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Abstract

One of the key trends in computing over the past two decades has been increased distribution,

both at the processor level, where multi-core architectures are now the norm, and at the

system level, where many key services are currently distributed over multiple machines. Thus,

understanding the power and limitations of computing in a concurrent, distributed setting is

one of the major challenges in Computer Science.

In this thesis, we analyze the complexity of implementing concurrent data structures in

asynchronous shared memory systems. We focus on the complexity of a classic distributed

coordination task called renaming, in which a set of processes need to pick distinct names

from a small set of identifiers. We present the first tight bounds for the time complexity of this

problem, both for deterministic and randomized implementations, solving a long-standing

open problem in the field. For deterministic algorithms, we prove a tight linear lower bound;

for randomized solutions, we provide logarithmic upper and lower bounds on time complexity.

Together, these results show an exponential separation between deterministic and randomized

renaming solutions. Importantly, the lower bounds extend to implementations of practical

shared-memory data structures, such as queues, stacks, and counters.

From a technical perspective, this thesis highlights new connections between the distributed

renaming problem and other fundamental objects, such as sorting networks, mutual exclusion,

and counters. In particular, we show that sorting networks can be used to obtain optimal

randomized solutions to renaming, and that, in turn, the existence of these solutions implies a

linear lower bound on the complexity of the problem.

In sum, the results in this thesis suggest that deterministic implementations of shared-memory

data structures do not scale well in terms of worst-case time complexity. On the positive side,

we emphasize randomization as a natural alternative, which can circumvent the deterministic

lower bounds with high probability. Thus, a promising direction for future work is to extend

our randomized renaming techniques to obtain efficient implementations of concurrent data

structures.

Keywords: concurrent algorithms, shared memory, data structures, renaming, randomization,

lower bounds
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Résumé

Les deux dernières décennies ont vu l’augmentation de la distribution des processus s’affirmer

comme une tendance majeure de l’évolution des systèmes informatiques. Ceci aussi bien au

niveau des microprocesseurs, qui sont maintenant pratiquement tous multi-coeur, que au

niveau système, où les services principaux sont maintenant répartis sur plusieurs machines.

La compréhension des possibilités et des limitations du calcul réparti et concurrent est donc

d’un intérêt majeur en informatique.

La présente thèse analyse la complexité algorithmique de l’implémentation de structures de

données concurrentes dans les systèmes à mémoire partagée. Nous concentrons nos efforts

sur la complexité d’une tâche de coordination classique dite du renommage. La tâche consiste

à attribuer un nom distinct appartenant à un ensemble restreint de noms à chaque processus

du système. Nous présentons les premières bornes optimales de la complexité temporelle de

cette tâche pour les implémentations déterministes et probabilistes. Ces résultats résolvent

un problème ouvert de longue date dans le domaine. Pour les algorithmes déterministes, nous

établissons une borne inférieure linéaire. Quant aux algorithmes probabilistes, nous établis-

sons des bornes inférieure et supérieures logarithmiques. Ces résultats montrent qu’il existe

une différence exponentielle de complexité entre les solutions probabilistes et déterministes

pour la tâche du renommage. La borne inférieure obtenue dans le cas déterministe s’applique

aussi aux implémentations déterministes de structures de données telles que les piles, les files,

et les compteurs.

D’un point de vue technique, cette thèse met en lumière des connections nouvelles entre la

tâche du renommage et d’autres tâches fondamentales telles que les réseaux de tri, l’exclusion

mutuelle, et les compteurs. En particulier, nous montrons qu’il est possible d’obtenir une solu-

tion probabiliste optimale à la tâche du renommage en utilisant les réseaux de tri. L’existence

de cette solution implique une borne inférieure linéaire à la complexité du problème dans le

cas déterministe.

En somme, les résultats obtenus lors de cette thèse suggèrent que les implémentations déter-

ministes des structures de données en mémoire partagée ne s’adaptent pas bien à la montée en

charge d’un système. De manière plus positive, nos résultats mettent en lumière l’utilisation

des méthodes probabilistes, qui permettent de contourner ce problème avec grande probabil-

ité. L’extension des techniques utilisées pour résoudre de manière probabiliste le problème

du renommage aux structures de données concurrentes est donc une direction de recherche

prometteuse.
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1 Introduction

Over the last forty years, computing power has continued to increase at an exponential pace.

Often cited as “Moore’s Law", after Intel co-founder Gordon E. Moore, who described an

instance of this trend in a 1965 article [74], this rule of thumb applies to several characteristics

of digital electronic devices, such as processing speed, memory capacity, or even number and

size of pixels in digital cameras [76].

Perhaps the most well-known instantiation of Moore’s law is in the context of the number

of transistors in mass-produced microprocessors. Following this trend, computing power

has continued to increase significantly over the last decades, while maintaining an accessible

cost. For a long period, the increasing number of transistors on a chip has been correlated

with a proportional increase in clock speed, which translated to a roughly exponential rate of

increase in the single-thread performance of microprocessors. See Figure 1.1 for an illustration

of this trend. From the software design perspective, this implied that a program would run

faster on new machines simply because of increased clock speed, a phenomenon known as

the software developer’s “free lunch" [85].

However, around 2004, due to technological limitations, processor manufacturers were forced

to stop increasing processor clock rates. Instead, they started offering more cores, or processing

units, as part of a single processor. (This trend is also depicted in Figure 1.1.) This change,

known as the “multicore revolution," implies that software applications need to be designed

with parallelism in mind, in order to exploit the power of the extra processing units in new

processors. In general, parallel and concurrent programming, which had previously been

considered the realm of specialized, high-performance computing, now needs to be taken

into account in the design of most software applications.

The multi-core revolution is part of a more general trend in computing towards increased

distribution. Indeed, over the last two decades, nearly all large-scale systems and services

have become distributed, as they have evolved towards Internet-based or data-center-based

architectures. This is the case for critical computing services, such as Internet search, informa-

tion storage, or cloud computing. While at the processor level distribution is a consequence of
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Chapter 1. Introduction

Figure 1.1: Overview of the evolution of clock rate versus number of cores in mass-produced
microprocessors over the past forty years.

technological limitations, at the system level this trend is justified by the increased need for

fault-tolerance and user locality. Another strong argument in favor of distribution, which has

been noted both for processors and large-scale systems, is energy efficiency, e.g. [84, 11].

1.1 Distributed Computing

Distributing computation across multiple agents, such as servers or processor cores, intro-

duces new challenges when compared to sequential, centralized computing. On the one

hand, providing a distributed service or implementing a concurrent data structure poses

new problems in terms of availability, or liveness, i.e. in terms of the progress guarantees

that the implemented object can provide to its users. A second key challenge is maintaining

the consistency, or safety of the object, whose implementation is distributed over multiple

locations. The relation between availability and consistency for an implementation is most

often expressed as a trade-off: by strengthening availability, the designer might have to weaken

the consistency guarantees, and vice-versa.

Interestingly, there exists a set of core problems that keep recurring in distributed systems,

irrespective of their architecture. These are problems such as agreement [67, 80], information

dissemination [62], counting [12], and renaming [17]. Distributed (or concurrent) comput-

ing research has focused on these problems, since they often illustrate the computational

power of a distributed system with respect to safety-liveness trade-offs, and the complexity of

implementing basic primitives given the system’s semantics.

The classic example of such a fundamental problem is consensus [67, 80], or agreement, a

task in which a set of agents, or processes, needs to agree on a single decision among a set of

proposed values. In particular, the safety requirements of consensus are that 1) the values
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returned by the processes need to be the same and 2) the value returned has to be a value

proposed by some process; the liveness requirement is that each non-faulty process should

eventually return a value.

Despite its apparent simplicity, the consensus task has been shown to be a fundamental

abstraction in distributed systems: once consensus can be solved, any sequential object can be

implemented on top of it via a universal construction [56]; consensus is also a key component

for state-machine replication of distributed services, e.g. [30, 77]. On the other hand, Fischer,

Lynch, and Paterson [49] showed that consensus cannot be implemented guaranteeing both

liveness and safety in an asynchronous distributed system in which processes may crash,

which is the standard model for large-scale message-passing or shared-memory systems.

This impossibility, abbreviated as FLP, is probably the most celebrated result in distributed

computing.

The FLP impossibility [49] illustrates a common occurrence in distributed computing, where

several fundamental problems are either unsolvable or can be shown to have prohibitive

complexity under asynchrony and crashes–literally hundreds of such impossibility results

exist [47]. Since these fundamental problems can be seen as benchmarks for what can be

implemented in a distributed system, a significant amount of research went into designing

ways of circumventing such impossibilities.

One successful approach for avoiding the worst-case executions presented by the impossibility

results has been randomization. In particular, for the consensus problem, for which FLP shows

the existence of a schedule of infinite length as long as safety is preserved, it has been shown

that such worst-case schedules can be avoided with probability 1 [28]. This does not rule

out executions in which a process does not terminate, but guarantees that the probability of

such executions is 0. It is important to note that the safety requirements of the problem are

generally never broken by randomized algorithms, as they continue to hold in every execution.

1.2 Asynchronous Shared Memory

In this thesis, we focus on distributed computation in the standard asynchronous shared-

memory model [70, 26]. In the context of shared memory, distributed algorithms are also

called concurrent. In brief, in shared memory, n processes communicate by reading and

writing to shared registers. The processes are asynchronous, i.e. may execute at different

speeds; in particular, there is no bound on their relative speeds. We assume that their timing

is controlled by an adversarial scheduler, also known as the adversary. Processes may crash

during the execution, in which case they stop taking steps as part of their algorithm; process

crashes are also controlled by the adversary.

Some of the algorithms we present and analyze are randomized, in that processes may adapt

their steps following the results of (local) random coin flips. We consider a strong adversary,

which observes the state of processes and the results of random coin flips when deciding the
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execution schedule or crash pattern.

The asynchronous shared-memory model is the standard model for analyzing executions

of concurrent data structures. Asynchrony and crashes model the fact that processes may

be pre-empted or killed by the operating system scheduler during an execution, generating

arbitrary interleavings of process steps. In this setting, we study algorithms that guarantee

that each process terminates in a finite number of steps, known as wait-free algorithms. A

precise definition of this model is given in Chapter 2.

1.3 The Renaming Problem

The availability of unique names, or identifiers, is a fundamental requirement for distributed

computation. Even in settings where unique identifiers such as MAC or IP addresses are

available, they often come from a very large namespace, which reduces their usefulness. The

renaming problem, in which a set of processes need to pick unique names from a small names-

pace, is one of the fundamental problems in distributed computing. Intuitively, renaming

can be seen as the dual of the consensus problem: if solving consensus means that processes

need to agree on a single value, renaming asks processes to disagree in a constructive way, by

returning distinct values from a small space of names.

Formally, the renaming problem assumes that processes have unique initial names from a

large, virtually unbounded namespace, and requires each process to eventually return a name

(the termination condition), and that the names returned should be unique (the uniqueness

condition). The size of the resulting namespace should be at most M > 0, which is given

in advance. The namespace size M should only depend on n, the maximum number of

participating processes. The adaptive version of the renaming problem requires the size of

the namespace M to only depend on k, the number of processes actually taking steps in the

current execution, also known as the contention in the execution. If the size of the namespace

matches exactly the number of participating processes, renaming is said to be strong, and the

namespace is said to be tight. Otherwise, renaming is loose. Intuitively, a tight namespace

is desirable since it minimizes the number of “wasted” names, which are allocated but go

unused; in later chapters, we will see that strong renaming algorithms can in fact be used to

implement other objects, such as counters and mutual exclusion.

A significant amount of research, e.g. [17, 27, 33, 72, 57, 4, 21, 44, 79], has studied the solv-

ability and complexity of renaming in an asynchronous environment. In particular, tight, or

strong deterministic renaming, where the size of the namespace is exactly n, is known to be

impossible [57, 34]. In fact, (n + t −1) is the best achievable namespace size when t processes

may crash [34, 35]. This result is an analogue of FLP for renaming, and its proof requires the

use of complex topological techniques [57]. As for consensus, this impossibility result can be

circumvented through the use of randomization: there exist randomized renaming algorithms

that ensure a tight namespace of n names, guaranteeing name uniqueness in all executions

and termination with probability 1, e.g. [44].
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1.4 Overview of the Results

In this thesis, we analyze the complexity of concurrent data structures in asynchronous shared

memory. In particular, we focus on the complexity of renaming, as a benchmark problem for

distributed coordination tasks. Despite considerable research effort on efficient algorithms for

renaming, e.g. [79, 31, 72, 73, 4, 21, 44, 39, 2], prior to our work there have been no optimality

results for shared-memory renaming, either for randomized or deterministic algorithms.

We present the first tight bounds for this problem, both for deterministic and randomized

implementations. For deterministic algorithms, we give a tight linear lower bound on renam-

ing into any sub-exponential namespace1. For randomized algorithms, we give the first tight

upper and lower bounds on the time complexity of adaptive renaming, which are logarithmic.

Together, our results give an exponential time complexity separation between deterministic

and randomized implementations of this problem.

We also investigate connections between renaming and other shared objects. Since renaming

can be solved trivially using objects with stronger semantics, such as stacks, queues, or fetch-

and-increment counters, our lower bounds also apply to these widely-used objects. These

results improve or match the previously known lower bounds for these problems (see Table 1.2

for an overview). On the other hand, our renaming algorithms can be extended to obtain new

efficient implementations of other shared objects, such as counters, mutex, test-and-set or

fetch-and-increment objects.

From a technical perspective, this thesis highlights new connections between renaming and

other fundamental objects: sorting networks [64] and mutual exclusion [42]. We show that

sorting networks can be used to obtain optimal-time solutions for randomized renaming.

Such renaming solutions can also be used to obtain efficient mutual exclusion algorithms.

We then proceed by reduction, and derive a lower bound on renaming from a known lower

bound on the time complexity of mutual exclusion [63]. This result then generalizes to more

complex objects that solve renaming. The lower bound on the time complexity of randomized

renaming follows from a separate information-based argument.

Our results suggest that deterministic implementations of data structures solving renaming

have worst-case schedules with linear time complexity. In essence, this implies that determin-

istic versions of widely-used data structures, e.g. queues, stacks, or counters, do not scale in

the worst case, so a key practical question is how to circumvent this lower bound2.

A natural alternative, which we emphasize in this thesis, is the use of randomization. We

show that, using randomization, this lower bound can be circumvented for renaming, as we

exhibit randomized algorithms with logarithmic step complexity, with high probability, i.e.

exponentially better than allowed by the deterministic lower bound. Thus, a very tempting

open question is whether our randomized techniques can be extended to obtain fast sub-

1This bound is matched by previously known algorithms. e.g. [72, 73]. See Section 7.6 for a detailed discussion.
2We discuss possible ways of circumventing the lower bound in Section 7.5.
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linear versions of practical concurrent data structures. On the other hand, the logarithmic

lower bound on the step complexity of randomized implementations suggests that there are

complexity thresholds which cannot be avoided even with the use of randomization.

In the following, we describe these contributions in more detail.

1.5 Contributions

1.5.1 The Time Complexity of Deterministic Renaming

The main contribution of this thesis is characterizing the time complexity of the renaming

problem in asynchronous shared memory. For deterministic algorithms, we prove thatΘ(k)

process steps is a tight bound for the individual step complexity of adaptive renaming in a

sub-exponential namespace3 in the number of participants k. This result, whose proof can be

found in Chapter 7, extends to non-adaptive renaming, to yield a linear lower bound on the

complexity of non-adaptive renaming in a polynomial namespace in n. This is the first lower

bound on the complexity of renaming in shared memory. It holds for wait-free algorithms

using reads, writes, test-and-set, and compare-and-swap operations, and is matched by

various algorithms in the literature, e.g. [72, 73] (for details, please see Table 1.2).

