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Abstract. Basic aspects of fast ion transport in ideal interchange-mode unstable

plasmas are investigated in the simple toroidal plasma device TORPEX. Fast ions are

generated by a miniaturized lithium 6+ ion source with energies up to 1 keV, and

are detected using a double-gridded energy analyzer mounted on a two-dimensional

movable system in the poloidal cross-section. The signal-to-noise ratio is enhanced by

applying a modulated biasing voltage to the fast ion source and using a synchronous

detection scheme. An analog lock-in amplifier has been developed, which allows

removing the capacitive noise associated with the voltage modulation. We characterize

vertical and radial transport of the fast ions, which is associated with the plasma

turbulence. Initial experimental results show a good agreement with numerical

simulations of the fast ion transport in a global fluid simulation of the TORPEX

plasma.
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1. Introduction

In burning plasmas, fast ions may be generated by ion cyclotron resonance heating

(ICRH), neutral beam injection (NBI) and fusion reactions. As fast ions will be

responsible for a significant fraction of plasma heating and, in some scenarios, non-

inductive current drive, understanding their transport across the magnetic field is of

fundamental importance. The interaction between highly energetic ions and small-

scale (drift wave-like) turbulence is an open problem in fusion plasmas, which has not

been extensively investigated to date. One of the reasons is that, in present tokamaks,

fast ions do not play the same crucial role they will play in ITER [1]. Another, more

fundamental, reason is that fast ions usually have a gyroradius larger than the turbulence

scale, which weakens or almost entirely suppresses their interaction with turbulence by

gyroaveraging effects [2, 3, 4]. A number of theoretical studies find that the interaction

of fast ions with turbulence is reduced when the gyroradius is increased, while several
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other authors demonstrate that, when the gyroradius increases up to the fluctuation

correlation length, the fast ion transport could remain unchanged or even increase [5].

Recent tokamak results [6] indicate that significant redistribution of suprathermal ions

can be induced by turbulence, at least in some ranges of energy and of the ratio between

fast ion energy and background plasma temperature. Experimental indications of non-

diffusive transport of fast ions in strong drift turbulence have been obtained in the linear

basic plasma physics device LAPD at UCLA [7, 8]. So far, no direct measurements of

turbulence-induced fast ion transport on toroidal devices have been performed. Thus,

there exists a strong need for experimental data with which to compare and validate

the relevant theoretical and numerical models [9, 10]. In this work, we investigate the

interaction of fast ions with ideal interchange instabilities and turbulence in TORPEX

simple magnetized toroidal plasmas, a relatively basic experimental environment with

easy access for diagnostics and well-established plasma scenarios [11].

2. The TORPEX device and the interchange dominated plasma regime

The experiments are performed on the TORPEX device [11, 12, 13] (major radius R =

1 m, minor radius a = 0.2 m). Hydrogen plasmas are produced by microwaves (power

≈ 150 W) in the electron cyclotron range of frequencies on the high-field side of the

torus. A vertical magnetic field Bv = 2.1 mT is imposed on a toroidal field of Bt = 74

mT, resulting in helical magnetic field lines with ∇B and curvature that terminate on

the lower and upper walls of the vessel. Typical peak electron temperature and density

are Te = 6 eV and ne = 2 × 1016 m−3 respectively. The vertical magnetic field line

return distance is ∆ = 2πR0Bv/Bt ≈ 18 cm. For fast ion transport measurements,

signal-to-noise ratio is a concern, requiring TORPEX to be run in a continuous mode

with plasma discharges lasting as long as 10 min. This allows for data acquisition of ∼

30 s at each spatial position resulting in statistically relevant signals.

In the present configuration, experimental measurements [14] and numerical

simulations [15, 16] reveal that plasma turbulence is dominated by an ideal interchange

mode with frequency fp ≃ 4.5 kHz and wave numbers k‖ ≃ 0 and kz ≃ 35 m−1. The

ideal interchange mode is localized at the position of the steepest gradient of the density

profile. This is shown by figure 1, which presents a snapshot of the density fluctuations

and the time-averaged density profile measured by a two-dimensional array of 86

Lamgmuir probes, called HEXTIP [17]. A low-field side region, for r ≥ 0, with negligible

plasma production implying low densities and temperatures is characterized by the

presence of radially propagating intermittent structures termed blobs [18, 19, 20, 21].

