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a b s t r a c t

In this work we consider quasi-optimal versions of the Stochastic Galerkin method for
solving linear elliptic PDEs with stochastic coefficients. In particular, we consider the case
of a finite number N of random inputs and an analytic dependence of the solution of the
PDE with respect to the parameters in a polydisc of the complex plane CN . We show that a
quasi-optimal approximation is given by a Galerkin projection on a weighted (anisotropic)
total degree space and prove a (sub)exponential convergence rate. As a specific application
we consider a thermal conduction problem with non-overlapping inclusions of random
conductivity. Numerical results show the sharpness of our estimates.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Partial differential equations with stochastic coefficients have been the subject of growing interest in the scientific
community, as they conveniently describe situations in which the coefficients of the PDE are calibrated from noisy and
limited measurements and a probabilistic uncertainty model is associated to them. In this context, one may be interested
in computing statistics like mean or correlation of the solution of the PDE or possibly statistics of some observables of it,
usually called ‘‘quantities of interest’’.

Sampling strategies are widely used to this end, ranging from plain Monte Carlo method to more sophisticated sampling
techniques. However, in some cases it is possible to show that the solution is very smooth with respect to the random
coefficients, and thus it may be reasonable to use polynomial approximations. In this work, we focus on linear elliptic
equationswith randomdiffusion coefficients. These equations exhibit an analytic dependence of the solution on the random
input parameters, see e.g. [1–6].

Two relevant polynomial approximation strategies that can be conveniently applied to the problem at hand are the
Stochastic Galerkin [1,7–10] and the Stochastic Collocation methods [2,11–13], which are a projection technique and an
interpolation technique, respectively. In this work, we reconsider the quasi-optimal Stochastic Galerkinmethod proposed in
the previous work [3], and provide rigorous convergence results in the special case in which the analyticity region contains
a polydisc in the complex plane CN . Observe that in this context ‘‘quasi-optimal’’ means that the proposed methods are
optimal with respect to upper bounds of the error, that we observe numerically to be quite sharp.
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In particular, we will derive, under the aforementioned assumptions, the decay of the coefficients of the polynomial
expansion of the solution, following the proof in [14] (see also [4]). Next, following the construction of the quasi-optimal
polynomial space proposed in [3] (and to some extent also in [4]) wewill show that thewell-known total degree polynomial
space is a quasi-optimal choice for the Stochastic Galerkinmethod for the class of problemswe are considering.Wewill then
derive the corresponding convergence estimates with two different approaches. The first one is based on Taylor expansion
and is suitable for isotropic problems; the second one is based on the summability properties of the estimates of the Legendre
coefficients of the solution and can be used in an anisotropic setting.

The class of problems that satisfy the analyticity assumption we consider here will be specified in the following (see
Remark 3). In particular, it includes the example of a thermal conduction problem with non-overlapping inclusions of
random conductivity, originally proposed in [15]. Hence, we will be able to reinterpret the numerical results there obtained
in view of the estimates shown here. In particular, it will clearly appear that the theoretical estimates we propose capture
correctly the behavior that we observe numerically for the Legendre coefficients and the more than algebraic convergence
rate of the global Galerkin error. However, they overestimate considerably the constants in the estimates. Nevertheless, they
can be used as the correct ansatz to be fitted by numerical data, resulting in mixed a-priori/a-posteriori methods.

It is worth noting that the analyticity assumption we consider here does not include diffusion coefficients resulting
from a truncated Karhunen–Loève expansion of a correlated random field. For such problems, a convergence estimate
for the quasi-optimal Stochastic Galerkin method is provided in [5,6], where however no explicit construction of the
corresponding polynomial space is given. A possible a-priori formula to this end is given in [3] (the so-called ‘‘TD-FC’’
polynomial approximation).

As an alternative to a-priori constructions, [16,17] propose constructions of quasi-optimal polynomial spaces with
adaptive strategies. In particular, the work [17] presents a perturbation method restricted to a small-noise assumption,
while [16] presents some algorithms based on Taylor expansions, and tests them also on problems that satisfy the same
analyticity assumption considered here. Although very attractive, the main drawback of fully adaptive methods is the cost
of exploration of the space of polynomials, that may not be negligible in high dimensions and can be avoided if the correct
space of polynomials is prescribed by combining a-priori information with a-posteriori estimates.

The rest of this work is organized as follows: after having detailed in Section 2 the problem at hand and stated
Assumption A3 on the analyticity requirements for the solutions considered, we will briefly review the Stochastic Galerkin
methodology in Section 3. Section 4 presents then the convergence result for quasi-optimal Stochastic Galerkin method,
while Section 5 shows that the solution of a generic ‘‘inclusions problem’’ satisfies the analyticity assumptions. Section 6
will recall the details of the inclusions test presented in [15] and show some numerical results that confirm the sharpness
of the proposed estimates. Finally, Section 7 will draw some conclusions and perspectives.

2. Problem setting

2.1. A linear elliptic PDE with stochastic coefficients

LetD be a convex polygonal domain inRd, and let (Ω, F , µ) be a complete probability space,Ω being the set of outcomes,
F ⊂ 2Ω the σ -algebra of events and µ : F → [0, 1] a probability measure. In this work we focus on the stochastic elliptic
problem

Problem 1 (Strong Formulation). Find a random field u : D × Ω → R, such that µ-almost surely there holds:
−div(a(x, ω)∇u(x, ω)) = f (x) x ∈ D,
u(x, ω) = 0 x ∈ ∂D,

(1)

where the operators div and ∇ imply differentiation with respect to the physical coordinate only.

We will work under the following assumptions on the random field a(x, ω):

Assumption A1 (Continuity and Coercivity). The coefficient a(·, ω) is a strictly positive and bounded function overD for each
random event ω ∈ Ω , i.e. there exist two positive constants ∞ > amax > amin > 0 such that amin ≤ a(x, ω) ≤ amax µ-
almost surely ∀ x ∈ D.

Assumption A2 (‘‘Finite Dimensional Noise Assumption’’). The diffusion coefficient a(x, ω) can be parametrized using a vector
of N real-valued random variables, namely

a(x, ω) = a(x, y1(ω), y2(ω), . . . , yN(ω)).

Such random variables are independent and uniformly distributed, y(ω) = (y1(ω), . . . , yN(ω))T : Ω → Γ ⊂ RN , Γ =

Γ1×Γ2×· · ·×ΓN . Without loss of generality, we further assumeΓi = [−1, 1], so that the joint probability density function
of y, ϱ : Γ → R+, factorizes as ϱ(y) =

N
n=1 ϱn(yn), with ϱn =

1
2 .
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Assumptions A1 and A2 deserve some comments. First, as an immediate consequence of Assumption A1 and
Lax–Milgram’s Lemma we have well-posedness of problem (1) for µ-almost every ω ∈ Ω .

Next, under Assumption A2 the solution u of (1) depends on the single realization ω ∈ Ω only through the value taken
by the random vector y. We can therefore replace the probability space (Ω, F , µ) with (Γ , B(Γ ), ϱ(y)dy), where B(Γ )
denotes the Borel σ -algebra on Γ and ϱ(y)dy is the measure of the vector y.

