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Abstract 

The design of systems for solar light collection, modulation and/or distribution requires a thorough 
knowledge of their optical properties. The angular distribution of the scattered incident light flux, 
described by the Bidirectional Scattering Distribution Function (BSDF), can be measured with a step-
by-step scanning goniophotometer but requires considerable time, especially when aiming at high 
angular resolution over a wide range and numerous incidence angles like in typical solar applications. 
Considerably faster measurements can be achieved with a so-called imaging goniophotometer, which 
simultaneously measures light fluxes in all scattered directions by dispatching them over different 
portions of a two-dimensional sensor array.  

In this contribution, we revisit the widely accepted principle of a reflective imaging goniophotometer 
(RIG), which is based on a hemispherical (or ellipsoidal) mirror and a fisheye camera. Specifically 
developed ray-tracing tools allowed us to obtain accurate figures relative to the influence of key design 
parameters on angular resolution. Our calculations reveal that the measurement accuracy is too low for 
samples larger than a few tens of millimeters. Most importantly, we found significant limitations and 
artefacts in the angular-to-spatial mapping function inherent to the RIG principle, which generally 
severely bias BSDF measurements. 

1. Introduction 

The energy conveyed by solar radiations can be exploited in various manners. Besides transformation 
into heat or electricity, a direct use for indoor lighting remains very appealing. Since artificial indoor 
lighting is commonly used during daytime, there is a strong incentive to reduce our consumption of 
energy with a better harvest and distribution of daylight. Moreover, a better control of the light flux 
and its spectral contents can reduce significantly the heating and cooling loads. Besides energy 
savings, natural light is healthier [1], more pleasant and bears the potential for aesthetical lighting. 

Complex fenestration systems (CFS), made of increasingly sophisticated structures and materials, are 
developed to better control and exploit solar radiations while minimizing discomfort issues [2]. The 
benefits obtained with a complex solar façade can be assessed with computer simulations, mostly 
based on ray-tracing like Radiance [3]. Reliable simulations require an accurate knowledge of the 
optical properties of the CFS and of all other elements involved. Particular attention should be paid to 
the angular light distribution of the reflected or transmitted light flux, which can be described by the 
Bidirectional Scattering Distribution Function (BSDF), introduced by Nicodemus and further adopted 
by the CIE [4]. A thorough knowledge of the BSDF also allows the manufacturers to qualify and 
optimize their products. 

There is a increasingly stronger need to rely on BSDF in many fields, for instance for modeling 
luminaires, CFSs, and objects in graphical computer simulations. In its simplest form, the BSDF is a 
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multidimensional function depending on four variables, which are the polar coordinates of the 
incidence and scattering angles, (θi, ϕi) and (θs, ϕs), respectively. More dimensions may be included 
when accounting for the spectral distribution and(or) the polarization of light. In practice, for 
measurement and use, the BSDF is usually split into a Bidirectional Reflection Distribution Function 
(BRDF) and a Bidirectional Transmission Distribution Function (BTDF), describing the distribution of 
the reflected and transmitted light flux in the relevant hemispherical space, respectively. Thus, to 
measure a BT(R)DF(θi, ϕi, θs, ϕs), one needs to measure the scattering intensity distribution over 2π 
steradians with the highest possible angular resolution, for each incident angles (θi, ϕi) and possibly 
for different wavelength ranges. Such measurement is not straightforward and requires a dedicated 
instrument called a goniophotometer. 

2. Scanning and imaging goniophotometers 

Traditional goniophotometers generally consist of a two-axis mechanical scanner moving a 
photodetector around the sample in small angular steps across the hemisperical space [5]. Such 
scanning goniophotometer offer reliable and flexible measurements since the sampling accuracy, 
dynamical range and spectral response can be easily adjusted. The main drawback of the method is the 
long measurement time due to the large number of measurement points. For instance, a resolution of 
1° across the whole hemispherical space requires around 20700 measurements. Assuming a time 
interval of one second between each measurement (displacement, stabilization and acquisition time), 
the measurement of a BT(R)DF would take nearly six hours for each single incidence angle. When 
aiming at characterizing many new CSFs under many incidence angles (typically 145 in daylighting 
modeling) and possibly for different spectral ranges, a drastic reduction of the measurement time is an 
absolute necessity. 

