illuminant e and surface reflectance s becomes:

e = Beǫ

s = Bsσ

(2.15)

The n×m matrix Be contain the m basis function for the illuminant, with n samples

over the visible spectrum. ǫ is a m × 1 vector containing the illuminant weights.

Equivalently, the n × m matrix Bs contain the m basis function for the surface

reflectance and σ the surface weights. Using the image formation model of eq. 1.6,

color responses can then be calculated as

ρ = Rdiag(Beǫ)Bsσ (2.16)

where R is a k × n matrix containing the sensor sensitivities and ρ a k-dimensional

vector containing the sensor responses.

Brainard and Wandell [BW92] proposed different linear chromatic adaptation

models to predict asymmetric matching data collected through haploscopic experi-

ments. The basic assumption is that the transform parameters are linear functions

of the illuminant change. Let ρ
a be the 3 × 1 cone response vector of an object

under standard illuminant Ea(λ) and ρ
b the 3 × 1 cone response vector of the cor-

responding match under the test illuminant Eb(λ). The change of responses can be

calculated as ∆ρ = ρ
b−ρ

a. Let ǫ
a be a m×1 vector containing the weights ǫi of the

m basis functions Ei(λ) of the standard illuminant and ǫ
b the equivalent vector of

the test illuminant. The change in illuminant is given as ∆ǫ = ǫ
b − ǫ

a. The model

predicts ∆ρ as a function of ρ
a and ∆ǫ with ǫ

a fixed. Then, for any illuminant

change ∆ǫ, the change in cone responses can be calculated as:

∆ρ = X∆ǫ + a∆ǫ (2.17)

where X∆ǫ is a 3×3 matrix that depends on ∆ǫ and a∆ǫ a 3×1 vector also depending

on ∆ǫ. This general form of the model is called the affine model. Constraining the
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elements of vector a∆ǫ to zero results in a linear model, and a diagonal model can be

derived by constraining the off-diagonal terms of matrix X∆ǫ to zero. This diagonal

model resembles a weak von Kries model (see Figure 2.2), as it allows interaction of

different channels on the scaling coefficients.

Bäuml [Bäu95], using a similar model, also found that the prediction error

is minimized if the gain coefficients are calculated based on the input of all three

channels, specifically on the cone responses of the illuminant. The three-dimensional

vector g that contains the gain coefficient gk of the diagonal von Kries matrix are

calculated with a 3 × 3 matrix Y, such that

g = Y
ǫ

b∆ǫ (2.18)

where Y
ǫ

b depends on the test illuminant, and ∆ǫ is a 3 × 1 vector. His model

corresponds to a weak von Kries model of eq. 2.10.

Brainard et al. [BBS97] proposed an equivalent illuminant model based on the

idea that the human visual system is capable of estimating the illuminant in a scene.

If Be and Bs are three dimensional models, the estimated surface reflectance weights

σ̂ under the test illuminant can be calculated by inverting eq. 2.16.

σ̂ = [Rdiag(Beǫ̂
a)Bs]

−1
ρ

a (2.19)

Under the matching conditions, the observer would estimate the illuminant to be

(Beǫ̂
b). Given these conditions, an observer would achieve color constancy if the sur-

face reflectance, characterized by σ̂, has the same appearance under the illuminant

Ea(λ) and Eb(λ) characterized by the illuminant weights ǫ̂
a and ǫ̂

b, respectively.

Thus,

ρ
b = Rdiag(Beǫ̂

b)Bs[Rdiag(Beǫ̂
a)Bs]

−1
ρ

a (2.20)

or

ρ
b = Z(ǫ̂a, ǫ̂b)ρa (2.21)

where Z(ǫ̂a, ǫ̂b) is a 3 × 3 matrix that depends only on the illuminant estimates ǫ̂
a

and ǫ̂
b, and not on the surface reflectance. The 9 parameter matrix Z is a linear

chromatic adaptation model with six degrees of freedom: the 3 variables of ǫ̂
a and

the 3 variables of ǫ̂
b.
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2.5.2 Non-linear Chromatic Adaptation Models

MacAdam [Mac61, Mac63], based on the results of monocular asymmetric matches,

was the first to postulate a non-linear hypothesis to model chromatic adaptation.

He found that the following relationship best described his experimental data and

also those of Burnham et al. [BEN57] and Wassef [Was58, Was59]:

do
k(x) = αk + (βkρ

a
k(x))γk (2.22)

The variables αk, βk and γk depend on the adaptation condition Aa. He also tested

the following logarithmic expression as alternative to the power function and found

comparable results:

do
k(x) = αk log(βk[ρ

a
k(x)] + γk) (2.23)

Note that the variables αk, βk and γk are calculated differently than in eq. 2.22. The

same is also true for the variables in the following equation.

Power or logarithmic functions are a way of accounting for cone contrast (see

section 1.2.2). This implies that the von Kries gain mechanism is active at a post-

receptoral level, and thus chromatic adaptation is not solely a function of sensitivity

regulation of the cone fundamentals. Therefore, the non-linear models, while still

using a diagonal matrix transform, are not “true” von Kries models anymore in the

sense of “just” modeling chromatic adaptation with a gain factor.

Nayatani et al. [NTS81, TSN84] also formulated a non-linear model, with

do
k(x) = αk(ρ

a∗
k (x))βk(ρa

k
(xb)) (2.24)

where

ρa∗
k (x) =

ρa
k(x) + ρa

k,n

ρa
k(xb)

(2.25)

ρa
k,n is the noise component of the cone response mechanism, and ρa

k(xb) is the

response of the background.

Lam [Lam85], using the results of a memory matching experiment, simplified

the MacAdam and Nayatani model by allowing only a non-linear power function in

the blue visual channel, and neglecting the influence of the background:

do
b(x) =

1

(ρw
b )β

(ρa
k(x))β (2.26)
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where

β = (ρw
b )0.0834

For the red and green channel, the illuminant independent descriptors are calcu-

lated according to the von Kries-Ives model of eq. 2.8. Such a model, i.e. only using

a non-linearity in the blue channel, was first proposed by Bartleson [Bar79a, Bar79b].

To fit the model to his experimental data, Lam also derived response sensitivities

(linear combination of color matching functions) that are slightly more de-correlated

than cone fundamentals. The resulting Bradford chromatic adaptation transform

was used in the color appearance model CIECAM97s [CIE98] and will be further

discussed in chapter 3.

Similarly, Lucassen and Walraven [LW93] also found for haploscopic matching

under different “colored” illuminants that a non-linear response function better pre-

dicts their experimental data for the S cone signals. Using our notation, their model

can be expressed as:

do
b(x) = (ρw

b )β log
(

4.35
ρa

b (x)

ρw
b

)

(2.27)

This model has some similarity to the retinex model discussed in section 2.4.1.

It is interesting that many experimental studies show a failure of the strong

von Kries coefficient model in the S channel. However, as discussed above, different

authors use different methods to correct for it, either by allowing an interaction of

the L and M channel in the coefficient calculation, or by introducing a non-linearity.

2.6 Relational Color Constancy

Relational color constancy is defined as the invariance of perceived relations between

the colors of surfaces under different illuminants, as opposed to “normal” color con-

stancy where we assume that the perceived colors are invariant [FNC+97]. In other

words, the difference is in the invariance of color relation versus color percept. The

human visual system encodes and maintains the ratio of photoreceptor excitations

to different surfaces to achieve color constancy, as opposed to absolute values. These

ratios are calculated within a cone type, and are independent of the other cone types.

In concept, this is very much related to the retinex algorithm described above.
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Foster and Nascimento [FN94] have shown that for a large class of pigmented

surfaces and for surfaces with random spectral reflectances, cone excitation ratios

are statistically almost invariant under changes in illumination. Lately, they have

demonstrated that the ratio discrimination is indeed independent for each color

channel and not solely based on luminance processing of the human visual system

[NF00]. Other authors have also corroborated the importance of cone ratios to

account for color constancy. Tiplitz Blackwell and Buchsbaum [BB88] found through

experimentation that color constancy is almost perfect if the ratios of L, M , and S

of the stimulus center to the L, M , and S of the surround remains constant as the

illuminant changes. If the ratio changes, color constancy fails. Dannemiller [Dan93]

studied the rank ordering of photon catches from natural objects illuminated with

daylight and tungsten light for a model human fovea. He found that the observed

rank orderings remained nearly stable across illuminant changes for all three cone

classes. Brill and West [BW81] have used color ratios in theoretical studies to set

constraints on illuminant and surface reflectance spectra for color constancy.

Foster et al. [FNC+97] pointed out that stable cone ratios is a consequence of

assuming a (weak) von Kries coefficient model. Assume that ρa
k(xm) and ρa

k(xn) are

cone responses of cone type k for surfaces xm and xn under illuminant Ea(λ), and

do
k(xm) and do

k(xn) its illuminant independent descriptors. Similarly, ρb
k(xm) and

ρb
k(xn) are the cone responses for the same surfaces and cone type under illuminant

Eb(λ). According to the von Kries coefficient rule (eq. 2.3):

do
k(xm) = ga

kρ
a
k(xm) do

k(xn) = ga
kρ

a
k(xn)

do
k(xm) = gb

kρ
b
k(xm) do

k(xn) = gb
kρ

b
k(xn)

(2.28)

where ga
k and gb

k are the illuminant dependent (Ea(λ), Eb(λ)) gain coefficients for

channel k. By rearranging eq. 2.28, it becomes evident that cone response ratios

remain invariant:
do

k(xm)

do
k(xn)

=
ρa

k(xm)

ρa
k(xn)

=
ρb

k(xm)

ρb
k(xn)

(2.29)

as ga
k and gb

k are canceled.

As mentioned in [FNC+97], Hurlbert noted that these invariant ratios are not

necessarily computed at immediate post-receptoral levels, they could be computed

at some higher level in the visual system as part of a more general accommodation to
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the natural structure of the visual environment. Rinner and Gegenfurtner [RG99],

in a study about the time course of adaptation, found that the mechanism for

instantaneous adaptation is probably governed by long-range spatial interactions

found in the visual cortex. We use this argument in chapter 6 to derive sensors for

a chromatic adaptation transform that keep color ratios stable.

2.7 Spectral Sharpening

For the lightness algorithms, the general model based chromatic adaptation trans-

forms, and relational color constancy research discussed in the previous three sec-

tions, the assumption is that the sensors are broadband and are (or resemble) the

cone fundamentals of the human visual system. West and Brill [WB82, BW86b]

established the theoretical limits that reflection functions can have assuming cone

sensitivities. They found that certain reflection functions can satisfy the strong von

Kries coefficient model of eq. 2.4, but that these reflection functions are restricted

and do not resemble natural reflectances.

However, Finlayson, Drew, and Funt [FDF94b, FDF94a, Fin95, FF96, DF00]

have shown that a generalized coefficient model can be successfully applied in color

constancy. In their model, the sensors sensitivities are first transformed by a linear

(3x3) matrix to a new set before the diagonal transform is applied. Equivalently,

the transform can be directly applied to the color responses. With reference back

to eq. 2.6, the generalized coefficient model can be written as
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(2.30)

Equivalently:

do = DTρ
a (2.31)

Note that the fundamental difference between eq. 2.6 and eq. 2.30 is that the von

Kries model assumes adaptation is a function of cone responses, while Finlayson et

al. do not put any restrictions on the sensors.
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Inspired by the problem outlined in the introduction of section 2.4 that exact

illuminant SPD and surface reflectances can be recovered only when the sensor

sensitivities approach Delta functions (eq. 2.12), Finlayson et al. [FDF94b, Fin95]

derived sharpening transforms that rendered the original sensors more narrow-band.

They present two methods on how to achieve this, called sensor-based sharpening

and data-based sharpening. We limit the discussion here to sensor based sharpening,

as data-based sharpening is revisited in chapter 3.

2.7.1 Sensor-based Sharpening

Sensor-based sharpening finds linear combinations of broadband sensors, for exam-

ple cone fundamentals, that are maximally sensitive in a given wavelength interval

[λ1, λ2], independent of the illuminant. Given a k-dimensional sensor sensitivity

matrix R (k × n, usually k = 3), the sensor RTc is the most sensitive in [λ1, λ2] if

the percentage of its norm is maximized with respect to this interval:

max
|RT

[λ1,λ2]c|
|RTc| (2.32)

c is a k-dimensional coefficient vector. Solving for c can be achieved using a Lagrange

multiplier and minimizing:

I =
∑

υ

(RTc)2∆λ + µ

{

∑

ω

(RTc)2∆λ − 1

}

(2.33)

where υ denotes wavelengths outside of the sharpening interval [λ1, λ2], ω the visible

spectrum, and µ the Lagrange multiplier. By differentiating with respect to c and

equating to the zero vector, we obtain:

1

2

δI

δc
=

∑

υ

RRTc∆λ + µ

{

∑

ω

RRTc∆λ

}

= 0 (2.34)

Differentiating with respect to µ results in
∑

ω(RTc)2∆λ = 1. Thus, the norm of

the sharpened sensor is equal to unity, independent of the original length of the

sensor set R.

We can define two k × k matrices, such that Ξυ =
∑

υ RRT ∆λ, respectively

Ξω =
∑

ω RRT ∆λ. Thus, eq. 2.34 can be rearranged to:

Ξυc = −µΞωc (2.35)
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Equivalently:

[Ξω]−1Ξυc = −µc (2.36)

Disregarding the trivial solutions c = 0 and µ = 0, it is evident from eq. 2.36 that

c is an eigenvector of [Ξω]−1Ξυ. Solving for c for each of the k wavelength intervals,

such that
∑

υ(R
Tc)2∆λ is minimized, results in the transformation matrix T of eq.

2.31.

The interval [λ1, λ2] can be chosen arbitrarily. Finlayson et al. [FDF94b] used

spectral intervals corresponding approximately to the “blue” (400-480nm), “green”

(520-560nm), and “red” (580-650nm) parts of the spectrum. This ensures that the

whole visible spectrum is sampled and that the peak sensitivities of the new sensors

are close to those of the cone fundamentals. Sharpening the Vos and Walraven

[VW71] cone fundamentals, they obtained sensors that are “sharper,” i.e. more

narrow-band than the cones, and the maximum sensitivity in the “red” interval

moved to a longer wavelength. Figure 2.3 shows the original Vos and Walraven cone

fundamental and the spectrally sharpened sensors. They validated their sensors

by comparing actual and predicted physical color responses for surface reflectances

under several illuminants and showed that on average, using sharpened sensors with

a DMT is better able to predict the color response than using Vos and Walraven cone

fundamentals. We found a similar result, using actual corresponding colors, when

comparing the Hunt-Pointer-Estevez chromatic adaptation transform to a “sharp”

chromatic adaptation transform (see chapter 3).

2.7.2 Applications of Spectral Sharpening

Applying their results to other color constancy algorithms proved that the gener-

alized diagonal transform model is able to achieve good color constancy, provided

that illuminant and reflectance can be modeled by small finite linear combinations

[FDF94a], such as is assumed by Maloney and Wandell [MW86] and by Forsyth

[For90]. Hubel and Finlayson [HF98] also validated sharp sensors in a color ap-

pearance experiment. Using a similar set-up as Braun and Fairchild ([BF96], see

section 2.8.1), they compared images (print to monitor) rendered under different

illuminants using several chromatic adaptation transforms. Especially for large
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Figure 2.3: Original Vos and Walraven cone fundamentals (dotted line) and sensor-

based sharpened sensors (solid line).

illumination shifts, a transform based on sharp sensors performed better than the

others. Hubel et al. [HHFD97] have used sharp sensors to determine the best

transform from digital camera response values to color encoding values. Drew and

Finlayson [DF00] have also shown how to derive all positive sharpened sensors, or

sensors that give all positive responses. Sharpened sensors can have negative values,

as shown in Figure 2.3. Positive sensors, if they are physically realizable, are useful

in digital cameras that white-balance in sensor space. White-balancing is a color

image processing step where the response of a given channel is normalized with re-

spect to the illuminant and the different quantum efficiencies of the real filter and

sensor combination:

Ro =
Ra

gR

, Go =
Ga

gG

, Bo =
Ba

gB

(2.37)

Here, the factors gR, gG, gB indicate a multiplication of illuminant response and

quantum efficiency gain factors. Eq. 2.37 is a DMT, so sharpened sensors improve

the color constancy of a camera compared to any other with arbitrary filter responses

whose best solution might be a full 9 parameter matrix.

As some of the approaches used in this thesis are based on spectral sharpening,

we will revisit the literature the subsequent chapters.
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2.8 Corresponding Colors

Before we can evaluate the von Kries model or develop new models for chromatic

adaptation, we must first have experimental measurements of pairs of stimuli (cor-

responding colors) that match in appearance with respect to different adaptation

conditions. Corresponding colors can be described as a pair of tristimulus values

(XY Z) or cone responses (LMS), based on one physical stimulus that appear to

be the same color when viewed under two different illumination sources [Hun95].

Below we describe the psychophysical experiments conducted to collect such stimuli

pairs.

2.8.1 Experimental Methods

Chromatic adaptation is a color appearance phenomenon, and it is well known that

color appearance could depend on many factors, such as local surround, spatial

and chromatic scene arrangement, adaptive luminance, etc. [Fai98]. It is very

difficult to “distill” the effect of chromatic adaptation from all other color appearance

mechanisms, and as such define an experimental protocol for it. Thus, several

experimental methods have been proposed that are briefly described below.

Asymmetric Matching

Many studies investigating chromatic adaptation models used asymmetric matching

experiments. The basic concept of asymmetric matching is to expose the observer

to color stimuli under different illuminants Ea(λ) and Eb(λ). The observer then

matches under Eb(λ) the perceived color under Ea(λ) [WS82]. Simultaneous asym-

metric matching refers to the observer being adapted to two different illuminants

at the same time. Some early experiments [Wri34, Hun50, BEN57] use haploscopic

(also called dichoptic) color matching where the observers use a colorimeter like

device (see Figures 1.7 and 2.1) with two viewing areas. One eye is looking at a

test light surrounded by an area illuminated by Ea(λ), and the other eye is looking

at a reference light, surrounded by an area illuminated by Eb(λ). The viewing area

under Eb(λ) contains a field with a mixture of red, green and blue primaries that can
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be adjusted to match the test stimulus. The uniform (and often neutral) surround

is adjusted for different luminance conditions. Breneman [Bre87] and Chichilnisky

and Wandell [CW95] used a similar set-up, but with a complex surround (natural

scene) or a colored surround, respectively.

The advantages of this method is its simplicity and high precision. Disadvan-

tages are that both eyes are adapted to different illuminants. As signals of both eyes

are mixed at the level of the LGN, it is not clear what the effect of this interaction

is. Thus, MacAdam [Mac56] used a single bipartite viewing field where both halves

show different adapting conditions. The observer fixates to the partition line. In this

case, the same retinal area in both eyes is viewing the same adaptation conditions.

Such a set-up is called monocular matching.

Wuerger [Wue96] had the observer fix a point on a CRT monitor, but addi-

tionally varied the temporal frequency of the stimuli. To allow for a more natural

viewing experience, other studies [AR86, ARSG91, BBS97, DB00] allowed move-

ments of both eyes over the two adapting fields. Again, it is difficult to predict how

the observers’ adaptation state behaves if they can move their eyes freely from one

region to the other.

In successive asymmetric color matching, the observer views a single scene first

under Ea(λ) and then Eb(λ). The observer adjusts a colored patch under Eb(λ) to

appear the same as under Ea(λ). Brainard and Wandell [BW92] and Bäuml [Bäu95]

used two CRT monitors calibrated to different illuminants, and Braun and Fairchild

[BF96] used a CRT monitor to match hardcopy. Obviously, the accuracy of these

experiments depend on the ability of the observers to remember color accurately.