Finally, we observe that more general problems can be addressed within this setting. In particular, problems depending
on a set of N non-uniform random variables z1, . . . , zN may be included in this setting by introducing a non-linear map
yi = Θ(zi) that transforms each of them into uniform random variables, following the well known theory on copulas,
see [18]. In the case a mapping Θ is not available, one could still reduce the problem to the uniform case, by introducing an
auxiliary density ϱ̂ =

1
2N

as suggested in [19]. This will lead to analogous error estimates as those derived in this work, up to
amultiplicative constant factor proportional to

ϱ/ϱ̂

L∞(Ω)

. Even the assumption of independence of the random variables,
although very convenient for the development of the tensorized techniques proposed below, is not essential and could be
removed whenever the density ϱ does not factorize, again by introducing an auxiliary density ϱ̂ =

1
2N

.
Observe however that this framework does not immediately include problems where a(x, ω) is not bounded away from

zero, like the important case where a(x, ω) is a lognormal random field, i.e. a(x, ω) = eγ (x,ω), with γ (x, ω) being a Gaussian
random field.

Finally, we denote by L2ϱ(Γ ) the space of square integrable functions on Γ with respect to the measure 1
2N

dy, and by
V = H1

0 (D) the space of square integrable functions in D with square integrable distributional derivatives and with zero
trace on the boundary, equipped with the gradient norm ∥v∥V = ∥∇v∥L2(D) , ∀v ∈ V . Its dual space will be denoted by V ′.
Moreover, since V and L2ϱ(Γ ) are Hilbert spaces, we can define the tensor space V ⊗ L2ϱ(Γ ) as the completion of formal sums

v(x, y) =
k′

k=1 vD,k(x)vΓ ,k(y), {vD,k} ⊂ V , {vΓ ,k} ⊂ L2ϱ(Γ ) with respect to the inner product

(v,v)V⊗L2ϱ(Γ ) =


k,ℓ

(vD,k,vD,ℓ)V , (vΓ ,k,vΓ ,ℓ)L2ϱ(Γ ).

We are now in the position to write a weak formulation of (1),

Problem 2 (Weak Formulation). Find u ∈ V ⊗ L2ϱ(Γ ) such that ∀ v ∈ V ⊗ L2ϱ(Γ )
Γ


D
a(x, y)∇u(x, y) · ∇v(x, y) ϱ(y) dx dy =


Γ


D
f (x)v(x, y) ϱ(y) dx dy. (2)

Thanks again to Assumption A1 and the Lax–Milgram lemma, there exists a unique solution to problem (2) for any f ∈ V ′,
with ∥u∥V⊗L2ϱ(Γ ) ≤

∥f ∥V ′

amin
. We remark that u can be understood either as a function in the tensor space H1

0 (D) ⊗ L2ϱ(Γ ) or as
a H1

0 (D)-valued square-integrable function of y ∈ Γ , i.e. u ∈ L2ϱ(Γ ;H1
0 (D)); we will use either notation depending on the

situation.

2.2. Regularity of u with respect to the random parameters

Concerning the regularity of the solution u with respect to the input y, it is well-known that, under reasonable
assumptions on the regularity of the coefficient a, u is analytic in every y ∈ Γ . We refer e.g. to [5,6] for a proof in the
case of linear dependence of the diffusion coefficient a on the parameters yi, and to [3] for the more general case in which
a(x, y) is infinitely many times differentiable with respect to y and ∃ r1, . . . , rN ∈ R+ s.t.1a ·

∂ i1+···+iN a

∂yi11 · · · ∂yiNN


L∞(D)

≤

N
n=1

r inn ∀y ∈ Γ , ∀ i1, . . . , iN ∈ N. (3)

In this work, we will restrict our focus to the case in which u obeys the following assumption:

Assumption A3 (‘‘Polydisc Analyticity’’). The complex continuation of u, denoted by u∗
: CN

→ H1
0 (D) is a H1

0 (D)-valued
holomorphic function in the polydisc

ES1,...,SN =

N
n=1

En,Sn , En,Sn = {zn ∈ C : |zn| ≤ Sn}

for each 1 < Sn < S∗
n , with supz∈ES1,...,SN

∥u∗(z)∥H1
0 (D) ≤ Bu, and Bu = Bu(S1, S2, . . . , SN) → ∞ as Sn → S∗

n , n = 1, . . . ,N .
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Remark 3. We will see in Section 5 that this class of functions includes e.g. the solution of the inclusions tests already
investigated in [15], as well as other elliptic problems that depend on few coefficients that can be varied independently
from one to another in given intervals. An example is given by elasticity problems with uncertain Young modulus
and Poisson ratio. On the other hand, this is not the correct framework for diffusion coefficients that have the form
a(x, ω) =

N
n=1 bn(x)yn(ω) with functions bn with overlapping supports, which will be typically the case for a truncated

Karhunen–Loève expansion of a correlated random field.

Problem (2) can be discretized in space by introducing e.g. a finite element discretization with piecewise continuous
polynomials over a triangulation Th of the physical domain D, Vh(D) ⊂ H1

0 (D). Such semi-discrete solution will thus belong
to Vh(D) ⊗ L2ϱ(Γ ), and will feature the same regularity properties of the continuous solution u with respect to the random
parameters.

3. Galerkin polynomial approximation in the stochastic dimension

In this section we temporarily drop Assumptions A2 and A3, and briefly review the Galerkin approximation method in
themore general settingwhere u depends onN randomparameters supposed to be independent and identically distributed.
Of course, since the Galerkinmethod builds an approximation using global polynomials, it will be effective only if u has some
regularity with respect to yi. Thus, we introduce a polynomial subspace of L2ϱ(Γ ), which we denote by Pw(Γ ), and look for
a fully discrete solution uG

h,w ∈ Vh(D) ⊗ Pw(Γ ) solving

Problem 4 (Fully Discrete Weak Formulation). Find uG
h,w ∈ Vh(D) ⊗ Pw(Γ ) such that ∀ v ∈ Vh(D) ⊗ Pw(Γ )

Γ


D
aN(x, y)∇uG

h,w(x, y) · ∇v(x, y) ϱ(y) dx dy =


Γ


D
f (x)v(x, y) ϱ(y) dx dy, (4)

with the understanding that the polynomial space Pw(Γ ) should be designed to have good approximation properties while
having a number of degrees of freedomas lowas possible. This is thewell known Stochastic Galerkin formulation (see e.g. [1,7–
10]). In this respect a Tensor Product polynomial space that contains all theN-variate polynomials withmaximum degree in
each variable lower than a givenw ∈ N is not a good choice. Indeed, its dimension grows exponentially fast with the number
of random variables N , i.e. dimPw(Γ ) = (1 + w)N . A valid alternative choice that has been widely used in literature (see
e.g. [7,20,21]) is given by the Total Degree polynomial space, that includes those polynomials whose total degree is lower
than or equal to w: such space contains indeed only


N+w
N


polynomials, which is much lower than (1 + w)N , and still has

good approximation properties. A number of possible polynomial spaces has been listed and analyzed e.g. in [15]. One could
also introduce anisotropy in the approximation, with the aim to enrich the polynomial space only in those directions of the
stochastic space which contribute the most to the total variability of the solution.

To solve problem (4) in practice, it is convenient to endow Pw(Γ ) with a ϱ(y)dy-orthonormal basis: to this end we
take advantage of the tensor structure of L2ϱ(Γ ) and build the elements of such basis as products of ϱn(yn)dyn-orthonormal
polynomials on Γn, which we denote as {Ψqn}qn∈N:

9q(y) =

N
n=1

Ψ qn(yn) q = (q1, q2, . . . , qn), q ∈ NN . (5)

Families of ϱn(yn)dyn-orthonormal polynomials exist for many probability distribution: we recall Legendre polynomials
for uniform measures and Hermite polynomials for Gaussian measures (see [21] for the general Askey scheme), for which
explicit formulas and computing algorithms are available, see e.g. [22]. As a word of caution, we can note that the work [23]
showed that there exist probability measures, such as the lognormal one, which admit a family of orthonormal polynomials
that however does not form a basis for L2ϱ(Γ ), i.e. there exist functions in L2ϱ(Γ ) that cannot be approximated with arbitrary
precision by linear combinations of such orthonormal polynomials.