Several orders of magnitude faster measurements can be achieved with a radically different type of 
goniophotometer, called imaging or video goniophotometer, which captures the entire scattered 
wavefront at once (no moving parts). Thanks to a specific optics, an imaging goniophotometer 
simultaneously measures light fluxes in all scattered directions by dispatching them over different 
portions of a two-dimensional sensor array [6]. Few ingenious designs of systems allowing such an 
angular-to-spatial mapping have so far been devised. Three types of working principles can be 
distinguished: (1) Fourier optics, (2) screen projection and imaging and (3) reflection and imaging. 
Instrument of the first category rely on a complex custom lens assembly performing the angular-to-
spatial mapping by means of an optical Fourier transform [7]. The second category of instruments 
consists of a hemispherical (or cubical) screen intercepting light scattered over 2π steradians. Light 
backscattered by the screen is then imaged on a sensor via a fisheye camera or via a convex mirror and 
lens system [8]. Excellent performance is obtained with commercial instruments belonging to these 
two categories. However, these instruments are restricted to relatively small samples. For specific 
applications, one needs to measure the average scattering properties over a large sample such as for 
instance a CFS, whose structures have characteristic sizes typically ranging between one to a few tens 
of centimeters. 

In the third category, a relatively simple and ingenious imaging goniophotometer, proposed by Ward 
[9] and further developed by Andersen and al. [10], was specifically developed for measuring large 
samples at high speed. This so called reflective imaging goniophotometer (RIG), based on a 
hemispherical or ellipsoidal mirror and a fisheye camera, is endowed with very attractive features such 
as a high throughput and negligible stray light. However, although widely accepted, the RIG is still 
missing a full validation of its principle. In this contribution, we revisit the performance and 
limitations of the RIG, in particular when measuring relatively large samples. 



3. Reflective imaging goniophotometer 

3.1. Working principle 
The basic architecture of the RIG system is shown in figure 1. It consists of a semi-reflective 
ellipsoidal or hemispherical dome above the x-z plane with a sample and a fisheye camera positioned 
at F1 and F2, respectively. The semi-reflective coating properties allow for an illumination from either 
below or above so as to get either BTDF or BRDF measurements. 

The working principle rests on the geometrical properties of an ellipse, namely the stigmatic 
relationship between the two foci points F1 and F2, and on the properties of a fisheye lens. With an 
ellipsoidal mirror, any optical ray leaving F1 is reflected by the dome inner surface so as to reach F2. 
Thus, in the first approximation, all light scattered by a small sample positioned at F1 is redirected 
towards F2 after reflection on the ellipsoidal dome. The fisheye camera positioned at F2 (see Fig. 1) 
provides a direct angular-to-spatial mapping of the angular distribution of the reflected rays. Indeed, 
by design, each pixel of the sensor of the fisheye camera detects light from a specific direction. The 
angular distribution of the rays scattered by the sample at F1, i.e. the BT(R)DF, can be calculated with 
geometrical rules from the angular distribution of the rays reflected towards F2 [9] 

 

Fig. 1. Principle of a reflective imaging goniophotometer (RIG) with key design parameters for calculation of the 
angular resolution with a finite size sample of diameter d: reflective ellipsoid with semi-axis a and b, path for 

optical ray propagating from F1 to F2 after reflection at P (solid red lines), paths for collimated ray bundle 
scattered from sample converging towards F2 after reflection on the ellipsoidal dome (dashed red lines). 

Note that similar performance should be obtained with a hemispherical dome provided the dimension 
of the sphere is large relative to the off-center distance of the sample and fisheye camera [9]. 

3.2. Inherent design limitations 
Generally, the higher the sophistication of a goniophotometer, the more difficult is the assessment of 
performance and the more probable is the occurrence of limitations. If the sample and fisheye lens 
were infinitely small, ideal BSDF measurements could be performed with the RIG described above. 
The impact of real finite size components on the performance of the instrument should be properly 
assessed. We investigate the impact of finite size components on the key parameter in 
goniophotometry, namely the angular resolution, as well as and on the angular-to-spatial mapping 
function of the RIG.  

i) Angular resolution 



Angular resolution is obviously a key parameter in goniophotometry. It depends on the specific design 
of the instrument, as well as on the sample size and measurement angle. For a given direction, a 
sample of finite size will scatter a bundle of parallel rays that will converge after reflection on the 
ellipsoidal dome as illustrated in figure 1. The convergence angle, defined by the solid angle Ω, sets a 
fundamental design limit to the angular resolution of the system. The angle Ω, which is rotationally 
non-symmetrical (around the axis defined by P-F2), depends on: the sample size (d), the dome shape 
determined by the ellipse axes (a, b), as well as on the elevation and azimuth angles (θ and ϕ). To get 
quantitative figures for the loss of angular resolution inherent to the RIG principle as a function of the 
various parameters involved, we will consider either the largest or the mean focusing angle (see 3.3). 