Intuitively, the argument shows that, given k processes that need to pick unique names from

a large namespace, there exists a worst-case schedule in which a process executes for Ω(k)

steps, roughly one step for every other process executing in the system. This is somewhat

surprising, since it implies that giving the processes more choice for the namespace size does

not help in terms of worst-case step complexity: assigning names in a huge namespace, e.g. of

sizeΘ(k100), is asymptotically no easier that renaming in a small namespace of size O(k).

The reduction technique implies a stronger linear lower bound, on the number of remote

memory references (RMRs) that a process has to perform in a worst-case execution. In brief,

RMRs are a complexity measure that takes into account the number of cache misses that

a process incurs while running an algorithm, and can be orders of magnitude slower than

accesses to local memory on modern multi-processor architectures.

1.5.2 The Time Complexity of Randomized Adaptive Renaming

In Chapter 8 we complement the deterministic lower bound by also analyzing the time com-

plexity of randomized adaptive renaming. More precisely, we analyze the worst-case expected

total number of steps that processes must perform. We prove a global step complexity lower

bound: given any algorithm that renames into a namespace of size ck, with c ≥ 1, there

exists an adversarial strategy that causes the k processes to takeΩ(k log(k/c)) total steps in

expectation. This lower bound applies to algorithms using reads, writes, test-and-set and

3More precisely, a sub-exponential namespace is a namespace of size o(ek ).
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compare-and-swap primitives, and to algorithms that may not terminate with some non-zero

probability. This total step complexity lower bound is tight for c = 1, i.e. for strong adaptive

renaming, since it is matched by the renaming network algorithm presented in Chapter 6.

The same technique implies the same total step complexity lower bound for randomized im-

plementations of approximate shared counters, i.e. counters that return a result that is within

a factor of c of the real value. The lower bound is tight within logarithmic factors for coun-

ters [12]. Since the lower bounds apply to randomized algorithms, and the almost-matching

algorithm [12] is deterministic, this suggests that, against a strong adversary, the complexity

improvement that may be obtained through randomization can be at most logarithmic. The

lower bound also limits the complexity gain from allowing approximation within constant

factors.

Our argument follows the structure of a previous result by Jayanti [60], which in turn is similar

to a lower bound by Cook, Dwork, and Reischuk [40] on the complexity of computing basic

logical operations on PRAM machines. Jayanti proved anΩ(logk) lower bound on the expected

step complexity of shared counters, queues, and stacks, which also applies to renaming. We

generalize his result in two ways: first, we consider total step complexity, and thus obtain

a strongerΩ(logk) lower bound on the average worst-case expected step complexity of the

problem. Second, our results also apply to loose (approximate) versions of renaming and

counting, bounding the benefits of relaxing the object semantics.

1.5.3 Lower Bounds for Other Objects

Since more complex shared-memory objects such as queues, stacks, or fetch-and-increment

counters solve adaptive strong renaming with constant complexity overhead, it follows that

the local and global lower bounds stated in the previous two sections apply to these objects as

well.

In particular, the deterministic lower bound implies that wait-free deterministic implemen-

tations of these objects have linear step complexity in the worst case, suggesting that deter-

ministic versions of these objects do not scale well in terms of worst-case time complexity.

The bound holds for algorithms that are adaptive (and thus, have no bound on the number

of processes n that may access them in an execution), or if the algorithms do not assume

any bound on the size of the initial namespace of participating processes. (For details on

circumventing the lower bound, see Sections 7.4 and 7.5.) Thus, this linear lower bound

could be circumvented by algorithms using randomization (as is the case for renaming), or by

algorithms that assume processes already have names from a small space.

Similarly, the total step complexity lower bound also applies to queues, stacks, and fetch-and-

increment out of read-write registers with compare-and-swap operations, giving anΩ(k logk)

lower bound for exact implementations in executions where k processes participate. This

bound is more general since it applies to randomized algorithms as well, and to algorithms
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Shared Object Lower Bound Type Matching Algorithms New Result

Deterministic ck-renaming
Ω(k) Local [73, 72, 21] Yes

Ω(k log(k/c)) Global - Yes
Randomized ck-renaming Ω(k log(k/c)) Global Chapter 6 Yes

c-Approximate Counter Ω(k log(k/c)) Global [12] Yes

Fetch-and-Increment
Ω(k) Local [72] Improves on [48]

Ω(k logk) Global Chapter 6 Improves on [22]

Queues and Stacks
Ω(k) Local [56, 45] Improves on [48]

Ω(k logk) Global - Improves on [22]

Figure 1.2: Summary of the lower bound results and relation to previous work.

that assume names from a small namespace. These lower bounds are matched by several

known implementations (please see Table 1.2 for a case-by-case description).

1.5.4 Algorithms for Strong Randomized Renaming

The key algorithmic of contribution of this thesis is an algorithm for strong adaptive renaming

based on a variation of sorting networks [41] which we call renaming networks. A renaming

network is a sorting network in which all comparators have been replaced with two-process

test-and-set objects. (See Section 6.1.1 for a brief introduction to sorting networks.)

The mechanism behind the algorithm is that each process is assigned a distinct input port, and

follows a path through the network determined by leaving each comparator on its top output

wire if it wins the test-and-set, and on the bottom output wire otherwise; the output name is

the index of the port that it reaches. This construction guarantees that if k processes enter

the network on distinct input ports, they will reach the first k output ports, thus returning

unique names from 1 to k. The expected step complexity of the algorithm is bounded by the

maximum number of comparators between an input port and an output port in the sorting

network. There exist sorting networks for which this number is logarithmic in the number of

input ports [5].

The key missing details are how to assign unique input ports to the renaming network, and

how to adapt the sorting network size for unbounded values of k (as required to obtain an

adaptive algorithm). We overcome the first obstacle by noticing that input port assignment

can be seen as another instance of renaming, and designing a randomized loose renaming

algorithm with low complexity, which assigns unique names from 1 to kc for some constant c ,

with high probability. We overcome the second issue by introducing a new adaptive sorting

network, whose size can adapt to the number of processes that access it, and whose complexity

remains logarithmic whenever truncated to a finite number of input and output ports.

The resulting algorithm guarantees a tight adaptive namespace with complexity O(logk), with

high probability. The construction and the proofs can be found in Sections 6.2 and 6.3.2.

This is the first known algorithm to achieve tight adaptive renaming in less than linear time.
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It improves exponentially on previous strong renaming solutions, which had worst-case

complexity at least linear, e.g. [9]. It also gives an exponential separation between deterministic

and randomized renaming algorithms. The total work lower bound in Chapter 8 shows that

this algorithm is in fact optimal, and that no asymptotic complexity improvements are possible

by relaxing namespace size within constant factors. We build on this algorithm to obtain fast

counters and bounded-use fetch-and-increment objects.

We complement this adaptive algorithm with a poly-logarithmic non-adaptive strong renam-

ing solution that uses linear space, assuming hardware test-and-set operations. The algorithm,

called BitBatching, assigns unique names to processes by repeatedly performing test-and-set

operations over batches of bits of decreasing size. More precisely, we split a sequence of n

registers in batches of exponentially decreasing size, such that the first batch contains the first

half of the registers, the second contains the next quarter, and so on, until we reach batches of

sizeΘ(logn). Processes perform test-and-set operations onΘ(logn) registers in each batch,

until first winning a test-and-set. A careful analysis shows that, somewhat surprisingly, every

process obtains a test-and-set object before completing its test-and-set operations on the last

batch, with high probability. Thus, the algorithm achieves strong renaming in O(log2 n) steps

with high probability, with O(n logn) total test-and-set operations.

1.5.5 Adaptive Randomized Test-and-Set

In Chapter 5, we present a randomized implementation of a test-and-set object with O(logk)

step complexity. Intuitively, a test-and-set object works as a single-shot tournament for the k

participating processes: of the k processes that call the test-and-set operation, a single process

returns 0 (winner), while all the other processes return 1 (loser).

The algorithm, called RatRace, is based on a binary tree structure, which the processes first

navigate from the root towards the leaves, in order to obtain a starting point in the tournament.

Then, processes proceed towards the root, competing in two-process test-and-set objects

along the way. The winner at the root is the winner of the test-and-set operation, and returns 0.

Any other process loses and returns 1. The algorithm is adaptive, in that its complexity adapts

to the number of processes k participating in the execution. The construction is an adaptive

version of the randomized test-and-set first proposed by Afek et al. [3]. The algorithm can be

modified to obtain a fast solution for loose randomized renaming, which comes in useful as

part of the adaptive renaming algorithm based on sorting networks, presented in Chapter 6.

1.6 Roadmap

The thesis is divided in three parts. (Note that the technical presentation has a slightly different

structure than the introduction.) The first part presents some background on shared-memory

distributed computing, presenting the model, problem statements, and an overview of related

work. In turn, each later chapter contains precise definitions of the objects used in the chapter,
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and a precise comparison of the results with previous work.

Part II presents the algorithms described in the introduction. In particular, Chapter 5 presents

the adaptive test-and-set algorithm and the resulting loose renaming algorithm. Chapter 6

presents the strong adaptive renaming algorithm based on sorting networks, its applications

to counting objects, and the non-adaptive BitBatching algorithm.

We focus on lower bounds in Part III. We give the deterministic lower bound and its extensions

to other objects in Chapter 7. We then present the proof of the global step complexity lower

bound in Chapter 8, with its applications to renaming and counting. Both chapters also

contain overviews of possible ways of circumventing the lower bounds. We summarize the

results and present an overview of open questions in Chapter 9.
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2 System Model

In this chapter, we introduce the system model for which our algorithms and lower bounds

are designed. We also describe the cost measures under which we will analyze algorithms. In

brief, the model we consider is the classical asynchronous shared memory model [26, 70] in

which processes execute without bounds on their relative execution speed, in the presence of

crash failures, communicating through operations on registers.

2.1 The Asynchronous Shared Memory Model

2.1.1 Model Overview

We consider the standard asynchronous shared-memory model, in which n processes p1, . . . , pn

communicate through operations on shared multi-writer multi-reader atomic registers [26, 70].

We will denote by k the contention in an execution, i.e. the actual number of processes that

take steps in the execution.

Processes follow and algorithm, which is composed of steps. Each step consists of some local

computation, which may include an arbitrary number of local coin flips, and one shared

memory operation, such as a read or write to a register. A number of t < n processes may fail

by crashing. A failed process does not take any further steps. A process that does not crash

during an execution is called correct.

The order in which the processes take steps and their crashes are controlled by a scheduler,

which we model as an adversary. More precisely, we allow the adversary to observe the state

of all processes, including local coin flips, whenever scheduling the next event. This type of

adversary is known as the strong adversary.

In the following, we define these terms more formally.
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2.1.2 Processes, Algorithms, and Shared Objects

A process is a sequential unit of computation, created by an application when necessary. For

simplicity, we will assume that processes are created at the beginning of each execution, and

each executes steps from its algorithm when scheduled. Thus, we denote byΠ= {p1, p2, . . . , pn}

the set of all processes that may execute an algorithm. Accordingly, n will be the total number

of processes that may execute an algorithm. On the other hand, we will denote by k the actual

number of processes that take steps in the execution. Consequently, we have the relation

k ≤ n.

Initially, each process pi is assigned a unique initial identifier idi , which, for simplicity, we

will assume to be an integer. We will assume that the space of initial identifiers is of infinite

size. This models the fact that, in real systems, processes may use identifiers from a very large

space, such as the space of UNIX process identifiers, or the set of all IP addresses.

Each process executes an algorithm assigned to it by the application. The algorithms we

analyze are either deterministic, where the process’s next operation is always determined by

its state, or randomized, in which case the process’s next operation may be determined by its

state, and the results of random coin flips performed by the process.

Processes perform local computation, as well as execute operations on shared objects. Each

operation is described by an invocation, and a response. For example, the operation

val ← R.read( )

reads the contents of shared object R , in this case a register. The response of the read operation

is stored in the local variable val. If process p invokes an operation on object X , we say that it

accesses X . Note that an operation invocation may not necessarily be followed by a response

event. Such an operation is called a pending operation.

2.1.3 Progress Conditions

An algorithm is wait-free if it ensures that every call by a correct process returns within a finite

number of steps [58]. A lock-free algorithm ensures that, given any schedule of infinite length,

infinitely often some method call finishes in a finite number of steps. Clearly, any wait-free

implementation is also lock-free, whereas the converse is not true, since lock-free algorithms

may allow operations by correct processes that never return. An algorithm is obstruction-free if,

from any point in an execution from which a process runs in isolation, the process terminates

in a finite number of steps. A lock-free algorithm is obstruction-free, but not vice-versa.
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2.1.4 Randomization

Some of the algorithms we present are randomized, in that the processes’ actions may depend

on the outcomes of local coin flips. In general, we use randomization in algorithms in order

to assign probability weight to executions, and avoid the worst-case executions with high

probability.

Processes may perform local coin flips by calling a local function coin, which takes two integer

parameters a and b with a ≤ b, and returns an integer x with a ≤ x ≤ b chosen uniformly at

random. For example, the call

coin(0,1)

will return 0 with probability 1/2, and 1 with probability 1/2.

2.1.5 Object Implementations

In this thesis, we will consider implementations of shared objects. An implementation IX of

an object X consists of n algorithms, one for each process p1, . . . , pn that might execute the

implementation. When a process pi invokes an operation op on object X with implementation

IX , process pi will follow algorithm IX (i ) until it receives a response from the operation op.

In short, we say that pi executes IX . Thus, a shared object may be seen as an abstraction to

which we map a set of operations that a process takes in the execution.

Shared object implementations will be based on base objects, which are the primitives that

form the shared memory, and on other lower level shared objects. Base objects are the primi-

tives given by the shared memory, for example by hardware or the runtime environment. They

are entities separate from the processes, and processes are not aware of their implementations.

Unless otherwise specified, every process has access to every base object.

Second, a shared object implementation can also use other implementations of lower-level

shared objects. (In turn, these may be composed of other base and shared objects, and so on.)

Throughout this thesis, an object will be either a base object, or a shared object. If Q is the set

of base and shared objects used by implementation IX of X , we say that X is implemented

from the objects in Q.

In brief, an algorithm implementing an object O at process pi can be seen as a set of sub-

algorithms and base objects. Process pi follows the algorithm, executing either local computa-

tion steps, or operations on shared or base objects. For any implementation IX of a shared

object X used by the algorithm, process pi executes algorithm IX (i ) for the implementation

of X . In particular, process pi may execute operations on the base objects, which provide the

means by which processes communicate with each other.
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2.1.6 Concurrent Executions and the Adversarial Scheduler

An execution is a sequence of operations performed by a set of processes. In order to represent

executions, we will assume discrete time, where at every unit there is only one active process.

In a time unit, the active process can perform any number of local computations or local coin

flips, and then issue an event or execute a step. A step is an execution of an operation on a

base object, which comprises the invocation and the subsequent response (therefore, every

operation on a base object takes at most one unit of time to execute). Whenever a process

pi becomes active (as decided by the scheduler), pi executes an event or a step. It may be

possible that a process does not have anything to execute, e.g. if it terminates its algorithm, in

which case it executes an empty no-op step.