To construct general polynomial spaces we introduce a sequence of increasing index sets Λ(w),w ∈ N, such that

Λ(0) = {(0, . . . , 0)}, Λ(w) ⊆ Λ(w + 1) ⊂ NN for w ≥ 0, NN
=


w∈N

Λ(w),

each with cardinalityM (depending on w), and consider the corresponding polynomial spaces

Pw(Γ ) = PΛ(w)(Γ ) = span

9q(y), q ∈ Λ(w)


for the approximation of uG

h,w with the Stochastic Galerkin method. In other words, the Stochastic Galerkin method will
compute the coefficients uG

q ∈ Vh(D) of the expansion

uG
h,Λ(w)(x, y) =


q∈Λ(w)

uG
q(x)9q(y). (6)
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Such expansion is usually known as generalized Polynomial Chaos Expansion (gPCE). Having the gPCE expansion of uG
h,w (6)

allows us to compute easily the mean and variance of uG
h,w as

E

uG
h,Λ(w)(x, ·)


= uG

0(x), Var

uG
h,Λ(w)(x, ·)


=


q∈Λ(w)\Λ(0)

uG
q(x)

2
.

Finally, using (6) in the weak formulation (4) and choosing as test function vh(x)9κ(y), vh being a finite element basis
function, we obtain a set of M linear systems for the modes uG

q(x), that will be usually coupled due to the presence in (4)
of non-zero terms like


Γn

a(x, y)Ψqn(yqn)Ψκn(yκn)ϱn(yn)dyn; see e.g. [15,24] and references therein for more details on the
discrete problem.

4. Quasi-optimal stochastic Galerkin method for analytic functions in polydiscs

We now go back to the specific case of u satisfying Assumptions A1–A3, and we consider the basis for PΛ(w)(Γ ) given by
multivariate Legendre polynomials. In what follows, we do not consider the approximation in the physical space, and only
consider the Galerkin solution uG

Λ(w) in the space V ⊗ PΛ(w)(Γ ). We also introduce the truncated Legendre expansion uΛ(w)

of the exact solution u on V ⊗ PΛ(w)(Γ ),

uΛ(w)(x, y) =


q∈Λ(w)

uq(x)9q(y), uq =


Γ

u(x, y)9q(y)ϱ(y)dy. (7)

We first recall the following optimality result for the Stochastic Galerkin approximation, whose proof can be found
e.g. in [25].

Theorem 5. Under Assumption A1, we have that the Stochastic Galerkin solution uG
Λ(w) corresponding to PΛ(w)(Γ ) satisfiesu − uG

Λ(w)


V⊗L2ϱ(Γ )

≤ Copt inf
v∈V⊗PΛ(w)(Γ )

∥u − v∥V⊗L2ϱ(Γ )

= Copt
u − uΛ(w)


V⊗L2ϱ(Γ )

,

where Copt is a constant depending on amin, amax.
From Theorem 5we see that the optimalM-dimensional polynomial space for the Stochastic Galerkin method is the one

spanned by the Legendre polynomials corresponding to theM largest coefficients in the truncated Legendre expansion (7).
This choice indeed minimizes the energy of the projection erroru − uΛ(w)

2
V⊗L2ϱ(Γ )

=

u −


q∈Λ(w)

uq9q


2

V⊗L2ϱ(Γ )

=


q∉Λ(w)

∥uq∥
2
V ,

over all the possible choices of Λ(w) with fixed cardinalityM .
A possible strategy to assess the convergence rate of the resulting approximation of u is to order the Legendre coefficients

∥uq∥
2
V in decreasing order according to a suitable a-priori estimate and study the summability properties of the sequence

thus obtained. This idea has been investigated e.g. in [5,6] for the case when the diffusion coefficient can be written as
a(x, y) =


∞

i=1 yibi(x), with yi uniform random variables over [−1, 1] and {∥bi∥∞}i∈N ∈ ℓp for some p < 1. It is then
possible to prove an algebraic convergence of the L2ϱ error with rate 1/p−1/2. The proof is however not constructive, i.e. no
algorithm is presented to build a sequence of polynomial approximationswith such convergence rate. Uniform convergence
results are given in [5], as well as in [16,17].

In this work wewill restrict our focus to the case in which the solution u obeys Assumption A3. In this case we are able to
give explicit formulas for the construction of a sequence of polynomial approximations that is ‘‘quasi-optimal’’ (i.e. optimal
with respect to a sharp upper bound of the Legendre coefficients), and to prove a subexponential rate of convergence for
such sequence of approximations.

4.1. Construction of the quasi-optimal polynomial space

We start by proving a result on the decay of the coefficients of the Legendre expansion for u satisfying Assumption A3.
To this end, we first need the following simple lemma, whose proof is straightforward.

Definition 6. Let Eδ1,...,δN be the family of Bernstein polyellipses Eδ1,...,δN =
N

n=1 En,δn with

En,δn =


zn ∈ C : Re (z) =

δn + δ−1
n

2
cosφ, Im (z) =

δn − δ−1
n

2
sinφ, φ ∈ [0, 2π)


, δn > 1.

Lemma 7. Let δn(Sn) = Sn +

S2n − 1, with Sn as in Assumption A3. The polyellipse Eδ1(S1),...,δN (SN ) is the largest polyellipse of

the family Eδ1,...,δN included in the polydisc ES1,...,SN in Assumption A3.
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Next, we also need to introduce the monodimensional L∞(Γ )-normalized Legendre polynomials Ψ ∞

j (t), j = 0, 1, . . . for
which the following properties hold:

• Ψ ∞

j (1) = 1;
• Ψj(t) =

√
2j + 1Ψ ∞

j (t) with Ψj(t) as in (5).

We are now in the position to prove the following estimate on the Legendre coefficients.

Proposition 8. If the solution u fulfills Assumptions A1–A3, the coefficients of the Legendre expansion (7) decay as

uq

V ≤ CLeg e−

N
n=1 gnqn

N
n=1


2qn + 1, (8)

with gn = log(δn(Sn)) and

CLeg(S1, . . . , SN) = Bu(S1, . . . , SN)

N
n=1

l(En,δn(Sn))

4(δn(Sn) − 1)
,

for all Sn < S∗
n .

Here l(En,δn(Sn)) denotes the length of the ellipse En,δn(Sn) in Lemma 7, δn(Sn) is as in Lemma 7, and Bu(S1, . . . , SN) is as
in Assumption A3.

Proof. The proof follows closely the argument in [14, Section 12.4]. Once we have fixed the radii Sn < S∗
n in Assumption A3,

from Lemma 7 we have that u is analytic in and on Eδ1(S1),...,δN (SN ), and hence we can exploit Cauchy’s formula to rewrite the
q-th Legendre coefficient as

uq =


Γ

u(x, y)9q(y)ϱ(y)dy

=


Γ

9q(y)ϱ(y)


Eδ1(S1),...,δN (SN )

u∗(x, z)
n
2π i(zn − yn)

dzdy

=


Eδ1(S1),...,δN (SN )

u∗(x, z)
N

n=1

1
2


Γn

Ψqn(yn)
2π i(zn − yn)

dyndz.