3. Experimental set-up: fast ion source and detector

The relatively low energy required for the fast ions (50eV- 1keV) allows a source design

based on a miniaturized cylindrical structure (24mm in diameter, 50mm in length and

an outlet diameter of 8mm), which can be installed directly inside the TORPEX vacuum
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Figure 1. a) Poloidal cross-section of the electron density [m−3] measured with the

hexagonal Lamgmuir probe array HEXTIP. A snapshot of the fluctuations ñ = n− n̄

is represented in the background and the white lines show the isocontours of the time

averaged density n̄. The black dot indicates the position of the fast ions source. b)

Snapshot of the simulated turbulent electrostatic field [V]. Two example trajectories

of fast ions with energies of 88 eV (black) and 290 eV (red) are over-plotted.
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Figure 2. Profiles of electron temperature and floating potential fluctuations from

the 2D simulations. (- - - -) Vertical average of Te, (——) σVfloat
on the midplane

vessel [22, 23]. The source consists of a thermionic emitter with a two-grid accelerating

system and produces fast ion currents up to 10µA.

A miniaturized gridded energy analyzer (GEA) is used to measure fast ion energy

and current density profiles. To improve the signal to noise ratio, a design with two

identical gridded energy analyzers facing opposite directions was chosen [24]. The ad-
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vantage of this configuration is that one detector measures the fast ion beam together

with the background signal while the second detector measures only the background

noise. Each fast ion detector has small dimensions (15mm in diameter, 70mm in length

and in inlet diameter of 8mm), and is able to measure fast ion currents as small as 0.1µA.

The fast ion source and the double gridded energy analyzer are installed on 2D moving

systems, which can position them at almost any point of the poloidal cross-section. The

2D moving detector system is motorized and allows automatic reconstruction of the fast

ion current density profile with a spatial resolution of ∼ 5mm.

Synchronous detection is used in order to increase the signal-to-noise ratio [24].

The emitter bias is modulated by a reference signal at a given frequency (∼ 1 kHz).

This modulation results in undesired space-dependent capacitively coupled noise in the

detector. In order to remove this parasitic effect, an analog lock-in amplifier has been

developed. Before demodulation by the lock-in, the detector signal is modified to remove

capacitive effects by introducing a “dead time” which erases the spurious capacitive cusp

in the signal. The final signal is then integrated to obtain a DC output proportional to

the fast ion current.

4. Theoretical interpretation framework

The TORPEX plasma has been subject to extensive modeling, including validation of

a global plasma turbulence code [14]. These simulations have been performed in 2D

and 3D limits of the drift-reduced Braginskii fluid equations, adapted to the TORPEX

geometry and plasma parameters [15, 16]. As mentioned above, these simulations have

confirmed that TORPEX plasmas are dominated by ideal interchange modes for certain

values of the ratio Bv/Bt. This is the case for all plasmas studied in this paper. For a

theoretical understanding of the fast ion transport in this turbulent regime, we take the

simulated turbulent electrostatic field and integrate the trajectories of a large ensemble

of tracer particles using the full Lorentz force. Therefore, these fast ion simulations

explicitly include the charge and mass of the Li-6 ions, as well as the geometry of the

toroidal magnetic field, which effectively causes curvature and∇B drifts. Gyroaveraging

is also included implicitly to high accuracy with this method. Figure 1 shows a snapshot

of the simulated turbulent electrostatic field with the trajectories of two fast ions over-

plotted.

A comprehensive theoretical study of the behavior of the fast ions as tracer particles

was recently completed [9, 10]. These results show that the dispersion of fast ions in

the plane perpendicular to the magnetic field is generally nondiffusive, with σ2

R(t) ∼ tγ ,

where γ 6= 1. Here, σ2

R(t) = 〈(R − 〈R〉)2〉 where R is the ions radial position. A large

number of different ensembles of fast ions was used to explore the variations of the value

of γ as a function of two dimensionless quantities: the fast ion energy compared to the

electron temperature, E/Te, and the amplitude of turbulent fluctuations relative to the

electron temperature. It was seen that, depending on the value of these parameters, the
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value of γ can go from superdiffusive (γ > 1) to subdiffusive (γ < 1) due to the effects

of gyroaveraging and, more significantly, curvature-drift averaging.

An example of the behavior of the radial dispersion of the fast ions, σ2(t), as a

function of time is shown in figure 7. One can see that the Larmor oscillation dominates

at the beginning of the injection, during the so-called ballistic phase. Then, after

approximately one gyroperiod, the plasma interaction becomes most significant. Ideally,

to measure γ and distinguish between different injection energies and positions, a 3D

profile of the fast ion current density should be measured. As of now, a well-resolved

2D profile is available for four different injection energies. With this initial data, it is

already possible to compare the measurements from the gridded energy analyzer with

the simulated data.