Note that additional loss of angular resolution can be caused by the performance of the fisheye camera 
as well as by inaccuracies in the manufacturing of the ellipsoidal dome surface. The contribution from 
the fisheye lens is generally negligible since a resolution below 1° is common. On the other hand, 
discrepancies with an ideal ellipsoidal dome shape can have a significant impact on the angular 
resolution. This point is beyond the scope of this paper. 

ii) Angular-to-space mapping 

Let us now take a detailed look into the angular-to-space mapping operation as performed by the 
fisheye lens in the RIG. The unique feature of fisheye lenses, namely an excellent angular resolution 
over a large viewing angle, is obtained thanks to significant trade-offs in the optical design, which 
have far reaching consequences on the RIG angular-to-spatial mapping function.  

First, unlike more common lens systems, a fisheye lens uses only a small fraction of its surface for 
collecting light in a given direction. Indeed, the specific design of a fisheye lens combined with a 
small aperture stop drastically limits the extent of a collimated beam from a given direction that can 
reach the sensor plane. This is shown in figure 2 for a typical real fisheye lens modeled in ZEMAX 
(see 3.3). Only a small bundle of rays (transverse size p) out of the large collimated beam of width W 
(directly related to the sample size) can penetrate into the camera system without being blocked by the 
lens aperture stop (not shown). Thus, the actual size of the measured sample portion roughly 
corresponds to the dimension p of the ray bundle, whose size is in the order of a few millimeters, i.e. 
typically a few orders of magnitudes smaller than the size of the fisheye lens. Without such spatial 
filtering (beam truncation), the sample size would be ultimately limited by the size of the fisheye lens. 

Second, the location of the small measured sample portion depends on the measurement angle due to 
the fisheye lens properties. An ideal angular-to-spatial mapping in the case of a RIG would require the 
rays from any direction to originate from the same sample portion centered on F1. Shall it be the case a 
ray bundle from any direction would always point exactly towards F2. However, this cannot be the 
case because the spatial filtering inherent to a fisheye lens imposes an off-centered optical path relative 
to the beam propagation axis pointing towards F2 (except for the path coincident with the optical axis). 
The difference between the ideal and real optical paths taken by light from a given direction is 
illustrated in figure 2 for an incident light beam at 60° relative to the horizontal plane. The ray bundle 
collected from this direction takes an optical path shifted by a distance X and points towards a point 
F2’. This means that, by virtue of the ellipse properties, the light flux detected at a given direction of 
incidence does not originate from an area centered on the ellipse focal point F1. Instead, the detected 
light originates from an area centered on the sample point conjugated to F2’.  



To assess the impact of the spatial filtering inherent to the angular-to-space mapping function on the 
RIG principle we need to get quantitative figures for the actual location and size of the areas of the 
sample measured at each direction. 

 

Fig. 2. Artefacts in the angular-to-spatial mapping function in a RIG caused by the fisheye lens properties. 
Typical fisheye lens modeled in ZEMAX showing the path and extent of ray bundles collected in specific 

directions for elevation angles ranging from slightly above 0° to 90° with angular steps of 15°. The transverse 
dimension p shows the ray bundle size truncated from a light beam of transverse dimension W at 60° incidence 

angle. The distance X shows the offset of the truncated ray bundle path relative to the beam center pointing 
towards F2’. The dimension b is defined for calculation purposes (see 3.3). 

3.3. Calculation method and assumptions 
A parametric study is ideally suited to investigate the angular resolution and the angular-to-spatial 
mapping function. It shows how the performance varies as a function of θ and ϕ  and allows exploring 
the dependence on key design parameters. 

The propagation of optical rays in the RIG obeys the rules of geometrical optics. Although a 
mathematical description is relatively straightforward the number of possible trajectories and 
parameters complicates our investigation. Such a kind of investigation lends itself well to a ray-tracing 
modeling. Since optical ray-tracing based software tools such as ZEMAX or TracePro do not offer the 
flexibility required for our parametric study, we developed our own ray-tracing algorithms in Matlab 
code. The impact on resolution and on the angular-to-space mapping is investigated separately with 
different codes describing different initial conditions. 