Next, let

Iqn(zn) =


Γn

Ψ ∞
qn (yn)

(zn − yn)
dyn.

From [14, Lemma 12.4.6] it follows that for all zn ∈ En,δn(Sn) we have

| Iqn(zn)| ≤ π
(1/δn(Sn))qn

δn(Sn) − 1
.

Then we can estimate the q-th Legendre coefficient of u by

uq

V ≤ sup

Eδ1(S1),...,δN (SN )

u∗

V

N
n=1

√
2qn + 1
4π


En,δn

| Iqn(zn)|dzn

≤ sup
Eδ1(S1),...,δN (SN )

u∗

V

N
n=1

√
2qn + 1
4π

π
(1/δn(Sn))qn

δn(Sn) − 1


En,δn

dzn

≤ sup
Eδ1(S1),...,δN (SN )

u∗

V

N
n=1

√
2qn + 1 l(En,δn)

4(δn(Sn) − 1)
e−qn log(δn(Sn)).

Finally observe that

sup
Eδ1(S1),...,δN (SN )

u∗

V ≤ sup

ES1,...,SN

u∗

V ≤ Bu(S1, . . . , SN). �

Observe that the square root factor in (8) is asymptotically negligible compared to the exponentially decreasing term
e−


n gnqn . Motivated by this fact, we introduce the following corollary, that will be crucial in the following of the paper.
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Corollary 9 (Exponential Decay of the Legendre Coefficients). The Legendre coefficients of u satisfying Assumptions A1–A3 can
be accurately estimated as

uq

V ≤CLeg

N
n=1

e−gnqn (9)

for some gn < gn and CLeg > CLeg. For instance, for all 0 < ϵ < 1, one could take gn = gn(1 − ϵ) and CLeg =

CLeg


n


eϵgn/2/

√
ϵgne


.

Given the estimate for the decay of the Legendre coefficients of u in Eq. (9), the family of (anisotropic) Total Degree (TD)
sets PTD(w,g)(Γ ), with

TD(w,g) =


q ∈ NN

:

N
n=1

gnqn ≤ w


,

is a sharp estimate of the optimal polynomial space for the Stochastic Galerkin method, provided that estimate (9) is in
turn sharp. Indeed, following the procedure proposed in [3], one can define the quasi-optimal index set Λ by selecting all
multiindices q for which the estimated decay of the corresponding Legendre coefficient is above a fixed threshold ϵ ∈ R+,

Λϵ =


q ∈ NN

:CLeg

N
n=1

e−gnqn ≥ ϵ


,

or equivalently

Λ(w) =


q ∈ NN

:

N
n=1

gnqn ≤ w, w =

− log ϵ/CLeg


= TD(w,g).

We now derive convergence estimates for uTD(w,g), following different arguments for the isotropic and anisotropic
problem case. We anticipate that the numerical tests presented in Section 6 will confirm that (9) is indeed a very sharp
estimate of the decay of the Legendre coefficients when gn are properly tuned, at least for the isotropic case, and the
convergence of the resulting TD approximation is very close to the convergence of the bestM-terms approximation.

4.2. Convergence analysis for the isotropic case

We begin the convergence analysis for the TD Galerkin approximation of u by the isotropic setting, following closely the
argument in [25]. Therefore, we further assume that Assumption A3 holds with Sn = S, for n = 1, . . . ,N . As a consequence,
the parameters δn describing the polyellipses in Lemma 7 are all equal, as well as the coefficientsgn driving the decay of
the Legendre coefficients in Proposition 8 and Corollary 9. Thus the optimal polynomial space is indeed the isotropic Total
Degree, TD(w, 1) = {q ∈ NN

:
N

n=1 qn ≤ w}. For simplicity, wewill denote this set simply as TD(w), and the corresponding
Galerkin solution as uG

TD(w). Moreover, we will denote the polydiscs in Assumption A3 as ES , the constant in Assumption A3
as Bu(S) and the polyellipses in Lemma 7 and Proposition 8 as Eδ(S).

We shall need the following lemma (see [26] for a proof).

Lemma 10. Suppose that u satisfies Assumption A3 with Sn = S for n = 1, . . . ,N, and let Mu,w be the Maclaurin polynomial
of u on the complex domain,

Mu,w(z) =


q∈TD(w)

αq

N
n=1

zqnn ,

with αq ∈ V ,

αq(x) =
1

N
n=1

qn!

∂q1+···+qn

∂yq11 · · · ∂yqnN
u(x, y)|y=0.

Then, for any 0 < R < S, we have the estimate

sup
z∈ER

u∗(z) − Mu,w(z)

V ≤

Bu(S)
S/R − 1

e−hw,

with Bu(S) as in Assumption A3 and h = log S
R .
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Fig. 1. w(M) for different values of N .

The convergence rate for the isotropic TD Galerkin approximation can then be estimated combining Theorem 5 and
Lemma 10.

Theorem 11. Suppose that u satisfies Assumptions A1–A3with Sn = S for n = 1, . . . ,N. Then, the Stochastic Galerkin solution
uTD(w) satisfiesu − uG

TD(w)


V⊗L2ϱ(Γ )

≤ Copt
Bu(S)
S − 1

e−hw,

with Bu(S) as in Lemma 10, h = log S and Copt as in Theorem 5.

Proof. We use Lemma 10 with R = 1 (note that the intersection of E1 with the real axis is Γ ). Then we haveu − uG
TD(w)


V⊗L2ϱ(Γ )

≤ Copt inf
v∈V⊗PTD(w)(Γ )

∥u − v∥V⊗L2ϱ(Γ )

≤ Copt
u − Mw,u


V⊗L2ϱ(Γ )

≤ Copt
u − Mw,u


L∞(Γ ;V )

≤ Copt
Bu(S)
S − 1

e−hw. �

Theorem 11 states an exponential convergence of the error with respect to the total degree of the polynomial
approximation. In practice however one is more concerned with the convergence of uTD(w) with respect to the number
of degrees of freedom, i.e. the dimensionM of the space TD(w). Hence, we are led to the problem of finding an estimate for
the function w = w(M).

Note that the inverse of such function, M = M(w), is known analytically, M =


N+w
N


. The function w(M) could thus

be easily computed numerically: it is of course increasing inM and decreasing in N , i.e. the level w needed to haveM terms
in the set is lower for higher N , see Fig. 1. In general, we can state the following proposition.

Proposition 12. Under the same hypotheses of Theorem 11, for every M > 0 there holdsu − uG
TD(w)


V⊗L2ϱ(Γ )

≤ Copt
Bu(S)
S − 1

M−h/(1+logN), (10)

with Bu(S) as in Lemma 10, h = log S and Copt as in Theorem 5. Furthermore, in the asymptotic limit w ≥ N, that holds for
instance if M > 4N , there holdsu − uG

TD(w)


V⊗L2ϱ(Γ )

≤ Copt
Bu(S)
S − 1

e−
hN
2e

N√M . (11)

Proof. Eq. (10) can be proved (see also [25, Eq. (25)]) by observing that

M =

N
i=1


1 +

w
i


= exp


N
i=1

log

1 +

w
i


≤ exp


N
i=1

w
i



= exp


w

N
i=1

1
i


≤ ew(log(N)+1).
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Fig. 2. Left: graphical representation of inequality (12) for ϵ = 0.2 and ϵ = 0.55. Right: value of xcr and bound in Eq. (13).