McCann et al. [MMT76] and Lucassen et al. [LW93, LW96] used a combination of

successive and haploscopic matching: one eye was adjusted to one viewing condi-

tions, while the other eye successively matched the stimuli.

Achromatic Matching

In achromatic matching, the observers adjust a specified color to appear neutral

[FL92, Bäu94, Bra98, KMB02]. This method is less exact in predicting the remap-

ping of colors due to illumination change. It provides coordinates of points in the
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observer’s achromatic locus, but not exactly which point. However, Speigle and

Brainard [SB99] reported after comparing the two different methods that achromatic

adjustments, together with a gain-control model, can be used to make accurate pre-

dictions of the chromaticity of asymmetric matches.

Memory Matching and Magnitude Estimation

Helson et al. [HJW52] and Lam [Lam85] used a memory matching experiment were

observers first learned to describe colors in terms of hue, lightness and chroma of

the Munsell color ordering system [WS82, Mun76]. The training is time intensive,

but a trained observer is reasonably accurate in predicting Munsell coordinates. For

a detailed description of Lam’s experiment, see section 3.2. Arend [Are93] used a

combination memory-achromatic matching experiment. He trained the observers on

the Munsell color system, and then had them create neutrals or unique hues under

different illuminants on a CRT monitor, as they remembered from the Munsell

coordinates.

In magnitude estimation (or color naming) experiments, the observers are asked

to rate the lightness, colorfulness and hue of a stimulus [Bar79a, Bre87, UUB89,

LCR+91, KLB95, SB96]. These values are then projected to a chromaticity dia-

gram, from where tristimulus values can be derived at equal luminance, i.e. equal

tristimulus value Y .

2.9 Conclusions

The literature most relevant for the subsequent chapters has been summarized. The

different studies and resulting models emphasize that chromatic adaptation is still a

rich field of research, both from a computer vision and human vision system modeling

point of view. We will concentrate on the former in the subsequent chapters to define

algorithms useful in color science and color imaging applications.



Chapter 3

Spectral Sharpening

3.1 Introduction

Chromatic adaptation transforms (CATs) map color responses under a reference

light source to color responses for a target light source such that the corresponding

color predicts the appearance of a given surface reflectance under the target light

source. In color science and color appearance models [MFH+02], CATs are used to

predict the appearance of a surface color under illuminants with different spectral

power distributions (SPD). In color imaging, they are used in color management

systems to transform pixel values from one color image encoding to another, if the

color image encodings specify different white-points [ISO04].

Considering the wide spread applications, several CATs have lately been pro-

posed in the literature. The implication of all these recently proposed chromatic

adaptation transforms [Lam85, Fai01, LLRH02] is that color correction for illumi-

nation takes place not in cone space but rather in a “narrowed” cone space, if

we assume that the strong von Kries chromatic adaptation model (see section 2.4)

holds, which predicts that chromatic adaptation can be modeled as an independent

gain control in each channel. The CAT sensors have their sensitivity more narrowly

concentrated than the cones. But are these sensors optimally narrow for predicting

corresponding colors subject to a strong von Kries DMT-transform? Recent work in

color constancy has shown that it is possible to sharpen sensors to a much greater

49
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extent [FDF94b, FDF94a] when physical scene measurements (XYZ or camera

RGBs) need to be mapped under different illuminants.

Generally in this thesis, we want to explore if the mathematical techniques

used in modeling physical data, i.e. measurements of color responses under different

illuminants, is also applicable to experimentally derived data, i.e. corresponding

colors. In this chapter, we derive a CAT based on spectral sharpening and compare

the perceptual errors between actual appearance and predicted appearance of a

color under different illuminants to the different CATs recently proposed in the

literature, since it is perceptual error that these CATs minimize. We begin with

Lam’s original experiments (section 3.2) that resulted in the Bradford transform,

which was extensively used in color science and color imaging.

We compare the performance of the linear Bradford transform, the linear CAT

proposed by Fairchild [Fai01], and CAT02 implemented in CIECAM02 [LLRH02,

MFH+02] (section 3.3) with that of an adaptation transform that is based on sharp

sensors. We describe how we derive a sharp chromatic adaptation transform based on

corresponding color data (section 3.4). In section 3.5, perceptual errors in CIELAB

∆E, ∆ECIE94, and ∆ECMC(1:1) are calculated for several corresponding color data

sets and analyzed for their statistical significance. The results are found to be similar

for all transforms, with the exception of the “original” von Kries applied in cone

space. The sharp transform performs equally well as CAT02, the newly proposed

chromatic adaptation transform for CIECAM02: there is no statistically significant

difference in performance for most data sets. We discuss our findings in relation

with other studies in section 3.6.

3.2 Lam’s Experiment

In his experiment to derive a chromatic adaptation transform, Lam [Lam85] used

58 dyed wool samples. His main objectives when choosing the colors were that

the samples represent a reasonable gamut of chromaticities corresponding to ordi-

nary collections of object colors (see Figure 3.1), and that the samples have various
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degrees of color constancy with regard to change of illuminant from D65 to A (see

Appendix B).

To evaluate the samples, Lam used a memory matching experiment where ob-

servers are asked to describe the color appearance of stimuli in relation with a

memorized color ordering system. Lam trained the observers on the Munsell sys-

tem. Each observer was asked to describe the appearance of the samples in Munsell

hue, chroma and value terms. The observers were fully adapted to the illuminant

before they began the ordering. He used five observers with each observer repeating

the experiment twice, resulting in ten color descriptions for each surface and for

each illuminant, respectively.
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Figure 3.1: Distribution of Lam’s 58 samples in CIE a∗, b∗, measured under D65.

Lam converted the average Munsell coordinates of each sample under illumi-

nant D65 and A to CIE 1931 Y, x and y values so that a color difference formula

can be applied to the data. He calculated tristimulus values using the 1931 CIE

equivalents of Munsell samples under illuminant C [NNJ43]. To calculate Munsell

equivalent values under D65, he used the Helson et al. [HJW52] chromatic adap-

tation transform to correct for the illuminant change from C to D65.

Lam was now in a position to derive a chromatic adaptation transform, i.e.

to find a mapping that related his corresponding color data. He derived a chro-

matic adaptation transform minimizing ∆E between actual and predicted corre-
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sponding colors under the following set of constraints: (1) the transform should

maintain achromatic constancy for all neutral samples, (2) it should work with dif-

ferent adapting illuminants, and (3) it should be reversible (i.e. when a particular

color is transformed from A to D65, and back to A again, the tristimulus values

before transformation and after transformation back to A should be the same).

These constraints have subsequently been generally adapted when developing CATs

[FS00a, Fai01, LLRH02].

The Bradford chromatic adaptation transform, called KING1 in his thesis, is

based on a simplified MacAdam [Mac61, Mac63] or Nayatani transform [NTS81],

and is similar to the Bartleson transform [Bar79a, Bar79b] as it also contains a

non-linearity in the blue channel (see section 2.5.2). The individual steps are as

follows:

Step 1: Transformation from Xa, Y a, Za to Ra, Ga, Ba under the reference illu-

minant E(λ)a:










Ra

Ga

Ba











= MBFD











Xa/Y a

Y a/Y a

Za/Y a











(3.1)

where

M =











0.8951 0.2664 −0.1614

−0.7502 1.7135 0.0367

0.0389 −0.0685 1.0296











Step 2: Transformation from Ra, Ga, Ba to Rb, Gb, Bb under the test illuminant

E(λ)b.










Rb

Gb

Bb











=











Rb
w

Ra
w

Gb
w

Ga
w

Bb
w

(Ba
w)p





















Ra

Ga

(Ba)p











(3.2)

where

p = (Ba
w/Bb

w)0.0834

Quantities Ra
w, Ga

w, Ba
w and Rb

w, Gb
w, Bb

w are computed from the tristimulus values of

the reference and test illuminants, respectively, through eq. 3.1.
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Step 3: Transformations from Rb, Gb, Bb to Xb, Y b, Zb.











Xb

Y b

Zb











= M−1
BFD











RbY a

GbY a

BaY a











(3.3)

Like other studies [Mac61, Mac63, NTS81, WW82, SH88, Bäu95, LW93, DB00],

Lam found that the strong von Kries model was not adequate to predict his corre-

sponding color data, and chose a non-linear chromatic adaptation model to define

his transform. A strong von Kries model assumes that the gain is dependent only on

signals from the same channel, or one cone class. However, as opposed to MacAdams

and Nayatani et al., he restricted the non-linearity to the blue channel. A similar

transform was later developed by Lucassen and Walraven [LW93], who found that a

log-based transform better predicts corresponding color responses in the blue chan-

nel.

One implication of the Bradford chromatic adaptation transform is that color

correction for illumination takes place not in cone space but rather in a “narrowed”

cone space. The Bradford sensors (the linear combination of XYZs defined in the

Bradford transform) have their sensitivity more narrowly concentrated than the

cones (see Figure 3.2). Additionally, the long Bradford sensor has its peak sensitivity

shifted to longer wavelength.

3.3 Linear Chromatic Adaptation Transforms

For a few years, the Bradford chromatic adaptation transform was the preferred

CAT for color science applications. It was standardized as CMCCAT97 [LH98a] by

the Colour Measurement Committee (CMC) of the Society of Dyers and Colourists

as the preferred chromatic adaptation transform to use and by the CIE in the

color appearance model CIECAM97s [LH98b, CIE98]. However, due to problems

in CIECAM97s model reversibility [Fai01] and computational speed, the Bradford

CAT was not adopted in the imaging community where CATs are used in color

management applications [SW00, ICC04]. The non-linear correction in the blue of

the Bradford transform was considered negligible and is not encoded. The linear
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Figure 3.2: The normalized Bradford sensors (dash) compared to the normalized

LMS (HPE) cone fundamentals (solid).

Bradford transform thus becomes a Diagonal Matrix Transform (DMT)-type von

Kries-Ives [Mal01] transform:











Xb

Y b

Zb











= M−1
BFDDMBFD











Xa

Y a
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(3.4)

where

D =











Rb
w

Ra
w

Gb
w

Ga
w

Bb
w

Ba
w











Quantities Ra
w, Ga

w, Ba
w and Rb

w, Gb
w, Bb

w are computed from the tristimulus values of

the reference and test illuminants by multiplying the corresponding XYZ vectors by

MBFD.

Subsequent studies also proposed linear CATs in a narrower cone space. Fairchild

[Fai01], in an effort to simplify CIECAM97s and make it reversible, proposed a lin-

ear CAT that most closely performed to the original Bradford transform in terms of

perceptual error. He used Munsell samples to calculate corresponding colors under
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illuminants A and D65 using the non-linear Bradford CAT. He then developed a lin-

ear CAT by minimizing the CIELAB differences to the predictions of the Bradford

CAT on this corresponding color data set. Li et al. [LLRH02] derived a new CM-

CCAT2000 based on minimizing perceptual error (∆E) over a set of corresponding

color data compiled by Luo and Rhodes [LR99]. A slightly different transform was

derived by excluding the data set of McCann et al. [MMT76]. This latter CAT

was adopted by the CIE as the chromatic adaptation transform CAT02 for a new

color appearance model CIECAM02 [MFH+02]. We use the same data set in this

study to test the performance of the CAT we derive in this chapter. The linear

transformations M are as follows:

MFai =











0.8562 0.3372 −0.1934

−0.8360 1.8327 0.0033

0.0357 −0.0469 1.0112











MCAT02 =











0.7328 0.4296 −0.1624

−0.7036 1.6974 0.0061

0.0030 0.0136 0.9834











The corresponding sensors are illustrated in Figure 3.3. The three transforms,

linear Bradford, Fairchild and CAT02 result in very similar sensors, slightly more

narrow-band than the cone responses, and containing some negative values. For

comparison, the Hunt-Pointer-Estevez (HPE) [Hun98] cone fundamentals are also

plotted. The linear transform from XYZ to LMS is as follows:

MHPE =











0.3897 0.6890 −0.0787

−0.2298 1.1834 0.0464

0 0 1











The HPE cone fundamentals have been used by Hunt to develop color vision

models [Hun98], and are also part of Nayatani et al. [NTS81] and Fairchild’s [Fai96]

color appearance models [Fai98]. They are derived as a linear combination of the

CIE 1931 XYZ color matching functions that most closely match a cone quanta

absorption study of Estevez for 2 degree observers [Est79].
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Figure 3.3: The normalized sensors resulting from different chromatic adaptation

transforms: HPE (solid color), Bradford (dash), Fairchild (dotted), CAT02 (dash-

dot).

3.4 The Sharp Adaptation Transform

The Sharp adaptation transform [FS00b, FS00a] used in this experiment is de-

rived with a data-based sharpening algorithm, first described by Finlayson et al.

[FDF94b]. The performance of the diagonal-matrix transformations that are used

in many color constancy algorithms can be improved if the two data sets are first

transformed by a sharpening transform T. They showed that the resulting “sharp”

sensors are the most appropriate basis for modeling and/or computing adaptation of

physical quantities (raw XYZs) across illuminants, i.e. for solving the non-perceptual

adaptation problems when treating XYZs as the important units. Data-based sharp-

ening was initially developed to validate sensor-based sharpening and to evaluate

if the sharpening transform varies drastically with different illuminant and surface

reflections.

The data-based sharpening transform T is derived by finding the best transform

between two color response data sets under different illuminants [FDF94b]. For our

purpose of deriving a chromatic adaptation transform, we assume that the data sets
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contain corresponding color data. We can thus derive a linear chromatic adaptation

transform based on data-based spectral sharpening [FDF94b] as follows.

Let Wa 3 × n be a set of tristimulus values under illuminant Ea(λ) and Wb a

set of tristimulus values under illuminant Eb(λ). According to von Kries, the two

sets should be approximately equal, subject to a diagonal matrix transform (DMT):

Wb ≈ Λb,aWa (3.5)

where Λb,a is a diagonal transform. The idea of spectral sharpening is that the

residual error in the mapping can be reduced if both data sets are first linearly

transformed by a sharpening matrix T:

TWb ≈ Λb,aTWa (3.6)

Solving for Λb,a requires minimizing some error criterion. Using least-squares, Λb,a

can be solved for by the Moore-Penrose inverse:

Λb,a = TWb[TWa]+ (3.7)

where []+ denotes the pseudoinverse [GvL96]. The solution for T must ensure that

Λb,a is diagonal. Rearranging eq. 3.7, we obtain:

[T]−1Λb,aT = Wb[Wa]+ (3.8)

The solution for T is therefore in the eigenvector decomposition of:

Wb[Wa]+ = Ub,aΛb,a[Ub,a]−1

Thus, T is equal to [Ub,a]−1.

Note that the best general transform that maps Wa to Wb in the least-squares

sense is found by:

Bb,a = Wb[Wa]+ = Wb[((Wa)T (Wa))−1(Wa)T ] (3.9)

Thus, eq. 3.8 can be interpreted as simply being the eigenvector decomposition

of the general transform Bb,a. What is important to note though is that if the

sharpening transformation T is first applied to the color responses Wb,Wa, then

the optimal transformation is the diagonal transform Λb,a.
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Thus, using Lam’s experiment, the prediction of the corresponding colors under

D65 using a von Kries-Ives DMT chromatic adaptation model should approximately

equal

TWb ≈ Db,aTWa (3.10)

where Wb is a 3 x 58 matrix of corresponding color XYZs under illuminant D65,

Wa is a 3 x 58 matrix of the measured XYZs under illuminant A and Db,a is the

diagonal matrix formed from the ratios of the two sharpened white-point vectors

[RD65
w , GD65

w , BD65
w ] and [RA

w, GA
w, BA

w ], derived by multiplying vectors [XD65
w , Y D65

w , ZD65
w ]

and [XA
w , Y A

w , ZA
w ] with T.

The matrix T is derived from the matrix Bb,a that best maps Wa to Wb

minimizing least-squares error, as shown above. However, while Bb,a calculated

using eq. 3.9 results in the smallest mapping error, it will not fulfill the requirement

that particular colors are mapped without error, e.g. preserving achromaticity for

neutral colors. Therefore, Bb,a was derived using a white point preserving least-

squares regression algorithm [FD97a, FD97b]. The intent is to map the values in

Wa to corresponding values in Wb so that the RMS error is minimized subject

to the constraint that, as an artifact of the minimization, the achromatic scale is

correctly mapped. In order to preserve white:

Bb,a = D + (ZN) (3.11)

where D is the diagonal matrix formed from the ratios of the two white point vectors

[XD65
w , Y D65

w , ZD65
w ] and [XA

w , Y A
w , ZA

w ], respectively. Z is a 3× 2 matrix composed of

any two vectors orthogonal to the [XA
w , Y A

w , ZA
w ] vector. N is obtained by substituting

Z, N and D in eq. 3.9 and solving for N. The sharpening transform T can then be

derived through eigenvector decomposition of the general transform Bb,a:

Bb,a = Ub,aΛb,a[Ub,a]−1 (3.12)

where T is equal to [Ub,a]−1.

The predicted corresponding colors under illuminant D65 of Lam’s 58 samples,

using this Sharp transform, are calculated with eq. 3.10.
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Numerically, the linear transformation T, which we will call MSharp [FS00b,

FS00a], is equal to:

MSharp =











1.2694 −0.0988 −0.1706

−0.8364 1.8006 0.0357

0.0297 −0.0315 1.0018











(3.13)

The corresponding sensors are illustrated in Figure 3.4.

Note that for the rest of this thesis, when we refer to the Sharp (capital S )

sensors, we refer to the sensors illustrated in Figure 3.4, which are derived by mul-

tiplying the CIE XYZ color matching function with eq. 3.13. When we refer to

the Sharp (capital S ) chromatic adaptation transform, we refer to a von Kries-Ives

DMT that is applied in the Sharp sensor space. When ’sharp’ is not captialized, we

refer to sensors that resemble the Sharp sensors of Figure 3.4, i.e. they are more

narrow-band than cone fundamentals.
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Figure 3.4: The Sharp sensors (solid color) compared to the other CAT sensors:

HPE (solid), Bradford (dash), Fairchild (dotted), CAT02 (dash-dot).
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3.5 Comparison of the Sharp CAT with other lin-

ear CATs

Applying the resulting Sharp CAT, derived via data-based sharpening of the cor-

responding colors of the 58 Lam samples under illuminants A and D65 minimizes

the RMS error between corresponding XYZs. It also yields sensors that are visibly

sharper than those implied by the Bradford transform (see Figure 3.4). However,

what we are most interested in is to compare the perceptual error between actual

appearance and predicted appearance of a color under different illuminants using

the Sharp and the other linear transforms, an we will thus compare errors in a more

perceptual color space encoding.

Several corresponding color data sets were used to compare the performance of

the Sharp transform, the linear Bradford, the CAT02 and the Fairchild transform,

as well as the original von Kries transform using HPE cone fundamentals. Together

they form a set accumulated by Luo and Rhodes for the purpose of deriving and

evaluating color appearance models and chromatic adaptation transforms [LR99].

The same data set was also used to derive CAT02 [LLRH02]. Table 3.1 lists the

characteristics of the data sets used in this study.