5. Experimental results and comparisons with theory

We conduct a first set of experiments with four fast ion energies from 88 eV to 290

eV. The source is positioned at X0 = -2.5 cm and Y0 = -0.25 cm (figure 1), with a

slight downward tilt relative to the horizontal plane. Source and detector are separated

toroidally by 23 degrees, corresponding to 40 cm. At the injection position, the standard

deviation of the floating potential time series and the electron temperature average over

time and vertical position are σVf0
≃ 2 V and Te0 ≃ 3 eV, respectively. We note that,

in similar plasma conditions as those studied here, the fluctuation level of Vfloat and

of the plasma potential, φ, have been found to be of similar amplitudes [25]. The

fast ion current profile is reconstructed from several discharges, for which the spatial

resolution of the measurements is adapted to the profile. The adaptive resolution varies

typically from 5mm near the peak position to 1 cm at approximately 2 cm from the

peak. Profiles of the fast ion current density are then computed by interpolating the

scattered measurement points over a regular grid with a resolution of 1 mm.

First, a measurement of the fast ion beam with neither magnetic field nor plasma

is performed to extract the source orientation and the initial spreading of the beam.

Then, profiles with and without plasma are reconstructed for energies of 88 eV, 142

eV, 190 eV and 290 eV. The experimental profiles of the fast ion current are shown in

figure 3. In this configuration, the fast ion cyclotron frequency is ffi = Ωfi/2π ≃ 188

kHz and the fast ions perform from 0.8 to 1.5 Larmor gyrations before they encounter

the detector for energies of 88 eV to 290 eV respectively. Over this range of energies,

the fast ion Larmor radii, calculated from the source orientation and initial spreading,

vary between ρfi ≃ 0.58 ± 0.22 cm for 88 eV to ρfi ≃ 1.05 ± 0.40 cm for 290 eV. The

vertical shift of the center of the fast ion distribution is due to a combination of the ion

Larmor motion and the drifts induced by curvature and gradient of the magnetic field.

To perform the simulations of the fast ions trajectories, the background and

turbulent E field are numerically modeled with the 2D code introduced in section 4

using the experimental parameters. Simulations are performed with different values
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of the particle and heat sources to match the experimental temperature profile. The

simulated profiles of electron temperature and floating potential fluctuations are shown

in figure 2. The positions of the maxima of Te and of the Vfloat fluctuations correspond

to the positions of the experimental density peak and of the mode shown in figure 1.

The value of the floating potential fluctuations is slightly higher in the simulation than

in the experiment. As in experiments, fluctuation levels of Vfloat and φ are of very

similar amplitude. Thus, in order to match potential fluctuations, the simulated plasma

potential fluctuations, φ̃ = φ − φ̄, are multiplied by a factor Ξ = 0. 7 [9, 10]. The

simulation time is tsim = 200/Ωfi, which represents ∼ 75% of the interchange wave

period.

All initial parameters of the fast ion injection, namely, position, energy and orien-

tation, are modeled with a Gaussian distribution. Fast ions are injected at the location

of the fast ion source (X0 = -2.5 cm, Y0 = -0.25 cm). The standard deviation of the

position distribution is σX0,Y0
= 1.2 mm. The standard deviation of the initial energy

distribution corresponds to 10% of the initial energy. Values of the vertical, α0, and

horizontal, β0, angles describing the source orientation and angular size can be deduced

from the profile reconstructed from the case without magnetic field. However, owing

to the sensitivity of the trajectories upon theses initial parameters, simulations were

run in order to find a single pair of initial angles that provides an agreement with the

positions of the experimental peaks for all relevant energies. Values of α0 = -0.1 rad and

β0 = -0.1 rad give the best match and are consistent with measurements made without

magnetic field within the experimental spatial accuracy. The spreading in initial angles

is σα0
= 0.06 rad and σβ0

= 0.04 rad.

Comparisons between experiment and simulation are done using a synthetic

diagnostic allowing the poloidal cross section of the fast ion current density to be

computed (figure 4). The synthetic diagnostic reproduces the technique used by the

experimental diagnostic. First, the poloidal cross section is divided into bins with a size

of 5mm×5mm, and then, the fast ion current resulting from the passage of all particles

is computed in each bin. Finally, the resulting fast ion current profile is interpolated

with a resolution of 1 mm.

The positions of the peaks in the cases without plasma show a good agreement with

the data, within the experimental spatial accuracy, for all energies (figures 3 and 4). The

profiles are all broadened by the plasma, meaning that the interaction of the fast ions

with the plasma is significant. A simple estimate of the effect of ion/fast ion collisions

on the beam spreading shows that collisional spreading is an order of magnitude smaller

than our observation. The radial and vertical full width at half maximum (FWHM)

for different energies is computed by slicing the profiles horizontally and vertically each

millimeter. Only the slices with a maximum value higher than the half value of the total

peak are taken into account. In figure 5, the average over the different slices is used

and the errorbars are given by the standard deviation. Comparison of the profiles radial

and vertical FWHM also show a good agreement. The effect of the plasma is more
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important for lower energies for both radial and vertical FWHM. The radial FWHM

first decreases as the energy is increased up to 190 eV and then increases again at 290

eV for the cases with plasma, as well as without plasma. This oscillation of the beam

width can be explained by the gyromotion of the fast particles. Indeed, the difference

in the initial phases of the fast ions is very small and their Larmor motion is almost

synchronized resulting in a oscillation of the beam width at the cyclotron frequency and

with an amplitude of the Larmor radius on top of the gyrocenter dispersion.

