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Intraband photocurrent spectroscopy of site-controlled pyramidal quantum dots by inserting them into the

intrinsic region of n-i-n like quantum dot infrared photodetector structure is reported. The photovoltaic

response is observed in the mid-infrared region. A peak responsivity of 0.4 mA/W at 120 meV

(k¼ 10lm) is observed at 10 K at�2 V bias. The ability to engineer states in the conduction band of the

QDs has been exploited to tune their photocurrent response from 10lm to 18lm with a narrow spectral

width of Dk/k¼ 0.17. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737426]

Infrared photodetectors based on quantum dots (QDs),

commonly called as quantum dot infrared photodetectors

(QDIPs), have been studied extensively.1–7 The discrete na-

ture of the density of states provided by the QDs are respon-

sible for many of the attractive properties like sensitivity to

normal-incidence radiation, low dark current levels, poten-

tially high operating temperatures8,9 with respect to its coun-

terparts, the quantum well based infrared photodetectors

(QWIPs). Currently studied QDIPs are solely based on the

self-assembled QDs commonly called, Stranski-Krastanow

(S-K) QDs.10 The strain driven formation of these QDs limits

the control over the QD shape, size, and composition profile.

This inherent randomness results in a lack of control over the

spectral response obtainable from these QDIPs. In contrast,

the QDs grown into site-controlled pyramidal QDs have low

inhomogeneous broadening11 and finely tunable emission

energy.12 Although the lower density of the pyramidal QDs

limits the performance as a QDIP, the site-control enables

the use of pyramidal QD based photodetectors in applica-

tions like the electron pump.13

Here, we report on the intraband photocurrent spectros-

copy of site-controlled pyramidal QDs. The investigated

semiconductor QDs reported here were grown by low-

pressure (20 mbar) metal-organic chemical vapor deposition

(MOCVD). A planar layer of 50 nm of n-doped

(5� 1018 cm�3) GaAs:Si was regrown on a semi-insulating

(111)B GaAs substrate to form the bottom contact, followed

by a 500 nm undoped GaAs. This layer was then patterned

with 500 nm pitch hexagonal arrays of inverted, tetrahedral

pyramids of size 230 nm using electron beam lithography

and wet chemical etching which leads to a QD density of

5� 108 cm�2.11 The grown structures inside the pyramids

consisted of a 1.3 nm thick GaAs buffer layer, 5 nm GaAs

layer (inferior cladding), an In0.15Ga0.85As QD layer of

0.6 nm thickness, a 1 nm GaAs layer (superior cladding), a

0.5 nm Al0.3Ga0.7As current blocking layer followed by a

15 nm n-doped (2� 1018 cm�3) GaAs:Si, all layers were

grown at 590 �C. All thicknesses refer to growth on planar

(100) substrates; the actual QD thickness is �9 times thicker

(as determined by cross-sectional AFM images) due to

capillarity effects in the pyramids formed into the 111 B sub-

strate.14 As a result of this growth, QDs are formed at the

apex of the pyramid and lateral quantum wires (LQWRs) are

formed at the three vertices of the pyramid as described in

Ref. 11.

The conduction band profile (simulated with 1D self-

consistent Poisson-Schrödinger Solver) of the sample is

shown in Fig. 1(a). In this design, the n-doped GaAs (top-

contact) is used as a reservoir of electrons to feed the QDs.

The AlGaAs barrier between the top-contact and the QD

serves to block the dark current. The electrons that populate

the QDs are optically excited into the LQWR and into the

continuum. The active region reported here is similar to the

strongly asymmetric structure reported in Ref. 15. A long

spacer between the QD layer and the back contact provides a

potential slope for the electrons to reach the back contact

even at 0 V bias and hence the photocurrent can be generated

in the photovoltaic mode.

The interband optical emission properties of these QDs

were studied using conventional micro-PL (lPL) setups. The

sample was mounted in a He-flow cryostat and kept at a con-

stant temperature near 10 K. The QDs were optically excited

by a frequency-doubled diode-pumped Nd:YVO4 laser at

k¼ 532 nm in continuous wave for non-resonant PL. The

spatial resolution was �1 lm and the spectral resolution was

set at 90 leV. The inset of Fig. 2 shows PL measurements

performed on the sample at low temperature (10 K) for dif-

ferent excitation powers. At low optical excitation, emission

is detected mainly from the ground state (1.313 eV) of the

QDs. By increasing excitation power; emission from carriers

in higher confined levels is observed. This effect is consistent

with the state-filling picture often used for QDs.16 The peak

at 1.445 eV is attributed to the LQWR, which acts as the bar-

rier to the QD.

To determine the photocurrent, these QDs were incorpo-

rated into an n-i-n structure as shown in Fig. 1(b). The sam-

ple was processed into mesas of 780 lm2 by wet chemical

etching. As an Ohmic back contact, Ni/Ge/Au/Ni/Au

(10 nm/40 nm/80 nm/200 nm) was deposited and subse-

quently annealed at 400 �C for 1 min. To increase the proba-

bility of injection into the QDs, the top contact was

selectively formed only above the QDs by electron beam li-

thography using SiO2 as a hard mask. To avoid Ge diffusion
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into the QD, a top contact of Ti/Pt/Au (5 nm/50 nm/200 nm)

was evaporated. To subsequently perform photocurrent spec-

troscopy, the facet of the sample was mechanically polished

at 45� at the entrance, so that a component of the electric

field can be couple along the growth axis (p-polarized light).