The actual and predicted XYZ values were converted to CIELAB space using

eq. 1.10. Three perceptual error prediction methods, ∆ELab (eq. 1.11), ∆E94

(1.14), and ∆ECMC(1:1) [Hun98] were applied. One-tail student-t tests [WMM98]

for matched pairs were used to compare the results to find if the variations in errors

are statistically significant. For each corresponding color data set, the resulting p-

values were calculated using the best performing CAT in terms of mean perceptual

error as one input, and the other CATs as the other input. The null hypothesis was

that the mean of the perceptual errors of the best performing CAT and the other

CAT is equal to zero. The alternative hypothesis was that the best performing CAT

has a smaller mean. A large p-value supports the null hypothesis, and a small p-

value rejects it. p-values equal or larger than 0.05 and 0.01 indicate that the means

are equal (or that the null hypothesis cannot be rejected) at a confidence level of 95

and 99 percent, respectively.
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Data Sets No. Approx. Test Approx. Sample Medium Experimental

of Samples Illuminant Reference Size Method

Illuminant

Lam 58 D65 A L Refl. Memory

Helson 59 D65 A S Refl. Memory

CSAJ 87 D65 A S Refl. Haploscopic

Lutchi 43 D65 A S Refl. Magnitude

Lutchi D50 44 D65 D50 S Refl. Magnitude

Lutchi WF 41 D65 WF S Refl. Magnitude

Kuo&Luo 40 D65 A L Refl. Magnitude

Kuo&Luo TL84 41 D65 TL84 S Refl. Magnitude

Braun&Fairchild 1 17 D65 D93 S Monitor & Refl. Asymmetric

Braun&Fairchild 2 16 D65 D93 S Monitor & Refl. Asymmetric

Braun&Fairchild 3 17 D65 D30 S Monitor & Refl. Asymmetric

Braun&Fairchild 4 16 D65 D30 S Monitor & Refl. Asymmetric

Breneman 1 12 D65 A S Trans. Magnitude

Breneman 8 12 D65 A S Trans. Magnitude

Breneman 4 12 D65 A S Trans. Magnitude

Breneman 6 11 D55 A S Trans. Magnitude
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Table 3.2: The number of times a transform performed best or was statistically the

same (p-values ≥ 0.05, 95% confidence) as the best transform.

Error Metric MSharp MBFD MCAT02 MFai01 MHPE

∆E 10 9 14 11 6

∆ECIE94 12 8 11 11 6

∆ECMC(1:1) 12 9 12 9 6

Table 3.3: The number of times a transform performed best or was statistically the

same (p-values ≥ 0.01, 99% confidence) as the best transform.

Error Metric MSharp MBFD MCAT02 MFai01 MHPE

∆E 15 12 14 14 7

∆ECIE94 14 11 14 12 9

∆ECMC(1:1) 14 11 16 12 8

The results for each error prediction method, corresponding color data set, and

transform are listed in Tables C.1, C.2 and C.3 in Appendix C. To summarize,

Table 3.2 and Table 3.3 lists the number of times for the total number of datasets a

CAT performed best or was statistically the same as the best transform at a 95 and

99 percent confidence level, respectively. The maximum score for each error metric

is 16, as 16 corresponding color data sets were tested.

3.6 Discussion

Using 95% confidence, the CAT02 performs best considering only ∆E as error met-

ric. That is not surprising, considering that CAT02 was optimized over the same

data set used in this study minimizing ∆E. However, for ∆ECIE94 and ∆ECMC(1:1),

which are considered to be more precise error metrics [Hun98], the performance of

Sharp CAT, CAT02 and the Fairchild CAT are approximately the same. All three

were able to predict corresponding colors for almost all data sets as well as the best
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performing transform. The linear Bradford CAT performed slightly worse, but not

significantly when the confidence interval is increased to 99%.

These findings have been experimentally corroborated. Calabria and Fairchild

[CF01] tested different CATs in a psychovisual study on real and simulated images

and found that there was no visual difference between linear CATs in a narrowed

cone space and the non-linear Bradford transform. Hubel and Finlayson [HF98]

even found a slightly better performance of a sharp CAT when comparing printed

images to monitor images.

The “original” von Kries transform, scaling cone responses, does perform less

well than the other four linear transforms in this study as well as the visual studies

of [HF98, CF01]. The von Kries sensors (i.e. the cone fundamentals) have distinctly

different peaks for the green and red sensors than the other CATs (see Figure 3.3),

which leads to the conclusion that chromatic adaptation is not just a function of

the cone responses of the human visual system. This corresponds well with many

psychophysical studies that also could not find an appropriate mapping with a DMT

in cone space (see chapter 2). However, if we allow that scaling does not take place

in cone space, but an “intermediate” cone space, a linear transformation seems to

be a good enough approximation to model the effect of illumination change on color

appearance.

The Bradford, CAT02 and Fairchild CATs are derived by minimizing perceptual

error, i.e. ∆E. The Sharp CAT is derived by optimizing the mapping from XYZ

under one illuminant to the XYZs under another illuminant, subject to a DMT

transform. The resulting sensors (see Figure 3.3) are much “sharper,” i.e. more

narrow-band than the other CAT sensors.

Though perceptual data was not used to derive spectrally sharpened sensors,

spectral sharpening does appear to be psychophysically relevant. Indeed, sharp sen-

sors have been discovered in many different psychophysical studies. Foster [Fos81]

observed that when field spectral sensitivities of the red and green response of the

human eye are determined in the presence of a small background field, the resulting

curves are more narrow and de-correlated than the regular cone responses. These

sharpened curves tend to peak at wavelengths of 530 nm and 605 nm, respectively.
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Poirson and Wandell [PW90] studied the color discrimination ability of the visual

system when targets are briefly presented in a complex display. The spectral sensi-

tivities derived from their experimental data peak relatively sharply around 530 and

610 nm. Thornton [Tho99] postulated that the visual response to spectral lights

consists of sharp sensors with peak wavelength around 450, 533, and 611 nm, as the

conventional CIE color matching functions (CMFs) do not transform appropriately

to predict color matches by the same observer using another set of primaries. He

proposed that the real color matching functions that approximate the visual sensi-

tivity to spectral lights are much narrower sensitivities than the current CIE CMFs

(see section 1.2.1). Brill et al. [BFHT98] discussed prime-color wavelengths of 450,

540, and 605 nm. They proved that monitor primaries based on these wavelengths

induce the largest gamut size, and that these monitors are visually very efficient.

The color matching functions derived from these primaries, when linearly related to

the CIE 1931 color matching functions, are sharp and de-correlated. Finlayson and

Morovic [FM01] found that using a sharp CAT is better able to predict metameric

color matches under different illuminants than other CATs.

Thus, it is plausible that a gain control model in a “sharpened” color space is

able to predict chromatic adaptation to a first approximation. This is not to say

that the corresponding sharp sensors have any physiological meaning, but that the

combination of individual processing sites in the HVS might result in sensors that

are narrower than the cones.

From an imaging point of view, sharp sensors also have the advantage that

they are close to sRGB [IEC99] and other RGB encoding color matching functions

[SHF01]. So basing chromatic adaptation transforms on sharp sensors meshes well

with standard color correction methods used in digital color cameras (see section

2.7.2), and might reduce noise in a color image processing chain.

3.7 Conclusions

We have shown that using a computational approach to chromatic adaptation yields

the same results as the more empirically derived chromatic adaptation transforms
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present in the literature. By first transforming the color responses under one il-

luminant to color responses in a more narrow-band sensor space, which is derived

by optimizing the diagonal mapping between the corresponding colors, we can pre-

dict as accurately as the other CATs the appearance of the colors under a second

illuminant.

The sensors that we derive as being optimal to model illumination change, sub-

ject to a strong von Kries-Ives DMT-type chromatic adaptation model, are quite

different from the sensors of the other CATs. The are sharper, i.e. they have nar-

rower sensitivities and the peak sensitivity for red is at longer wavelength. Such

sensors have been found in the literature in color matching and color discrimination

tasks. However, the difference in sensors of the different CATs, while still mostly

producing the same results, do question the assumption that only one chromatic

adaptation transform should be used in all color science and color imaging applica-

tions. In the next chapter, we will explore if there are not other sensors that could

also be used.
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Chapter 4

Spherical Sampling

4.1 Introduction

We have seen in the previous chapter that there are several chromatic adaptation

transforms (CATs) that can accurately predict corresponding color appearance un-

der different illuminants, using the strong von Kries-Ives coefficient model. All

operate in a sensor space that is narrower than cone space. However, there is still

significant differences between them, which can be accounted for in the way they

were derived. The Bradford transform is a linear version of the original transform

found by Lam [Lam85], who minimized perceptual error (∆E) on a set of corre-

sponding color data he obtained from a memory matching experience. CAT02 is

derived by minimizing perceptual error over several sets of corresponding colors

[LR99, MFH+02]. The Sharp CAT was derived by minimizing XYZs over Lam’s

corresponding color data set (see section 3.4).

Considering that the shape of the sensors differs between the CATs, but their

performance in predicting corresponding color over several different data sets [LR99]

remains mostly the same, lead us to investigate if there are not other sensors that

would perform equally well. This might be especially relevant in lieu of the stan-

dardization efforts of chromatic adaptation transforms in the color science and color

management communities [ICC04], who would like to standardize one chromatic

adaptation transform for all applications.

67
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Recall that the strong von Kries-Ives DMT chromatic adaptation model is as

follows:

[Xb, Y b, Zb]T = M−1
CATDb,aMCAT [Xa, Y a, Za]T (4.1)

where Xb, Y b, Zb and Xa, Y a, Za are the tristimulus values of a corresponding color

pair under the test and reference illuminant, respectively. Db,a is a diagonal trans-

form:

Db,a =











Rb
w

Ra
w

Gb
w

Ga
w

Bb
w

Ba
w











Quantities Ra
w, Ga

w, Ba
w and Rb

w, Gb
w, Bb

w are computed from the tristimulus values of

the test and reference illuminants by multiplying the corresponding XYZ vectors by

MCAT . MCAT is the (3 × 3) non-singular matrix that converts the XYZ values to

sensor responses. Von Kries originally assumed that the sensors correspond to cone

fundamentals, but that has been shown not to be accurate (see chapter 3). Thus,

modern CATs define specific linear transforms, such as MCAT02 for the chromatic

adaptation transform used in the color appearance model CIECAM02 [MFH+02],

that convert cone responses into specific sensor responses. Indeed, the difference in

all the CATs mentioned in the previous chapter are the coefficients of MCAT .

To find other chromatic adaptation transforms that are capable of predicting

corresponding color data, subject to the strong von Kries-Ives coefficient model

of eq. 4.1, means thus to find sensors that are a linear combination of the CIE

XYZ color matching functions (CMFs), and by definition the cone fundamentals1.

A plausible sensor set could therefore be defined as all sensors that are within a

linear combination of the CMFs. Considering that the CAT sensors span a three-

dimensional space, we can approach this by assuming that all possible sensors can be

illustrated as vectors with their end-points on the surface of a sphere, if the lengths

of the vectors are normalized to unity. The axes of the sphere are orthonormal

sensors that are within a linear transformation of the CMFs. Sampling this sphere

will allow to find all possible sensors that exhibit favorable chromatic adaptation

transform behavior.

1Recall that we assume that cone fundamentals are a linear combination of CIE XYZ color

matching functions, see section 1.2.
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In this chapter, we thus develop a spherical sampling technique that is able to

find a large number of solutions that fulfill some criteria [FS01b]. Our algorithm lets

us find all possible RGB sensors that exhibit favorable CAT behavior when tested

on Lam’s corresponding color data set, subject to a ∆E94 error criterion. It is easier

to find a set of solutions, and to be sure to find all possible solutions, if the solution

space is sampled. Optimization through sampling implies that all possible combi-

nations are tried, and the best solution is retained that corresponds to the global

minimum. Sampling also allows retaining all possible solutions that fulfill some cri-

teria if the result is not unique. While we apply the spherical sampling technique to

finding RGB sensors optimal for von Kries-Ives DMT chromatic adaptation trans-

forms of eq. 4.1, the technique can be used to find any three-dimensional sensors of

equal magnitude.

We found that there are a number of sensors that meet the criterion, and

that the Bradford, Sharp (of eq. 3.13), and CAT02 sensors are not unique. Thus, it

becomes evident that the overall ‘winning’ adaptation transform may best be chosen

by looking at secondary factors, such as transform plausibility [FM01] or similarities

to other sensors found in an imaging workflow [HHF99, SHF01].

4.2 Spherical Sampling

In the case of trichromatic (RGB and XYZ) imaging applications, the basis functions

span a three-dimensional space. If the lengths of the vectors are normalized to unity,

then different vector combinations can be illustrated with their end-points that lie

on the surface of a sphere (see Figure 4.1). Trying all possible combinations of three

points distributed over the surface of the sphere allows us to find all possible solutions

to a given problem. To determine the sample points, the surface of the sphere has

therefore to be sampled at a predefined distance that depends on the application.

That leads to the question of how to uniformly distribute a large number of points

(N) on the surface of a sphere.

There has been significant research done on this problem, and a variety of

algorithms have been proposed [Ale72, CS93, AWR+94]. We have chosen to use
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the generalized spiral set method proposed by Rakhmanov, Saff, and Zhou [RSZ94].

Using spherical coordinates (φ, θ), 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π, the coordinates of

the N points can be calculated as follows:

φn = arccos(hn), hn = −1 + 2(n−1)
(N−1)

, 1 ≤ n ≤ N

θn =
[

θn−1 + 3.6√
N

1√
1−h2

n

]

, 2 ≤ n ≤ N − 1, θ1 = θN = 0
(4.2)

Figure 4.1: Evenly distributed points on a sphere (N = 700), using the generalized

spiral set method.

Figure 4.1 illustrates the distribution of the points for N = 700. The carte-

sian coordinate vectors p (x,y,z) that correspond to each sample point can then be

calculated as follows (ζ = 1):

x = ζcosθsinφ

y = ζsinθsinφ

z = ζcosφ

(4.3)

Each point in the sphere corresponds to some linear combination of the XYZ

color matching functions. However, the XYZ functions themselves are not ortho-

normal. In order to use the points on the sphere as shown in Figure 4.1 to represent

sensors, we need to first map the XYZ color matching functions to a new set of

orthonormal functions, i.e new coordinate axes.
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Orthonormal sensors can be found using singular value decomposition (SVD).

If C denotes the (m × 3) XYZ color matching function matrix, then we can write

C as:

C = UΣVT (4.4)

U is an orthonormal m×3 matrix, Σ is a diagonal matrix (3×3) of singular values,

and VT is an orthonormal 3 × 3 matrix. U is the orthonormal basis that we seek.

By multiplying U with a linear transformation matrix P (3 × 3) that consists of

three sample point vectors pi, pj, pk, a new matrix C (m × 3) of color values can

be derived that corresponds to a new RGB sensor set:

C = UP, P = [pi,pj,pk] (4.5)

Note that these newly derived RGB sensor sets C are only orthonormal in wavelength

if the vectors of matrix P are orthonormal.

If we take every triplet of points pi, pj, pk, on the sphere and post-multiply

U, we will generate a set of sensitivities that are uniformly distributed on a sphere

in sensor space, resulting in a corresponding set of evenly distributed sensors. With

reference back to equation 4.1, if we start with XYZ vectors, then MCAT will equal

to:

MT
CAT = [ΣVT ]−1P (4.6)

While the sampling technique was derived starting with XYZ color matching

functions, the algorithms can, of course, be adapted to using any kind of RGB

sensors. It is important to point out that the sampling technique returns three

sensors that have equal magnitude. In contrast, cone sensitivities are known to

have different sensitivities: the short-wave mechanism is much less responsive than

the long- and medium- wave mechanisms. Here we can avoid sensor magnitude

because this variable is not important in the context of adaptation transforms (we

are looking for scalars relating sensor responses across lighting conditions and these

relative scalings are independent of the absolute magnitude of the sensors).
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Figure 4.2: The corresponding spectral sensor sensitivities of two neighboring surface

point vectors that are 3 degrees apart.

4.3 Sampling Experiment

We use the spherical sampling technique described in the previous section to find

appropriate sensors for chromatic adaptation transforms. First, we determined the

number of surface points necessary to uniformly sample the sphere. We found for

N = 5, 000, the angle between two neighboring surface point vectors varies between

3 − 5 degrees, which we deemed sufficiently dense. Figure 4.2 illustrates the corre-

sponding spectral sensitivities of two neighboring vectors that are 3 degrees apart.

Therefore, the necessary combinations to check are equal to:

N !
m!(N−m)!

= 2.08 × 1010, N = 5, 000, m = 3 (4.7)

Out of computational considerations, we can reduce the number of combinations

by assuming that the sample points giving a positive result are located around the

points that describe the Bradford, Sharp, and CAT02 transform. We determine

the location of the vectors for the three transforms, and retain only the sample

points that fall within 20 degrees of those points (see Figure 4.3). For N = 5, 000,

240 “red,” 167 “green,” and 163 “blue” vectors fulfill that criterion, resulting in
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Figure 4.3: All sample points within a 20 degree radius of Bradford, Sharp and

CAT02 (for N = 5, 000).

6.53 × 106 different sensor combinations C (see eq. 4.5) to be tested. Note that

these sensor combinations are not orthonormal in wavelength.

To evaluate if the resulting RGB sensors have good chromatic adaptation trans-

form behavior, we use Lam’s corresponding color data (see section 3.2) as input data.

We chose this data set as it has a reasonable number of corresponding color pairs,

and has been shown to be quite stable, i.e. CAT sensors derived solely from Lam’s

experimental data where able to predict corresponding colors obtained from other

studies when used with a von Kries-Ives DMT-transform [LLR00, FS00a].

We chose the error criterion as follows. We have seen in the previous chapter

that the Sharp CAT, Bradford CAT, and CAT02 RMS ∆E94 prediction errors for

the same data set are 3.40, 3.54, and 3.45, respectively (see Appendix C, Table C.2).

So for a first error criterion, we assume that all chromatic adaptation transforms

resulting in a ∆E94 ≤ 4 for Lam’s data set are adequate for predicting corresponding

colors. Recall from Table C.2 that the RMS ∆E94 error is equal to 5.01 for von Kries

operating on cone responses (HPE).



74 CHAPTER 4. SPHERICAL SAMPLING

Of the 6.53 million possible chromatic adaptation transforms evaluated, 14,025

fulfilled the error criterion. See Figure 4.4 for the corresponding sampling points

and Figure 4.5 for the corresponding RGB sensors. For clarity of illustration, the

red, green, and blue sensors are plotted in different windows.
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Figure 4.4: All sample points that result in sensor combinations with a RMS CIE

∆E94 ≤ 4 prediction error.

It is evident from Figure 4.5 that the largest sensor variability is in the red,

followed by green and then blue. This can be illustrated using isometric surfaces,

which indicate the sample points that correspond to sensors resulting in different

∆E94 (see Figure 4.6). To isometric surfaces were created by projecting the sphere

surface points onto a plane. The distance between two points is an indicator of

angular distance.

In Figure 4.6, the black line illustrates the convex hull of all sample points within

20 degree radius of Bradford, Sharp and CAT02 sensors. The other iso-contours are

the convex hulls of ∆E94 = 4 (blue -), ∆E94 = 3.9 (green -), ∆E94 = 3.8 (red -),

∆E94 = 3.7 (yellow -), ∆E94 = 3.6 (blue - -), ∆E94 = 3.5 (green - -), ∆E94 = 3.4

(red - -). Note that for the red, and partly for the green sensors, the sampling radius

of 20 degrees was not sufficient to capture all possible sensors. For the red sensors,
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the isometric surface for ∆E94 = 3.7 extends to the border of the isometric surface

of all samples considered. For the green sensors, the limit is ∆E94 = 3.8. Thus, the

actual number of sensor combinations that result in a ∆E94 ≤ 4 is probably even

higher than the 14,025 found here.