Therefore logM ≤ w (log(N) + 1), hence w ≥
logM

1+logN and e−wh
≤ M−h/(1+logN). In the asymptotic limit w ≥ N we have

instead

M =

N
i=1


1 +

w
i


≤

2NwN

N!
⇒ w ≥


N!2−NM

1/N
≥

N
2e

M1/N .

Finally, using the well-known Stirling approximation of N! we have that


2N
N


≤ 4N for all N > 0 so that M > 4N implies

w ≥ N . �

4.3. Convergence analysis for the anisotropic case

In this section we remove the isotropic assumption, and we derive a convergence estimate for the Galerkin solution
uG
TD(w,g) with an argument substantially different from the previous section. We start with two technical lemmas that we

will need in the following.

Lemma 13. For 0 < ϵ < e−1
e = ϵmax ≈ 0.63, there holds

1
1 − e−x

≤
(1 − ϵ)e

x
, 0 < x ≤ xcr(ϵ). (12)

Moreover, the function xcr(ϵ) is concave and can be bounded as

αL − βLϵ ≤ xcr(ϵ) (13)

with αL ≈ 2.49, βL = (αL/ϵmax).

Proof. For x > 0 and ϵ < 1, (12) is actually equivalent to

e−x
≤ 1 −

1
(1 − ϵ)e

x

that can hold for 0 < x < xcr(ϵ) only if− 1
(1−ϵ)e > −1, hence ϵ < e−1

e . The function xcr(ϵ) can be easily shown to be concave,
and its value at ϵ = 0 can be computed numerically as αL = xcr(ϵ) ≈ 2.49, hence (13). �

Lemma 14. Given any Clog,M ∈ (0, 1/e], there holds

M ≤ eClog,MN N√M , (14)

for a sufficiently large M,M > Mlog. In particular, for Clog,M = 1/e the bound holds for any M > 0.

Proof. From the trivial observation that given any Clog,M there holds log t ≤ Clog,M t for sufficiently large t , we have
immediately

1
N

log(M) = log( N√M) ≤ Clog,M
N√M ⇒ log(M) = Clog,MN N√M,

hence the thesis of the lemma. In particular, log t and Clog,M t are tangent in t = e, with Clog,M = 1/e. �
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Fig. 3. Graphical representation of Lemma 14. Left: graphical visualization of the bound. The dots represent M1/N
= 0.1, 1/e, 0.5 respectively. Note that

the first point is less than 1/e, therefore the same bound as M1/N
= 1/e applies. Right: visualization of M1/N vs. Clog,M for 1 ≤ M1/N

≤ 10, numerically
assessed.

Fig. 2-left shows the effectiveness of (12), while Fig. 2-right shows the function xcr(ϵ), as well as the bound in Eq. (13).
Similarly, Fig. 3-left shows some instances of estimate (14), while Fig. 3-right shows the value of Clog,M corresponding to a
range of values of N√M .
Next, we consider again the expression for the L2ϱ projection error

∥u − uΛ(w)∥
2
V⊗L2ϱ(Γ )

=

u −


q∈Λ(w)

uq9q


2

V⊗L2ϱ(Γ )

=


q∉Λ(w)

∥uq∥
2
V

where Λ(w) is now the set of multiindices corresponding to the best M-terms approximation. Having estimated such
optimal set with the total degree set TD(w,g) and the decay of the Legendre coefficients as exponential in each variable,
according to Corollary 9, we have thatu −


q∈Λ(w)

uq9q


2

V⊗L2ϱ(Γ )

≤

u −


q∈TD(w,g) uq9q


2

V⊗L2ϱ(Γ )

=


q∉TD(w,g) ∥uq∥

2
V ≤C2

Leg


q∈NN ,q·g>w

e−2q·g,
and we will concentrate on bounding the last term of this inequality,


q·g>w e−2q·g. To this end, we will need the so-called

Stechkin Lemma, see e.g. [27].

Lemma 15 (Stechkin). Let 0 ≤ p ≤ q, and let {aj}j∈N be a positive decreasing sequence. Then
j>M

(aj)q
1/q

≤ M−
1
p +

1
q


j∈N

(aj)p
1/p

.

We are now ready to state the main result of this section.

Theorem 16. Suppose the Legendre coefficients of u can be bounded as in Corollary 9. Let gm be the geometric mean of the rates

of the decay of the Legendre coefficients, gm =
N
N

n=1gn. Consider the level w anisotropic TD approximation of u with ratesg,
and denote by M its cardinality. Finally, let

S(τ ) =


q∈NN

e−2τq·g
1/τ

=


N

n=1

1
1 − e−2τgn

1/τ

< ∞

for every τ > 0. Then under Assumptions A1–A3 there holds

∥u − uG
TD(w,g)∥2

V⊗L2ϱ(Γ )
≤ C2

opt
C2
Leg exp


N N√M


Clog,M −

2gmδ

e


, (15)
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for 0 < δ < ϵmax, ϵmax as in Lemma 13, Clog,M as in Lemma 14 and

M >

 gNe
gm(αL − δβL)

N

. (16)

Proof. Using the estimate on the Legendre coefficients in Corollary 9 and Lemma 15 with q = 1, p = τ , we have for the L2ϱ
projection

1C2
Leg

∥u − uTD(w,g)∥2
V⊗L2ϱ(Γ )

≤


q·g>w

e−2q·g
≤ M1− 1

τ S(τ ). (17)

Now, since (17) holds for every τ > 0 we would like to compute τ ∗ minimizing S(τ )
τ√M

,

τ ∗
= argmin

τ∈R+

S(τ )
τ
√
M

= argmin
τ∈R+

 1

M
N

n=1
(1 − e−2τgn)


1/τ

.

We do not solve exactly this problem and just discuss the approximated value τ ∗
= e/(2gm

N√M). This choice is motivated
in the case τgn small ∀n = 1, . . . ,N , so that 1 − e−2τgn ≈ 2gnτ , as τ ∗ is the exact optimum solution of the approximated
problem

τ ∗
= argmin

τ∈R

 1

MτN2N
N

n=1
gn


1/τ

.

Plugging τ ∗
= e/(2gm

N√M) in (17) we obtain


q·g>w

e−2q·g
≤ M

 1

M
N

n=1
(1 − e−gne/(gm N√M))


2gm

N√M/e

. (18)

Next we apply Lemma 13 to bound 1/

1 − e−gne/(gm N√M)


, obtaining

1

1 − e−gne/(gm N√M)
≤

(1 − ϵM,n)gm
N√Mgn , for

gne
gm

N√M
≤ xcr(ϵM,n), (19)

so that Eq. (18) simplifies to


q·g>w

e−2q·g
≤ M


N

n=1


1 − ϵM,n

2gm
N√M/e

. (20)

By using the lower bound in (13), we see that condition (19)-right holds if we choose ϵM,n as

gne/(gm N√M) = αL − βLϵM,n ⇒ ϵM,n =


αL −

gne
gm

N√M


1
βL

.

Moreover, we see from (20) that to ensure convergence of the estimate we need ϵM,n > 0, which enforces a constraint on
M . Namely, taken any 0 < δ < ϵmax we require ϵM,n > δ which implies

δ <


αL −

gne
gm

N√M


1
βL

⇒ M >

 gne
gm(αL − δβL)

N

.
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See Remark 17 for more details on the choice of δ. Furthermore, note that the rates are supposed to be ordered increasingly,
so that this condition has to be checked for n = N only, hence (16). With this choice of ϵM,n, Eq. (20) further simplifies to


q·g>w

e−2q·g
≤ M


N

n=1


1 − ϵM,n

2gm
N√M/e

= M exp


2gm

N√M/e
N
i=1

log

1 − ϵM,n



≤ M exp


−2gm

N√M/e
N
i=1

ϵM,n



≤ M exp


−

2gmN
N√Mδ

e


. (21)

Finally, we apply Lemma 14, to obtain
q·g>w

e−2q·g
≤ exp


N N√M


Clog,M −

2gmδ

e


and the result follows from Theorem 5. �

Remark 17 (The Role of δ). Here we neglect the influence of Clog,M in estimate (15) and further investigate the link between
M and δ.