Events are local to each process, i.e. are always received by the process issuing the event,

and are used to mark the time when a process starts and stops invoking an implementation

of a shared object as part of its algorithm. (For example, the time when a process calls a

procedure implementing a lower-level shared object X , and the time when it returns from this

procedure.) Processes are sequential, in that every process may execute at most one operation

on at most one object.

The order in which processes take steps and issue events is determined by an external abstrac-

tion called a scheduler, over which processes do not have control. In the following, we will

consider the scheduler as an adversary, whose goal is to maximize the cost of the protocol

(in this thesis, we focus on running time as a cost measure). Thus, we will use the terms

adversary and scheduler interchangeably. The adversary controls the schedule, which is a

(possibly infinite) sequence of process identifiers. If process pi is in position t of the sequence,

then this implies that pi is active at time t . The adversary has the freedom to schedule any

interleaving that complies with the given model. In this thesis, we assume an asynchronous

model, therefore the adversary may schedule any interleaving of process steps.

Consequently, an execution is a sequence of all events and steps issued by processes in a given

run of an implementation. Every execution has an associated schedule, which yields the order

in which processes are active in the execution.

For randomized algorithms, notice that different assumptions on the relation between the

scheduler and the random coin flips that processes perform during an execution may lead to

different results. In this thesis, we will assume that the adversary controlling the schedule is a

strong adversary, that observes the results of the local coin flips, together with the state of all

processes, before scheduling the next process step (in particular, the interleaving of process

steps may depend on the result of their coin flips).

This is the standard adversarial model for randomized distributed algorithms, which reflects

the fact that the speed of a process may be influenced by the results of random coin flips that

the process performs. On the one hand, it is the strongest “reasonable" adversarial model,

since a stronger adversary would have to be aware of the results of coin flips that the processes
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perform in the future. On the other hand, it encompasses weaker adversarial models, such as

the oblivious adversary, e.g. [6], which fixes the scheduling and failure pattern independently

of the processes’ coin flips.

2.2 Asynchrony and Wait-Freedom

In this thesis, we focus on asynchronous shared-memory systems. In such systems, the time

delay between two consecutive events of any process may be arbitrary, i.e. there are no

assumptions on the relative speed of processes. This models the fact that, in general-purpose

systems, processes may be preempted or otherwise delayed for arbitrary periods of time.

While real-world systems may not be entirely asynchronous, proving algorithms correct in

the asynchronous model ensures that they will be correct in any system in which delays are

bounded.

An implementation is wait-free if any process invoking an operation also returns within some

finite number of its own steps. More precisely, note that we are in a system where some

number t < n of processes may fail by crashing. A crashed process stops taking any steps in

the remainder of the execution, and therefore it is scheduled for a finite number of times in

the execution. On the other hand, there may be processes that are scheduled for an infinite

number of times: these processes do not crash, and are called correct. An algorithm is said to

be wait-free if, whenever a correct process pi invokes an operation on object X , pi returns

from that operation.

2.3 Complexity Measures

We measure complexity in terms of process steps: each shared-memory operation is counted

as one step–local computation, including coin flips, is not counted. Thus, the (individual) step

complexity of an algorithm is the worst-case number of steps that a single process may have

to perform in order to return. The total step complexity is the total number of shared memory

operations that all participating processes perform during an execution. For randomized

algorithms, we will analyze the worst-case expected number of steps that a process may

perform during an execution as a consequence of the adversarial scheduler, or give more

precise probability bounds for the number of steps performed during an execution.

For the lower bound in Chapter 7, we will use a stronger measure of complexity, by counting

the number of remote memory references (RMRs). In cache-coherent (CC) shared memory,

each process maintains local copies of shared variables inside its cache. The consistency of the

cache among processes is ensured by a coherence protocol. A variable is remote to a process if

its cache contains a copy of the variable whose value is out of date (or if the cache contains

no copy of the variable); otherwise, the variable is local. A process step is local if it accesses a

local variable. Otherwise, the step is a remote memory reference (RMR). A similar definition

exists for the distributed shared memory (DSM) model. Notice that, since each RMR implies a
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distinct process step, RMR complexity is always a lower bound on step complexity.

2.4 Linearizability

Linearizability [59] is a correctness condition for shared object implementations. Intuitively, an

implementation is linearizable (or atomic) if every shared memory operation should appear

to the processes as if it was executed instantaneously at some single and unique point in

time between its invocation and its response. This notion helps keep the algorithms simple,

by eliminating technical details and providing a clean interface. The semantics of atomic

objects can be described by using their sequential behavior, i.e. by giving their sequential

specification.

More precisely, an implementation of an object O is linearizable if, for every execution, there

exists a total order over all the complete process operations operations together with a subset

of the incomplete process operations such that every operation is immediately (atomically)

followed by a response, and the sequence of operations given by that total order is consistent

with a sequential execution of the object O.

Linearizability and Randomization. Recent results by Golab et al. [51] show that linearizabil-

ity is not a sufficient correctness condition when randomization is employed. More precisely,

they show that the adversary can gain extra power whenever a randomized algorithm uses

other (deterministic or randomized) linearizable implementations as sub-algorithms. In this

thesis, we circumvent this technical issue by avoiding the use of linearizability as a correctness

condition when employing sub-algorithms: instead, we isolate a set of invariants whenever we

use a known implementation as a sub-algorithm. (For example, this is the reason we isolate a

set of specific properties for the test-and-set implementations in Section 5.2.1 instead of using

their linearizability directly.)

2.5 Probabilistic Preliminaries

2.5.1 Basics

We give a brief overview of the classic definitions and properties of probability space, proba-

bility measure, independence, random variable, and expectation. We follow the presentation

of standard texts on randomized algorithms, e.g. [75, 71].

Definition 1. A probability space has three components:

1. A sample spaceΩ, which is the set of all possible outcomes of the random process modeled

by the probability space;

2. A family of sets F representing the allowable events, where each set in F is a subset of the

sample spaceΩ;
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3. A probability function Pr : F →R, satisfying Definition 2.

An element E ofΩ is called an elementary event.

Definition 2. A probability function is any function Pr : F →R satisfying the following condi-

tions:

1. For any event E, 0 ≤ Pr(E) ≤ 1;

2. Pr(Ω) = 1;

3. For any finite or countably finite sequence of pairwise mutually disjoint events E1,E2, . . .

Pr

(⋃
i≥1

Ei

)
= ∑

i≥1
Pr(Ei ).

In the rest of this thesis, we will use discrete probability spaces, in which the sample spaceΩ is

finite or countably infinite, and the family F of allowable events consists of all subsets ofΩ. In

a discrete probability space, the probability function is uniquely defined by the probabilities

of the elementary events.

A consequence of Definition 2 is known as the union bound, which will prove useful in the rest

of the thesis.

Proposition 1 (Union Bound). For any finite or countably infinite sequence of events E1,E2, . . .,

Pr

(⋃
i≥1

Ei

)
≤ ∑

i≥1
Pr(Ei ).

When analyzing a random process, we are often interested in some value associated to the

event rather than in the event itself. For this, we introduce the notion of random variable.

Definition 3. A random variable X on a sample spaceΩ is a real-valued function onΩ; that is,

X :Ω→R, such that, for all x ∈R,

{E ∈Ω |X (E) ≤ x} ∈F .

Thus, we will denote by Pr[X ≤ x] the probability Pr[{E ∈ Ω |X (E) ≤ x}]. A discrete random

variable is a random variable that may take only a finite or countably infinite number of values.

We now define the notion of independence of events and of random variables.

Definition 4. Events E1,E2, . . . ,E` are mutually independent if and only if, for any subset

I ⊆ {1,2, . . . ,`},

Pr

(⋂
i∈I

Ei

)
=∏

i∈I
Pr(Ei ).
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Similarly, random variables X1, X2, . . . , X` are mutually independent if and only if, for any

subset I ⊆ {1,2, . . . ,`}, and any values xi with i ∈ I ,

Pr

(⋂
i∈I

(Xi = xi )

)
=∏

i∈I
Pr(Xi = xi ).

A basic characteristic of a random variable is its expectation, which can be seen as a weighted

average of the values it assumes, where each value is weighted over the probability that the

variable assumes that value.

Definition 5. The expectation of a discrete random variable X , denoted by E [x], is given by

E [X ] =∑
i

i ·Pr(X = i ),

where the sum is taken over all the values in the range of X . The expectation is finite if the sum

converges, otherwise it is unbounded.

With high probability. We say that an event occurs with high probability in a parameter x if it

occurs with probability at least

1−O

(
1

xc

)
, for some constant c ≥ 2.

In general, we pick the parameter x to be large, so that the probability that the event does not

occur is practically negligible. Notice that the union of a finite number of events that occur

with high probability in a parameter x is also an event that occurs with high probability in x.

2.5.2 Distributions

In this context, we define the following distributions, which will appear throughout the thesis.

We adopt the presentation of [75].

Bernoulli distribution. Suppose we flip a coin whose probability of Heads is p. Let X be a

random variable with value 1 when the result of the coin flip is Heads, and 0 otherwise. Then

X has the Bernoulli distribution with parameter p. Also, E [X ] = p.

Geometric distribution. Suppose we flip a coin repeatedly until Heads appears for the first

time. Assuming that each coin flip has the Bernoulli distribution with parameter p, the

random variable X denoting the total number of coin flips has the geometric distribution with

parameter p. Then E [X ] = 1/p.

Negative Binomial Distribution. Let X1, X2, . . . , Xn be independent identically distributed

(i.i.d) random variables whose common distribution is the geometric distribution with param-

eter p. The random variable X = X1+. . .+Xn denotes the number of coin flips needed to obtain
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n Heads. The random variable X has the negative binomial distribution with parameters n

and p. The density function for this distribution is defined only for x = n,n +1,n +2, . . .:

Pr [X = x] =
(

x −1

n −1

)
pn(1−p)x−n .

The expected value of X is E [X ] = n/p.

2.5.3 Complexity Measures, Adversaries, and Randomization

In Section 2.3, we defined the complexity measures we focus on in this thesis, in particular

individual and global step complexity. Given that some of the algorithms we consider are

randomized, the processes’ coin flips during the execution will induce probability distributions

over the complexity of the algorithms. We now define step complexity in the context of

randomization more precisely. We adopt the standard presentation of [26].

As seen in Section 2.1.6, we view the scheduler as an adversary whose goal is to extend the

execution of the algorithm for as long as possible. Thus, the adversary can be seen as a function

that takes an execution prefix as an argument, and returns the next process to be scheduled

to take a step. The adversary must satisfy the admissibility conditions for the asynchronous

shared-memory model. Since we assume a strong adversary, the execution prefix the adversary

receives also contains the results of the random coin flips that processes performed in the

execution.

Let R be the set of all possible outcomes of coin flips that processes may perform during an

execution. Notice that an execution of an algorithm is uniquely determined by a series of

random coin flips R that the processes perform, and an adversary D . We denote this execution

by exec(R,D). Let P be some predicate on an execution, for example the fact that each correct

process completes within some number of steps. Given a particular adversary D, we define

the probability of P under D as

PrD [P ] = Pr[{R ∈R |exec(R,D) satisfies P }].

Similarly, let T be a random variable defined on an execution, for example the maximum

number of steps that a process performs during the execution. Then we define the expectation

of T under an adversary D as

ED [T ] = ∑
x value of T

x ·PrD [T = x].

Since we are interested in the worst-case performance of algorithms, we will consider these

complexity measures under all possible adversaries. Thus, if we denote by T the random

variable describing the step complexity of an algorithm A in an execution, then the worst-case

21



Chapter 2. System Model

expected step complexity of A is defined as

E [T ] = max
all adversaries D

ED [T ].

Similarly, the probability of a predicate P is considered over all adversaries D. Thus, we say

that a predicate P holds with probability at least p if

PrD [P ] ≥ p, for all adversaries D .

For example, if we say that the step complexity of an algorithm is O(logn) with high probability

in n, we mean that the probability that the number of steps a process takes during an execution

of the algorithm exceedsΘ(logn) is upper bounded by O(1/nc ), for some constant c ≥ 2, and

for all adversaries D .

In general, given a shared-memory object O, we aim to obtain upper and lower bounds on

the worst-case expected step complexity of its randomized implementations. In some cases,

we are able to obtain stronger “with high probability" upper bounds on the complexity of the

object. Such upper bounds are preferable since they give a better measure of the concentration

of the random variable representing the complexity of the implementation.
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We now present the definitions and sequential specifications of the problems and objects

considered in this thesis.

3.1 Renaming

The renaming problem, introduced in [17], is defined as follows. Each of the n processes has

initially a distinct identifier idi taken from an unbounded ordered domain, and should return

an output name mi . Given an integer M , an object ensuring deterministic renaming into a

namespace of size M , also called an M-renaming object, guarantees the following properties.

1. Termination: In every execution, every correct process returns a name.

2. Namespace Size: Every name returned is from 1 to M .

3. Uniqueness: Every two names returned are distinct.

The randomized renaming problem relaxes the termination condition, ensuring randomized

termination: with probability 1, every correct process returns a name. The other two properties

stay the same.

Note that the domain of values returned, which we call the target namespace, is of size M . In

the classical renaming problem [17], the parameter M may not depend on the range of the

original names. On the other hand, it may depend on the parameter n and on the number

of possible faults t . For adaptive renaming, the size of the resulting namespace should only

depend on the number of participating processes k in the current execution. In this instance of

the problem, we assume that the processes do not know the maximum number of participating

processes n, so the complexity of the protocol may only depend on the actual number of

participants k.
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If the size of the namespace matches exactly the number of participating processes, then we

say that the target namespace is tight. Consequently, the strong renaming problem requires

that the processes obtain unique names from 1 to n. The strong adaptive renaming problem

requires that k participating processes obtain consecutive names 1,2, . . . ,k. Thus, strong

adaptive renaming is the version of the problem with the largest number of constraints. To

distinguish the classical renaming problem from the adaptive version, we will denote the

classical version, where n is known, as the non-adaptive renaming problem.

3.2 Registers

The simplest base object we will use is the register. Every register supports two operations:

• read( ), which returns the current state (value) of the object,

• write(v), which changes the state of the object to value v , and returns success.

If a process pi executes a read operation on a register R, we say that pi reads R. Similarly, we

say that pi writes value v to R if it invokes a write(v) operation on register R.

3.3 Test-and-Set and Compare-and-Swap

The test-and-set object, whose sequential specification is given in Figure 3.1, can be seen as

a tournament object for n processes. In brief, the object has initial value 0, and supports a

single test-and-set operation, which atomically sets the value of the object to 1, returning the

value of the object before the invocation. Notice that at most one process may win the object

by returning the initial value 0, while all other processes lose the test-and-set by returning 1. A

key property is that no losing test-and-set operation may return before the winning operation

is invoked.

More precisely, a correct deterministic implementation of a single-use test-and-set object

ensures the following properties:

1. (Validity.) Each process entering the object returns one of two indications: 0, or 1.

2. (Termination.) Each process accessing the object eventually returns or crashes.

3. (Linearization.) Each execution has a linearization order L in which each invocation of

test-and-set is immediately followed by a response (i.e., is atomic), such that the first

response is either 0 or the caller crashes, and all later responses are either 1 or the caller

crashes.

4. (Uniqueness.) At most one process may return 0.
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Variable:1

Value, a binary atomic register,2

initially 03

procedure test-and-set()4

if Value = 0 then5

Value ← 16

return 07

else8

return 19

Figure 3.1: Sequential specification of a one-
shot test-and-set object.