In Figure 4.6 and 4.7, the position of the Bradford sensors are indicated with a

•, the CAT02 sensors with a +, and the Sharp sensors with a ◦. The sample point

corresponding to the best performing MCAT is illustrated with a x. It is interesting

to note that Sharp sensors are closer to the best performing sensors for the red and

green sensitivities, where as CAT02 is closer for blue. However, the RMS ∆E94 is

almost identical for Sharp and CAT02.

The best sensor combination found through spherical sampling has a RMS error

of ∆E94 = 3.37. The best sensors are plotted in Figure 4.8, and the corresponding

MCAT−Best is:

MCAT−Best =











1.1083 0.0631 −0.1714

−0.8044 1.7798 0.0246

0.0000 0.0151 0.9849











.
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Figure 4.5: All RGB sensors that result in 14,025 different combinations with a RMS

CIE ∆E94 ≤ 4 prediction error.
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Figure 4.6: Isometric surfaces projected on a plane for different RMS CIE ∆E94

thresholds.
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Figure 4.7: Close-up of the 4.6. See text for explanation.
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Figure 4.8: The best sensors found through spherical sampling (solid lines) compared

to the CAT02 sensors (dotted lines).
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4.4 Statistical Evaluation

The sampling criterion above was RMS ∆E94 prediction error for Lam’s correspond-

ing color data. While we can find a minimum that performs better than the existing

CATs (RMS ∆E94=3.37), a slight difference in RMS error might not be statistically

significant. It is of more interest to study how many other sensors perform statisti-

cally equivalently. Thus, one-tail student t-tests for matched pairs [WMM98] were

additionally calculated to evaluate how many of the 14,025 RGB sensors resulted

in a chromatic adaptation transform that was not statistically different from the

CAT02 transform. We chose CAT02 for comparison, as it was implemented in the

latest color appearance model CIECAM02 [MFH+02] and the latest ICC color man-

agement profile specifications [ICC04] and thus is widely used. The null hypothesis

was that the mean of the ∆E94 prediction errors of the sampled sensor CAT and

those of CAT02 is equal to zero. The alternative hypothesis was that CAT02 has

a smaller mean. A large p-value supports the null hypothesis, and a small p-value

rejects it.

p-values equal or larger than 0.05 indicate that the means are equal (or that the

null hypothesis cannot be rejected) at a confidence level of 95. At the 95 percent

confidence interval, 1,056 RGB sensor sets remained. They result from a combina-

tion of 59 red, 31 green and 3 blue sampled sensors. The resulting sample points

are shown in Figure 4.9, and the corresponding sensor sets in Figure 4.10. Again

for clarity, the red, green, and blue sensors are plotted in different windows.

We also tested if CAT02 is statistically significantly different from the CAT

with the transform MCAT−Best that resulted in minimum RMS ∆E94 error (RMS

∆E94=3.37). We found that the null hypothesis could not be rejected (p = 0.07).

Thus, corresponding colors clearly do not support a single unique von Kries type

chromatic adaptation transform. Looking at Lam’s data alone, there are probably

at least 1,056 sensor sets to consider.
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Figure 4.9: All sample points that result in sensor combinations that are not statis-

tically significantly different from CAT02 at 95 percent confidence.
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Figure 4.10: All RGB sensors (59 red, 31 green, and 3 blue for a total of 1,056

combinations) that are not statistically significantly different from CAT02 at 95

percent confidence. For comparison, the Sharp sensors, the Bradford sensors and

the CAT02 sensors are also plotted.
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4.5 Conclusions

We present a spherical sampling technique that can be used to evaluate and/or find

linear color transformations. It has the advantage over other optimization techniques

that it not only can easily find a global minimum, it can also return a set of solutions

if so required. While we applied the technique to find possible chromatic adaptation

sensors, it can easily be applied to find any three-dimensional sensors with equal

magnitude.

We also show that the Bradford, Sharp, and CAT02 sensors are not unique.

There is a number of other RGB sensors that exhibit the same favorable chromatic

adaptation behavior. If the sampling distance is further decreased, the number

would increase even more. This leads to the conclusion that there is either too

much noise in the corresponding data set used to evaluate CATs, that the von

Kries model used to implement chromatic adaptation transforms is too much of a

simplification, or that there are many possible solutions to chromatic adaptation

transforms and it is not critical which one is used.

As discussed in Appendix B, the design of the experiment can influence the

corresponding color data one obtains. In other words, color constancy varies ac-

cording to experimental conditions. This has lead many researchers to either pro-

pose extended chromatic adaptation transforms that include non-linearities [Mac63,

NTS81, TSN84, Lam85, LW93], or models that determine the scaling coefficients by

taking into account the responses of all cone classes [WW82, BW92, Bäu95, DB00].

However, many of the same authors agree that even though the strong von Kries

DMT model cannot fully account for chromatic adaptation, it is at first approxima-

tion accurate enough to model colors under different illuminants, a result that was

collaborated using images by Calabria and Fairchild [CF01].

Consequently, we speculate that in order to make a final choice on chromatic

adaptation transforms, other secondary factors should be examined. The argument

that sharp sensors are plausible from a human vision modeling point of view was

made in the previous chapter. Camera sensors that are optimal with respect to

color constancy are sharp [FD96, DF00]. Sharp sensors are also fairly close to RGB

sensors that are the basis for colorimetric color image encodings [HHF99, SHF01].



84 CHAPTER 4. SPHERICAL SAMPLING

Thus, sharp sensors might fit better within a color image workflow than the Bradford

or CAT02 sensors, which do not have such correspondences.



Chapter 5

White-Point Independent RGB

Sensors

5.1 Introduction

In the previous chapter, we have found a large number of sensor combinations that

statistically result in the same chromatic adaptation performance than the most

widely used CAT, CAT02. We speculate that in order for the color science and

color imaging community to decide on chromatic adaptation transforms, secondary

factors should be considered. In this chapter, we thus explore if the sensors found in

the previous chapter could be used in color encodings1. These sensors are considered

to be white-point independent, because the image RGB values are equal to the post-

adaptation sensor responses (see section 5.2).

Two necessary characteristics for color encodings to be used in color imaging

applications are good gamut coverage and hue constancy. Gamut coverage can be

illustrated in a two-dimensional color space, such as x, y or the more perceptually

uniform u
′

, v
′

, or in a three-dimensional color space, such as CIE LAB. Figure 5.1

illustrates the x, y and u
′

, v
′

of two RGB primary sets with an encoding range [0,1],

and Figure 5.2 the corresponding three-dimensional CIELAB gamut. The gamut

boundaries correspond to the convex hull of all color responses possible with a given

1For the reader who is not familiar with color encodings, Appendix D provides a short intro-

duction.
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sensor set in a given encoding range. Thus, all color values contained within the

gamut boundaries can be encoded, where as all color values outside of the gamut

border cannot.
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Figure 5.1: The x, y and u
′

, v
′

chromaticities of two RGB sensor sets in the encoding

range of [0,1].

Figure 5.2: The CIE LAB gamut of two RGB sensor sets in the encoding range of

[0,1].

In section 5.3, we present a method to classify the gamut coverage of the RGB

sensors retained in section 4.4, namely those who are not statistically significantly

different than the CAT02 sensors in predicting Lam’s corresponding color data sub-

ject to using a strong von Kries-Ives coefficient model. We base the classification on
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the surface gamut compiled by Steingrimsson et al. [SSSS02]. Implicitly we assume

that the sensors will be used as the basis for defining a color encoding intended for

print applications, as other applications might strive for a different gamut cover-

age. The resulting best RGB sensors in terms of surface gamut coverage are sharp,

i.e. narrow-band, emphasizing again that for imaging applications, the choice of a

chromatic adaptation transform based on sharp sensors might be most appropriate

[SFHF02].

Our second evaluation criterion is hue constancy, as RGB color encodings used

in color imaging applications should have a high degree of hue constancy. In other

words, a color ramp created by varying the encoding values to create different sen-

sations of lightness or chroma (saturation) should still result in the same hue over

the whole ramp. In section 5.4, we thus present an optimization technique to find

hue constant RGB sensors [FS02b]. The hue representation is based on a log RGB

opponent color space that is invariant to brightness and gamma.

In section 5.5, we combine both experiments and compare how the best sensors

found in the gamut coverage experiment perform in terms of hue constancy. Us-

ing our measures, we find that they perform comparatively to current color image

encoding sensors, and thus could be used in color encodings. We thus show that

sharp sensors are optimal not only in terms of chromatic adaptation modeling, but

do fulfill secondary factors that are important in color imaging applications.

5.2 White-point Independence

RGB encodings based on sensors that exhibit good chromatic adaptation behavior

can be considered to be white-point independent, because the image RGB values are

equal to the post-adaptation sensor responses. From the standpoint of chromatic

adaptation, the linear image RGB values are an appearance description. With

respect to eq. 2.3, they are the illuminant invariant descriptors of a surface color.

When transforming these RGB values to the corresponding color XYZ values for

a particular adopted white-point, the scaling for the destination adopted white is

applied to the matrix that transforms from RGB to XYZ. This matrix is obtained
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by pre-multiplying matrix M−1 by the RGB scaling from an equi-energy adopted

illuminant (E(λ) = 1 ∀λ) to the destination adopted illuminant. Note that M−1

here is equal to M−1
CAT of eq. 4.1.

For example, rendering RGB to XYZ under illuminant D65 is as follows:
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where

DD65 =
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RD65
w , GD65

w , BD65
w are obtained by multiplying XD65

w , Y D65
w , ZD65

w by M. The Re
w, Ge

w, Be
w

of an equi-energy illuminant are by definition equal to 1.

Likewise, converting XYZ values for a particular adopted white to the RGB

appearance description involves applying the inverse of the matrix (M−1DD65) that

is used to transform from the RGB values to the adopted white XYZ values. It can

be assumed that color image processing would become computationally “cheaper,”

and quantization errors would be minimized if images were encoded based on RGB

sensors that exhibit such favorable chromatic adaptation behavior.

5.3 Gamut Coverage Optimization

Through the spherical sampling technique described in chapter 4, we found a large

number (1,056) of XYZ to RGB transforms (M) that are not statistically signifi-

cantly different from CAT02 in predicting corresponding colors. The goal here is to

find among them the RGB to XYZ transforms (M−1) and the corresponding RGB

sensors that wholly enclose the gamut of optimal surface colors while minimizing

the “waste” of encoding colors outside of the surface gamut.

As discussed in Appendix D.2, a color encoding is always based on a specific

sensor space, but additionally includes a digital encoding method. Integer digital

encodings linearly specify the digital code value range associated with the color space
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range. The color space range defines the maximum and minimum digital values that

are represented in the digital encoding. Most RGB color space ranges will typically

be defined as [0, 1], and values outside this range are clipped to the maximum and

minimum values. The digital code value range defines the minimum and maximum

integer digital code values corresponding to the minimum and maximum color space

values. For example, an 8-bit per channel encoding for an RGB color space with

range [0, 1] will associate the digital code value 0 to the color space value 0, and

255 to 1, respectively. If the gamut of a color encoding is large, or the color space

range is larger than [0, 1], more bits need be associated with the color space range

to avoid quantization artifacts when editing and/or displaying an image. However,

increasing the number of bits per channel increases the file size of an image.

Output-referred color image encodings are based on color encodings and are

usually optimized for output on a real or virtual output device. As such, only

colors that can be displayed on that device need to be encoded. The digital values

beyond the color gamut are “wasted,” i.e. they will never be displayed. In case of

output-referred color image encodings intended for print, the gamut surface color is

a reasonable criterion for comparison; a color that is not a surface color will never be

printed. Defining a color encoding that has approximately the same gamut coverage

as the surface colors will minimize the number of bits needed to encode the surface

gamut, and thus minimize the image file size, while ensuring that most printable

colors are encodable.

The gamut obtainable with surface colors used in this study was derived by

Steingrimsson et al. [SSSS02] by calculating the convex hull from real surface re-

flectances (Pointer [Poi80], Pantone, Munsell [Mun76], and real printer ink reflect-

ances) and then converting them to CIE L*a*b* under D50 (see section 1.3). The

data consists of gamut boundary points at different hue angles for different lightness

values, ranging from L*=15 and L*=90 in intervals of 5 L*, for a total of 16 L*

levels.

Using surface colors to define the target gamut and evaluating the gamut under

a D50 white-point implies that the resulting color encoding is optimized for print
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reproduction. However, the method presented here works with any target gamut,

and can be used to find the optimal RGB sensors for any encoding intent.

5.3.1 Experiment

A matrix S (3 × 37, 000) of RGB values between [0, 1]2 describing the RGB cube

surface was transformed to a matrix P (3 × 37, 000) of XYZ under D50 through

M−1, which was pre-multiplied by the RGB scaling DD50 to XYZ under D50:

P = (M−1DD50)S (5.2)

This operation was done 1056 times, for each of the sensor combinations found in

4.4.

For all P, the resulting XYZ values were transformed to CIELAB under D50

using eq. 1.10, resulting in 1056 JLAB (3×37, 000) matrices. For the same L* values

and intervals as supplied by Steingrimsson et al.’s data for the surface gamut, we

extracted the subset of corresponding L∗, a∗, b∗ values from our J matrices. For

example for L*=50:

J50L* = {L∗, a∗, b∗} ∀L∗ = 50, a∗, b∗ ∈ JLAB (5.3)

For all intervals of L*=5, between L*=15 and L*=90, the corresponding (1056)

JL* matrices were calculated. Finally, we calculated the convex hull for each JL*,

which gives us a gamut boundary for each level of L*. The polygon area AL*,RGB

enclosed within the convex hull corresponds to the gamut of color responses that a

given RGB sensor set can encode at that L* value. The surface gamut AL*,surface is

provided by the convex hull coordinates supplied by Steingrimsson et al. Figure 5.3

illustrates for L*=50 the areas contained within the convex hulls of a RGB sensor

combination and the surface colors.

We now have to derive a measure that evaluates the applicability of a sensor set

in terms of gamut coverage. Considering that our color coordinates are expressed

in a perceptual color encoding (CIELAB), where we assume that equal Euclidean

distances correspond to equal perceived color differences, an intuitive measure would

2By using this range of code values, we assume that the useful encoding range is between [0, 1].
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Figure 5.3: The gamut area AL*,RGB contained within the convex hull of a RGB

sensor set (solid) and the and gamut area AL*,surface of the surface colors (dash) at

L*=50.

be to consider the percentage of gamut area in common. We thus first define the

encodable gamut that describes the surface colors that can be encoded with a given

RGB sensor set as the proportion of surface colors contained within the RGB sensor

gamut area, compared to the whole surface gamut:3

Gen,L* =
AL*,surface∩AL*,RGB

AL*,surface

(5.4)

where

AL*,surface ∩ AL*,RGB =

{a∗
L*,surface, b

∗
L*,surface|a∗

L*,surface, b
∗
L*,surface ∈ AL*,surface . . .

. . . ∧ a∗
L*,surface, b

∗
L*,surface ∈ AL*,RGB}

Gen,L* will take a value between [0, 1]; zero if no surface color responses are encodable,

one if all the surface colors are contained within the convex hull of the RGB sensors.

With respect to Figure 5.3, the encodable gamut is 0.96.

However, the encodable gamut is not the only measure that is important. Recall

that each color encoding does specify not only a color space range per channel, [0, 1]

in our experiment, but also a digital code value range (see Appendix D.2), i.e. 8-bits

([0 · · · 255]), 10-bits ([0 · · · 1023]), etc. The number of code values determines the

3The intersections of surface and RGB sensor gamut areas were obtained using the Spatial and

Geometric Analysis Toolbox (SaGA) for Matlab developed by Pankratov [Pan].
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quantization of the color space range. Not associating enough code values to encode

the color space range can result in visible quantization artifacts. Thus, large gamut

encodings define a higher number of bits per channel (10-bits or more), whereas

small gamut encodings are usually limited to 8-bits per channel. The number of bits

chosen to encode a color response has, of course, a direct influence on the file size

of an image.

If the encodable gamut is large, we thus need to quantize it with more bits.

However, if the encodable gamut is much larger than the useful gamut, i.e. the color

responses that need to be encoded for a specific application, then code values are

“wasted.” In other words, images rendered to that specific application will not use

any code values beyond those that describe the intended gamut, in our case the

surface gamut. Thus, we also define a measure for the useful gamut, which is the

proportion of the surface gamut contained within the RGB sensor gamut. A larger

useful gamut implies that fewer code values outside of the surface gamut are wasted.

Gus,L* =
AL*,surface ∩ AL*,RGB

AL*,RGB

(5.5)

Now we have two measures that define the applicability of a RGB sensor en-

coding to describe surface colors for different L* values. To get single measures over

all L* values, we average the results of the individual Gen,L* and Gus,L* over the 16

L* levels:

G. =
1

16

∑

L*=15:5:90

G.,L* (5.6)

5.3.2 Results

In Figure 5.4, the gamuts of the 20 best transforms, i.e. the ones that resulted in

the largest useful gamuts, are plotted at different values of L*. In addition, the

surface gamuts and the gamuts obtained by the ROMM/RIMM and ITU-R.BT

709 sensors are also illustrated. The ROMM/RIMM RGB sensors are the basis for

the ROMM/RIMM color image encodings [ANS02b, ANS02a], and the ITU-R.BT

709 sensors for the sRGB, e-sRGB and scRGB [IEC99, ANS01, IEC03] color image

encodings, which are widely used in imaging applications. The transform matrices

corresponding to the 20 best sensors are listed in Appendix E. For reference, the
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x′, y′ gamuts are also plotted in Figure 5.5, and in Figure 5.6 the corresponding

RGB sensors.
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Figure 5.4: a∗, b∗ gamuts at different values of L*: surface (red bold solid line), 20

best RGB (black solid lines), ROMM/RIMM (green dashed line), ITU-R.BT 709

(blue dotted line).

As can be seen in table 5.1, the best RGB sensor set can generally encode al-

most all surface colors, but also have “waste,” i.e. they can encode RGB values

that do not have corresponding surface reflectances. For comparison, the table also

contains the useful and encodable gamuts of the ROMM/RIMM RGB sensors and

ITU-R.BT 709 sensors. ROMM sensors, which were optimized for print reproduc-

tion, performed as well as our sensors in terms of encodable gamut. However, they

performed worse (by approx. 20 percent) in terms of useful gamut. Conversely, the

ITU-R.BT 709 sensors, which are mostly used for monitor color image encodings,

have a high percentage of useful gamut but cannot encode as many surface colors.

CATs based on these sensors have previously been considered as chromatic adap-

tation transforms, and it was found that they do not perform as well as the most

popular CATs [SHF01].
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Table 5.1: The encodable Gen and useful Gus gamut percentages of the best 20

transforms.

Sensors (Transforms) % of encodable gamut Gen % of useful gamut Gus

M1 98.88 52.56

M2 98.93 52.18

M3 95.90 53.86

M4 96.71 52.53

M5 94.60 53.87

M6 98.55 51.11

M7 96.35 52.61

M8 93.73 54.32

M9 98.15 51.31

M10 97.94 51.27

M11 95.83 52.71

M12 95.05 53.23

M13 95.58 52.66

M14 97.05 51.41

M15 98.52 50.43

M16 99.43 49.72

M17 96.10 51.40

M18 91.61 54.55

M19 98.27 49.89

M20 98.86 49.46

MROMM/RIMM 99.97 30.81

MITU−R.BT709 73.82 79.43

MSharp 99.82 40.77

MCAT02 100.00 18.44
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Figure 5.5: x, y color gamuts of the 20 best transforms, compared to ROMM/RIMM

(green dashed line) and ITU-R.BT 709 (blue dotted line).