For the investigation of the angular resolution we assume a perfect angular-to-spatial mapping 
function (real fisheye properties not accounted for) and a perfect ellipsoidal dome.  For each direction, 
a beam is defined by a bunch of parallel rays launched from the periphery of the sample of diameter d 
centered at F1. After refection on the ellipsoidal dome, a tilt angle relative to the beam axis P-F2 is 
calculated for each of these parallel rays. For each pair of opposite peripheral rays, which are equally 
distributed along the beam periphery, a peripheral focusing angle is calculated by summing the tilt 
angles obtained. Our results were obtained with 24 peripheral rays (one ray every 15°), at elevation 
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and azimuthal angles sampling the hemispherical space in steps of 15° (288 directions). For each 
direction, we calculate the following two relevant quantitative figures for the angular resolution: the 
largest and the mean of the peripheral focusing angles. 

For the investigation of the angular-to-spatial mapping function we account for typical fisheye 
properties and again assume a perfect dome. A fisheye lens with very similar properties than the one 
used in the RIG device [10] was taken from models available in ZEMAX in order to extrapolate the 
size of the ray bundle collected as well as the coordinates at which it is intercepted by the lens 
interface (F2’ in Fig. 2). The size of the ray bundle at the plane x-z, defined by the diameter b, was 
found to be nearly constant (2 mm) independent of the direction. To assess the impact on the RIG 
principle we need to get quantitative figures for the actual location and size of the areas measured on 
the sample side as a function of the direction of detection. For each coordinate F2’ related to a 
detection angle, a bundle of detected parallel rays is defined at the periphery of a disc of diameter b 
centered at F2’. The rays are launched backwards, i.e. from the fisheye side. The intersections points 
with the x-z plane can be linked to form a boundary defining the corresponding measured area on the 
sample side. 

4. Calculation results 

4.1. Angular resolution 
For a given configuration, i.e. for a given RIG and sample size, quantitative figures for the resolution 
as a function of the direction of scattering (θ and ϕ) resulting from our calculations (see 3.3) can be 
represented with a three-dimensional plot.  

 

Fig. 3. Calculation results for the lowest and mean angular resolution as function of the elevation and azimuthal 
angles for a given RIG with a = 575mm and e = 0.4, and a sample d = 30mm. 
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The two plots in figure 3 show the lowest angular resolution and the mean angular resolution (defined 
in 3.2) as a function of θ and ϕ in steps of 15° (288 directions) for a RIG defined by its semi-axis a = 
575 mm and ellipticity e = a/F1= 0.4, and a sample size d = 30 mm. 

The calculation results reveal how the resolution depends on direction of measurement. The lowest 
resolution, corresponding to the highest focusing angle in given direction, lies somewhere above 6° 
and the average resolution in direction varies around 5°. 

It would be interesting to determine, for instance the influence of the sample size on the resolution. 
For such parametric study, it is preferable to compare average (µ) and standard deviation (σ) quantities 
for the values of the three-dimensional plots. These quantities can be advantageously visualized in a 
two-dimensional bar plot, in which the upper and lower values of each bar correspond to µ + σ and µ – 
σ, respectively. The exact numerical values for µ and σ are provided in a table, as well other relevant 
figures of interest, the average and standard deviation values of the highest angular resolution 
distribution and the boundary values (lowest and highest resolution). Each pair of average and 
standard deviation values are extrapolated from a different three-dimensional plot calculated with our 
Matlab code. 

Our parametric study will be performed around a benchmark case, the RIG prototype realized in [10], 
named “Heliodome”, in which a = 575 mm, b = 561 mm and F1F2 = 250 mm. This yields to a factor of 
ellipticity e = a/F1 = 0.217. The sample size taken for benchmark is d = 30mm, which yields a size 
ratio, defined as d/a, of 5% for the Heliodome. 

 

Fig. 4. Calculation results for our parametric study of the angular resolution as a function of the sample size 
relative to the RIG size. The RIG has a constant size a = 575 mm and ellipticity e = 0.217. The bars represent the 
distributions of the average (blue) and lowest (red) angular resolution. Their upper and lower values correspond 

to µ + σ and µ – σ, respectively. The central bar (d/a = 5%) corresponds to the Heliodome case study. 
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To investigate the dependence on the resolution with the sample size we vary d in our simulations 
while maintaining a constant semi-axis length a = 575 mm and a constant factor of ellipticity e = 0.217 
mm (Heliodome benchmark case). The results for the relevant figures on resolution are shown in the 
figure 4 above and table 1 below as a function of the ratio of sample size to the RIG size (r = d/a). 