A vacuum Fourier transform infrared (FTIR) spectrometer

was used in rapid-scan mode with a low noise current ampli-

fier (Stanford SR570). The FTIR was equipped with a black-

body glow-bar, KBr beam splitter and KBr windows and the

sample was mounted in a flow-cryostat and measured at a

temperature of 10 K.

The resulting photocurrent spectrum illustrated in

Figure 2 depicts two distinct peaks. The peak at 120 meV

(10 lm) is attributed to the absorption of an electron from

the ground state of the QD to the LQWR. From the PL

(Figure 2 inset), it is seen that the energy separation between

the ground state of the QD to the LQWR is 132 meV; the

�12 meV difference between the two corresponds to a possi-

ble separation of the hole states of the QD and LQWR.

Again from PL, the energy separation of the ground state of

the QD to the GaAs peak at 1.52 eV corresponds to

207 meV. Taking into account the valence band offsets of

the QD with GaAs (�80 meV), the broader peak in the pho-

tocurrent spectra of Figure 2 at 160 meV (7.6 lm) is attrib-

uted to the absorption of the ground state of the QD to the

continuum. The peaks in the photocurrent spectra are thus in

conjunction to the peaks observed in PL. The ratio of the

photocurrent recorded for polarizations perpendicular (p)

and parallel (s) to the growth direction is around �3.5 in

agreement with values already observed for QDIPs.17

Although it is to be noted that this is not the true absorption

strength for the two polarizations as the metal at the surface

also influences the polarization selection.

In order to calibrate the responsivity, we illuminated the

sample with a quantum cascade laser (QCL) with an average

power of 1 mW emitting at k¼ 10 lm, that corresponds to

the absorption of electrons from the QD to the LQWR (refer

Fig. 2). The responsivity spectrum (refer Fig. 3) peaks at

0.4 mA/W at �2 V (10 lm) and is 0.85 lA/W with no bias

(photovoltaic regime). The peak responsivity of the best sin-

gle layer photovoltaic QDIP based on self-assembled QDs is

6 mA/W.15 The responsivity of QDIPs is directly propor-

tional to the number of QDs,8 the density of the pyramidal

QDs is at least two orders of magnitude (�5� 108 cm�2)

lower than the self-assembled QDs. The fact that the respon-

sivity of the device reported here is only a factor 15 lower

than in Ref. 15, which implies that the quantum efficiency

normalized to the number of QDs is �3 more for the devices

presented here. This is explained by the higher (� 3 com-

pared to Ref. 15) effective absorption cross-section (r) of the

QDIP presented here due to the low inhomogeneous broad-

ening of the pyramidal QDs. From the peak responsivity, the

r of the QDIPs is estimated to be 5.2� 10�14 cm�2 at �2 V

and at 0 V bias when the extraction efficiency is low the r is

estimated to be 1.5� 10�16 cm�2.

The pyramidal QD system enables excellent control

over the QD shape and size,18 such control facilitates engi-

neering the energy level spacing19 within the conduction

band of the QD. To exploit this ability, QDs with varying

energy separation of the ground state of the QD to the

LQWR were fabricated. Figure 3(b) shows the PC response

of the QDIPs formed by such pyramidal QDs. The response

is tunable almost continuously from 10 lm to 18 lm. The

biggest advantage of this system is that the tuning reported

here is achieved in a single growth run, i.e., the composition
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FIG. 1. Sketch of the conduction band

profile of the photodetector. (Inset)

Sketch of the pyramidal QD embedded

in an n-i-n like QDIP structure.

FIG. 2. Photovoltaic photocurrent spectra for p and s polarization of the

QDIP. (Inset) Photoluminescence spectra of the QD sample under varied ex-

citation powers. The dashed lines in the inset correspond to the zero line of

each spectrum.
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of the QDs is kept constant but changing the pyramid size

changes the size and shape of the QDs.19 This feature ena-

bles multi-color IR detector arrays for high performance sen-

sor applications.20

The broadening of the photocurrent spectra in a QDIP

depends not just on the inhomogeneous broadening of the

ground state of the QD but also of the state to which the elec-

trons are absorbed. Nevertheless, it is reasonable to expect a

low inhomogeneous broadening characteristic of the pyrami-

dal QDs (Ref. 11) to result in a low broadening of the photo-

current spectra as well. This expectation was verified in the

low photocurrent spread of 14 meV (1.7 lm) depicted in Fig-

ure 3(b), as opposed to a typically observed spreading of

30 meV in S-K QD based QDIPs.15

In conclusion, we have demonstrated QDIP based on

site-controlled QDs. The tuning of the photocurrent response

has been demonstrated from 10 lm to 18 lm, thanks to the

ability to engineer states in the CB of these QDs. The supe-

rior spatial and spectral control of these pyramidal QDs must

make them ideal candidates for integration with high finesse

photonic cavities to improve response of these QDIPs.21 Fur-

thermore, Nevou et al.13 proposed and demonstrated an

electron-pump based on QDs optically pumped by a pulsed

laser. In the proposed electron-pump, each dot is the equiva-

lent to an SET device and millions of them can operate in

parallel to produce a substantial current. The accuracy of

such an electron-pump relies on extracting a known number

of electrons from only the ground state of the QD. Site-

controlled QDs with its low inhomogeneous broadening and

a known number of QDs are thus an ideal candidate for

increasing the accuracy of these e-pumps.
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FIG. 3. (a) Photocurrent responsivity at 10 K of 0.4 mA/W at bias of �2 V calibrated with a QCL at 10 lm. (b) Tuning of the photocurrent response from

10 lm to 18 lm by engineering states in the conduction band of the QD. Also shown is the low spread (Dk/k¼ 0.17) in the photocurrent spectra.
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