As expected, the mean encodable gamuts of the Sharp (eq. 3.13) and CAT02

sensors are sufficient to encode almost or all surface colors, but the useful gamut

is relatively small. Indeed, the useful gamut of the Sharp sensors is even slightly

larger than that of the ROMM/RIMM RGB transform. While the CAT02 sensors

are white-point independent, they do not have good gamut coverage properties. The

ROMM and ITU-R.BT 709 sensors, which have optimized gamut coverage for their

respective usage, are not white-point independent.

All the sensors found in this experiment are white-point independent and have

better gamut properties than CAT02. Compared to CAT02, the optimal RGB

sensors in terms of gamut coverage are much more narrow-band than the CAT02

sensors (see Figure 5.6), and resemble the Sharp sensors (see Figure 3.4). This is

expected when comparing the percentages of useful and encodable gamuts of the

Sharp sensors, the CAT02 sensors and the best sensors (see Table 5.1).

5.4 Hue Optimization

The second characteristic necessary for color encodings we investigate is hue con-

stancy. Hue is an important property of a color. As defined by the CIE, hue is
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Figure 5.6: 20 RGB sensor sets that resulted in the largest useful gamuts, compared

to CAT02.

the attribute of a visual sensation according to which an area appears to be similar

to one of the perceived colors red, yellow, green and blue, or a combination of two

of them [CIE87]. In other words, it is the “name” of a color, and is one of the

perceptual correlates like saturation and brightness.

Hue is the attribute of a color that people generally find easiest to identify. It

is most often used to “describe” a color. Thus, segmenting images according to hue

has been widely used for object segmentation, object recognition and image retrieval

[PK94, MKNM95, GS99]. In the computer vision community, image RGB values are

converted to a hue-based representation using a color transformation like HSV, HLS

and IHS [SH98]. These transformations do not require a-priori knowledge about

the RGB values, i.e. an exact definition linking RGB and tristimulus values (XYZ)

is not needed. While not knowing the exact encoding parameters precludes the

calculations of the CIE definition of hue (see section 1.3), the results are acceptable

for the applications mentioned above.

In the color imaging community, it has been noted that RGB color image en-

codings should have a high degree of hue constancy. In other words, a color ramp
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created by varying the encoding values to create different sensations in lightness

or chroma (saturation) should still result in the same hue over the whole ramp.

Additionally, simple non-linear channel editing should not affect the hue of a color

[Mor01]. In effect, hue constancy was one of the optimization criteria used in the

development of the ROMM RGB color encoding [SWG01]. Their optimization was

based on the CIE LAB hue definition (see eq. 1.13).

We investigate if a hue based representation that is invariant to brightness

and gamma [FS01a], developed for the computer vision community, can be used to

evaluate the hue constancy of RGB sensors. We use spherical sampling (see chapter

4) to find a sensor set that maximizes straight hue lines for psychophysically derived

constant hue data [HB95] in a log RGB opponent color space. Using this definition of

hue constancy, we additionally calculate the hue behavior of the ROMM, ITU-BT.R

709, HPE, Sharp (eq. 3.13, CAT02, and Bradford sensors [FS02b].

The hue definition of the log RGB opponent color space is similar to the hue

definitions in other color spaces. It has been successfully applied to image retrieval

applications [FS01a]. It is gamma invariant, i.e. the power function usually applied

to any RGB encoding cancels out. However, XYZ based hue definitions, such as ha∗b∗

(see section 1.3) and HPT of the IPT opponent encoding [EF98a], are calculated with

a power function. The power functions are equal to 1/3 and 0.43 for CIE LAB and

IPT, respectively. Consequently, LAB ha∗b∗ and IPT HPT are strictly speaking

applicable only to one given “contrast” encoding. While this contrast encoding is

based on the encoding of the human visual system, it does not necessarily reflect

other color image encodings that might be appropriate for certain applications like

computer graphics.

We are not claiming here that the opponent log RGB hue definition is the best

measure for defining visual hue constancy. However, it might be an appropriate tool

to test hue constancy in terms of defining RGB color image encodings, i.e. it might

be suitable for color engineering purposes as opposed to color vision modeling.
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5.4.1 Brightness and Gamma Invariant Hue

The log RGB opponent color encoding [FS01a] was developed on the following

premise. In imaging applications, linear RGB signals captured by the digitizing

device are usually encoded with a power function to compensate for system non-

linearity such as the monitor transfer function. Therefore, the RGB vectors encoded

for each pixel are equal to:










R

G

B











=











αRγ
lin

αGγ
lin

αBγ
lin











(5.7)

α is a scalar that compensates for the illuminance. Applying a log transform

to the RGB values removes the γ term from the exponent and turns them into

multiplicative scalars:
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(5.8)

Brightness α becomes an additive rather than a multiplicative term. Taking

differences of color channels, i.e. projecting orthogonal to the unitary vector (1,1,1)

allows to remove the brightness term:
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γ log(Rlin) − γ log(Glin)

γ log(Rlin) + γ log(Glin) − 2γ log(Blin)



 (5.9)

Note that the definitions of the above differences describe coordinates in an

opponent color representation. They are similar to the opponent color axes used by

the human visual system and could be regarded as having perceptual relevance (see

section 1.2.2).

Finally, ratios of the opponent color coordinates are formed to cancel γ:

γ log(Rlin) − γ log(Glin)

γ log(Rlin) + γ log(Glin) − 2γ log(Blin)
=

log(Rlin) − log(Glin)

log(Rlin) + log(Glin) − 2 log(Blin)
(5.10)

Hue is defined as the inverse tangent of the ratio of eq. 5.10:

H = tan−1 log(Rlin) − log(Glin)

log(Rlin) + log(Glin) − 2 log(Blin)
(5.11)
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The definition of hue is very similar to the CIE ha∗b∗ definition, which defines hue

as the inverse tangent of the ratio of the opponent color coordinates b∗ (blue-yellow)

and a∗ (red-green), see eq. 1.13. What is noteworthy about equation 5.11 is that it

follows only from the engineering imperative to cancel brightness and gamma. There

was no attempt made to model visual response. Rather, mathematically deriving

gamma and brightness independence led to a visual system like definition of hue.

5.4.2 Experiment

The goal of the experiment is to find RGB sensors that keep hue constant and to

evaluate the hue constancy of known sensors. As initial data sets, we used the hue-

constant data published by Hung and Berns [HB95] (see Figure 5.7). They derived

XYZ tristimulus values, four values at each hue angle, for 12 hue angles, through

a psychophysical experiment on a CRT monitor. The original data set was defined

under illuminant C. We used the Sharp chromatic adaptation transform (MSharp,

see eq. 3.13) to calculate the corresponding colors under illuminant D65, so that the

results better correspond to previous hue-constancy experiments [Mor01, EF98b].

−100 −50 0 50 100

−100

−50

0

50

100

a*

b*

Figure 5.7: The Hung and Berns [HB95] constant hue data, plotted in a∗, b∗ under

D65. This Figure illustrates the hue inconstancy of CIE Lab. If the data is hue

constant, it should lie on a straight line through the origin.
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The spherical sampling technique as described in chapter 4 was applied to find

the best sensor that keeps hue most constant. Out of computational consideration,

we tested only sensors that had their endpoints located within 30 degrees of the ITU

BT.R. 709 and ROMM red, green, and blue sensors, resulting in ∼ 6 million different

RGB sensor sets R to be tested (see Figure 5.8). The ITU BT.R. 709 sensors and

the ROMM sensors are considered to be somewhat hue constant [Mor01, WSG02].

−101−1−0.500.51

−1

−0.5

0

0.5

1

Possible points
 
 
sRGB
 
 
ROMM
 
 

x y 

z 

Figure 5.8: Sample points around 30 degrees of the ITU-R.BT 709 and ROMM

sensors considered in the optimization.

The hue-constant XYZ values were converted to linear RGB using the (3x3)

linear transforms M found through the spherical sampling technique. The Hung

and Berns data set consists of 12 hue angles, with four points for each hue, resulting

in 48 XYZ values. If P is a (48x3) matrix of normalized XYZ values, and S is a

(48x3) matrix of linear RGB values, then:

S = PMT (5.12)

Not all transforms result in positive R, G, and B values. Before converting to

log space, the values need to be offset to render them all positive. This offset can be

considered as adding brightness to the RGB channels, or defining a different encoding
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range. Once all the RGB values are rendered positive, the log RGB opponent color

matrix O (48x2) can then be calculated as described in eqs. 5.8 to 5.10.

Perfectly hue constant data in an opponent color encoding should have the same

hue angle. Data points with equal hue should thus lie on a line going through the

origin (see Figure 5.7). Calculating the deviation from the line, i.e. how far the data

points actually are from the line representing the hue angle, gives an indication of

hue constancy. Therefore, the problem of finding the most hue constant RGB sensor

can be expressed as a line-fitting problem.

Using singular value decomposition, we can find a line that best fits a set of data

points minimizing least squares error. However, we have the additional constraint

that the line needs to go through the origin. Adding a “mirrored” point to each of

the opponent log RGB matrix entries will result in a hue matrix H (96x2) with a

mean equal to zero:

H = [O;O × (−1)] (5.13)

For better comparisons between the different sensor results, H was transformed

linearly to a new matrix H̃ that is “white,” i.e. its components are uncorrelated

and covariances equal zero. From eq. 5.13 it is clear that H is already centered,

i.e. it has zero mean. Therefore, the “whitening” transformation is based on the

eigenvalue decomposition of the covariance matrix (HTH of H):

HTH = UΛUT (5.14)

where E is a matrix of eigenvectors, and Λ is a diagonal matrix of eigenvalues. H̃

is calculated as follows:

H̃ = H(UΛ−1/2)T (5.15)

As the best fitting line has to be calculated for each hue angle separately, H̃

was divided into n (n = 12) matrices H̃n (8x2), each containing four hue points

and four mirrored points that should lie on the same hue line. The singular value

decomposition of H̃n can then be written as:

H̃n = UnΣnV
T
n (5.16)
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where Un and Vn are singular vector matrices and Σn is a diagonal matrix of

singular values:

Σn =





σ1

σ2





The second singular value, σ2, is the residual error, i.e. the distance of the

actual points to the line that best fits the data.

The mean residual error ǫ of one sensor set was calculated by averaging over

the individual residual errors of the 12 hue lines, such that:

ǫ =
1

n

12
∑

n=1

σ2(n) (5.17)

Minimizing the mean residual error ǫ derived the best sensor of the original sensor

sets R found through the spherical sampling technique:

ropt = min
ropt∈R

(ǫ) (5.18)

5.4.3 Results

The result of the spherical optimization is illustrated in Figure 5.9, and the corre-

sponding sensors ropt in Figure 5.10. The sensors have relatively large negative values

and are probably not specifically suited to imaging applications. As a comparison,

the hue constancy of the ROMM RGB, ITU-BT.R 709, HPE, Sharp, CAT02, and

Bradford sensors (see chapter 3) are also plotted in Figures F.1 - F.6 in Appendix

F. The residual errors are listed in Table 5.2.

The HPE sensors are closest to the optimal hue constancy sensors ropt, fol-

lowed by the CAT sensors (Bradford, Sharp, and CAT02). The encoding sensors,

ROMM RGB and ITU-BT.R 709, are last. Note, however, the there is no percep-

tual meaning to the error ǫ. That is, we cannot make any predictions about how

“good” or “bad” the hue constancy of the individual color spaces, and by exten-

sion the individual color image encodings are. We provide here only a measure of

“better.” The hue constancy of ROMM and ITU-BT.R 709 based image encodings

have been investigated in other studies, specifically using image rendering operations

[Mor01, WSG02]. The first study [Mor01] found the performance of ITU-BT.R 709
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Figure 5.9: Best hue constancy found with spherical sampling. The mean residual

error is equal to 0.0884.

based encodings to be slightly better, whereas the other study [WSG02] concluded

that ROMM based encodings are preferred.

The experimental procedure presented in this section has many degrees of free-

dom. The offset term used to avoid negative RGB values has an influence on the

final result, as well as the whitening. The error term to be minimized could be

refined to take the lengths of the hue vectors or the correlation of the RGB sensors

into account. However, the method is very flexible, and can be used for hue defin-

ition independent of gamma and white-point encoding. Note that both Lab Ha∗b∗

and IPT HPT are contrast dependent, and IPT additionally requires a white-point

of D65. Indeed, this work could be regarded as a continuation of the work of Ebner

and Fairchild on IPT to find a generalized model for evaluating hue constancy for

color engineering purposes.

Additionally, other hue constant test data should also be evaluated. The Hung

and Berns data has a limited number of tristimulus values. The “blue” hue vector

pointing to the x-axis in Figures 5.12 and F.1 to F.6 is not very straight for almost

all the sensors, which adds a significant amount to the residual error. It is not clear

from this study if this is due to the sensors or noise in the test data.
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Figure 5.10: Sensors that result in the best hue constancy found with spherical

sampling.

5.5 White-point independence, Gamut coverage,

and Hue constancy

We can combine the two experiments described above and run the sensors with

best gamut coverage obtained in section 5.3 to evaluate their hue constancy. Figure

5.11 shows the plots for all 20 sensors, Figure 5.12 for the best sensors in terms

of mean residual error (ǫ = 0.1601, see Table 5.2), and Figure 5.13 illustrates the

corresponding RGB sensors. Figure 5.14 plots the same sensors and additionally also

the Sharp, CAT02, ROMM and ITU-BT.R 709 sensors. The matrix Mbest of 20 is

one of the 20 matrices found in section 5.3.1 and listed in Appendix E that have best

gamut coverage, but which additionally has the smallest residual error ǫ according

to eqs. 5.12 to 5.18. The residual error ǫ is equal to 0.1601 (see Table 5.2). Thus,

Mbest of 20 =











1.6351 −0.4071 −0.2280

−0.8044 1.7798 0.0246

0.0000 0.0152 0.9848
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Table 5.2: The mean residual errors in hue constancy for well known sensors.

Transforms mean residual error ǫ

Mropt
0.0884

MROMM 0.1686

MITU−R.BT709 0.1653

MHPE 0.1039

MSharp 0.1504

MCAT02 0.1563

MBFD 0.1423

Mbest of 20 0.1601

which corresponds to M20 in Table 5.1 with 98.86% of encodable gamut and 49.46%

of useful gamut.

The best sensors perform slightly better than the encoding sensors, ROMM

RGB and ITU-BT.R 709. As discussed above, our error metric does not allow for

a definitive statement about how good or bad the hue constancy is, but can give

a relative indication. Thus, we can certainly draw the conclusion that the RGB

sensors shown in Figure 5.13 will perform equally well as ROMM and ITU-BT.R

709 in terms of hue constancy. This result has been corroborated by G. Woolfe using

the experimental conditions of [WSG02]4. In terms of surface gamut coverage, the

best sensors are able to encode almost all surface colors given by the Steingrimsson

et al.’s data set, as illustrated in Figure 5.15.

5.6 Conclusions

There are a number of RGB color image encodings with different characteristics pro-

posed and/or standardized by the imaging industry today [IEC99, ANS01, ANS02b,

ANS02a], optimized for different purposes within the color imaging workflow. Most

define a fixed adopted white-point, i.e. illuminant, usually D50 or D65. However, the

4private communication
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Figure 5.11: Hue constancy of the 20 best sensors optimized for gamut coverage.

The mean residual error (over all 20 sensors) is equal to 0.1800.

adapted white-point of scenes can vary greatly due to different lighting conditions,

and images are viewed under different illuminants. It is therefore necessary to apply

chromatic adaptation transforms to represent images in these different encodings,

and to accommodate for different viewing conditions. As a result, several chromatic

adaptation transforms might be applied to an image before it is finally displayed or

printed. Defining color image encodings that are white-point independent, i.e. that

can accommodate different white-points with a simple scaling of linear RGB values,

might thus simplify color image processing tasks.

We have presented two methods to evaluate if RGB sensors, found to be equiva-

lent to CAT02 in predicting corresponding colors and thus white-point independent,

could form the basis for such color image encodings. We investigated two important

properties, namely gamut coverage and hue constancy. Gamut coverage was evalu-

ated based on the gamut of surface colors, which makes the resulting RGB sensors

suitable for output-referred color image encoding intended for print reproduction

(see Appendix D). The best sensors in terms of encoding efficiency have more opti-

mal useful gamut coverage than the ROMM and ITU-BT.R 709 sensors, which are

also not white-point independent [SHF01]. The CAT02 sensors, on the other hand,
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Figure 5.12: Hue constancy of the best RGB sensor set in terms of residual error of

Figure 5.11. The mean residual error is equal to 0.1601.

have a very small useful gamut, making them unsuitable for color image encodings

based on surface colors. The best sensors are sharp.

We also investigated hue constancy, an other important factor in the design of

color image encodings. We have presented an optimization technique that evaluates

hue constancy of RGB sensors in a log RGB opponent color encoding. We find that

the best RGB sensor combinations in terms of gamut coverage have equivalent hue

constancy as the ROMM and ITU-BT.R 709 sensors.

While there is more investigation needed if this log RGB representation can be

used to define hue constancy for color imaging applications, we can already make

the following observations. A log RGB opponent encoding would allow evaluating

hue constancy independent of any contrast (gamma) corrections. Sharp sensors

seem to be almost as hue constant as broad-band sensors, such as HPE, in this

representation. This emphasizes again the results of our previous investigations,

where sharp sensors were found to be optimal in predicting corresponding color

data. There are many indicators that sharp sensors should play a role in color

engineering.
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Figure 5.13: The best RGB sensors, culled for white-point independence, then for

gamut coverage, and finally for hue constancy.
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Figure 5.14: The best RGB sensors (solid color) of Fig. 5.13, compared to Sharp

(black solid), CAT02 (dot), ROMM (dash dot) and ITU-BT.R 709 (dash) sensors.
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Figure 5.15: The CIE LAB gamuts of the RGB sensor set compared to the surface

colors.
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Chapter 6

Stable Color Ratios

6.1 Introduction

In chapter 3, we derived sensors for a strong von Kries-Ives chromatic adaptation

transforms based on data-based sharpening of Lam’s corresponding color data, which

was collected using a memory matching experiment. Data-based sharpening is a

technique to minimize least-squares error in the mapping of color responses under

two illuminants, subject to a diagonal matrix transform (DMT), by pre-multiplying

the data sets by a sharpening matrix T (see section 3.4 and eq. 3.6). Applying data-

based sharpening to Lam’s corresponding color data, whose color coordinates are

given in XYZ, we will thus obtain a sharpening matrix T that minimizes XYZ map-

ping errors. If we apply this transformation to the XYZ color matching functions,

we obtain sensors that are considerably sharper, i.e. more narrow-band, than the

cone fundamentals or the sensors found in other chromatic adaptation transforms

(CATs).

In this chapter, we investigate a different approach to find sensors applicable

in a strong von Kries-Ives DMT CAT. Inspired by the work on Retinex and rela-

tional color constancy (see sections 2.4.1 and 2.6), we derive sensors that keep color

response ratios stable. Instead of obtaining sensors by minimizing absolute error as

in 3.4, we derive our sensors by minimizing ratio error [FS02a].

Recall that relational color constancy (see section 2.6) is defined as the invari-

ance of perceived relations between the colors of surfaces under different illuminants,

111
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as opposed to “normal” color constancy where we assume that the perceived colors

are invariant [FNC+97]. In other words, the difference is in the invariance of color

relation versus color percept. The human visual system encodes and maintains the

ratio of photoreceptor excitations to different surfaces to achieve color constancy, as

opposed to absolute values. These ratios are determined within rather than between

color classes.