On one hand, choosing a small δ will reduce the minimum cardinality M for the estimate to hold, cf. Eq. (16); in the

limit δ → 0, we have M ≥

 gne
gmαL

N
. In the isotropic case,gn = gm, estimate (15) is of the same form of estimate (11)

in Proposition 12, however under the much milder condition M ≥ (e/αL)
N

≈ 1.09N ; in a problem with N = 10 random
variables this would correspond to M > 3. On the other hand, δ = 0 in (15) would imply no convergence rate. Conversely,
the highest convergence would be obtained setting δ = ϵmax but would be realized only in the limitM → ∞.

Remark 18 (Recovering the Isotropic Result). We can also compare this result with the isotropic estimate (11) in
Proposition 12. In that case for M > 4N we had a rate of hN/(2e), which one would obtain with (15) by choosing δ =

h
2gm

.
Considering e.g. the isotropic problem detailed in next section one could estimate numerically h ≈ 1.5, gm ≈ 2, that would
imply

M >


e

αL −
h

2gm
βL

N

≈ (2.7)N ≈ 2800,

or assess h, g theoretically in terms of the radii of the Bernstein ellipses and analyticity regions in Proposition 8 and
Theorem 11, resulting in h ≈ 0.025, gm ≈ 0.22 and thenM > 1.2N .

The main drawback of (15) is that, for anisotropic problems, condition (16) on M is dominated by the largest rate,gN .
However, for problems with large variations ofgn the random variables corresponding to high values ofgn will not be added
to approximations of u with small cardinality M: therefore, one may think of devising an ‘‘adaptive’’ estimate in which the
constraint onM and the convergence rate depend on the active variables only.

Remark 19 (The Interplay between Clog,M and δ).We now also investigate through some numerical computations the effect
of Clog,M on estimate (15). To this end, let us denote Cδ =

gmδ

e , so that estimate (15) can be written as

∥u − uG
TD(w,g)∥2

V⊗L2ϱ(Γ )
≤ C2

opt
C2
Leg exp


N N√M


Clog,M − 2Cδ


.

For simplicity, we will work in an isotropic setting, gm = gn for n = 1, . . . ,N . We consider a uniform sampling of the
admissible values of δ, 0 < δ < ϵmax: for each of these values we compute the corresponding values of Cδ and of N√M
according to Eq. (16), i.e. N√M =

gne
gm(αL−δβL)

(note that in the isotropic casegn and gm cancel), and finally we compute

numerically Clog,M corresponding to such N√M . By comparing the values of Clog,M and Cδ thus obtained we can see (cf.
Table 1) that Clog,M plays a non-negligible role, preventing the estimate to go to zero as M → ∞ for small values of δ.
This phenomenon is however alleviated if gm is higher.

We finally close this section with an alternative estimate, presented here for the isotropic case only. Towards this end,
we now present a couple of auxiliary results.
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Table 1
Numerical values for Clog,M and Cδ .

δ
N√M Clog,M gm = 1 gm = 2

2Cδ Rate 2Cδ Rate

0 1.09 0.368 0 0.368 0 0.368
0.05 1.19 0.368 0.0368 0.331 0.0736 0.294
0.1 1.3 0.368 0.0736 0.294 0.147 0.221
0.15 1.43 0.368 0.11 0.258 0.221 0.147
0.2 1.6 0.368 0.147 0.221 0.294 0.0736
0.25 1.81 0.368 0.184 0.184 0.368 0

0.3 2.08 0.368 0.221 0.147 0.441 −0.073
0.35 2.45 0.368 0.258 0.11 0.515 −0.147
0.4 2.97 0.366 0.294 0.0722 0.589 −0.222
0.45 3.79 0.352 0.331 0.0205 0.662 −0.311

0.5 5.22 0.316 0.368 −0.0514 0.736 −0.419
0.55 8.4 0.253 0.405 −0.151 0.809 −0.556
0.6 21.5 0.143 0.441 −0.299 0.883 −0.74

Lemma 20. Letg = (g1, . . . ,gN) be a vector of positive entries. For every τ > 0, define

T(τ ) =


q∈NN

e−τq·g
1/τ

=


N

n=1

1
1 − e−τgn

1/τ

< ∞, (22)

and let M =


q·g≤w 1. Then

e−w
≤

T(τ )
τ
√
M

, ∀τ > 0. (23)

Proof. We have immediately thatMe−τw
≤


q·g≤w e−τq·g
≤ T(τ )τ . �

Lemma 21. Consider two non negative sequences, {aj}j∈N monotone decreasing and {fj}j∈N monotone increasing. Then, for a given
λ ∈ (0, 1) and M > 0 we have

j>M

a2j ≤
1
fM

sup
j>M


a2λj fj


j>M

a2(1−λ)
j .

Proof. There holds
j>M

a2j =


j>M


a2j a

−2λ
j a2λj

fj
fj


≤

1
fM

sup
j>M


a2λj fj


j>M

a2(1−λ)
j . �

Theorem 22 (Alternative Isotropic Estimate). Suppose the Legendre coefficients of u can be bounded as in Corollary 9, with
gn = g, for n = 1, . . . ,N. Consider the levelw isotropic TD approximation of u, and denote byM its cardinality. Let ϵmax ≈ 0.63
as in Lemma 13 and suppose that M is sufficiently large, namely that M > 1.09N . Then the estimates

∥u − uG
TD(w)∥

2
V⊗L2ϱ(Γ )

≤ C2
opt
C2
Leg(1 − exp(−g))−N exp


−

gN
e

log((1 − ϵ(M))−1)
N√M


≤ C2

optC(g)N M−g/e log((1−ϵ(M))−1) (1+1/2 log(M)/N) (24)

hold, with C(g) =C2/N
Leg

exp(−g/e log((1−ϵ(M))−1))
1−exp(−g) , and

ϵ(M) = ϵmax


1 −

1.09
N√M


. (25)

Proof. Let T(τ ) be as in (22). We use Lemma 21 choosing the sequence of Legendre coefficients ordered in decreasing order
as {aj}j∈N, and setting λ = 1/2 and fj =

τ√j
T(τ )

. Observe that, thanks to Lemma 20, we have supj>M

ajfj


≤ 1 for any τ > 0.
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We can thus estimate for the L2ϱ projection

∥u − uTD(w)∥
2
V⊗L2ϱ(Γ )

= C2
Leg


j>M

a2j ≤C2
Leg min

τ>0

T(τ )
τ
√
M


j>M

aj

≤ C2
Leg min

τ>0

T(τ )
τ
√
M


j>0

aj

≤ C2
Leg min

τ>0

T(τ )
τ
√
M

(1 − exp(−g))−N .