Our results provide a quantitative insight into the dependence of the angular resolution with the 
sample size. In the first approximation, the angular resolution increases linearly with the inverse of the 
dome size. For a 120 mm large sample, corresponding to a d/a ratio of 20%, the average angular 
resolution is around 20° and can be as low as 24°. Such a poor resolution is insufficient by far, for 
instance, for characterizing a CFS. Accurate measurements, i.e. with an angular resolution higher than 
2.5°, can be achieved with a sample smaller than 15mm. Therefore, the measurement of large samples 
with a sufficient angular resolution, is not possible with the Heliodome design. Improving the 
performance by increasing the size of the device is likely not a viable option for manufacturing 
reasons (dome accuracy) as well as for practical and economical reasons (size and cost). For instance, 
a sample size of 60 mm (r = 10%), a resolution better than 1° would require a roughly ten times larger 
dome, which is not manageable. 

 Sample to dome size ratio: r = d/a [%] 

Resolution 20 10 5 2.5 1 

Lowest 
µ  24.3	
   12.1	
   6.1	
   3.0	
   1.2	
  

σ  0.36	
   0.18	
   0.09	
   0.04	
   0.02	
  

Average 
µ  19.6	
   9.8	
   4.9	
   2.4	
   0.98	
  

σ  3.29	
   1.64	
   0.82	
   0.41	
   0.16	
  

Highest 
µ  13.0	
   6.5	
   3.2	
   1.6	
   0.6	
  

σ  9.0	
   4.5	
   2.3	
   1.13	
   0.45	
  

Boundaries 
min 25.1	
   12.6	
   6.3	
   3.1	
   1.3	
  

max 0.42	
   0.21	
   0.10	
   0.05	
   0.02	
  

 

Table 1. Figures for the resolution of the RIG as a function of the sample size. The ratio r = 5% corresponds to 
the Heliodome case study. 

4.2. Angular-to-spatial mapping function 
The method and the assumptions used for the investigation of the angular-to-spatial mapping function 
are explained in 3.3. The results of our calculation for the sizes and positions of the sample areas 
measured by the RIG in a given direction of measurement at F2 (given by θ and ϕ) are shown in figure 
5. The azimuthal angle  ϕ  is varied in steps of 30° from 0° to 360° for the three elevation angles 
θ equal to 5°, 30° and 60°. The square represents the footprint of a sample of dimension d = 20 mm 
centered on F1 to better appreciate the relative sizes of the measured areas. 



 

Fig. 5. Calculation results for the size and position of the sample areas measured by the RIG as a function of 
various directions of measurement at F2 (given by θ and ϕ), with a square sample footprint of dimension d = 20 

mm centered on F1 for visual reference. 

As expected the measured areas of the sample are very small relative to large samples such as CFSs. 
The lower the elevation angle, the further away from the center of the sample the areas of 
measurement are. These limitations and artefacts in the angular-to-spatial mapping function have far 
reaching consequences as discussed in our conclusion. 

5. Conclusion 

Our results provide a quantitative insight into the dependence of the angular resolution with the 
sample size for a RIG. For the design parameters used in the Heliodome (existing RIG prototype), we 
found insufficient angular resolution for characterizing samples larger than a few tens of millimeters 
like CFSs. A good angular resolution (< 2°) is attainable either with samples of relatively small sizes 
(< 10 mm) or with a RIG of very large dimensions (> 5 m), which is not a viable option.  

Moreover, the angular to-space-mapping function of the RIG suffers from severe limitations and 
artefacts caused by the spatial filtering inherent to the fisheye. Our investigation revealed that, for a 
given direction of measurement, the area measured on the sample side is relatively small and that its 
position depends on the direction of detection on the fisheye side. Generally, this can severely bias 
BSDF measurements with the RIG principle. In the case of a small sample, specific scattering 
directions would be missing since not collected by the fisheye camera. In the case of a large enough 
sample to prevent missing angles, a BSDF measurement would contain an angular distribution built 
with different portions of the same sample.  Therefore, based on our investigation, the RIG does not 
seem to be a viable solution for measuring BSDF of large objects such as CFSs. 
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