Variable:1

V , a register, with initial value ⊥2

procedure compare-and-swap( oldV ,newV )3

s ←V4

if oldV = s then5

V ← newV6

return s7

else8

return s9

Figure 3.2: Sequential specification of the
compare-and-swap object.

5. (Non-triviality.) If a process accesses the object in isolation and for the first time, then it

returns 0.

For randomized test-and-set, the termination condition is replaced by the following random-

ized termination property: with probability 1, each process accessing the object eventually

returns or crashes. The other requirements stay the same.

The specification above describes a single-use (one-shot) test-and-set object, which can be

employed only once (since subsequent calls will always return value 1). A stronger variant of

the test-and-set in Figure 3.1 is a multi-use (re-settable) test-and-set, whose value can be set

back to 0 by the process that last returned 0 from the object, i.e. by the current winner.

The compare-and-swap object can be seen a generalization of the test-and-set object, whose

underlying register supports multiple values (as opposed to only 0 and 1). Its sequential

specification is presented in Figure 3.2. More precisely, a compare-and-swap object exports

the following operations:

• read and write, having the same semantics as for registers,

• compare-and-swap(oldV ,newV ), which compares the state s of the object to the value

oldV , and either (1) changes the state of the object to newV and returns oldV if s = oldV ,

or (b) returns the state s if s 6= oldV .

Notice that the compare-and-swap object can be seen as an augmented register, which also

supports the conditional compare-and-swap operation. Also note that it is trivial to implement

a test-and-set object from a compare-and-swap object.
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3.4 Consensus

Another object that we will be referring to throughout this thesis is the consensus object. This

object encapsulates the notion of agreement in a distributed setting, and is a key tool to

understand the computational power of shared-memory abstractions [56]. Its definition is as

follows.

Each process pi has an input value vi , which, for simplicity, is assumed to be an integer.

Each process should decide on an output value yi . An algorithm for deterministic consensus

satisfies the following properties:

• Agreement: For every correct processes pi and p j , their corresponding output values

are equal, i.e. yi = y j .

• Validity: For every correct process pi , if pi decides yi , then yi = v j for some process p j .

• Termination: In every execution, with probability 1, every correct process pi eventually

decides a value yi .

The randomized consensus problem replaces the termination condition with randomized

termination: with probability 1, every correct process pi eventually decides a value yi .

3.5 Counter Objects

A counter object has initial state 0, and supports operations increment and read, with the

following semantics:

• read( ), which returns the current state (value) of the object,

• increment(), which changes v , the current value of the object to v + 1, and returns

success.

A decrementable counter has the same semantics as a counter, but offers an additional

decrement( ) operation, which changes the value v of the object to v −1, and returns success.

A fetch-and-increment object supports a single operation fetch-and-inc, which changes the

value v of the object to v +1, and returns value v .
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In this chapter, we provide a general overview of research on renaming and related data

structures in the asynchronous shared memory model. Each of the later chapters contains a

precise discussion of its results in relation to previous work.

4.1 Asynchronous Shared Memory

Historically, the asynchronous shared memory model arose in the study of early operating

systems, in which several processes can run on a single processor, sharing memory, with

possibly-arbitrary interleavings of steps. Currently, variants of the asynchronous shared

memory model are used to analyze programs running on multi-processors, in which processes

may run on separate processors and communicate through shared memory. (The model is

defined in Section 2.1.)

Asynchronous shared-memory systems have been shown to have lots in common with asyn-

chronous networks, since the two models present similar algorithms and impossibility results,

even in the presence of faults. Moreover, there exist generic simulations between the two

models [16], allowing algorithms designed for one model to be executed in the other model.

Some fundamental objects studied in the context of the asynchronous shared memory model

are registers, mutual exclusion, consensus, and renaming. In particular, a significant amount

of research has studied the constructibility of strong types of registers, such as atomic multi-

writer multi-reader registers, from registers with weaker semantics. For an overview of shared-

memory register transformations, we refer the reader to [58]. (In this thesis, we assume

multi-writer multi-reader atomic registers.)

The mutual exclusion problem, defined formally in Section 7.1.1, was first identified and

solved by Edsger W. Dijkstra in a seminal 1965 paper [42]. Subsequent research has studied the

solvability and complexity of this problem in variations of the asynchronous shared-memory

model, such as cache-coherent shared memory (CC), or distributed shared memory (DSM).

We refer the reader to the surveys by Raynal [83] and Taubenfeld [86] for a detailed overview of
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this line of research.

The consensus problem, defined in Section 3.4, is arguably the most studied problem in dis-

tributed computing. A fundamental result by Fischer, Lynch, and Patterson [49] showed that

consensus is impossible in an asynchronous system in which one process may crash. The orig-

inal result was stated for asynchronous networks, and was adapted to asynchronous shared

memory by Loui and Abu-amara [69]. Significant research effort went into circumventing

this impossibility, either by using stronger timing assumptions, e.g. [43, 20], by using failure

detectors, which encapsulate the synchrony assumptions needed to overcome these impos-

sibilities, e.g. [37, 36], or by the use of randomization, e.g. [15, 18]. In particular, it is known

thatΘ(n2) expected total process steps are necessary and sufficient to achieve asynchronous

shared-memory consensus [18].

4.2 Renaming

The renaming problem, defined in Section 3.1, can be seen as the dual of the consensus

problem: if for consensus processes have to agree on a single value, in the renaming problem

processes have to disagree, i.e. return distinct values from a small namespace. The problem

was introduced by Attiya et al. [17], in the asynchronous network model. The paper presented

a non-adaptive algorithm that achieves (2n −1) names in the presence of t < n faults, and

showed that a tight namespace of n names cannot be achieved in an asynchronous system

with crash failures. It also introduced and studied a version of the problem called order-

preserving renaming, in which the final names have to respect the relative order of the initial

names.

For synchronous message-passing systems, Chaudhuri et al. [38] gave a wait-free algorithm

for strong renaming in O(logn) rounds of communication, and proved that this upper bound

is asymptotically tight if the number of process failures is t ≤ n − 1 and the algorithm is

comparison-based. Attiya and Djerassi-Shintel [19] studied the complexity of renaming in a

semi-synchronous message-passing system, subject to timing faults. They obtained a strong

renaming algorithm with O(logn) rounds of broadcast and proved a Ω(logn) time lower

bound when algorithms are comparison-based or when the initial namespace is large enough

compared to n. Both these algorithms can be made adaptive, to obtain a running time of

O(logk). Okun [78] presented a strong renaming algorithm that is also order-preserving, with

O(logn) time complexity. The algorithm exploits a new connection between renaming and

approximate agreement [46]. Recently, Alistarh et al. [10] analyzed Okun’s algorithm and

showed that it is also early-deciding, i.e. its running time can adapt to the number of failures

f ≤ n − 1 in the execution. In particular, they showed that the algorithm terminates in a

constant number of rounds, if f <p
n, and in O(log f ) rounds otherwise.

The first shared-memory renaming algorithm was given by Bar-Noy and Dolev [27], who

ported the synchronous message-passing algorithm of Attiya et al. [17] to use only reads and

writes. They obtained an algorithm with namespace size (k2 + k)/2 that uses O(n2) steps
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per operation, and an algorithm with a namespace size of (2k −1) using O(n ·4n) steps per

operation.

Early work on lower bounds focused on the size of the namespace that can be achieved

using only reads and writes. Burns and Peterson [33] proved that long-lived renaming in a

namespace of size m(k) is impossible in asynchronous shared memory using reads and writes

if m(k) < 2k −1. They also gave the first long-lived (2k −1)-renaming algorithm. (However, the

complexity of this algorithm depends on the size of the initial namespace, which is not allowed

by the original problem specification [17].) In a landmark paper, Herlihy and Shavit [57]

used algebraic topology to show that there exist values of k for which (2k −2)-renaming is

impossible. Recently, Castañeda and Rajsbaum [34, 35] proved that if k is a prime power,

then m(k) ≥ 2k −1 is necessary, and, otherwise, there exists an algorithm with m(k) = 2k −2.

Anonymous renaming, where processes do not have initial identifiers, cannot be achieved with

probability 1 using only reads and writes, since one cannot distinguish between processes

in the same state, and thus two processes may always decide on the same name. A formal

version of this argument can be found in [68, 65].

Afek and Merritt [4] presented an adaptive read-write renaming algorithm with optimal names-

pace of size (2k − 1), and O(k2) step complexity. Attiya and Fouren [21] gave an adaptive

(6k −1)-renaming algorithm with O(k logk) step complexity. Chlebus and Kowalski [39] gave

an adaptive (8k − logk −1)-renaming algorithm with O(k) step complexity. For long-lived

adaptive renaming, there exist implementations with O(k2) time complexity for renaming into

a namespace of size O(k2), e.g. [2]. The fastest such algorithm with optimal (2k −1) names-

pace size has O(k4) step complexity [21]. Using load-linked and store-conditional primitives,

Brodsky et al. [32] gave a linear-time algorithm with a tight namespace. (Their paper also

presents an efficient synchronous shared-memory algorithm.)

The relation between renaming and stronger primitives such as fetch-and-increment or test-

and-set was investigated by Moir and Anderson [72]. Fetch-and-increment can be used to

solve renaming trivially, since each process can return the result of the operation plus 1 as

its new name. Renaming can be solved by using an array of test-and-set objects, where each

process accesses test-and-set objects until winning the first one. The process then returns the

index of the test-and-set object that it has acquired. (An efficient generalization of this strategy

is given in Section 6.5.) Moir and Anderson [72] also present implementations of renaming

from registers supporting set-first-zero and bitwise-and operations.

Randomization is a natural approach for obtaining names, since random coin flips can be used

to “balance” the processes’ choices. A trivial solution when n is known is to have processes

try out random names from 1 to n2. Name uniqueness can be validated using deterministic

splitter objects, and the algorithm uses a constant number of steps in expectation, since, by

the birthday paradox, the probability of collision is very small. The feasibility of randomized

renaming in asynchronous shared memory was first considered by Panconesi et al. [79]. They

presented a non-adaptive wait-free solution with a namespace of size n(1+ε) for ε> 0 constant,
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with expected O(M log2 n) running time, where M is the size of the initial namespace.

A second paper to analyze randomized renaming was by Eberly et al. [44]. The authors obtain

a strong non-adaptive renaming algorithm based on the randomized wait-free test-and-set

implementation of Afek et al. [3]. Their algorithm is long-lived, and is shown to have amortized

step complexity O(n logn). The average-case total step complexity isΘ(n3).

4.3 Counting Data Structures

Many multi-processor coordination tasks can be expressed as counting problems, where

processes assign values from a given range. Thus, there has been considerable work on

counting data structures over the last few decades. Counting networks [14] are an example

of such data structures, where processes interact with a counter by traversing a network of

balancer objects1. Efficient counting networks with O( polylog n ) complexity are known [14].

Counting networks are similar to the renaming networks presented in Section 6.2.1: however,

the aim of a counting network is to balance the number of processes exiting on the output

ports, whereas renaming networks ensure that no two processes reach the same output port.

As a consequence, the structure and applications of counting networks are in general different

than those of renaming networks.

Another well-studied object is the counter. A linear-time deterministic atomic counter im-

plementation follows from the atomic snapshot construction of Afek et al. [1]. Jayanti et

al. [61] provedΩ(n) space and time lower bounds for deterministic counter implementations

if processes may access the object multiple times, while Jayanti [60] gaveΩ(logn) time lower

bounds for counter objects using reads, writes, or load-linked/store-conditional operations.

A technical breakthrough by Aspnes et al. [12] leveraged the fact that objects may be accessed

for a limited number of times to give an m-valued max register implementation with O(logm)

time complexity, and a O(logm logn) upper bound for deterministic wait-free counters with

maximal value m. Recently [13], this technique was generalized to obtain atomic snapshots

with O(log2 b · logn) time complexity for a scan, and O(logb) complexity for an update, where

b is the number of update operations performed on the object.

1Intuitively, a balancer acts as a toggle mechanism. It has two inputs and two outputs; processes enter the
object on its inputs, and the balancer alternates sending processes to its top and bottom output wires.
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5 Test-and-Set in O(logk) Steps

In this chapter, we present randomized algorithms for adaptive test-and-set and adaptive

renaming. We begin by presenting an adaptive test-and-set implementation with step com-

plexity O(logk) in executions where k processes participate, with high probability. We then

notice that this implementation can be used to solve renaming into a polynomial namespace

in k, with O(logk) complexity, both with high probability.

We start by presenting an adaptive implementation of a randomized adaptive test-and-set

object. The implementation we present is single-use, or one-shot; however, it can be easily

transformed into a multi-use implementation using standard techniques, e.g. [3]. The defini-

tion and sequential specification of the test-and-set object are given in Section 3.3. In brief, a

test-and-set object can be seen as a tournament object for n processes. The object has initial

value 0, and supports a single test-and-set operation, which atomically sets the value of the

object to 1, returning the value of the object before the invocation. Notice that at most one

process may win the test-and-set by returning the initial value 0, while all other processes lose

the test-and-set object, returning 1. A key property is that no losing test-and-set operation

may return before the winning operation is invoked.

Note that one-shot test-and-set cannot be implemented deterministically wait-free in asyn-

chronous shared memory, since it can solve consensus for two processes; see [56]. We present

an efficient randomized implementation that guarantees the desired properties with probabil-

ity 1, and is linearizable, following the definition given in [59]. Our implementation is adaptive,

in that the complexity of an operation depends on the contention k at the object, and not

on n, the total number of processes. An implementation of test-and-set that ensures the

linearization property will provide a total order over the completed test-and-set invocations,

so that the resulting sequence of operations is consistent with a sequential execution.

We begin the presentation by describing some auxiliary objects used by our algorithm. In

Section 5.2, we describe the implementation in detail, and analyze its correctness and com-

plexity. In Section 5.3, we show that the algorithm can be easily modified to obtain an adaptive

renaming solution. We give an overview of related work in Section 5.4.
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Shared:1

G ,S, atomic registers, initially ⊥2

procedure split(idi )3

G ← idi4

if S = true then5

return right6

S ← true7

if G = idi then8

return stop9

else10

return left11

Figure 5.1: Implementation of a deterministic
splitter object.

Shared:1

G ,S, atomic registers, initially ⊥2

procedure split(idi )3

G ← idi4

if S = true then5

if coin(0,1) = 0 then return right6

else return left7

S ← true8

if G = idi then return stop9

else10

if coin(0,1) = 0 then return right11

else return left12

Figure 5.2: Implementation of a randomized
splitter object.

5.1 Auxiliary Objects

5.1.1 Splitters and Randomized Splitters

A splitter object [66, 72] is a weak synchronization primitive for n processes. It provides a

single operation split, which processes call with their initial identifier idi as an argument. Each

correct process should return one of three values {left,right,stop}. The object guarantees the

following properties.

• In an execution in which k ≥ 1 processes access the object, at most k−1 processes return

left, and at most k −1 processes return right.

• At most one process returns stop.

Notice that the first property implies that if a single correct process calls split, then the process

returns stop. The splitter object can be implemented wait-free using registers [66, 72]. The

pseudocode for the implementation is given in Figure 5.3.

The randomized splitter object is a variant of the splitter providing probabilistic guarantees on

the number of processes returning left or right. It ensures the following properties.

• At most one process returns stop.

• If a single correct process calls split, then the process returns stop.