Consider as before, for a given value of τ > 0, the approximate minimization of T(τ )
τ√M

=


1

M (1−e−τg )N

1/τ
. Taking τ =

e
g N√M

yields


j>M

a2j ≤ C2
Leg(1 − e−g)−N


1

M(1 − e−e/ N√M)N

 g N√M
e

≤ C2
Leg(1 − e−g)−N exp


−

gN
e

log((1 − ϵ)−1)
N√M


(26)

which holds as long as (cf. Lemma 13) M ≥


e

αL−ϵβL

N
=


e

αL(1−ϵβL/αL)

N
=


e

αL(1−ϵ/ϵmax)

N
≈


1.09

1−ϵ/0.63

N
> 1.09N .

Observe now that the choice (25) is optimal for the bound (26), and the result follows from Theorem 5. Finally, the last

inequality in (24) follows from (26) recalling the inequalityM1/N
≥ 1 +

log(M)

N +
1
2


log(M)

N

2
. �

5. The inclusions problem

We now consider a generic ‘‘inclusions problem’’ in which the diffusion coefficient in (1) is given by

a(x, y) = a0 +

N
n=1

γnχn(x)yn, (27)

where χn(x) are the indicator functions of the disjoint subdomains Dn ⊂ D = [0, 1]2,Dn ∩ Dm = ∅ for n ≠ m, and yn are
independent random variables uniformly distributed in [ymin, ymax] with ymin > −a0, so that Assumptions A1 and A2 are
satisfied, as well as condition (3) ensuring the analyticity of u in every y ∈ Γ . Finally, γn are real coefficients, 0 < γn ≤ 1,
whose values determine the possible anisotropy of the problem.

Wewill first prove that we can apply Corollary 9, and therefore that the TD sets are quasi-optimal sets for such problems.
Then, we will apply Theorems 11 and 16 and show that the numerical results obtained for such problems are in agreement
with the predicted convergence rates.

We shall begin by reparametrizing the diffusion coefficient in terms of new random variables distributed over [−1, 1],
so that we can apply the discussion of the previous section. For the sake of notation, we will still denote the new variables
as yi, i.e. yi ∼ U(−1, 1). The new diffusion coefficient will be therefore

a(x, y) = a0 +

N
n=1

γnχn(x)

yn + 1

2
(ymax − ymin) + ymin


. (28)

We can now prove the following lemma on the complex analyticity region of u, that we denote by Σ .

Lemma 23. The complex continuation u∗ of the solution u corresponding to a diffusion coefficient (28) is analytic in the region

Σ =

N
n=1

Σn, Σn = {zn ∈ C : Re (zn) > Tn} ,

with −1 > Tn > T ∗
n =

2a0+γn(ymax+ymin)

γn(ymin−ymax)
. Moreover, supz∈Σ ∥u∗∥H1

0 (D) ≤ Bu(T ), with

Bu(T ) =
∥f ∥V ′

a0 +

N
n=1

γn


1−|Tn|

2 (ymin − ymax) + ymin

 .
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Fig. 4. Regions of the complex plane along the n-th direction for the inclusions problem. For simplicity we drop here the subscript n in the plot. The gray
area denotes the analyticity region Σn considered. zn = T ∗

n is the singularity up to which it is possible to extend u∗ along yn . EL is the ellipse used to
estimate the decay of the Legendre coefficients (Proposition 8/Corollary 9), while E1 and ET are the circles used to prove the convergence of TD estimates
in the case of an isotropic setting γ1, γ2, . . . , γN = γ (Theorem 11).

Proof. As already pointed out, since u satisfies condition (3) then it is analytic in each direction yn. In particular, having
fixed the values of all the random variables but the n-th, let us write a∗

n(x, zn) = a(x, y1, y2, . . . , yn−1, zn, yn+1, . . . , yN) and
u∗
n(x, zn) = u(x, y1, y2, . . . , yn−1, zn, yn+1, . . . , yN). Such un can be extended in Σn = {zn ∈ C : Re (zn) > Tn} for every Tn

with −1 > Tn > T ∗
n , where T ∗

n is computed as the value such that

∃ x ∈ D : an(x, T ∗

n ) = a(x, y1, y2, . . . , yn−1, T ∗

n , yn+1, . . . , yN) = 0.

This amounts to impose

a0 + γn


T ∗
n + 1
2

(ymax − ymin) + ymin


= 0,

whose solution is T ∗
n = (2a0 + γn(ymax + ymin))/


γn(ymin − ymax)


. Indeed, since the subdomains Dn do not overlap,

an(x, T ∗
n ) = 0 in Dn only, i.e. T ∗

n does not depend on the value of any of the other random variable yi. Thus, the analyticity
region of u is the Cartesian product of the analyticity regions Σn, and the bound for Bu(T ) follows immediately. �

5.1. Convergence results

Theorems 11 and 16 apply immediately: in particular, see Fig. 4 for Theorem 11. We summarize the results for the
inclusions problem in the following proposition.

Proposition 24. 1. The Legendre coefficients of the solution of the inclusions problem decay asuq

V ≤ C(ϵ)e−(1−ϵ)q·g

= e−q·g, (29)

with

gn = log(|Tn| +


T 2
n − 1), −1 > Tn > T ∗

n , (30)

T ∗
n as in Lemma 23 and ϵ an in Corollary 9.

2. The polynomial space PTD(w,g)(Γ ) is the quasi-optimal space for the Stochastic Galerkin method when solving the inclusion
problem.

3. The convergence rate of such quasi-optimal approximation is stated in Theorem 16.
4. Moreover, in the isotropic setting where γ1, γ2, . . . , γN = γ , there holds T ∗

1 = T ∗

2 = · · · = T ∗

N = T ∗, g1 = g2 = · · · = gN =

g and we also have an exponential decay of the error with respect to w with rate h = log |T |, as stated in Theorem 11.

In the forthcoming section we will verify the quality of this analysis, both in an isotropic and an anisotropic setting.
However, instead of (15) we will actually consider a simplified ansatz, i.e.

∥u − uG
TD(w,g)∥2

V⊗L2ϱ(Γ )
≤ C exp


−

2gm
e

N N√M


(31)

and verify that it provides a sharp bound of the error for allM > 0.
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Fig. 5. Physical domain for the isotropic inclusions problem, The inclusions are labeled anti-clock-wise, starting from the bottom-left corner.

6. Numerical results

6.1. Isotropic problem

We now consider the inclusions problem analyzed in [15]. In the first setting considered the subdomains in Eq. (27) are
N = 8 disjoint circular subdomains as in Fig. 5, γn = 1 for every n = 1, . . . , 8. The random variable yn are uniformly
distributed in [−0.99, −0.2]. In addition, we choose a0 = 1 and f = 100χF , χF being the indicator function of the square
located in the middle of the domain, cf. Fig. 5. The aim of this section is to reanalyze the numerical results obtained in [15]
in view of the Theorems just proved. In that work, we considered several polynomial approximation spaces, and for each of
them we computed the corresponding Stochastic Galerkin approximation, uG

Λ(w). Then, we introduced the bounded linear
functional Θ : H1

0 (D) → R,

Θ(u) =


F
u(x)dx

andwemonitored the convergence ofΘ(uG
Λ(w))with respect to the L2ϱ norm error for the Stochastic Galerkin approximation,

ε =


E

(Θ(uG

Λ(w)) − Θ(uref))2

. (32)

Note that for this problem we do not have an exact solution, therefore the error is computed with respect to a reference
solution. To this end, we have considered the Stochastic Galerkin approximation computed for the TD polynomial space
at level w = 9, which includes approximately 24000 Legendre polynomials. The L2ϱ error is calculated via a Monte Carlo
approximation, i.e.