Figure 6 shows the FWHM2 computed with the synthetic diagnostic for all energies

as a function of the toroidal distance. The square of the standard deviation of the

particle positions as a function of time, σ2(t), is also shown in figure 7. A ballistic

phase, whose length corresponds approximately to the distance traveled during the first

gyromotion, is present for all energies. Then, a smooth transition occurs to a second

phase, the interaction phase, where the effect of the plasma begins to be important.

Exponents characterizing the transport in the interaction phase are computed from the

slope of the log-log plots using FWHM2 ∼ Lγ′

, where L is the toroidal distance. Here,

γ′
R is the radial transport exponent and γ′

z is the vertical transport exponent. The

radial transport exponent is decreasing as energy increases up to 190 eV indicating that

the transport becomes more subdiffusive and increases again slightly at 290 eV. The

values of γ′
z increases slightly as energy increases, from 0.8 to 1.0. The values of γ′

z

and γ′
R show the same trend than the values of γR and γz extracted from the plots of

σ2(t) (figure 7). However, they are systematically smaller. Indeed, in the presence of

nondiffusive transport, the measure of the FWHM does not capture the non-Gaussian

tails of the fast ion distribution, whereas the standard deviation, σ, does.

The values of γz extracted from the plots of σ2(t) are all above unity indicating a

superdiffusive transport in the vertical direction consistent with theoretical estimates

[9, 10]. The values of γR are all below unity, indicating that the radial transport is

subdiffusive. As energy increases, γR first decreases as expected from [9, 10], however

from 190 eV to 290 eV, γR increases again. This disagreement with the results in [9, 10]

can be explained by the nonparallel injection used in the present work. Nonparallel

injection introduces a transient dispersion phase for larger values of fast ion injection

energy. This transient phase is characterized by a larger γR value relative to theoretical

predictions [9, 10], which becomes larger for higher injection energies. This subdiffusive

γR is seen in the distribution of ion displacements as a wider peak without much

lengthening of the tails. The transient phase ends after several tens of Larmor rotations,

after which the value of γR conforms with theoretical predictions for parallel injection.

We have identified non-parallel injection as a necessary condition for the presence of the

transient phase.
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Figure 3. Fast ion experimental current density profiles (a.u.) measured at 40cm

from the fast ion source with energies ranging from 88eV (top) to 290eV (bottom).

Cases without plasma are on the left and cases with plasma on the right. The current

density values of each plot is normalized to its maximum.

6. Conclusions and outlook

First experimental results on the spatial distribution of supra-thermal ions in simple

magnetized plasmas show a significant effect from ideal interchange waves and

turbulence. This effect is well explained by simulations, showing the importance of the

size of the gyroradius. In order to resolve the oscillations of the beam due to gyromotion

of the fast ions and discriminate among different mechanisms of fast ion transport, a
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Figure 4. Fast ion current density profiles (a.u.) reconstructed from the simulations

with a synthetic diagnostic. Fast ion energy vary from 88eV (top) to 290eV (bottom).

Cases without plasma are on the left and cases with plasma on the right. The current

density values of each plot is normalized to its maximum.

toroidally moving system for the source has recently been developed (figure 8). This

system will allow continuous variation of the distance between the source and the

detector to reconstruct 3D profiles of the fast ion beam in the ballistic and interaction

phases. Taking into account the machine size and the vertical drift experienced by the

fast ions, we expect the maximum distance between the source and the detector to

be approximately 2.5 m for 300 eV ions. This would result in a number of gyrations
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Figure 5. Full width half maximum of the fast ion beam profiles from experiment

(- - - -) and simulations (——). The cases without plasma are in blue and the cases

with plasma are in red. (a) radial FWHM, (b) vertical FWHM.

between 5 and 9, for energies between 88 eV and 290 eV. In order to increase the number

of gyrations before collection by the detector, the injection angle can also be increased.

Transport of fast ions in the presence of well-diagnosed waves and turbulence will

be investigated by varying, for example, the fast ion energy to temperature ratio, the

initial pitch angle, and the turbulence characteristics. Different magnetic configurations

will be used, from the SMT described here to one with rotational transform induced

by an internal current carrying wire. This toroidal experimental setup, combined with

the numerical simulations resolving the individual fast ion tracer trajectories, will allow

us to investigate the guiding-center treatment and the effect of the gyroaveraging and

curvature-drift averaging relevant to large fusion devices.
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