• If a correct process does not return stop, then the probability that it returns left equals

the probability that it returns right, which equals 1/2.
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The splitter

[Moir & Anderson, 1995]

Solo-winner: 
A process stops if it is alone in the splitter.

stop

left

right

k processes

��k-1 processes

��k-1 processes

��1 process

16

Figure 5.3: Deterministic splitter.

stop
≤ 1 

process

k 
processes

Pr [left] = 
1/ 2

Pr [right] = 
1/ 2

Figure 5.4: Randomized splitter.

The randomized splitter was introduced in [25], where it was shown that it can be implemented

wait-free using registers. The pseudocode for the implementation is given in Figure 5.4.

Splitters and Renaming. The splitter object was introduced in the context of mutual exclu-

sion [66]. Another interesting use of this object is in the context of the renaming problem.

Anderson and Moir [72] noticed that splitters can be connected in a rectangular grid, as de-

scribed in Figure 5.7. Since the key property of the splitter is that it changes direction for at

least one of the calling processes, they show that a single process may access at most k −1 dis-

tinct splitter objects in the grid before returning stop at one of these objects. Given a labeling

of the splitters as in Figure 5.7, each process may return the label of the splitter it returned

stop from as its new name. A simple analysis yields that the names returned are from 1 to k2.

The randomized splitter object was introduced in the context of the adaptive collect prob-

lem [25]. The authors noticed that a binary tree of randomized splitter objects can be used to

assign unique identifiers to processes from a namespace which only depends on the number

of participants k. We analyze the properties of this procedure in the next section.

5.1.2 Randomized Test-and-Set for Two and Three Processes

Our test-and-set implementation for n processes uses a randomized two-process test-and-set

implementation using only registers. This object satisfies the definition of randomized test-

and-set as given in Section 3.3, assuming that only two processes may access the object. The

implementation we use is that of Tromp and Vitanyi [87], described in Figure 5.5.

Description. The algorithm uses two four-valued registers R0 and R1. The four possible values

of these registers are me, he, choose, and rst. Each process pi solely writes to register Ri , and

only reads the variable R1−i . Each process first checks whether the object has already been

won. If not, then the process proposes itself as the winner, and proceeds to perform a sequence

of asynchronous choosing rounds. In each such round, the process marks its register with

value choose, then it reads the value of the other process’s register. If the other process gave up,

i.e. R1−i = he, or the other processes is choosing as well and the local coin flip returns 0, then

the process proposes itself as the winner. Otherwise, the process gives up by writing he to the
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Shared:1

Registers R0,R12

procedure test-and-set( )3

if Ri = he and R1−i 6= rst then4

return 15

Ri ← me6

while R1−i = Ri do7

Ri ← choose8

if R1−i = he or (R1−i = choose and coin(0,1) = 0) then9

Ri ← me10

else Ri ← he11

if Ri = me then return 012

else return 113

Figure 5.5: Implementation of the two-process test-and-set object [87].

register Ri . The algorithm returns as soon as the two processes have written distinct values in

their registers. If the register Ri has value me, then the process is the winner of the current

instance of the test-and-set operation; otherwise, the process loses and returns 1.

Notice that the iterations in the while loop may continue if and only if both processes flip the

same coin combination in an iteration. This occurs with probability 1/2 in every iteration.

We now state the properties of this algorithm, whose proofs may be found in the original

paper [87].

Theorem 1. The two-process test-and-set implementation of [87] given in Figure 5.5 ensures

the following properties.

• (Single Winner) In any execution, at most one process may return 0.

• (Winner-Loser Ordering) Given any test-and-set operation τ that returns 1, there exists

another test-and-set operation w, starting before τ returns, such that w either (i) returns

0 or (ii) does not complete.

• (Probabilistic Termination) Operation by correct processes terminate with probability 1.

• (Complexity) The algorithm has expected constant read-write step complexity. Given a

constant α≥ 1, the probability that a process performs more than α log` reads and writes

while running the algorithm is at most 1/`2.

The first two processes imply that the implementation is linearizable.

Proposition 2. The test-and-set algorithm of [87] is linearizable.

Randomized test-and-set for three processes. In the next section, we will need a test-and-set

object implementation that can be accessed by three processes. We will implement this from
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two two-process test-and-set objects T1 and T2. Assume that the object is accessed by three

processes p1, p2, p3, where each process knows its index i ∈ {1,2,3}. Processes p1 and p2 will

participate in object T1. The winner of T1 will participate in T2 with process p3. The winner of

object T3 is the overall winner of the three-process test-and-set object. It is trivial to check that

this implementation describes a correct three-process test-and-set. Note that the two-process

test-and-set matches are decided in a wait-free manner, since a process wins automatically if

the opponent does not show up.

5.2 The RatRace Algorithm

Now we are ready to present our adaptive one-shot test-and-set implementation. If k is

the contention in the current execution, any test-and-set operation on the object has step

complexity O(logk) per process with high probability in k1. The algorithm pre-allocates O(n3)

memory, and uses O(k) memory with high probability. A sketch of the algorithm’s structure

can be found in Figure 5.8.

Algorithm Structure. Fix a constant c ≥ 3. The algorithm is based on a binary tree structure,

of height c logn +1, which we call the primary tree. Each node v in this primary tree has two

components: one randomized splitter object RSv , and a three-process test-and-set object Tv .

Both these objects are implemented as described in Section 5.1. Each randomized splitter RSv

has two associated pointers, referring to splitter objects corresponding to the left and right

children of node v . Thus, if node v has children ` (left) and r (right), the left pointer of RSv will

refer to RS`, while the right pointer refers to RSr . Further, any process pi returning left from

the randomized splitter RSv will call the split procedure of RS`, while processes returning

right will call the split procedure of RSr .

Processes start at the root node of the primary tree, and proceed left or right (with probability

1/2) through the tree until first returning stop at the splitter RSv associated to some node v .

If a process reaches a leaf of the primary tree without having acquired a splitter, it accesses

a backup grid, which we describe in the next paragraph. To simplify the exposition, assume

that, in the execution we describe, all processes either obtained randomized splitters in the

first tree, or crashed. Once it managed to obtain a splitter, the process tries to work its way

up back to the root, through a series of three-process “tournaments," one at each splitter

node. Each splitter in the primary tree has associated with it a three-player “tournament,"

which is played between the owner of the splitter (if any) and the winners of the three-player

test-and-sets corresponding to the two child nodes of the splitter. A three-player test-and-set

is decided as follows: the two child nodes first play each other (they are processes p1 and p2

in the three-process test-and-set described in Section 5.1). The owner of the current splitter

plays the winner of the first two-process test-and-set (this process is p3 in the three-process

1Notice that, if the contention k is small, the failure probability O(1/kc ) with c ≥ 2 constant may be non-
negligible. In this case, the failure probability can be made to depend on the parameter n at the cost of a
multiplicative O(logn) factor in the running time of the algorithm.
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Shared:1

The primary tree PT , a binary tree of height 3logn. index is the index of the node in a2

breadth-first-search labeling of the tree. Processes share a backup grid B of deterministic
splitters, accessed through the walk-backup-grid procedure. Its pseudocode is similar to that
of the primary tree, and is skipped. The winner from the primary tree meets the winner from
the backup grid in a final two-process test-and-set TD . The register RD is initially false.

procedure test-and-set( )3

if Resolved = true then return 14

walk-down( PT .root )5

procedure walk-down (v)6

res ← RSv .split(id)7

if res = stop then8

name ← v.index9

val ← Tv .test-and-set( )10

if val = 0 then11

walk-up( v.parent )12

else13

Resolved ← true14

return 115

else16

if v is a leaf then17

walk-backup-grid(B)18

if res = left then19

walk-down(v.left)20

else walk-down(v.right)21

procedure walk-up(v)22

res ← Tv .test-and-set( )23

if res = 1 then24

Resolved ← true25

return 126

if v.parent = null then27

decide( )28

else walk-up( v.parent )29

procedure decide( )30

res ← TD .test-and-set( )31

if res = 1 then32

Resolved ← true33

return 134

else35

return 036

Figure 5.6: Pseudocode of the one-shot n-process test-and-set object.
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Figure 5.7: Structure of the backup grid.

test-and-set described in Section 5.1). Recall that each two-player match is decided using the

randomized two-process test-and-set algorithm of Tromp and Vitànyi [87].

We say that a process acquires a splitter s if it returns stop at the splitter s. So far, we have

described a process’s walk down the tree, and the corresponding walk up to the root in the

case where every process acquires a splitter object in the primary tree. We now describe the

procedure if a process “falls off" at a leaf in the primary tree.

The Backup Grid. The backup grid is an n ×n grid of deterministic splitters, identical to

that of Anderson and Moir [72], where the two children of a splitter are the splitter to its

right, and the one below. Each process starts the backup algorithm at the top left splitter. As

such, the structure guarantees that any correct process that accesses it eventually acquires a

deterministic splitter. Just as in the previous case, once a process acquires a splitter, it tries to

backtrack to the entry point through a series of three-player test-and-sets. The winner of the

test-and-set corresponding to the entry splitter is also the winner of the backup grid.

Decision. The winner of the three-player test-and-set at the root of the primary tree plays the

winner of three-process test-and-set the entry splitter in the backup grid. The winner of this

last match returns 0. Every process that loses in a three-player test-and-set returns 1.

Linearization. To maintain the linearizability of the test-and-set object, a processes that loses

any two or three player test-and-set writes true to a multi-writer-multi-reader Resolved register

associated with the root of the primary tree, before returning 1. Processes read the register as

the first step in their test-and-set invocation: if they read true, they immediately return 1.
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Resolved? 

1/2 1/2

1/2
Height = 3logn

1/2 1/2

Figure 5.8: Structure of the RatRace protocol.

5.2.1 Analysis of the RatRace Algorithm

Correctness. We first check that the RatRace algorithm guarantees the correctness properties

of the test-and-set object as stated in Section 5.2. The first step is the observation that the

two-process and three-process test-and-set objects used by the algorithm are well-formed, i.e.

they may only be accessed by the corresponding number of processes.

Lemma 1. In any execution of the algorithm, a two-process test-and-set is accessed by at most

two processes. A three-process test-and-set is accessed by at most three processes.

Proof. This claim follows trivially by backward induction over the height of the primary tree,

and over the depth of the backup grid.

For the primary tree, the key observation in the induction step is the following. Since at most

one process may return stop at the splitter object corresponding to a node v , and at most two

other distinct processes may win the test-and-sets corresponding to the children of the node

(which are well-formed by the induction base), at most three distinct processes may access

the three-process test-and-set corresponding to node v , and hence this object is well-formed.

The claim is identical for the backup grid. Therefore, at most two processes (the winner from

the root of the primary tree and the winner from the root of the backup grid) may access the

deciding two-process test-and-set TD , so this object is well-formed as well.

Lemma 2. The RatRace implementation guarantees the following correctness properties.

1. (Single Winner) In any execution, at most one process may return 0.

2. (Winner-Loser Ordering) Given any test-and-set operation τ that returns 1, there exists

another test-and-set operation w, starting before τ returns, such that w either (i) returns

0 or (ii) does not complete.
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3. (Probabilistic Termination) Every correct process returns with probability 1.

Proof. For the single winner property, first notice that Lemma 1 ensures that all the test-and-

sets used by the algorithm are well-formed, therefore these objects ensure the properties of a

correct implementation.

In particular, this is true for the “deciding" two-process test-and-set TD , therefore a single pro-

cess may return 0 from the TD , since this object ensures the single winner property. Therefore,

RatRace also ensures single winner.

For the winner-loser ordering property, we consider an arbitrary execution E of the protocol,

and a process p` executing operation τ that returns 1 in E . We prove that there has to exist an

operation w by process pw which starts before τ and may not return 1.

By the structure of the protocol, there are two cases: either the process p` returned 1 because

it lost in a two- or three-process test-and-set T1, or because it read Resolved = true. We start

by considering the first case.

If p` returned 1 because it lost a low-level test-and-set operation on object T1, then, since

T1 ensures the winner-loser ordering property, there has to exist an operation w1 by some

process p1 which started before τ returned from the invocation on T1, and may not return

value 1 from T1. If w1 does not return from its invocation on T1, then we are done, since w1

does not return from its invocation on RatRace either. Otherwise, there are two cases. If p1

returns 0 from its invocation on RatRace, then we are done.

Otherwise, p1 returns 1, and therefore it must have lost a two- or three-process test-and-set

T2 as part of the algorithm. We apply the same rationale inductively, and we obtain that there

exists a maximal chain of processes p1, p2, . . . , p j , with operations w1, w2, . . . , w j on RatRace,

such that, for any 1 ≤ i ≤ k −1, process pi “lost" to process pi+1 in a two- or three-process

test-and-set Ti . Notice that the length of this chain is at most k −1, where k is the number of

processes participating in the current execution.

We assume that this process chain p`, p1, . . . , p j is maximal, in that process p j does not lose

to another process p j+1 on an object T j+1 in this execution. Therefore, there are only two

possibilities for p j : either p j is correct and returns 0 from RatRace, or p j crashes.

Therefore, we only need to prove that p j ’s test-and-set operation w j started before p`’s test-

and-set operation returns. This is ensured by the Resolved bit mechanism. Recall that, upon

returning 1, a process first sets the Resolved bit to true. Therefore, by the atomicity of the

Resolved register, any operation that starts after p`’s operation ends will read Resolved = true,

and therefore automatically return 1. Therefore, operation w j cannot start after p`’s operation

ends. Hence, we have found an operation w j , starting before τ returns, such that it either

returns 0 or does does not complete, proving our claim in this case.

The second case is when p` returned because it read true from the Resolved register. Since the
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initial value of this register is false, there exists another operation p1 invoking operation w1

which wrote true to Resolved. By the structure of the algorithm, this operation either returns 1

since it lost a test-and-set object, or does not terminate. In the latter case, the claim follows.

In the former case, by the previous argument, there exists another operation w , which starts

before operation w1 writes true to Resolved, and either returns 0 or does not complete. Since

this operation starts before p1 writes true to Resolved, it must also start before p` returns from

τ, which concludes the proof of this claim.

Finally, for the probabilistic termination property, notice that the algorithm uses only wait-free

elements and the two-process test-and-set algorithm of [87], which ensures termination with

probability 1. Therefore, every test-and-set invocation in RatRace will also terminate with

probability 1.

The immediate consequence of this Lemma is that the RatRace algorithm implements a

linearizable test-and-set object, ensuring termination with probability 1.

Lemma 3 (Linearization). The RatRace algorithm is linearizable: for every execution of Ra-

tRace, there exists a total order over all the complete test-and-set operations together with

a subset of the incomplete test-and-set operations such that every operation is immediately

(atomically) followed by a response, and the sequence of operations given by that total order is

consistent with a sequential execution of a test-and-set object.

Proof. Consider an arbitrary execution E of an instance T of RatRace. We show that E is

linearizable.

We may construct the linearization order for E as follows. Consider the set of operations that

result in a 1 response indication in E . We linearize these operations based on the order in

which the respective processes wrote in the Resolved register. We consider op to be the first

losing operation in this linearization order, and let p be the respective caller. Notice that, once

p returns 1 from T , every process accessing the object after p returns will receive a 1 indication

(or crashes).

On the other hand, notice that, by Lemma 2, for any response of 1 returned by an operation τ

on T , there exists an operation w such that either (1) w is a completed operation that returns

0, or (2) w is an incomplete operation (a crash), that starts before the call that generated the

1 response. Also, there may exist at most one such operation that returns 0. In particular,

let w be this operation corresponding to operation op defined above. Therefore, w may

be linearized before operation op, and either returns 0 or crashes. We have thus defined a

total order on all completed operations, which matches the sequential specification of the

test-and-set object.
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Performance. We now analyze the performance of RatRace. Recall that k denotes the number

of processes that enter the RatRace in an execution E , i.e. the total contention. The next result

states that, with high probability, every process acquires a splitter in the primary tree. As

a consequence of this fact, for the rest of the performance analysis, we will assume that all

processes acquire nodes in the primary tree, since the backup case is extremely unlikely. The

proof is similar to the analysis in [25], Lemma 8.