Hurlbert [FNC+97] noted that these invariant ratios are not necessarily com-

puted at immediate post-receptoral levels; they could be computed at some higher

level in the visual system as part of a more general accommodation to the natural

structure of the visual environment. We use this argument to derive color ratio sta-

ble sensors that are capable of predicting corresponding colors when used in a von

Kries type chromatic adaptation transform. As opposed to Foster et al. [FNC+97],

we do not assume that the cone ratios need to be invariant, but that such an “in-

termediate” sensor space is used.

The intuition that we apply is as follows: if a CAT is used, then sensor responses

are (independently) scaled in some RGB space to account for illuminant change. It

follows then that color ratios, computed within a single response channel (R, G or

B) must cancel this scaling factor. That is, by looking for sensors that have good

ratio stability, we must also be finding reasonable candidates on which to base a

chromatic adaptation transform: stable ratios implies a von Kries CAT and vice

versa [FS02a].

Using the spherical sampling technique described in section 4.2 and different

surface reflectance and illuminant data, we can derive optimal sensors that provide

stable color ratios over different illuminants. When using the sensors in a strong

von Kries-Ives chromatic adaptation transform of eq. 4.1, we found that there is

no statistical difference at the 95 percent confidence level between CAT02, which

is used in the CIECAM02 [MFH+02] color appearance model and was derived by

optimizing perceptual error (CIELAB ∆E) over sets of corresponding color data, and

the CATs based on our sensors. We evaluated the perceptual errors ∆E94 between

actual and predicted corresponding colors of the CATs on Lam’s experimentally

derived corresponding color data set. We find that the resulting sensors are sharp.
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This result is remarkable since it implies that optimizing a low level vision

criterion, i.e. ratio stability, leads to sharp sensors, which in turn accounts for

corresponding color data. Or, put another way, accounting for the physical mea-

surements gives us insight into perception. This result is one of the clearest found

to date that suggests that the visual system is based on scene physics.

6.2 Experiment

We aim to find the best RGB sensors that result in minimal ratio error between

sensor responses of a given set of reflectance data over a range of illuminants. The

experiment was done individually for each of the three sensors, under the assumption

that ratio stability within one sensor response is independent from the other two.

The “color” or sensor response ρ for any given reflectance under any illuminant

for any sensor can be calculated as follows (see section 1.1.4):

ρ = sT diag(e)r (6.1)

where s, e and r are vectors of the reflectance factors, the illuminant’s spectral power

distribution, and the sensor sensitivity, respectively. T is the transpose and “diag”

is an operator that turns e into a diagonal matrix.

Let b be a (m×1) vector containing the colors for a set of m reflectances under

the main illuminant with a given sensor. The vector of color ratios a is calculated

as follows:

a =
[

ρi

ρj
; ρi

ρj+1
; . . .

]

; ρi, ρj ∈ b, ρi 6= ρj (6.2)

a is a component vector of (m/2) × (m − 1) entries. If ae is a ratio vector of

the same set of reflectances under a different illuminant, then the total ratio error ǫ

is given by:

ǫ =
1

n

n
∑

e=1

|a − ae|
|a| (6.3)

where n is the number of illuminants tested other than the main illuminant. By

minimizing ǫ, we find the optimal sensor ropt that keeps color ratios most stable:

ropt = min
ropt∈R

(ǫ) (6.4)
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The initial sensor set R was determined individually for each color response (R,

G, and B) using the spherical sampling technique as described in section 4.2. Recall

from eq. 4.5 that sensors can be calculated from the sampling points that lie on the

surface of a sphere by:

R = UP (6.5)

here U is the orthonormal m × 3 matrix and P is a 3 × n containing the n surface

point coordinates within 20 degrees of either the red, green, or blue HPE, Bradford,

CAT02, or Sharp (eq. 3.13) sensor coordinates. Using no constraint, the solution

(or optimal sensor) for all three color responses would converge to the blue sensor,

as the lowest ratio error ǫ is in the blue channel (see Table 6.1).

The color responses ρ were calculated for seven different illuminants, the main

illuminant D65, and six other illuminants: A, D45, D55, D75, D85, and D100. The

illuminants cover the range of lights usually encountered in normal image capture.

Two different reflectance data sets were used, the Macbeth Color Checker patches

(24 reflectances) [MMD76] and the Munsell chips (462 reflectances) [Mun76]. We

chose the Macbeth reflectances because the Macbeth chart is considered to be rep-

resentative of reflectances encountered in real scenes [MMD76]. The Munsell reflect-

ances were chosen because Lam trained his observers on the Munsell hue, chroma,

and value terms when experimentally deriving his corresponding colors ([Lam85],

see section 3.2). In section 6.3, we will evaluate how the CATs we define here, which

have sensors that keep color ratio most stable, to Lam’s corresponding color data.

The best sensors from the initial sensor set R were derived for each color re-

sponse and reflectance data set individually using eqs. 6.1 to 6.4. However, these

sensors might still not be optimal, and so we additionally applied a simplex search

method [LRWW98] implemented in Matlab to find the points on the sphere that

result in local minima ǫ for each sensor:

Ropt = UPopt;Popt = minpred,pgreen,pblue∈S(ǫ) (6.6)

where Ropt are the optimal red, green, and blue sensors that result in the minimum

ratio errors (ǫ), and S is the set of all surface point coordinates on the sphere.
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Table 6.1: The ratio errors ǫ for the HPE, Bradford, CAT02, Sharp and Ropt sensors,

using the Macbeth reflectances.

Ratio Error HPE BFD CAT02 Sharp ropt,Macbeth

R channel 0.0411 0.0358 0.0305 0.0502 0.0168

G channel 0.0398 0.0180 0.0265 0.0236 0.0164

B channel 0.0222 0.0117 0.0320 0.0278 0.0116

Table 6.2: The ratio errors ǫ for the HPE, Bradford, CAT02, Sharp and Ropt sensors,

using the Munsell reflectances.

Ratio Error HPE BFD CAT02 Sharp ropt,Munsell

R channel 0.0508 0.0394 0.0398 0.0420 0.0178

G channel 0.0459 0.0302 0.0442 0.0319 0.0220

B channel 0.0252 0.0179 0.0313 0.0261 0.0157

Tables 6.1 and 6.2 list the ratio errors ǫ for the different sensors, color responses

and reflectance data sets, respectively. The resulting sensors Ropt that keep color

ratios over changes in illuminants most constant are illustrated in Figure 6.1.

6.3 Comparison with CAT02

Now that we have derived sensors that optimize ratio stability, we wish to evalu-

ate their appropriateness in accounting for corresponding color data. In order to

evaluate the optimally stable ratio sensors in the context of chromatic adaptation

according to the strong von Kries-Ives model (4.1), we calculate the linear transform

mapping XYZs to the ratio stable color responses. With respect to eq. 4.6,

MT
CAT = [ΣVT ]−1Popt P = [p(ropt,red),p(ropt,green),p(ropt,blue)] (6.7)
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Figure 6.1: The sensors Ropt found by minimizing color ratio errors for the Macbeth

(solid color) and the Munsell (dash color) reflectance data sets. For comparison, the

Sharp (solid black), CAT02 (dash dot), Bradford (dash) and HPE (dot) sensors are

also plotted.

The corresponding MCAT linear transforms are as follows:

MMacbeth =











1.4642 −0.2092 −0.2550

−0.7545 1.6993 0.0552

0.0382 −0.0667 1.0285











MMunsell =











1.3912 −0.1620 −0.2292

−0.7720 1.6970 0.0750

0.0448 −0.0714 1.0266











We now applied these new chromatic adaptation transform to Lam’s corre-

sponding color data set. The predicted and actual XYZ values were converted to

CIELAB (eq. 1.10), so that the perceptual prediction errors ∆E94 could be con-

sidered. Two-tail student t-tests for matched pairs [WMM98] were calculated to

evaluate if the CATs are statistically different from the CAT02 transform. The

results are summarized in Table 6.3.
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Table 6.3: Mean CIE ∆E94 values for Lam’s data set, and probability p-values

resulting from the t-test evaluation.

Mean CIE ∆E94 p-values

CAT02 2.98

Macbeth 3.29 0.08

Munsell 3.20 0.16

At the 95 % confidence level (p ≥ 0.05), the ratio optimal sensors derived from

the Macbeth and Munsell data set deliver the same chromatic adaptation perfor-

mance as the CAT02 sensors. However, the ratio optimal sensors are significantly

more peaked than CAT02 (see Figure 6.1) The ratio optimal sensors are close to

sharp sensors.

6.4 Absolute versus Ratio Errors

This result is interesting when viewed in the context of theories of human color

vision. Retinex and relational color constancy assume that ratios play a key role in

perception. The results here deliver sensors that optimize ratio stability.

Recall that there are, in general, two ways to determine how closely two vectors

ρ and ρ
′

match. Absolute error is concerned with the distance between ρ and ρ
′

.

Suitable distance metrics are
∑3

k=1 |ρk−ρ
′

k| or
∑3

k=1(ρk−ρ
′

k)
2. The absolute error is

often normalized by dividing by the magnitude of ρ or ρ
′

. Relative errors compare

the ratios of ρ and ρ
′

to the unit vector, i.e. the vector components are divided:
∑3

k=1 |ρk

ρ
′

k

|

The sharpening technique discussed in chapter 3 minimizes the absolute er-

ror between actual and predicted observations. The sharpening transform is found

through eigenvector decomposition of the general transform that best maps a set

of observations under one illuminant to observations under another illuminant min-

imizing least-square errors. The resulting “shape” of the sensors are optimized to

give minimal absolute errors for large sensor responses. Where sensor responses are



118 CHAPTER 6. STABLE COLOR RATIOS

400 450 500 550 600 650 700
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

wavelength

re
l. 

se
ns

iti
vi

ty

Figure 6.2: A comparison of the the sharp sensors (dot), found by minimizing RMS

XYZ error over corresponding color data (eq. 3.13), and the Macbeth (solid) and

Munsell (dash) sensors, found by minimizing ratio errors over different illuminants.

small, absolute errors will always be small. Accordingly, the sensors derived through

spectral sharpening will be narrow-band, and might include negative values.

However, if we are concerned about maintaining color ratio stability, small

sensor responses contribute to large errors. Suppose a sensor response lies in the

range of [0,1]. The absolute error between responses 0.025 and 0.05 is small, i.e.

0.025. However, the relative error is very large, i.e. 200%. But the same absolute

error at sensor responses of 0.925 and 0.95 will result in a ratio error of only 2.7%. In

other words, relative error between fitted variables can be large only if the variables

have small values.

Sharpened sensor are thus not optimal in terms of minimizing ratio errors.

The negative sensitivities of the sharpened sensors increase the likelihood of small

responses, which results in a larger ratio error. This is evident from the ratio errors

listed in Tables 6.1 and 6.2. Intuitively, we would therefore not expect sharpened

sensors to perform well when the goal is to maintain ratio stability over different

illuminants. However, the ratio stable sensors obtained from our experiment, as
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shown in Figures 6.1 and 6.2, are considerably more sharp and narrow-band than

CAT02, but similar to the sharp sensors derived through data-based sharpening of

Lam’s corresponding color data (see eq. 3.13), as illustrated in Figure 6.2.

6.5 Conclusions

We have shown that sensors that keep color ratios stable over different illuminants

are able to predict experimentally derived corresponding color data. There is no

statistical difference at the 95 percent confidence level between CAT02 and the

chromatic adaptation transform based on sensors that have best color ratio stability

for the Macbeth and Munsell reflectances under different illuminants. In effect, the

different chromatic adaptation transforms will perform equally well.

This is in strong support of the relational color constancy and retinex theories of

human visual system, which are based on the assumption that the HVS keeps spatial

color relations within a scene invariant Specifically, the ratio of color excitations

produced by light from different surfaces is retained and kept constant, rather than

absolute excitation values. As a result, due to the multiplicative effect of the spectral

power distribution of the light source on the color response of a surface reflectance,

the illuminant cancels out.

Perhaps more importantly, we have demonstrated that there is a match be-

tween minimizing a physical variable, i.e. observations that can be modeled with

linear image formation, and psychovisual data, i.e. corresponding color that are

experimentally derived. One explanation for this result could be that during the

psychovisual experiments, the subjects do encode the appearance of the color as the

ratio between color and surround. This would support retinex and relational color

constancy theories, and explain the good performance of our ratio stable sensors

over corresponding color.

The Macbeth and Munsell sensors with stable color ratios are much “sharper,”

i.e. more narrow-band, than the CAT02 sensors, which were obtained by optimizing

perceptual error over sets of corresponding color data. However, the CAT02 sensors

also contain negative values, which has an influence on the ratio errors (see Tables
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6.1 and 6.2). Thus, the Macbeth and Munsell sensors with narrower sensitivities,

but less negative values, can perform just as well in predicting corresponding color.

This also supports the use of sharpened, all positive sensors derived through spectral

sharpening [DF00] for imaging applications. These sensors are physically realizable

and have no negative lobes, which should make them ideal for digital cameras. If

they are optimized to keep color ratios stable, white-balancing and transformation

to color encoding specific illuminants can be done with simple scaling.

Twenty years ago, Lam [Lam85] derived a chromatic adaptation transform

based on a memory matching experiment, where he trained the observers on the

Munsell system’s hue, chroma, and value terms (see section 3.2). The Bradford

chromatic adaptation transform he derived from his experimental data based on

minimizing ∆E perceptual error was the first published CAT that did not assume

that scaling takes place in cone space, but rather in a narrower sensor space. For

the next fifteen years, the Bradford CAT was extensively applied in color science

and color image processing. His experimental corresponding color data has also

been used in many other chromatic adaptation transform studies, including ours. It

is perhaps fitting to end the research chapters of this thesis with the remark that

while we are appreciative to have a stable corresponding color data set to evaluate

chromatic adaptation, the physical responses of the same Munsell system can be

used to derive mathematically a chromatic adaptation transform that performs just

as well.



Chapter 7

Conclusions

Over a century ago, Johannes von Kries [vK02] proposed a model to account for

chromatic adaptation, i.e. the ability of the human visual system to discount the

color of the illuminant and to approximately preserve the appearance of an object.

He proposed that illumination change can be modeled by an independent gain con-

trol of the photoreceptor responses. Since then, many researchers have investigated

his model. Based on experimentally obtained corresponding color data or physi-

ological models of the human visual system, these studies have proposed different

extensions to the basic model, as discussed in chapter 2. However, most agree that

the von Kries diagonal matrix transform is adequate as a first approximation to

model chromatic adaptation.

In this thesis, we have taken a mathematical approach to model chromatic

adaptation, i.e. to find accurate prediction of corresponding colors. Our first premise

is that the strong von Kries-Ives diagonal matrix transform (DMT) is correct, which

states that color responses are independently scaled in each channel by a coefficient

that is dependent only on the illuminant’s response in that channel. However, as

opposed to many previous studies, we do not impose that the scaling takes place in

cone space. Indeed, which sensor space (or spaces) is most appropriate for mapping

corresponding colors as a diagonal transform is the core research question that this

thesis addresses.

In chapter 3, we use data-based spectral sharpening, a technique that was suc-

cessfully used in color constancy algorithms to map physical measurements (“raw”
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XYZs) under different illuminants subject to a DMT, to derive sensors that can

be used in a chromatic adaptation transform (CAT). We apply the technique to

corresponding color data, i.e. experimentally derived measurements of matching

color responses under different illuminants. Color responses are first transformed

to a intermediate sensor space by a “sharpening” transform. This transform in ef-

fect changes the sensor sensitivities. The resulting sensors are “sharp,” i.e. more

narrow-band than the cone fundamentals or the sensors used in modern chromatic

adaptation transforms. However, when applying a CAT based on these sensors to a

number of corresponding color data sets, we find that there is no statistically signif-

icant difference in ∆E prediction error between our Sharp CAT and other modern

CATs, which were all derived by minimizing perceptual error over these data sets.

The difference in sensor shape between the Sharp CAT and other CATs led

us to investigate in chapter 4 if there are not other sensors, not yet considered in

the chromatic adaptation literature, which could be used in a strong von Kries-Ives

CAT. We designed a spherical sampling algorithm that is able to retain all solutions

that fulfill a performance criterion. We show that there are indeed thousands of

sensor combinations that are not statistically significantly different from CAT02 in

predicting corresponding color. The best sensor combination has sharp (i.e. narrow-

band) sensors. We thus conclude that sharp transforms, i.e. von Kries-Ives diagonal

matrix transforms applied in a color space that has narrow-band sensors, improves

illuminant-invariance with respect to cone fundamentals.

Experimentally deriving color measurements that describe color appearance of

a stimulus under different illuminants is not trivial, as discussed in section 2.8 and

Appendix B. The data might be noisy, and thus there might not be a unique optimal

solution. On the other hand, all these sensors result in CATs that give acceptable

visual results [CF01] (see Appendix G). We can conclude that for the color science

and color imaging communities to choose sensors for a ‘best’ CAT, secondary factors

should be considered.

We investigate such secondary factors in chapter 5, specifically two properties

of color encodings: gamut coverage and hue constancy. The sensors derived in the

previous two chapters are sharp, and so are most sensors used in color encodings
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[SHF01]. Thus, we investigate if the sensors that can map corresponding colors

as well as CAT02 found in the previous chapter could be used for color encodings.

These sensors are considered to be white-point independent, because the image RGB

values are equal to the post-adaptation sensor responses.

Designing an experiment that compares the encodable and useful gamuts of

our sensors with a gamut of surface colors, we find a number of sensors that have

better gamut coverage then ROMM and ITU-BT.R 709, two sensor combinations

that are used in a number of color image encodings. Hue constancy we evaluated

based on a log RGB opponent representation, and we can find sensor combinations

that have better hue constancy than the encoding sensors. Combining the two

experiments, we can define a set of narrow-band RGB sensitivities that are white-

point independent, have good gamut properties and hue constancy, on which we can

base output-referred color image encodings for print reproduction.

In chapter 6, we derive sensors from physical color measurements, as opposed to

corresponding colors. Based on the insight of retinex and relational color constancy

research, we found sensors that keep color ratios stable over several illuminants, and

show that these sensors are also able to predict color appearance under different

illuminants. We thus show that chromatic adaptation transforms do not have to be

derived using experimental data at all. The resulting sensors are again more sharp

(i.e. more narrow-band) than cone fundamentals.

The research presented in this thesis has two fundamental results. First, we

show that a mathematical approach with closed-form solutions is capable of mod-

eling experimentally derived corresponding color data. Second, we show that sharp

sensors that have much narrower sensitivities than cone fundamentals or color match-

ing functions do play a role in color appearance, and should be explored further for

application in color science and color image processing.

7.1 Future Work

The research presented in all the chapters can be further expanded. We could, for

example, derive sensors using spectral sharpening from corresponding colors other
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than Lam’s data set, and see how they compare to each other. We might be able

to draw conclusions about the quality of a data set depending on the sensors we

derive and comparing their performance across data sets. Also, we might explore if

data sets that have more color inconstant corresponding colors make a difference. If

yes, is that due to partial adaptation, where a different chromatic adaptation model

needs to be explored, or is it due to the experimental set-up? Similarly for chapter

4, we could try different data sets and error criteria to find sensor sets. The sensor

combinations found in chapter 5 should be further tested in real imaging applications

to judge their suitability in an output-referred image encoding. As for chapter 6,

more reflectance data and corresponding color data sets could be evaluated. We

can also define all positive sensors that keep color ratios most stable and investigate

their use in color image capture applications.