ε ≃


1

WMC

WMC
l=1


Θ(uG

Λ(w)(yl)) − Θ(uref(yl))
21/2

, (33)

where yl, l = 1, . . . ,WMC , are randomly chosen points in Γ . To this end, WMC = 1000 points have proven to be enough to
recover a smooth convergence curve.

Fig. 6 shows the effectiveness of the proposed estimate (29) for the decay of the Legendre coefficients in the gPCE
expansion of Θ(u). Indeed, after having computed the Galerkin solution, we have at disposition the coefficients of the gPCE
expansion of u, thatwe can comparewith (29). The ratesg have been assessed by fitting the Legendre coefficients computed,
but the procedure described in [15,3] could have been employed as well. Their numerical value is roughly around 1.90–1.99,
i.e. there is no perfect isotropy: this can be explained by the fact that the inclusions are not equally distant from the control
area F . Observe that the theoretical rate predicted is at most log(|T ∗

| +


T ∗2 − 1) ≈ 0.22. Thus the estimate we provide in

Corollary 9 captures the right behavior of the decay of the Legendre coefficients (i.e. exponential), but is very conservative.
Yet, it can still provide the ansatz for a calibrated estimate, which is what we propose in this work.

Fig. 7-left shows the convergence with respect to the level w of the L2ϱ error squared for the TD approximation of Θ(u),
and shows an optimal agreement between the numerical results and the exponential decay predicted in Theorem 11. Note
however that the rate h observed experimentally is h ≈ 1.5, which is again much larger than the theoretically predicted
rate, which amounts to at most h = log |T ∗

| ≈ 0.025.
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Fig. 6. Comparison between some coefficients of gPCE expansion of Θ(u), computed with a highly accurate Galerkin approximation (Hyperbolic Cross
polynomial space at level w = 56, see [15] for the definition) and the corresponding bound (29) suitably tuned. The multiindices corresponding to the
coefficients shown in the plots are non-zero only in y1 − y2 (left) and y4 − y8 (right) and ordered in lexicographic order.

Fig. 7. Left: convergence of the error (33) squared with respect to w for the quasi-optimal TD Galerkin approximation. Right: convergence of the error
(33) squared in terms of the dimension of the polynomial space, for the TD approximation, as well as Tensor Product (TP), Hyperbolic Cross (HC) and best
M-terms (OPT) approximations.

Fig. 7-right shows instead the convergence with respect to M of the error (33) squared for different polynomial
approximations, (namely: Total Degree (TD), Hyperbolic Cross (HC) and Tensor Product (TP) spaces) as well as an estimate
of the optimal convergence for the Galerkin method. The latter has been estimated by rearranging in decreasing order the
coefficients of the Galerkin solution TD(9) and using again a Monte Carlo estimate for the L2ϱ error squared, as in Eq. (33).
Since the convergences have been estimated using a Monte Carlo sampling, we also provide in the plot uncertainty bars
corresponding to±3 standard deviations of theMonte Carlo estimator. As already observed in [15], the TD approximation is
the most efficient approximation scheme for the problem of interest, and now can be also understood as the quasi-optimal
approximation, as indeed its convergence curve is very close to the bestM-terms convergence.

Finally, Fig. 8 shows that the theoretical convergence estimates for the error of the TD approximation appears to be quite
sharp, even in its simplified form (31) and apparently without any constraint on M . In particular, observe that the value of
gm used here is 1.9, i.e. it has been computed by fitting the Legendre coefficients (and pretending a perfect isotropy) and
not by fitting the error convergence itself (as it was done for Fig. 7 instead). For large values of M however, such simplified
estimate seems to be too optimistic. Yet, one should also consider that the convergence curvemay be slightly miscalculated,
due to the Monte Carlo approximation of the L2ϱ error, and to the fact that the Legendre coefficients computed are not exact,
but rather approximated by a ‘‘overkilling’’ Galerkin procedure.

6.2. Anisotropic problem

The second test we consider is an anisotropic problem with 4 random variables uniformly distributed in [−0.99, 0],
acting on the inclusions illustrated in Fig. 9, located at the corners of the domain. The anisotropy is given by the coefficients
γn in the expression (27) of the diffusion coefficient, that have been chosen as detailed in Fig. 9.

In contrast with the isotropic setting just analyzed, here the forcing term and the quantity of interest Θ(u) are now
defined over the whole domain rather than on the smaller area F . Finally, the reference solution is now an isotropic TD
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Fig. 8. Convergence of the error (33) squared for the TD approximation with respect to N√M,N = 8, compared with the simplified theoretical estimate
(31).

Fig. 9. Left: physical domain for the anisotropic inclusions problem. The numbers inside each inclusion are the corresponding values γn . Right: decay of
the Legendre coefficients for q = [q 0 0 0], 0 ≤ q ≤ 10 in semilog scale. A preasymptotic non-exponential regime is clearly present for q ≤ 2.

Stochastic Galerkin approximation at level w = 22, and the L2ϱ approximation error is computed with M = 3000 Monte
Carlo samples.

Compared to the previous case, in this setting the exponential bound on the decay of the Legendre coefficients is not
sharp, as a slower preasymptotic regime appears, see Fig. 9-right: in turn this implies that the anisotropic TD sets will not
be a tight estimate of the best M-terms approximation, see Fig. 10-left. However, using the numerical procedure described
in [15,3] it is possible to compute some ‘‘effective’’ exponential rates that yield to anisotropic TD sets with good convergence
properties, cf. again Fig. 10-left.

Thenumerical value of such effective rates is approximatelyg = (0.4, 1.37, 2.27, 3.17). Observe thatwe could also have
determinedg by formula (30) in Proposition 24. This would have resulted ing ≈ (0.20, 0.68, 1.12, 1.51), that is roughly
half the numerically assessed rates. This is a further confirmation that the theoretical estimates, although not sharp, give a
good ansatz to the qualitative features of the problem. Incidentally, note that for the purpose of building a sequence of TD
sets what really matters is not the absolute value ofg, rather the ratio between the rates, the absolute value being important
only in the estimate of the convergence rate.

Finally, Fig. 10-right shows that also in this case the simplified estimate (31) on the convergence of the anisotropic TD
set seems to be quite sharp and to hold without restrictions on the cardinalityM of the approximation.

7. Conclusions

In this work we have analyzed the approximability of the solution of linear elliptic PDEs with stochastic coefficients that
are analytic in a polydisc in the complex domain. Although somehow restrictive, this hypothesis is satisfied by a number
of problems that arise in various engineering fields, as briefly illustrated in Remark 3. This setting has allowed us to use in
a very natural way Bernstein ellipses to estimate the decay of the Legendre coefficients, as recalled in Proposition 8, and
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Fig. 10. Left: convergence of the error (33) squared with respect to M for the isotropic and anisotropic TD sets, and for the best M terms (OPT)
approximations. Right: convergence of the error (33) for the anisotropic TD approximation with respect to N√M , compared with the simplified theoretical
estimate (31).

consequently to prove that total degree polynomial spaces represent a quasi-optimal approximation of the best M-terms
polynomial approximation. We have then proved with two different arguments the subexponential convergence of the
Galerkin approximation of u in such polynomial spaces, see Theorems 11 and 16.

We have verified both the estimate of the decay of the Legendre coefficients and that of the error convergence on two
numerical tests, re-examining the results we had obtained in the previous work [15]. The results obtained allow us to claim
that the theoretical estimates provided in this work are in essence correct, in the sense that they provide a valid ansatz to
be fitted with numerical a-posteriori information, i.e. with a view to a combined a-priori/a-posteriori approach, as already
explored in [15,3].
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