Lemma 4. For any c ≥ 3 constant, the probability that there exists a process q that does not

acquire a randomized splitter in the primary tree of the RatRace object is at most 1/nc−2.

Proof. Let q be a process that does not manage to acquire any splitter in the primary tree.

Hence, q did not manage to acquire the leaf splitter it reached in the primary tree. Since, by the

properties of a splitter, a process always acquires a splitter if it accesses it alone, this implies

that another process q ′ accessed the same leaf splitter. However, the leaf splitter is accessed by

q as a consequence of c logn −1 random choices of bits, i.e. the choices of left/right direction

at every internal node. Hence the process q ′ must have performed the exact same random

choices at internal nodes as process q . Fix a process q ′ such that this event occurs. Since

the choices of each process are independent, the probability that the event occurs is upper

bounded by (
1

2

)(c logn+1)−1

= 1/nc .

We take the union bound over all possible k ≤ n processes, and obtain that the probability

that there exists a process that performs exactly the same random choices as q is at most

k/nc ≤ 1/nc−1. This gives us the probability that, for a given process q that accesses a leaf

splitter, there exists another process that accesses the same leaf.

Taking the union bound over all n possible choices for q , it follows that the probability that

there exists some process p that “falls off" the primary tree is at most 1/nc−2, as desired.

We now bound the step complexity of the protocol. First, we say that a node v in the primary

tree is marked if the splitter at v is accessed during the execution by some process. Let the

active primary tree AT denote the minimal subtree of the primary tree containing all splitters

that are marked in the execution. We give a probabilistic bound on the height of the primary

tree, which will also bound the number of steps a process may take in the execution.

Lemma 5. For any c ≥ 1, the height of the primary tree is at most (c+2) logk+1, with probability

at least 1−1/kc .

Proof. Consider the walk w that a process p performs until acquiring a splitter. At each step,

this walk w can either stop, if the process acquires the splitter, or continue, if there exists

another process q that performs the same walk up to the current node, and accesses the

splitter object at the end of w concurrently with p. The probability that this event occurs

depends on the length of the walk w , as follows.
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Assume that the walk w by process p has length ≥ (c +2)logk +1, with c ≥ 1. Then, by the

properties of a splitter, there has to exist (at least) one other process q that accesses the splitter

at position (c +2)logk in the walk, concurrently with p. Necessarily, the process q must have

made the same random choices as p, and is scheduled by the adversary so as to block p

from acquiring the last splitter in w . The probability that a given process q makes the same

(c +2)logk random choices as p leading to the last node in w is at most(
1

2

)(c+2)logk

=
(

1

k

)c+2

.

Therefore, by a union bound, the probability that there exists a process q , among the k −1

other processes, making the same random choices as p, is at most
( 1

k

)c+1
. Finally, by another

union bound over all k paths, one for each process, we obtain that the probability that there

exists a path of length more than (c +2)logk +1 is at most
( 1

k

)c
, as desired.

Next, we look at the read-write complexity of the two-process test-and-set algorithm of Tromp

and Vitànyi [87] that we use to decide the two-process games. The following bounds follow

from an analysis of the algorithm. Its proof is given in [87], Theorem 5.13.

Lemma 6 (Tromp and Vitànyi [87]). The randomized two-process test-and-set algorithm of [87]

has expected read-write complexity of 11 steps. For any integer ` ≥ 1, the probability that a

process takes more than 11 ·` steps as part of the protocol is at most (1/2)`−1.

The next result analyzes the step complexity of RatRace.

Lemma 7 (Step Complexity). The RatRace algorithm uses O(logk) steps per process, with high

probability in k. Hence, the total step complexity is O(k logk), with high probability in k.

Proof. Without loss of generality, we analyze the number of steps performed by a winning

process. First note that, by Lemma 4, it is enough to bound the complexity in the case where the

process only accesses the primary tree, since the other case occurs with negligible probability.

By Lemma 5, since each randomized splitter takes at most 8 steps, the process performs

8((c +2)logk +1) steps when going down the tree in order to acquire a randomized splitter,

with probability at least 1− (1/k)c .

Also, when climbing back up, the process plays up to m = 2(c +2) logk +1 two-player test-and

set games, with high probability (where the extra factor of two comes from the fact that each

node contains a three-player test-and-set, composed of two-player test-and-sets). We now

bound the number of steps that a process may take as part of these m matches.

For i = 1, . . . ,m, let Yi be the random variable counting the number of 11-step rounds that

the process executes in the two-process test-and-set with index i on its walk back to the root.

Lemma 6 ensures that each such random variable is geometrically distributed, with probability

44



5.3. RatRace as a renaming algorithm

Pr(Yi = `) = (1/2)`. The total number of steps that the process performs is upper bounded by

a constant times Z =∑m
i=1 Yi .

The random variable Y can be seen as a constant times the number of Bernoulli trials with

probability 1/2 until there are m successes, i.e. the distribution of Y is a negative binomial

distribution. Thus,

Pr(Y = y) =
(

y −1

m −1

)(
1

2

)y

.

For y ≥ 5m, we have that
Pr(Y = y +1)

Pr(Y = y)
= y

2(y −m +1)
≤ 5

8
.

Therefore, for y ≥ 5m, Pr (Y ≥ 5m) can be upper bounded by a geometric series, and we get

Pr(Y ≥ 5m) ≤ 8

3
Pr(Y = 5m) ≤ 8

3

(
5m −1

m −1

)(
1

2

)5m

≤ 8

3

(
(5m −1)e

m −1

)m−1 (
1

2

)5m

≤
(

1

2

)m

.

Therefore, since m = 2(c +2)logk +1, we obtain that the probability that a specific process p

takes more than 11(2(c +2)logk +1) steps in the execution is at most (1/k)22(c+2) . By taking a

union bound over the k processes, we obtain that the probability of any process taking more

than O(logk) steps in the ascent to the root is at most (1/k)β, for some constant β ≥ 2, as

desired.

Summing up over the descent to acquire a splitter and the ascent towards the root, we obtain

that every process performs O(logk) steps, with probability at least 1− (1/k)α, for a constant

α= min(c,β)−1. The total step complexity upper bound is straightforward.

5.3 RatRace as a renaming algorithm

Consider a breadth-first search labeling of the primary tree, and a labeling of the backup

deterministic splitter grid, as given in Figure 5.7. We transform RatRace into a renaming

algorithm as follows.

• Each process that acquires a randomized splitter in the primary tree returns the label of

the corresponding node in the breadth-first labeling, on line 9.

• Each process that acquires a deterministic splitter returns the label of the corresponding

node plus an additive factor of 2c logn+1 = 2nc . (This factor will ensure that the primary

and backup namespaces do not clash.)

Lemma 5 ensures that the namespace returned by this algorithm is of size 2kc , with probability

at least 1− 1/kc . Lemma 7 ensures that the algorithm has step complexity O(logk), with

probability at least 1−1/kc . We formalize this as follows.

45



Chapter 5. Test-and-Set in O(logk) Steps

Lemma 8 (RatRace Renaming). The RatRace algorithm yields an adaptive renaming algorithm

ensuring a namespace of size O(kc ) in O(logk) steps, both with high probability in k.

Proof. Termination with probability 1 follows from Lemma 2. The upper bounds on step

complexity follow from Lemma 7. Name uniqueness follows from the fact that no splitter may

be acquired by two processes. Finally, notice that Lemma 7 ensures that a process stops at a

splitter of height b logk, with probability at least 1− (1/k)α, for constants α and b ≥ 1. Since

the names assigned are from a breadth-first search labeling of the tree, the names assigned are

from 1 to kb , with probability 1− (1/k)α. This completes the proof.

5.4 Related Work

The test-and-set instruction has been present in hardware for several decades, as a simple

means of implementing mutual exclusion. Herlihy [56] showed that this object has consensus

number 2, i.e. that it can implement consensus for two processes, but it cannot implement

consensus for three processes.

Several references studied wait-free randomized implementations of test-and-set. Refer-

ences [82, 55] presented implementations with super-linear step complexity. (Randomized

consensus algorithms also implement test-and-set, however their step complexity is at least

linear [18].) The first randomized implementation with logarithmic step complexity was by

Afek et al. [3], who extended the mutual exclusion tournament tree idea of Peterson and

Fischer [81], where the tree nodes are two-process test-and-set (consensus) implementations

as presented by Tromp and Vitanyi [87]. Their construction has expected step complexity

O(logn). This technique is made adaptive by the RatRace protocol, originally published

in [9]. The RatRace protocol has been used as a sub-procedure for obtaining sub-logarithmic

test-and-set against a weak adversary [6].

References [53, 52] give deterministic test-and-set and compare-and-swap implementations

with constant complexity in terms of remote memory references (RMRs), in an asynchronous

shared-memory model with no process failures (by contrast, our implementation is wait-free;

its step complexity is also an upper bound on its RMR complexity, although we do not explicitly

optimize for the RMR complexity metric). Reference [3] gives a procedure to transform a single-

use test-and-set protocol into a multi-use, resettable version. This procedure was generalized

in [6], and also applies to the RatRace protocol.
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6 Randomized Strong Renaming in
Logarithmic Time

In the previous chapter, we have presented a randomized implementation for a test-and-set

object, which elects one winner from a set of k participating processes. In this chapter, we

present algorithms for strong renaming, which ensures a namespace that matches the number

of participants. If test-and-set can be seen as a single-winner distributed tournament object,

renaming can be seen as a generalized distributed tournament, which assigns a unique rank

to each participant.

We give two algorithms. The first is adaptive, i.e. its namespace size always matches the

contention k in the execution. The second is non-adaptive, i.e. its namespace size is n, but

uses linear space, assuming test-and-set operations are present in hardware.

Renaming networks. The first algorithm is based on a connection between renaming and

sorting networks, a data structure used for sorting sequences of numbers. In brief, we start

from a sorting network, and replace the comparator objects with two-process test-and-set

objects, to obtain an object we call a renaming network. The algorithm works as follows: each

process is assigned a unique input port, and follows a path through the network determined

by leaving each two-process test-and-set on its higher output wire if it wins the test-and-set,

and on its lower output wire if it loses. The output name is the index (from top to bottom) of

the output port it reaches. The expected step complexity of the algorithm is equal to the depth

of the sorting network.

There are two major obstacles to turning this idea into a strong adaptive renaming algorithm.

The first is that this construction is not adaptive. Since the step complexity of running the

renaming network depends on the number of input ports assigned, then, if we simply use the

processes’ initial names to assign input ports, we will obtain an algorithm with worst-case

step complexityΘ(log M), which does not adapt to the number of participants k (in fact, this

dependency is not allowed by the formal specification of the renaming problem [17]). The

second obstacle is that a regular sorting network construction has a fixed number of input

ports. Since we would like to avoid assuming any bound on the contention k in the execution,

we need to build a sorting network that “extends" its size as the number of processes increases.
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Chapter 6. Randomized Strong Renaming in Logarithmic Time

In the following, we show how to overcome these problems, and obtain a strong adaptive

renaming algorithm with complexity O(logk), with high probability in k1. This is the first algo-

rithm that achieved sub-linear complexity. We then show how to use it to obtain randomized

implementations of counter and fetch-and-increment objects. Further, the existence of this

algorithm will have important implications from the point of view of lower bounds for the

renaming problem, as we will see in Chapter 7.

Bit batching. The second algorithm assigns unique names to processes by repeatedly sam-

pling over batches of test-and-set bits of decreasing size. More precisely, we split a sequence

of n registers in batches of exponentially decreasing size, such that the first batch contains

the first half of the registers, the second contains the next quarter, and so on, until we reach

batches of size Θ(logn). Processes perform test-and-set operations on Θ(logn) registers in

each batch, until first winning a test-and-set. A careful analysis shows that, somewhat surpris-

ingly, every process obtains a test-and-set object before completing its test-and-set operations

on the last batch, with high probability.

In Section 6.1, we give some background on sorting networks and counters. In Section 6.2, we

show how to solve renaming using a sorting network of fixed size. We give an extensible sorting

network construction in Section 6.3.1, and show how to assign input ports to this network in

an adaptive manner in Section 6.3.2. We present some applications to counting objects in

Section 6.4. The BitBatching algorithm is presented in Section 6.5. Finally, we give an overview

of related work in Section 6.6.

6.1 Preliminaries

6.1.1 Sorting Networks

A sorting network is a comparison network that always sorts its inputs, therefore we will

start with the description of comparison networks. We follow the description from [41]. A

comparison network is a network composed solely of wires and comparators. A comparator is

a device with two inputs, x and y , and two outputs, x ′ and y ′. A comparator has the property

that x ′ = min(x, y), and y ′ = max(x, y). See Figure 6.1 for an illustration. We can thus think of a

comparator as sorting its two inputs (in decreasing order).

A wire transmits a value through the network. Wires can connect the output of one comparator

to the input of another, otherwise they are either network input wires or network output wires.

For n ≥ 1, the input wires a1, . . . , an take values as inputs, while the output wires b1, . . . ,bn

produce the results computed by the comparison network. We describe an input sequence

a1, . . . , an , and an output sequence b1, . . . ,bn , referring to the values of the input and output

wires. (Thus, we use the same name for both the wire and the value it carries.)

1Notice that, if the contention k is small, the failure probability O(1/kc ) with c ≥ 2 constant may be non-
negligible. In this case, the failure probability can be made to depend on the parameter n at the cost of a
multiplicative O(logn) factor in the running time of the algorithm.
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input x

input y

output x' = min ( x, y )

output y' = max ( x, y )

Figure 6.1: Structure of a comparator.

Figure 6.2 describes a comparison network with 4 inputs and 4 outputs. The horizontal lines

are wires, while comparators are stretched vertically. (Note that a horizontal line does not

represent a single wire, but rather a sequence of distinct wires connecting comparators.) The

main requirement for connecting comparators is that the graph of interconnections must be

acyclic: if we trace a path from the output of a given comparator to the input of another, to

another input etc., the path we trace must never cycle back on itself or go through the same

comparator twice. Thus, a comparison network can be drawn with network inputs on the left

and network outputs on the right: data move through the network from left to right.

Under the assumption that each comparator takes unit time, and transmission through a wire

takes zero time, the “running time" of a comparison network is the time it takes for all output

wires to receive their values. Informally, this is the largest number of comparators that any

input can pass through as it travels from an input wire to an output wire. More formally, we

define the depth of a wire as follows. An input wire has depth 0. A comparator that has two

input wires with depths dx and dy will have depth max(dx ,dy )+1. Because there can be no

cycles of comparators, the depth of a wire is well defined. The depth of a comparator is the

depth of its output wires. Finally, the depth of a comparison network is the maximum depth of

an output wire. For example, the comparison network of Figure 6.2 has depth 3.

A sorting network is a comparison network for which the output sequence is monotonically

increasing, i.e. b1 ≤ b2 ≤ . . . ≤ bn , for every input sequence. The comparison network in

Figure 6.2 is a sorting network.

A useful fact when proving that a comparison network sorts is the zero-one principle [41].

Theorem 2 (Zero-One Principle). If a comparison network with n inputs sorts all 2n possible

sequences of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers correctly.