However, the most interesting extension of this research is to study the applica-

bility of sharp sensors in other color appearance context. While we have investigated

the use of sharp sensors in modeling chromatic adaptation, sharp sensors might also

be appropriate in color similarity and color discrimination tasks. Recall that the

log RGB opponent encoding of section 5.4 gives us a definition of hue, which is

an appearance correlate. Testing if our log RGB opponent color definition has any

perceptual meaning, and under which conditions, i.e. for which sensor responses,

would be an interesting research topic.
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Appendix A

Land’s Experiments

For the derivation of his vision model, Land performed various experiments, usually

with black-and-white or color Mondrians. We summarize his experiments by describ-

ing two. In one experiment [Lan64, LM71], he created a black-and-white Mondrian

and illuminated it with a projector. The observers’ sensations varied from white to

gray to black in various parts of the display. He then inserted a gray filter wedge

into the projection path, whose transmission varied monotonically in one image di-

rection. The observers saw very little change. All the various white, gray and black

rectangles looked nearly as they did before (see Figure A.1). However, measuring

the energy reflected from the different areas revealed that the energy coming from a

perceived black rectangle at one part of the Mondrian was equal to the energy of a

perceived white rectangle in another part. Repeating the experiment with different

colored filters and obtaining the same result, he concluded that the human visual

system actually encodes for each channel a “lightness” map whose rank-ordering

remains invariant to (slow) spatial changes in illuminant radiant energy as well as

illuminant “color.”

In another experiment [Lan74, Lan77], Land uniformly illuminated a color Mon-

drian with three projectors emitting narrow-band short, medium, and long wave-

length radiation. He measured the color signal of the white patch with a photome-

ter. Considering that he used narrow-band illumination, he could equate one energy

measure per spectral band to one cone quantum catch, i.e. one long, one medium,

and one short wave energy measure. In a second color Mondrian, he randomly
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Figure A.1: Black-and-white Mondrian. Left: uniformly illuminated. Right: spa-

tially slow varying illumination (lower right hand to upper left hand corner). The

two patches indicated by the arrows have the same luminance. Both photos are

scanned from film supplied in [LM71].

selected a “colored” patch (S(x, λ) 6= 1), and adjusted the radiant power of the

three projectors so that the color signal equaled the color signal of the white patch

in the first Mondrian (see Figure A.2). Consequently, the quantum catch of the

cones was identical for both stimuli, which should lead to the same color appear-

ance if the trichromatic theory of color vision is correct (see section 1.2.1). However,

when observers looked at both Mondrians together, the did not perceive the same

color. The white patch in the first Mondrian looked white, while the colored patch

in the second Mondrian retained its “color,” i.e. blue remained blue, green remained

green, etc. The observers were able to “extract” the original reflectances from the

color signal.

Based on his experiments, Land therefore concluded that color appearance is

not solely dependent on cone quantum catches, and that some cortical processing is

responsible for appearance. Thus, he coined the term retinex from retina and cortex.

He proposed a number of algorithms intended to model how the HVS computes these

illuminant independent lightness values for each cone channel.

One of the early Land retinex algorithm is as follows [BW86a, Hur98]. The

lightness value for a sensor k is calculated by finding the average ratio between the

color response of a position x0 and many surrounding positions. As the non-linear

lightness response of the HVS is often modeled with a log function, the ratios can
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Figure A.2: The set-up used in the color Mondrian experiment. The illustration

was taken from [Lan77].

be expressed as subtractions. Let x0 be the location where the lightness lk(x0) is to

be computed. Let pk(xi), pk(xi+1) be color responses of subsequent locations on an

arbitrary path n through the scene, with end point response pk(x
n
w):

lnk (x0,x
n
w) =

w
∑

i=0

T [log ρk(xi+1) − log ρk(xi)] (A.1)

lnk (x0,x
n
w) is the lightness at x0 relative to endpoint xn

w. T represents a thresholding

operation that allows to disregard small changes due to small illuminant changes.

Recall that he used Mondrians, so the response ρk(xi) varies sharply with discrete

patch boundaries. However, the effective illuminant varies smoothly across the entire

scene, and so induces only small changes in ρk(xi). Thus, T ensures that such small

ratios are ignored:

T =







0 | log ρk(xi+1) − log ρk(xi) |< threshold

1 otherwise
(A.2)

Therefore, eq. A.1 can be approximated as:

lnk (x0,xw) ≈
w

∑

i=0

[log ρS
k (xi+1) − log ρS

k (xi)] = [log ρS
k (x0) − log ρS

k (xn
w)] (A.3)

Spectral normalization is then achieved by averaging the relative lightness lnk (x0,x
n
w)

over all paths N :

lk(x0) =
1

N

N
∑

n=1

lnk (x0,x
n
w) ≈ log ρS

k (x0) −
1

N

N
∑

n=1

log ρS
k (xn

w). (A.4)



148 APPENDIX A. LAND’S EXPERIMENTS



Appendix B

Color Constancy of Corresponding

Colors

If a diagonal chromatic adaptation model and the difference in adapting illuminants,

i.e. Ea(λ) and Eb(λ) alone could account for the difference in tristimulus values of

two corresponding colors, then their CIELAB values would be the same, as CIELAB

is derived by normalizing by the tristimulus values of the illuminant (see eq. 1.10).

This normalization can be regarded as an adaptation with respect the von Kries

chromatic adaptation model of eq. 2.5, each scaling coefficient being the inverse

of the tristimulus values of the illuminant, which in fact corresponds to the von

Kries-Ives model of eq. 2.8. Thus, the sensor space in which the scaling takes place

is given by the CIE XYZ color matching functions.

Figure B.1 illustrates the a∗, b∗ coordinates of the corresponding colors of Lam’s

memory matching experiment under illuminant A and D65. Colors close to the cen-

ter of the a∗, b∗ diagram, i.e. achromatic colors, are generally more “color constant”

than colors with high chroma, which corresponds to the findings of West and Brill

[WB82] who found almost achromatic reflection spectra when defining the necessary

conditions for the von Kries adaptation model to hold using broad band sensors. For

high chroma colors, however, there is quite a substantial difference in CIELAB val-

ues, as illustrated in Figure B.1. Also, there seems to be a randomness in the hue

and chroma direction of the color inconstancy that is not easily interpretable.
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Figure B.1: The a∗, b∗ chromaticity coordinates of Lam’s [Lam85] corresponding

color pairs under illuminant A (red) and D65 (blue). The lines give an indication

about their difference in chromaticity.

Several studies have tried to quantify color constancy under different experi-

mental conditions. For example, Eastman and Brecher [EB72] reported that succes-

sive haploscopic matching yielded better color constancy than binocular matching.

Fez et al. [dFCL+01] compared results from haploscopic matching and memory

matching. They found for both experiments that observers had a tendency to select

more saturated colors, and the color matches in hue were better along the red-green

axis than the yellow-blue axis, which confirms previous findings by other authors

[WW82, LW93, Bäu95, Wue96, DB00]. Lam [Lam85] observed systematic discrep-

ancies between the measured sample values under D65 and those obtained from

visual inspection under D65. Newhall et al. [NBC57] found similar effects in their

comparisons of successive (i.e. memory) matching with simultaneous color matching

experiments.

Using a successive haploscopic matching experiment, Lucassen and Walraven

[LW96] confirmed that the human visual system achieves better color constancy

under broad band than narrow band illuminants, which suggests that chromatic

adaptation models based on linear models for illuminant SPD and surface reflec-
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tance could be adequate (see section 2.5.1). They tested color constancy under

two “natural” daylights and two metameric lights of only two primaries, and found

better constancy under natural light. Tiplitz Blackwell and Buchsbaum [BB88]

studied the surround of the stimuli and found color constancy differs with the back-

ground arrangement. Other studies found the influence of the background negligible

[Bäu94, Bäu95, Bra98, KMB02]. Brainard et al. [BRK97] found better constancy

for “real live” stimuli than metamerically identical stimuli on a computer screen.

Thus, depending on the task and conditions at hand, the human visual system

might not strive for perfect color constancy. There is always a degree of inconstancy,

and how much so is not dependent only on the experimental scene statistics, but

also which task the observers need to solve [ARSG91]. Lucassen and Walraven

[LW96] even concluded that it would therefore make sense to look for a chromatic

adaptation model that is intrinsically incapable of giving perfect color constancy.

Brainard et al [BBS97] used a similar argument to derive an equivalent illuminant

model (see section 2.5.1).

Color Inconstancy Index

Luo and Hunt [LH98a] proposed a color inconstancy index to characterize the con-

stancy of corresponding colors. It is based on a perceptually uniform color space,

such as CIELAB, and measures the Euclidean distance between the coordinates of

the stimulus under the reference illuminant and the color-matched or predicted co-

ordinates of the corresponding color under the reference illuminant. Color-matched

stimuli are the ones obtained through a psychophysical experiment (see section 2.8).

Predicted coordinates are the values obtained using a chromatic adaptation model

that maps the test stimulus colors under the test illuminant to the predicted values

under the reference illuminant. Large distances indicate the corresponding colors

are not very constant, small distances indicate the colors are more constant (see

Figures 1.3 and B.1).
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Appendix C

Prediction Errors of linear CATs

Table C.1: RMS, mean, min, and max ∆E color difference

of actual and predicted color appearance of different linear

chromatic adaptation transforms. The p-values indicate the

confidence levels. p-values ≥ 0.05 (p-values ≥ 0.01) indicate

that there is a 95% (99%) confidence that a given transform

performs as well as the best transform for a given data set.

Lam Data Set MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 5.08 5.25 5.07 4.85 7.69

mean ∆E 4.46 4.44 4.40 4.24 6.50

min ∆E 0.43 0.42 0.45 0.44 0.44

max ∆E 11.67 11.00 11.43 10.23 16.43

p-value 0.0105 0.1291 0.0901 0.0000

Helson MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 6.15 6.72 6.02 5.98 8.11

mean ∆E 5.33 5.55 5.22 5.12 6.89

min ∆E 0.91 0.66 0.78 0.95 0.70

max ∆E 16.37 17.32 16.65 16.41 19.79

p-value 0.0143 0.0417 0.2494 0.0001
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CSAJ MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 5.56 5.91 5.45 5.47 7.46

mean ∆E 5.12 5.36 5.02 5.03 6.63

min ∆E 0.45 1.22 0.99 1.25 1.13

max ∆E 11.50 13.43 10.94 10.95 17.57

p-value 0.1412 0.0054 0.4341 0.0000

Lutchi MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 7.64 7.59 6.77 7.11 8.39

mean ∆E 6.77 6.90 6.07 6.38 7.05

min ∆E 0.89 2.36 0.99 1.66 0.72

max ∆E 16.92 13.53 14.47 15.09 18.48

p-value 0.0310 0.0207 0.1667 0.0684

Lutchi D50 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 6.84 6.88 6.65 6.75 6.56

mean ∆E 6.28 6.32 6.05 6.17 5.82

min ∆E 1.86 1.62 1.44 1.85 0.35

max ∆E 15.91 15.88 16.01 15.82 14.88

p-value 0.0165 0.0017 0.1110 0.0253

LutchiWF MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 8.72 9.88 8.22 8.79 11.72

mean ∆E 7.80 8.87 7.27 7.91 10.55

min ∆E 1.32 2.22 1.12 1.56 3.17

max ∆E 21.37 19.88 20.17 20.16 22.91

p-value 0.0005 0.0001 0.0003 0.0000
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Kuo&Luo MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 7.66 7.02 8.04 7.41 10.19

mean ∆E 6.93 6.37 7.02 6.68 9.10

min ∆E 0.84 1.57 1.53 1.54 2.01

max ∆E 15.22 12.54 20.28 16.14 21.86

p-value 0.0776 0.1069 0.1800 0.0000

Kuo&Luo TL84 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 4.73 5.04 4.81 4.82 6.37

mean ∆E 4.30 4.61 4.27 4.36 5.76

min ∆E 1.09 1.24 1.16 1.45 1.88

max ∆E 8.80 10.21 11.74 10.49 13.97

p-value 0.4014 0.0018 0.0453 0.0000

Braun&Fairchild1 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 4.02 3.89 4.06 4.02 4.12

mean ∆E 3.76 3.59 3.82 3.77 3.60

min ∆E 1.46 1.21 1.76 1.73 1.26

max ∆E 5.80 6.53 6.01 6.04 9.12

p-value 0.0981 0.0062 0.0110 0.4825

Braun&Fairchild2 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 6.63 6.65 6.82 6.81 6.82

mean ∆E 5.90 5.96 6.14 6.12 6.30

min ∆E 1.92 2.51 2.53 2.38 2.58

max ∆E 12.73 12.35 12.61 12.56 11.51

p-value 0.2242 0.0043 0.0091 0.1182
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Braun&Fairchild3 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 7.25 7.36 7.59 7.50 9.67

mean ∆E 7.06 7.07 7.24 7.14 9.24

min ∆E 3.77 3.56 3.23 3.00 5.15

max ∆E 10.20 11.36 12.28 12.17 13.55

p-value 0.4756 0.2030 0.3744 0.0002

Braun&Fairchild4 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 6.04 5.84 6.09 5.99 7.03

mean ∆E 5.92 5.73 5.92 5.83 6.72

min ∆E 3.71 3.82 3.26 3.27 4.39

max ∆E 8.11 7.51 8.42 8.36 13.00

p-value 0.0818 0.0905 0.2738 0.0138

Breneman1 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 10.85 9.89 10.12 9.82 12.08

mean ∆E 10.53 9.10 9.68 9.39 10.72

min ∆E 6.51 2.61 4.95 5.45 3.12

max ∆E 15.44 16.30 15.31 15.16 20.38

p-value 0.0612 0.2745 0.3530 0.0608

Breneman 8 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 14.01 16.11 13.31 13.65 19.13

mean ∆E 12.05 14.04 11.25 11.86 16.32

min ∆E 2.55 2.10 2.26 4.11 4.08

max ∆E 24.58 28.07 24.10 24.51 38.98

p-value 0.0548 0.0636 0.0800 0.0080
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Breneman 4 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 14.93 17.06 14.43 14.74 20.20

mean ∆E 12.27 14.67 11.60 12.27 17.35

min ∆E 2.21 1.49 2.47 2.61 3.99

max ∆E 26.53 29.89 26.10 26.44 40.41

p-value 0.0600 0.0351 0.0819 0.0020

Breneman6 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E 8.27 8.18 7.05 7.53 8.31

mean ∆E 7.92 7.73 6.83 7.17 7.38

min ∆E 5.07 4.98 3.83 4.34 0.88

max ∆E 14.23 14.63 9.54 12.75 14.31

p-value 0.0117 0.095 0.1575 0.3636
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Table C.2: RMS, mean, min, and max ∆E94 color difference

of actual and predicted color appearance of different linear

chromatic adaptation transforms. The p-values indicate the

confidence levels. p-values ≥ 0.05 (p-values ≥ 0.01) indicate

that there is a 95% (99%) confidence that a given transform

performs as well as the best transform for a given data set.

Lam Data Set MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 3.40 3.54 3.45 3.40 5.01

mean ∆E94 2.93 3.00 2.98 2.94 4.31

min ∆E94 0.43 0.41 0.44 0.44 0.41

max ∆E94 8.44 8.44 8.41 8.46 11.63

p-value 0.2281 0.3333 0.4363 0.0000

Helson MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 4.04 4.17 4.06 3.95 5.26

mean ∆E94 3.42 3.49 3.45 3.31 4.52

min ∆E94 0.73 0.63 0.75 0.72 0.51

max ∆E94 11.87 12.55 12.15 11.92 14.45

p-value 0.0173 0.0138 0.0037 0.0000

CSAJ MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 4.08 4.23 4.02 4.03 5.22

mean ∆E94 3.72 3.84 3.66 3.66 4.71

min ∆E94 0.32 0.87 0.76 0.91 0.96

max ∆E94 9.18 9.27 9.01 9.26 11.52

p-value 0.0783 0.0000 0.4626 0.0000
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Lutchi MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 4.48 4.01 3.65 4.14 3.98

mean ∆E94 4.03 3.71 3.35 3.81 3.47

min ∆E94 0.42 1.57 0.84 1.24 0.52

max ∆E94 9.65 7.55 7.54 8.36 8.50

p-value 0.0005 0.0286 0.0001 0.3754

Lutchi D50 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 3.97 3.91 3.86 3.90 3.64

mean ∆E94 3.59 3.52 3.45 3.51 3.11

min ∆E94 1.39 1.07 0.95 1.27 0.22

max ∆E94 9.95 9.89 9.97 9.91 9.25

p-value 0.0002 0.0000 0.0011 0.0002

LutchiWF MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 4.22 4.75 4.15 4.40 6.18

mean ∆E94 3.97 4.44 3.85 4.11 5.61

min ∆E94 0.78 1.31 0.79 1.02 1.83

max ∆E94 6.90 8.79 7.25 7.62 12.48

p-value 0.0963 0.0000 0.0000 0.0000

Kuo&Luo MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 4.23 4.13 4.32 4.27 5.77

mean ∆E94 3.98 3.87 3.99 4.01 5.26

min ∆E94 0.68 1.13 1.21 1.10 1.56

max ∆E94 6.38 6.47 8.68 7.62 10.99

p-value 0.2376 0.2657 0.1161 0.0000
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Kuo&Luo TL84 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 2.93 3.01 2.91 2.97 3.66

mean ∆E94 2.71 2.79 2.64 2.74 3.34

min ∆E94 0.90 1.14 1.04 1.17 1.48

max ∆E94 4.96 4.72 5.42 5.01 6.61

p-value 0.2214 0.0021 0.0002 0.0000

Braun&Fairchild1 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 2.99 2.91 2.93 2.91 3.05

mean ∆E94 2.79 2.68 2.71 2.68 2.72

min ∆E94 1.06 0.78 0.81 0.66 0.80

max ∆E94 5.30 5.32 5.26 5.24 6.04

p-value 0.0737 0.4906 0.0339 0.4142

Braun&Fairchild2 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 5.17 5.18 5.29 5.28 5.24

mean ∆E94 4.50 4.53 4.63 4.62 4.73

min ∆E94 1.72 1.39 1.70 1.61 1.74

max ∆E94 9.62 9.32 9.51 9.47 8.67

p-value 0.3294 0.0101 0.0328 0.1443

Braun&Fairchild3 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 4.45 4.75 4.84 4.74 6.18

mean ∆E94 4.27 4.53 4.59 4.45 5.99

min ∆E94 2.26 2.13 2.12 2.10 2.65

max ∆E94 6.34 7.24 7.72 7.72 8.64

p-value 0.0086 0.0186 0.0799 0.0001
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Braun&Fairchild4 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 4.13 4.21 4.29 4.19 5.00

mean ∆E94 3.97 4.03 4.11 4.03 4.76

min ∆E94 2.52 2.42 2.22 2.27 2.65

max ∆E94 6.58 6.37 6.47 6.07 9.51

p-value 0.2608 0.1452 0.2800 0.0147

Breneman1 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 5.90 5.62 5.52 5.71 6.47

mean ∆E94 5.57 5.02 5.13 5.36 5.46

min ∆E94 2.98 1.94 3.06 2.82 1.67

max ∆E94 9.37 10.02 9.41 9.30 12.36

p-value 0.0398 0.3295 0.0798 0.2001

Breneman 8 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 7.87 8.42 7.63 7.87 10.27

mean ∆E94 6.83 7.17 6.47 6.81 8.48

min ∆E94 1.85 1.11 1.93 1.93 2.59

max ∆E94 13.10 14.53 12.85 13.20 20.87

p-value 0.1254 0.0553 0.0554 0.0152

Breneman 4 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 8.91 9.60 8.78 8.96 11.60

mean ∆E94 7.24 7.86 7.01 7.31 9.45

min ∆E94 1.11 1.08 1.92 1.61 2.91

max ∆E94 17.45 18.94 17.19 17.50 22.90

p-value 0.1880 0.0228 0.0532 0.0047
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Breneman6 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆E94 4.90 4.37 4.24 4.63 4.29

mean ∆E94 4.66 4.17 4.08 4.41 3.68

min ∆E94 2.85 2.81 2.58 2.83 0.47

max ∆E94 7.93 6.59 6.21 6.97 6.53

p-value 0.1628 0.2591 0.3124 0.2078
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Table C.3: RMS, mean, min, and max ∆ECMC(1:1) color dif-

ference of actual and predicted color appearance of different

linear chromatic adaptation transforms. The p-values indi-

cate the confidence levels. p-values ≥ 0.05 (p-values ≥ 0.01)

indicate that there is a 95% (99%) confidence that a given

transform performs as well as the best transform for a given

data set.

Lam Data Set MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 4.20 4.30 4.12 4.16 5.95

mean ∆ECMC(1:1) 3.54 3.57 3.49 3.50 5.10

min ∆ECMC(1:1) 0.55 0.48 0.61 0.59 0.53

max ∆ECMC(1:1) 10.68 10.70 10.67 10.73 12.49

p-value 0.3149 0.2663 0.4202 0.0000

Helson MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 4.68 4.85 4.66 4.58 6.16

mean ∆ECMC(1:1) 3.96 4.06 3.94 3.83 5.22

min ∆ECMC(1:1) 0.94 0.69 0.55 0.86 0.56

max ∆ECMC(1:1) 12.16 12.71 12.30 12.21 14.64

p-value 0.0195 0.0263 0.0428 0.0002

CSAJ MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 4.46 4.70 4.38 4.40 6.07

mean ∆ECMC(1:1) 4.10 4.30 4.05 4.06 5.44

min ∆ECMC(1:1) 0.39 1.05 0.86 1.07 1.19

max ∆ECMC(1:1) 9.40 9.54 9.25 9.48 13.09

p-value 0.1935 0.0002 0.3800 0.0000
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Lutchi MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 5.16 4.52 4.29 4.77 4.70

mean ∆ECMC(1:1) 4.62 4.22 3.91 4.34 4.10

min ∆ECMC(1:1) 0.45 1.88 0.81 1.27 0.50

max ∆ECMC(1:1) 11.02 8.71 8.17 9.68 10.15

p-value 0.0005 0.0950 0.0019 0.3349

Lutchi D50 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 4.44 4.36 4.34 4.37 3.99

mean ∆ECMC(1:1) 4.11 4.03 3.96 4.02 3.53

min ∆ECMC(1:1) 1.50 1.15 1.02 1.38 0.25

max ∆ECMC(1:1) 9.57 9.53 9.60 9.53 8.91

p-value 0.0003 0.0001 0.0019 0.0004

LutchiWF MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 5.22 5.99 5.13 5.45 7.81

mean ∆ECMC(1:1) 4.82 5.46 4.68 4.99 6.95

min ∆ECMC(1:1) 0.89 1.51 0.88 1.14 2.05

max ∆ECMC(1:1) 10.83 14.00 10.49 11.63 16.46

p-value 0.0701 0.0000 0.0000 0.0000

Kuo&Luo MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 4.91 4.70 4.92 4.88 6.90

mean ∆ECMC(1:1) 4.57 4.40 4.52 4.55 6.25

min ∆ECMC(1:1) 0.72 1.31 1.47 1.31 1.89

max ∆ECMC(1:1) 8.54 7.05 9.57 8.42 14.56

p-value 0.1951 0.3027 0.1853 0.0000
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Kuo&Luo TL84 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 3.46 3.58 3.47 3.51 4.39

mean ∆ECMC(1:1) 3.14 3.30 3.12 3.20 4.04

min ∆ECMC(1:1) 0.98 1.08 0.98 1.26 1.79

max ∆ECMC(1:1) 7.15 6.71 7.06 7.14 8.92

p-value 0.3812 0.0040 0.0015 0.0001

Braun&Fairchild1 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 3.67 3.52 3.60 3.58 3.61

mean ∆ECMC(1:1) 3.39 3.19 3.30 3.27 3.14

min ∆ECMC(1:1) 1.07 0.70 0.92 0.77 1.04

max ∆ECMC(1:1) 6.64 6.64 6.66 6.67 7.32

p-value 0.2644 0.4333 0.3190 0.3474

Braun&Fairchild2 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 6.37 6.35 6.49 6.48 6.41

mean ∆ECMC(1:1) 5.49 5.50 5.64 5.62 5.75

min ∆ECMC(1:1) 1.49 1.56 1.74 1.65 1.96

max ∆ECMC(1:1) 11.80 11.85 11.93 11.94 11.78

p-value 0.4399 0.0060 0.0242 0.1978

Braun&Fairchild3 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 5.66 6.03 6.01 5.90 8.19

mean ∆ECMC(1:1) 5.42 5.79 5.74 5.58 8.03

min ∆ECMC(1:1) 2.84 2.69 2.72 2.50 3.15

max ∆ECMC(1:1) 8.54 8.67 8.72 8.70 10.02

p-value 0.0008 0.0185 0.1338 0.0000
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Braun&Fairchild4 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 5.35 5.30 5.39 5.39 5.92

mean ∆ECMC(1:1) 5.04 5.00 5.10 5.10 5.63

min ∆ECMC(1:1) 2.79 2.75 2.48 2.47 3.01

max ∆ECMC(1:1) 8.55 8.44 8.29 8.37 10.27

p-value 0.3356 0.0674 0.1657 0.0390

Breneman1 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 7.14 6.65 6.65 6.86 7.54

mean ∆ECMC(1:1) 6.71 5.87 6.17 6.36 6.61

min ∆ECMC(1:1) 3.51 2.20 3.75 2.96 2.54

max ∆ECMC(1:1) 11.75 12.00 11.62 11.76 12.74

p-value 0.0343 0.2379 0.0902 0.1310

Breneman 8 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 9.28 9.96 8.92 9.27 12.05

mean ∆ECMC(1:1) 7.93 8.54 7.46 7.89 10.23

min ∆ECMC(1:1) 1.84 1.27 1.66 2.21 2.81

max ∆ECMC(1:1) 15.43 17.21 15.19 15.57 23.86

p-value 0.0900 0.0563 0.0422 0.0153

Breneman 4 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 10.57 11.43 10.33 10.61 13.72

mean ∆ECMC(1:1) 8.50 9.51 8.18 8.56 11.55

min ∆ECMC(1:1) 1.27 1.19 1.71 1.80 3.25

max ∆ECMC(1:1) 21.12 22.95 20.84 21.19 27.36

p-value 0.1347 0.0197 0.0389 0.0066
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Breneman6 MSharp MBFD MCAT02 MFai01 MvonKries

RMS ∆ECMC(1:1) 6.40 5.69 5.62 6.09 5.26

mean ∆ECMC(1:1) 5.86 5.23 5.17 5.54 4.54

min ∆ECMC(1:1) 3.16 3.00 2.71 2.96 0.68

max ∆ECMC(1:1) 10.08 9.37 8.92 9.78 9.10

p-value 0.1484 0.235 0.2763 0.1944
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Appendix D

Color Spaces and Color Encodings

To unambiguously communicate color information, the color imaging community

has defined several color spaces, color encodings and color image encodings. The

following review of the definitions is based on ISO 22028 [ISO04] intended for the

imaging community, and might differ from conventially used terminology. In chapter

5, we will follow the terminology defined below.

D.1 Color Spaces

According to the CIE [CIE87], a color space is a “geometric representation of colors

in space, usually of three dimensions.” They can be broadly categorized into three

types: colorimetric, color appearance, and device-dependent.

For colorimetric color spaces, the relationship between the color space and CIE

colorimetry is clearly defined. Besides CIEXYZ, CIELAB, and CIELUV, additive

RGB color spaces also fall into this category. They are defined by a set of additive

RGB primaries, a color space white-point and a color component transfer function.

The additive RGB sensors are a linear combination of the XYZ color matching

functions:
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(D.1)

where M is a (3×3) non-singular matrix mapping XYZ values to linear RGB values.

The RGB primaries associated with these sensors are the XYZ tristimulus values
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that correspond to pure red, green, and blue:
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(D.2)

A color space white-point is the color stimulus to which the values are normalized,

usually a CIE daylight illuminant such as D50 or D65. For example, a color space

with a white point of D65 (XD65
w , Y D65

w , ZD65
w ) ensures that all achromatic colors, i.e.

all scalings of (XD65
w , Y D65

w , ZD65
w ), are mapped to equal code values. For example

for the tristimulus values of the white-point itself:
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(D.3)

A color component transfer function is a function that accounts for the non-

linear response to luminance of the human visual system or to the non-linearity

of a device. The function used to model device non-linearities is usually called a

gamma (γ) function. In case of CRT monitors, this gamma function approximates a

power function. Color component transfer functions are thus usually modeled with

a logarithmic (see section 1.2.2) or power function.1 A simple gamma function could

take the form of:
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(D.4)

Luma-chroma color spaces derived from additive RGB spaces are also considered

to be colorimetric color spaces. These spaces linearly transform the RGB values to

more de-correlated, opponent representations. Generically, they are often referred

to as YCC or YCrCb spaces. The resulting luminance and chrominance values are

only loosely related to “true” perceptual luminance and chroma and depend on the

1Note that using these definitions, CIEXYZ calculated under illuminant D65 is a different color

space compared to CIEXYZ under illuminant A. Similarly, CIEXYZ under D65 and CIEXYZ

under D65 with a logarithmic transfer function are also different.
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additive primaries and the transform. Such spaces are generally the bases for color

image encodings used in compression [RJ02].

Color appearance color spaces are the output of color appearance models, such

as CIECAM97s [CIE98] and CIECAM02 [MFH+02]. They are generally based on

CIE colorimetry and include parameters and non-linear transforms related to the

stimulus surround and viewing environment. The color appearance color space val-

ues describe perceptual attributes such as hue, lightness, brightness, colorfulness,

chroma, and saturation [Fai98]. Note that all color appearance models contain a

chromatic adaptation transform to map a color response from an input illuminant

to a illuminant-independent descriptor.

Device-dependent color spaces do not have a direct relationship with CIE col-

orimetry, but are defined by the characteristics of an input or output device. For

input-device dependent color spaces, the spectral characteristics and color compo-

nent transfer function of an actual or idealized input device is required, as well

as a white-point. For output-device dependent color spaces, such as CMY K, the

relationship between the control signals of a reference output device and the corre-

sponding output image is specified either using output spectra, output colorimetry,

or output density.

D.2 Color Space Encodings

A color encoding is always based on a specific color space, but additionally includes

a digital encoding method. Integer digital encodings linearly specify the digital code

value range associated with the color space range. The color space range defines the

maximum and minimum digital values that are represented in the digital encoding.

Most RGB color space ranges will typically be defined as [0, 1], while CIELAB may

range from [0, 100] for L∗ and [−150, 150] for a∗ and b∗, respectively. The digital

code value range defines the minimum and maximum integer digital code values

corresponding to the minimum and maximum color space values. For example, an

8-bit per channel encoding for an RGB color space with range [0, 1] will associate

the digital code value 0 to the color space value 0, and 255 to 1, respectively.
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Consequently, by varying the digital code value range and/or color space range,

one can derive a family of color space encodings based on a single color space.

sRGB [IEC99, ANS01, IEC03] and ROMM/RIMM RGB [ANS02b, ANS02a] are

two such examples.

Using the color space primaries and the color space range, color encoding gamuts

can be visually represented in x, y or the more perceptually uniform u
′

, v
′

chromatic-

ity diagrams. Figure D.1 illustrates the color encoding gamuts of the sRGB and

ROMM RGB primaries with a color space range of [0, 1] in x, y and u
′

, v
′

coordi-

nates. Both are additive RGB color spaces based on a linear transformation of the

CIE 1931 CMFs. It can be seen that the encoding gamut of sRGB is smaller than

that of ROMM RGB, i.e. more visible colors can be encoded in ROMM RGB than

sRGB. The sRGB sensors were optimized to encompass a CRT monitor gamut for

an encoding range of [0, 1], while ROMM RGB was intended to cover the gamut of

most printing colors. Note that the ROMM RGB gamut goes beyond the spectral

locus, i.e. it encompasses chromaticity values that are not visible to the human eye.

Thus, digital code values associated with the maximum color range values do not

have perceptual meaning, and so are not “used” in the encoding of image data based

on visible radiation.
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Figure D.1: Left: x, y chromaticities of sRGB and ROMM color encodings. Right:

same in u
′

, v
′

chromaticity coordinates.
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D.3 Color Image Encodings

Color image encodings are based on a specific color space encoding, but addition-

ally define the parameters necessary to properly interpret the color values, such as

the image state and the reference viewing environment. Image state refers to the

color rendering of the encoded image. Scene-referred color encodings are represen-

tations of the estimated color space coordinates of the elements of the original scene.

Output-referred color encodings are representations of the color space coordinates of

image data that is rendered for a specific real or virtual output device and viewing

conditions. Reference viewing conditions need to be associated with these image

states so that the color appearance can be interpreted. Generally, image surround,

adapted white-point, luminance of adapting field, and viewing flare is specified. In

case of output-referred color encodings, a reference imaging medium, either a real or

idealized monitor or print, also needs to be characterized by its medium white-point,

medium black-point and target gamut.

Note that in theory, a color image encoding could be based on any color space

encoding. In practice, color space encodings are usually optimized for a given image

state by defining an application specific digital code value range and color space

range. For example, the sRGB color image encoding for output-referred image rep-

resentation is optimized for typical CRT monitor gamut and has a limited dynamic

range. It is thus unsuitable for most scene-referred image data.
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Appendix E

Linear transforms for color

encodings

The 20 best transformation matrices found to have suitable color gamut encoding

properties (see section 5.3)

M1 =











1.6351 −0.4071 −0.2280

−0.8044 1.7798 0.0247

0.0873 −0.1096 1.0223











M2 =











1.6857 −0.5079 −0.1778

−0.8044 1.7798 0.0247

0.0873 −0.1096 1.0223











M3 =











1.6351 −0.4071 −0.2280

−0.8584 1.8823 −0.0238

0.0873 −0.1096 1.0223











M4 =











1.7518 −0.5185 −0.2334

−0.9422 1.9043 0.0379

0.0000 0.0151 0.9848











M5 =











1.8299 −0.6281 −0.2018

−0.8584 1.8823 −0.0238

0.0000 0.0151 0.9848
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M6 =











1.5741 −0.4000 −0.1741

−0.9422 1.9043 0.0379

0.0873 −0.1096 1.0223











M7 =











1.8299 −0.6281 −0.2018

−0.9422 1.9043 0.0379

0.0000 0.0151 0.9848











M8 =











1.9241 −0.7471 −0.1770

−0.8584 1.8823 −0.0238

0.0000 0.0151 0.9848











M9 =











1.7518 −0.5185 −0.2334

−0.8044 1.7798 0.0247

0.0000 0.0151 0.9848











M10 =











1.8299 −0.6281 −0.2018

−0.8044 1.7798 0.0247

0.0000 0.0151 0.9848











M11 =











1.5638 −0.3067 −0.2571

−0.8584 1.8823 −0.0238

0.0873 −0.1096 1.0223











M12 =











1.7518 −0.5185 −0.2334

−0.8584 1.8823 −0.0238

0.0000 0.0151 0.9848











M13 =











1.9241 −0.7471 −0.1770

−0.9422 1.9043 0.0379

0.0000 0.0151 0.9848











M14 =











1.9241 −0.7471 −0.1770

−0.8044 1.7798 0.0247

0.0000 0.0151 0.9848
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M15 =











1.5024 −0.3006 −0.2018

−0.9422 1.9043 0.0379

0.0873 −0.1096 1.0223











M16 =











1.5741 −0.4000 −0.1741

−0.8044 1.7798 0.0247

0.0873 −0.1096 1.0223











M17 =











1.5741 −0.4000 −0.1741

−0.8584 1.8823 −0.0238

0.0873 −0.1096 1.0223











M18 =











1.8299 −0.6281 −0.2018

−0.9254 2.0028 −0.0775

0.0000 0.0151 0.9848











M19 =











1.5741 −0.4000 −0.1741

−0.7166 1.7464 −0.0298

0.0873 −0.1096 1.0223











M20 =











1.6351 −0.4071 −0.2280

−0.8044 1.7798 0.0246

0.0000 0.0152 0.9848
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Appendix F

Hue Constancy Plots

These figures illustrate the hue constancy of different white-point preserving sensors

(see section 5.4)
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Figure F.1: Hue constancy for the ROMM sensors. The mean residual error is equal

to 0.1686.
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Figure F.2: Hue constancy for the 709 sensors. The mean residual error is equal to

0.1653.
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Figure F.3: Hue constancy for the HPE sensors. The mean residual error is equal

to 0.1039.
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Figure F.4: Hue constancy for the Sharp CAT sensors. The mean residual error is

equal to 0.1504.
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Figure F.5: Hue constancy for the CAT02 sensors. The mean residual error is equal

to 0.1563.
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Figure F.6: Hue constancy for the Bradford sensors. The mean residual error is

equal to 0.1423.



Appendix G

Visual Examples

The images on the following pages are from the multispectral image data set com-

piled by Finlayson et al. [FHM04]. The data is in reflectance factors per spectral

interval (400-700nm, ∆λ = 10nm). Using the image formation model of eq. 1.6,

the multispectral data was rendered to XYZs under illuminant A and D100, re-

spectively. Using a von Kries-Ives DMT chromatic adaptation transforms with the

different sensors discussed in this thesis, the images were then rendered to illuminant

D65 and converted to sRGB color image encoding for display.

Note that it is almost impossible to tell with these two images which of the

transforms performs best. In the Kelloggs image G.3, the HPE sensors show a

noticeable difference (the yellow turns slightly greenish, and the blue slightly purple),

but the visual difference between the other images is neglectable.

These examples provide some visual proof that there are many sensors that can

be used in a DMT-type CAT to render color under different illuminants, as discussed

in in this thesis.
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Illuminant A

HPE Bradford CAT02

Sharp (Chap. 3) Color Ratio Munsell (Chap. 6) White−point independent (Chap. 5)

Figure G.1: The Macbeth chart “captured” under illuminant A and rendered to

D65 using the different tranforms discussed in this thesis.
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Illuminant D100

HPE Bradford CAT02

Sharp (Chap. 3) Color Ratio Munsell (Chap. 6) White−point independent (Chap. 5)

Figure G.2: The Macbeth chart “captured” under illuminant D100 and rendered to

D65 using the different tranforms discussed in this thesis.
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Illuminant A

HPE Bradford CAT02

Sharp (Chap. 3) Color Ratio Munsell (Chap. 6) White−point independent (Chap. 5)

Figure G.3: An image “captured” under illuminant A and rendered to D65 using

the different tranforms discussed in this thesis.
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Illuminant D100

HPE Bradford CAT02

Sharp (Chap. 3) Color Ratio Munsell (Chap. 6) White−point independent (Chap. 5)

Figure G.4: An image “captured” under illuminant D100 and rendered to D65 using

the different tranforms discussed in this thesis.