The key challenge when building a correct sorting network is using the minimal number of

comparators that still ensures correctness. A landmark result by Ajtai et al. [5] showed that

there exist sorting networks of logarithmic depth.

Theorem 3 (AKS Sorting Networks). For any n ≥ 2, there exists a sorting network with O(logn)

depth.
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Figure 6.2: Structure and execution of a sorting network.

6.1.2 Counter and Max-Register Objects

The shared counter object maintains a value V , initially 0, and exports operations increment

and read. The increment operation atomically increments V by 1, and returns success, while

the read operation operation returns the current value of the object.

The fetch-and-increment object also maintains a value V , initially 0, and exports a single

fetch-and-inc operation, which atomically increments the returns the current value of the

object by 1, and returns the previous (un-incremented) value of the object. Randomized

versions of these objects maintain correctness in all executions, but ensure termination with

probability 1.

The max-register is a shared object maintaining a value V , initially 0, which records the highest

value ever written to it. The max-register defines a default maximal value vmax which it may

store. Aspnes et al. [12] gave an implementation of a max-register with logarithmic complexity

in vmax.

Theorem 4 (Aspnes et al. [12]). There exists a linearizable, deterministic, wait-free max-register

construction, where each operation has cost O(log vmax).

In the same paper, Aspnes et al. introduce the notion of monotone consistency, which is

a weakening of linearizability. For example, a counter data structure (as defined above) is

monotone consistent if the following hold.

1. There exists a total order < over all read operations, such that, if some operation R1

finishes before another operation R2 starts, then if R1 < R2, the value v1 returned by R1

is less than or equal the value v2 returned by R2.

2. The value v returned by a read operation R satisfies x ≤ v , where x is the number of

increment operations that finished before the operation R started.

3. The value v returned by a read operation R satisfies y ≥ v , where y is the number of

increment operations that start before the read operation completes.
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Shared:1

Renaming network R2

procedure rename(vi )3

w ← input wire corresponding to vi4

while w is not an output wire do5

T ← next test-and-set on wire w6

res ← T.test-and-set( )7

if res = 0 then8

w ← output wire x ′ of T9

else10

w ← output wire y ′ of T11

return w.index12

Figure 6.3: Pseudocode for executing a renaming network.

6.2 Renaming using a Sorting Network

In this section, we present a solution for adaptive strong renaming using a sorting network.

For simplicity, we describe the solution in the case where the bound on the size of the initial

namespace, M , is finite and known. We circumvent this limitation in Section 6.3. Note that

the bound on M implies a bound on n, the maximum number of participating processes.

6.2.1 Renaming Networks

We start from an arbitrary sorting network with M input and output ports, in which we

replace the comparator modules with two-process test-and-set objects, implemented using

the algorithm of Tromp and Vitányi [87]. The two-process test-and-set objects maintain the

input ports x, y and the output ports x ′, y ′. We call this object a renaming network.

We assume that each participating process pi has a unique initial value vi from 1 to M . (These

values can be the initial names of the processes, or names obtained from another renaming

algorithm, as described in Section 6.3). Also part of the process’s algorithm is the blueprint of

a renaming network with M input ports, which is the same for all participants.

We use the renaming network to solve adaptive tight renaming as follows. (Please see Figure 6.3

for the pseudocode.) Each participating process enters the execution on the input wire in

the sorting network corresponding to its unique initial value vi . The process competes in

two-process test-and-set instances as follows: if the process returns 0 (wins) a two-process

test-and-set, then it moves “up” in the network, i.e. follows output port x ′ of the test-and-set;

otherwise it moves “down,” i.e. follows output port y ′. Each process continues until it reaches

an output port b`. The process returns the index ` of the output port b` as its output value.

See Figure 6.4 for a simple illustration of a renaming network execution.
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1 
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4 
Figure 6.4: Execution of a renaming network.

6.2.2 Renaming Network Analysis

In the following, we show that the renaming network construction solves adaptive tight

renaming, i.e. that processes return values between 1 and k, the total contention in the

execution, as long as the size of the initial namespace is bounded by M .

Theorem 5 (Renaming Network Construction). The renaming network construction solves

tight adaptive renaming, ensuring termination with probability 1.

Proof. First, we prove that the renaming network is well-formed, i.e. that no two processes

may access the same port of a two-process test-and-set object.

Claim 1. No two processes may access the same port of a two-process test-and-set object.

Proof. Recall that each renaming network is obtained from a sorting network. Therefore,

for any renaming network, we can maintain the definitions of network and wire depth as

for a sorting network, given in Section 6.1.1. The claim is equivalent to proving that no

two processes may occupy the same wire in an execution of the network. We prove this by

induction on the depth of the current wire. The base case, when the depth is 0, i.e. we are

examining an input wire, follows from the initial assumption that the initial values vi of the

processes are unique, hence no two processes may join the same input port.

Assume that the claim holds for all wires of depth d ≥ 1. We prove that it holds for any wire

of depth d +1. Notice that the depth of a wire may only increase when passing through a

two-process test-and-set object. Consider an arbitrary two-process test-and-set object, with

two wires of depth d as inputs, and two wires of depth d +1 as outputs. By the induction

hypothesis, the test-and-set is well formed in all executions, since there may be at most two

processes accessing it in any execution. By the specification of test-and-set, it follows that,

in any execution, there can be at most one process returning 0 from the object, and at most

one process returning 1 from the object. Therefore, there can be at most one process on either

output wire, and the induction step holds. This completes the proof of this claim.
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Termination with probability 1 follows from the fact that the base sorting network has finite

depth and, by definition, contains no cycles, and from the probabilistic termination property of

the two-process test-and-set implementation [87]. We prove name uniqueness and namespace

tightness by ensuring the following claim.

Claim 2. The renaming network construction ensures that no two processes return the same

output, and that the processes return values between 1 and k, the total contention in the

execution.

The proof is based on a simulation argument from an execution of a renaming network to

an execution of a sorting network. We start from an arbitrary execution E of the renaming

network, and we build a valid execution of a sorting network. The structure of the outputs in

the sorting network execution will imply that the tightness and uniqueness properties hold in

the renaming network execution.

Let P be the set of processes that have taken at least one step in E . Each process pi ∈ P has

assigned a unique input port vi in the renaming network. Let I denote the set of input ports

on which there is a process present. We then introduce a new set of “ghost" processes G ,

each assigned to one of the input ports in {1,2, . . . , M } \ I . We denote by C the set of “crashed"

processes, i.e. processes that took a step in E , but did not return an output port index.

The next step in the transformation is to assign input values to these processes. We assign

input value 0 to processes in P (and correspondingly to their input ports), and input value 1 to

processes in G .

Note that, in execution E , not all test-and-set objects in the renaming network may have been

accessed by processes (e.g., the test-and-set objects corresponding to processes in G), and not

all processes have reached an output port (i.e., crashed processes and ghost processes). The

next step is to simulate the output of these test-and-set operations by extending the current

renaming network execution.

We extend the execution by executing each process in C ∪G until completion. We first execute

each process in C , in a fixed arbitrary order, and then execute each process in G , in a fixed

arbitrary order. The rules for deciding the result of test-and-set objects for these processes are

the following.

• If the current test-and-set T already has a winner in the extension of E , i.e. a process

that returned 0 and went “up", then the current process automatically goes “down" at

this test-and-set.

• Otherwise, if the winner has not yet been decided in the extension of E , then the current

process becomes the winner of T and goes “up," i.e. takes output port x ′.

In this way, we obtain an execution in which M processes participate, and each test-and-set

object has a winner and a loser. By Claim 1, the execution is well-formed, i.e. there are never
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two processes (or two values) on the same wire. Also note that the resulting extension of the

original execution E is a valid execution of a renaming network, since we are assuming an

asynchronous shared memory model, and the ghost and crashed processes can be seen simply

as processes that are delayed until processes in P \C returned.

The key observation is that, for every two-process test-and-set T in the network, T obeys the

comparison property of comparators in a sorting network, applied to the values assigned to

the participating processes. We take cases on the processes p and q participating in T .

1. If p and q are both in P , then both have associated value 0, so the T respects the

comparison property irrespective of the winner.

2. If p ∈ P and q ∈ G , then notice that p necessarily wins T , while q necessarily loses T .

This is trivial if p ∈ P \C ; if p ∈C , this property is ensured since we execute all processes

in C before processes in G when extending E . Therefore, the process with associated

value 0 always wins the test-and-set.

3. If p and q are both in Q, then both have associated value 1, so T respects the comparison

property irrespective of the winner.

The final step in this transformation is to replace every test-and-set operation with a com-

parator between the binary values corresponding to the two processes that participate in

the test-and-set. Thus, since we have started from a sorting network, we obtain a sequence

of comparator operations ordered in stages, in which each stage contains only comparison

operations that may be performed in parallel. The above argument shows that all compara-

tors obey the comparison property applied to the values we assigned to the corresponding

processes. In particular, when input values are different, the lower value (corresponding to

participating processes) always goes “up," while the higher value always goes “down."

Thus, the execution resulting from the last transformation step is in fact a valid execution of

the sorting network from which the renaming network has been obtained. Recall that we have

associated each process that took a step to a 0 input value, and each ghost process to a 1 input

value to the network. Since, by Claim 1, no two input values may be sorted to the same output

port, we first obtain that the output port indices that the processes in P return are unique. For

namespace tightness, recall that we have obtained an execution of a sorting network with M

input values, M −k of which, i.e. those corresponding to processes in G , are 1. By the sorting

property of the network, it follows that the lower M −k output ports of the sorting network

are occupied by 1 values. Therefore, the M −k “ghost" processes that have not taken a step

in E must be associated with the lower M −k output ports of the network in the extended

execution. Conversely, processes in P must be associated with an output port between 1 and

k in the extension of the original execution E . The final step is to notice that, in E , we have not

modified the output port assignment for processes in P \C , i.e. for the processes that returned

a value in the execution E . Therefore, these processes must have returned a value between 1

and k. This concludes the proof of this claim and of the Theorem.
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We now apply the renaming network construction starting from sorting networks of optimal

depth, whose existence is ensured by Theorem 3.

Corollary 1 (Complexity). The renaming network obtained from an AKS sorting network [5]

with M input ports solves the strong adaptive renaming problem with M initial names, guar-

anteeing termination with probability 1 and name uniqueness in all executions, using O(log M)

test-and-set operations per process in the worst case.

Proof. The fact that this instance of the algorithm solves strong adaptive renaming follows

from Theorem 5. For the complexity claims, notice that the number of test-and-set objects

a process enters is bounded by the depth of the sorting network from which the renaming

network has been obtained. In the case of the AKS sorting network with M inputs, the width is

O(log M).

6.3 A Strong Adaptive Renaming Algorithm

We present an algorithm for adaptive tight renaming based on an adaptive sorting network

construction. For any k ≥ 0, the algorithm guarantees that k processes obtain unique names

from 1 to k. We start by presenting a sorting network construction that adapts its size and

complexity to the number of processes executing it. We will then use this network as a basis

for an adaptive renaming algorithm

6.3.1 An Adaptive Sorting Network

We present a recursive construction of a sorting network of arbitrary size. We will guarantee

that the resulting construction ensures the properties of a sorting network whenever truncated

to a finite number of input (and output) ports. The sorting network is adaptive, in the sense

that any value entering on wire n and leaving on wire m traverses at most O(logmax(n,m))

comparators.

Let the width of a sorting network be the number of input (or output) ports in the network.

The basic observation is that we can extend a small sorting network B to a wider range by

inserting it between two much larger sorting networks A and C . The resulting network is

non-uniform—different paths through the network have different lengths, with the lowest

part of the sorting network (in terms of port numbers) having the same depth as B , whereas

paths starting at higher port numbers may have higher depth.

Formally, suppose we have sorting networks A, B , and C , where A and C have width m

and B has width k. Label the inputs of A as A1, A2, . . . , Am and the outputs as A′
1, A′

2, . . . , A′
m ,

where i < j means that A′
i receives a value less than or equal to A′

j . Similarly label the inputs

and outputs of B and C . Fix `≤ k/2 and construct a new sorting network ABC with inputs

B1,B2, . . .B`, A1, . . . Am and outputs B ′
1,B ′

2, . . .B ′
m , A′

1, A′
2, . . . A′

m . Internally, insert B between A

and C by connecting outputs A′
1, . . . , A′

k−` to inputs B`+1, . . . ,Bk ; and outputs B ′
`+1, . . .B ′

k to
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Figure 6.5: One stage in the construction of the adaptive sorting network.

inputs C ′
1, . . .C ′

k−`. The remaining outputs of A are wired directly across to the corresponding

inputs of C : outputs A′
k−`+1, . . . , A′

m are wired to inputs Ck−`+1, . . . ,Cm . (See Figure 6.5.)

Lemma 9. The network ABC constructed as described above is a sorting network.

Proof. The proof uses the well-known Zero-One Principle, given in Theorem 2: we show that

the network correctly sorts all input sequence of zeros and ones, and deduce from this fact

that it correctly sorts all input sequences.

Given a particular 0-1 input sequence, let zB and zA be the number of zeros in the input that

are sent to inputs B1 . . .B` and A1 . . . Am . Because A sorts all of its incoming zeros to its lowest

outputs, B gets a total of zB +max(k−`, zA) zeros on it inputs, and sorts those zeros to outputs

B ′
1 . . .B ′

zB+max(k−`,zA ). An additional zA −max(k −`, zA) zeros propagate directly from A to C .

We consider two cases, depending on the value of the max:

• Case 1: zA ≤ k −`. Then B gets zB + zA zeros (all of them), sorts them to its lowest

outputs, and those that reach outputs B ′
`+1 and above those that reach outputs B ′

`+1

and above are not moved by C . Therefore, the sorting network is correct in this case.

• Case 2: zA > k −`. Then B gets zB +k −` zeros, while zA − (k −`) zeros are propagated

directly from A to C. Because `≤ k/2, zB +k −`≥ k/2 ≥ `, and B sends ` zeros out its

direct outputs B ′
1 . . .B`. All remaining zeros are fed into C , which sorts them to the next

zA + zB −` positions. Again, the sorting network is correct.

When building the adaptive network, it will be useful to constrain which parts of the network

particular values traverse. The key tool is given by the following lemma:

Lemma 10. If a value v is supplied to one of the inputs B1 through B` in the network ABC , and

is one of the ` smallest values supplied on all inputs, then v never leaves B.
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Proof. Immediate from the construction and Lemma 9; v does not enter A initially, and is

sorted to one of the output B ′
1 . . .B ′

`
, meaning that it also avoids C .

Now let us show how to recursively construct a large sorting network with polylog N depth

when truncated to the first N positions. We assume that we are using a construction of a sorting

network that requires at most a logc n depth to sort n values, where a and c are constants. For

the AKS sorting network [5], we have c = 1; for constructible networks (e.g., the bitonic sorting

network [64]), we have c = 2.

Start with a sorting network S0 of width 2. In general, we will let wk be the width of Sk ; so we

have w0 = 2. We also write dk for the depth of Sk (the number of comparators on the longest

path through the network).

Given Sk , construct Sk+1 by appending two sorting networks Ak+1 and Ck+1 with width w2
k −

wk /2, and attach them to the top half of Sk as in Lemma 9, setting `= wk /2.

Observe that wk+1 = w2
k and dk+1 = 2a logc (w2

k −wk /2)+dk ≤ 4a logc wk +dk . Solving these

recurrences gives wk = 22k
and dk =∑k

i=0 2c(i+2)a =O(2ck ).

If we set N = 22k
, then k = lg lg N , and dk =O(2c lg lg N ) =O(logc N ). This gives us polylogarith-

mic depth for a network with N lines, and a total number of comparators of O(N logc N ).

We can in fact state something stronger:

Theorem 6. Each of the networks Sk constructed above is a sorting network, with the prop-

erty that any value that enters on the n-th input and leaves on the m-th output traverses

O(logc max(n,m)) comparators.

Proof. That Sk is a sorting network follows from induction on k using Lemma 9.

For the second property, let Sk ′ be the smallest stage in the construction of Sk to which

input n and output m are directly connected. Then wk ′−1/2 < max(n,m) ≤ wk ′/2, which

we can rewrite as 22k′−1 < 2max(n,m) ≤ 22k′
or k ′ − 1 < lg lgmax(n,m) ≤ k ′, implying k ′ =

dlg lgmax(n,m)e. By Lemma 10, the given value stays in Sk ′ , meaning it traverses at most

dk ′ =O
(
2ck ′)=O

(
2cdlg lgmax(n,m)e)=O

(
lgc max(n,m)

)
comparators.

6.3.2 An Algorithm for Strong Adaptive Renaming

We show how to apply the adaptive sorting network construction to solve strong adaptive

renaming when the size of the initial namespace, M , is unknown, and may be unbounded. This

procedure can also be seen as transforming an arbitrary renaming algorithm A, guaranteeing

a namespace of size M , into strong renaming algorithm S(A), ensuring a namespace from 1 to

k. In case the processes have initial names from 1 to M , then A is a trivial algorithm that takes

no steps. We first describe this general transformation, and then consider a particular case to
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obtain a strong adaptive renaming algorithm with logarithmic time complexity. Notice that, in

order to work for unbounded contention k, the algorithm may use unbounded space, since

the adaptive renaming network construction continues to grow as more and more processes

access it.

Description. We assume a renaming algorithm A with complexity C (A), guaranteeing a

namespace of size M (which may be a function of k, or n). We assume that processes share an

instance of algorithm A and an adaptive renaming network R, obtained using the procedure

in Section 6.3.1. (Recall that a renaming network is a sorting network in which all comparators

are replaced with two-process test-and-set objects.)

The transformation is composed of two stages. In the first stage, each process pi executes the

algorithm A and obtains a temporary name vi from 1 to M . In the second stage, each process

uses the temporary name vi as the index of its (unique) input port to the renaming network

R. The process then executes the renaming network R starting at the given input port, and

returns the index of its output port as its name.

6.3.3 Technical Notes

Wait-freedom. Notice that, technically, this algorithm may not be wait-free if the number of

processes k participating in an execution is infinite, then it is possible that a process either fails

to acquire a temporary name during the first stage, or it continually fails to reach an output

port by always losing the test-and-set objects it participates in. Therefore, in the following, we

assume that k is finite, and present bounds on step complexity that depend on k.

Constructibility. Recall that we are using the AKS sorting network [5] of O(log M) depth as the

basis for the adaptive renaming network construction. However, the constants hidden in the

asymptotic notation for this construction are large, and make the construction impractical [64].

On the other hand, since the construction accepts any sorting network as basis, we can use

Batcher’s bitonic sorting network [64], with O(log2 M) depth as a basis for the construction.

Using bitonic networks trades a logarithmic factor in terms of step complexity for ease of

implementation.

6.3.4 Analysis of the Strong Adaptive Renaming Algorithm

We now show that the transformation is correct, transforming any renaming algorithm A with

namespace M and complexity C (A) into a strong renaming algorithm, with complexity cost

C (A)+O(log M).

Theorem 7 (Namespace Boosting). Given any renaming algorithm A ensuring namespace M

with worst-case step complexity C (A), the renaming network construction yields an algorithm

S(A) ensuring strong renaming with worst-case expected step complexity C (A)+O(log M).

The number of steps that a process performs in the renaming network is O(log M) with high
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probability in k. Moreover, if A is adaptive, then the algorithm S(A) is also adaptive.

Proof. Fix an algorithm A with namespace M and worst-case step complexity C (A). Therefore,

we can assume that, during the current execution, each process enters an input port of the

adaptive renaming network between 1 and M . We truncate the renaming network after the first

M input ports. By Theorem 6, we obtain that the original comparison network truncated after

the first M input ports is in fact a sorting network. Since A is a correct renaming algorithm,

no two processes may enter the same input port. Therefore, using Theorem 5, we obtain

that each process returns a unique output port index between 1 and k. This ensures that the

transformation solves strong renaming.

If the algorithm A is adaptive, i.e. the namespace size M and its complexity C (A) depend only

on k, then notice that the entire construction is adaptive, since the adaptive renaming network

assumes no bound on n, and its complexity and output namespace size depend only on k.

This concludes the proof of correctness.

For the upper bound on worst-case step complexity, notice that a process may take at most

C (A) steps while running the first stage of the algorithm. By Corollary 1, we obtain that worst-

case expected step complexity in the second stage of the protocol is O(log M). Therefore, the

worst-case expected step complexity of the transformation is C (A)+O(log M).

To obtain the high probability bound on the number of read-write operations performed by a

process in the renaming network, first notice that, since the names returned by the algorithm

A are unique, we have that M ≥ k. In the worst case, the number of test-and-set operations

that a process may perform while executing the renaming network is Θ(log M). Therefore,

we can see the number of steps that a process takes while executing the renaming network

as a sum ofΘ(log M) geometrically distributed random variables, one for each two-process

test-and-set. It follows that the number of steps that a process performs while executing the

renaming network is O(log M) with high probability in M . Since M ≥ k, this bound also holds

with high probability in k.

As an example, we substitute the generic algorithm A with the RatRace renaming algorithm

presented in Section 5.3, to obtain a strong renaming algorithm with logarithmic step com-

plexity. First, recall the properties of the RatRace renaming algorithm.

Proposition 3 (RatRace Renaming). The RatRace algorithm yields an adaptive renaming

algorithm ensuring a namespace of size O(kc ) in O(logk) steps, with high probability in k.

We now prove the following.

Corollary 2. There exists an algorithm T such that, for any k ≥ 1, T solves strong adaptive

renaming with worst-case step complexity O(logk). The upper bound holds in expectation and

with high probability in k.
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Proof. We replace the algorithm A in Theorem 7 with RatRace renaming. We obtain a correct

adaptive strong renaming algorithm.

For the upper bounds on complexity, by Lemma 3, the RatRace renaming algorithm ensures

a namespace of size O(kc ) using O(logk) steps, with probability at least 1−1/kc , for some

constant c ≥ 2. The complexity of the resulting strong renaming algorithm is at most the

complexity of RatRace renaming plus the complexity of executing the renaming network. By

Theorem 7, with probability at least 1−1/kc , this is at most

O(logk)+O(logkc ) =O(logk).

The expected step complexity upper bound follows identically. Finally, since RatRace is

adaptive, the transformation also yields an adaptive renaming algorithm.

6.4 Applications to Counting

6.4.1 A Monotone-Consistent Bounded Counter

We now build a monotone-consistent counter algorithm based on the strong adaptive renam-

ing algorithm in Section 6.3. The algorithm exports read and increment operations, and has a

bounded maximum value vmax.

Description. The processes share an adaptive renaming object implemented using the con-

struction in the previous section, and a linearizable max-register, implemented using the

construction of Aspnes et al. [12], whose properties are given in Section 6.1.

For the increment operation, a process acquires a new name from the adaptive renaming

object. It then writes the newly obtained name to the max-register and returns. For the read

operation, the process simply reads the value of the max-register and returns it.

Analysis. The counter object has the following properties.

Lemma 11 (Counter Properties). The counter implementation is monotone consistent, and has

expected step complexity O(log v) per increment, where v is the number of increment operations

started before the operation returns. A read operation has cost O(min(log v,O(n))).

Proof. Termination with probability 1 for finite v follows from the properties of the objects we

use. For monotone consistency, we need to prove the following.

(1) There exists a total ordering < on the read operations such that if an operation R1 finishes

before some operation R2 starts, then R1 < R2, and if R1 < R2, then the value returned by R1

is less than or equal to the value returned by R2. For this, we order the read operations by

their linearization points when reading the max-register object. This ordering clearly has the

required properties.

60



6.4. Applications to Counting

(2) The value v returned by a read is always ≥ the number of completed increment operations.

Let y be the number of completed increment operations. Notice that each completed operation

obtains a unique name, and writes it to the max-register (this holds also if a single process

performs multiple increment operations). It then follows that the value in the max-register at

the time of the read is at least y .

(3) The value v returned by a read is always ≤ the number of started increment operations. Let

z be the number of started increment operations. Assume for contradiction that a process

returns a value v which is larger than z. In this case, there must exist a process that returned

a name which is strictly larger than the number of name requests on the adaptive renaming

object. This contradicts the adaptive property of the object.

Therefore the counter object is monotone consistent. For the complexity bound on the

increment operation, notice that the complexity of the first stage of the adaptive renaming

protocol is O(log v), and the number of temporary names is O( poly v) with high probability. It

then follows that the complexity of the adaptive renaming object is O(log v) in expectation, and

O(log2 v) with high probability in v . By the properties of the max-register, it follows that that

the complexity of an increment operation is O(log v). The complexity of the read operation is

the same as the complexity of the max register.

Linearizability counterexample. We show a non-linearizable execution of our counter im-

plementation. Consider three processes p1, p2, p3. Process p2 obtains name 2 and writes it

to the max register. After p2’s operation terminates, p1 starts its increment operation and

obtains name 1 from the renaming network and writes it to the max register (this is possible in

a renaming network). We insert a read operation R1 between the end point of p2’s operation

and the start point of p1’s operation. We insert a second read operation R2 between the end

point of p1’s operation and before p3 writes to the max register. Both read operations have

to return value 2 for the counter. Notice that, in this case, p1’s operation cannot be properly

linearized, since it is located between two read operations returning the same value.

6.4.2 Linearizable Bounded-Value Fetch-and-Increment

We now show how to use an adaptive tight renaming protocol to construct a linearizable

m-valued fetch-and-increment object, i.e. a fetch-and-increment object that supports only

values up to m. The sequential specification of the object is the same as that of fetch-and-

increment, except that the object keeps returning m −1 once it has reached the threshold

value m.

Description. The outline of the construction is as follows. We first use the tight adaptive

renaming protocol to build a linearizable `-test-and-set object, which generalizes a standard

test-and-set object by providing ` winners instead of a single one. We implement such an

object by having processes run the adaptive tight renaming algorithm and return true if and
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Shared: boolean doorway, initially open1

procedure `-test-and-set()2

if O.doorway = closed then3

return false4

else5

name ← tight-renaming()6

if name ≤ ` then return true7

else8

O.doorway ← closed9

return false10

Figure 6.6: The `-test-and-set implemen-
tation.

Shared: test , an `/2-test-and-set object1

left, an `/2-valued f&inc object2

right, an `/2-valued f&inc object3

procedure `-fetch-and-increment()4

if `= 0 then return 05

if `/2-test-and-set(O.test) then6

return fetch-and-increment(O.left)7

else8

return `/2 +9

fetch-and-increment(O.right)

Figure 6.7: The `-fetch-and-increment ob-
ject.

only if their acquired name is at most `. To ensure this is linearizable, we protect the renaming

protocol with a doorway bit, which guarantees that processes arriving after some process

returns false cannot prevent a process that started the operation earlier from winning.

The second part of the m-valued fetch-and-increment construction is based on a recursive

tree construction. For `= m,m/2,m/4 down to 1, at each stage ` of the construction, we are

implementing an `-fetch-and-increment object, composed of one `/2-test-and-set object,

and two `/2-fetch-and-increment objects (the left child, and the right child of the current node,

respectively). If a process wins in the `/2-test-and-set object, then it calls the left `/2-valued

fetch-and-increment object; otherwise it calls the right object.

Analysis. We begin by formally defining an `-test-and-set object.

Definition 6. An `-test-and-set object O supports one type of operation which returns either

true or false. The sequential specification of the object is that the first ` invocations of the

operation return true and the rest return false.

Our implementation of an `-test-and-set object is given in Figure 6.6. The following lemma

shows correctness of our implementation. Intuitively, any operation that starts late sees the

doorway closed, therefore must return false.

Lemma 12. Procedure `-test-and-set in Figure 6.6 implements a linearizable `-test-and-set.

Proof. By correctness of the adaptive tight renaming algorithm, ` processes obtain a name

whose value is at most m, and therefore exactly ` processes return true. For linearizability,

we partition the operations into two disjoint categories, Ctr ue and C f al se , according to their

return values. We order all operations in Ctr ue before the time that the doorway is set to

closed , and all operations in C f al se afterwards. Within each category we order the operations

according to the order of non-overlapping operations. It is clear that this order satisfies the
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sequential specification of the `-test-and-set object, since all operations that return true

are linearized before those that return false, and there are exactly ` of those. To show that

this order preserves the order of non-overlapping operations, we only need to argue about

non-overlapping operations in different categories, since within each category this order is

preserved by construction. Let op1 be an operation that returns true and op2 be an operation

that returns false and assume, towards a contradiction, that op2 finishes before op1 starts.

Then op2 must set the doorway to closed, implying that after op1 reads the doorway it returns

false. This contradiction concludes the proof that the above implements a linearizable `-test-

and-set object.

Next, Figure 6.7 shows an implementation of an `-valued fetch-and-increment object using

two smaller fetch-and-increment objects. Note that this recursive construction unfolds to a

tree, whose leaves are 0-valued fetch-and-increment objects. We implement such an object

with an empty data structure on which the fetch-and-increment operation always returns 0.

We conclude with a proof of correctness of the above implementation. The basic idea is that the

linearizability of the `/2-test-and-set object allows us to linearize all operations incrementing

to small values before those that increment to large values.

Lemma 13. If O.left and O.right are linearizable `/2-fetch-and-increment objects then proce-

dure recursive-fetch-and-increment implements a linearizable `-fetch-and-increment object.

Proof. Since O.left and O.right are linearizable, we can associate each access to them with its

linearization point. We partition the operations into two disjoint categories, Cleft and Cright ,

according to the `/2-fetch-and-increment object they access. We linearize operations in Cleft

before those in Cright . Within each category, we linearize the operations according to the order

of their linearization points with respect to the `/2-fetch-and-increment object they access

(O.left for Cleft , and O.right for Cright). By correctness of the `/2-test-and-set object, exactly

`/2 processes return true and the rest return false.

Hence, this ordering preserves the sequential specification of an `-fetch-and-increment, given

the assumption that O.left and O.right are linearizable `/2-fetch-and-increment objects. To

show this preserves the order of non-overlapping operations, we need to argue only about

non-overlapping operations in different categories, since within each category this order

is preserved by the assumption on the linearizability of O.left and O.right. Let op1 be an

operation in Cleft and op2 be an operation in Cright and assume, towards a contradiction, that

op2 finishes before op1 starts. Since op2 is in Cright then its return value of the `/2-test-and-set

object is false. Since op1 starts after op2 finishes it must also return false by correctness of

the `/2-test-and-set object, and therefore op1 must be in Cright as well. This contradicts the

assumption that op1 is in Cleft , which completes the proof.

Finally, we provide upper bounds for the worst-case time complexity of our implementations.

The bounds follow from the properties of the tight adaptive renaming algorithm.
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1 2 3 4 ... NN-117 ...

Batch B1
size = N / 2

Batch B2
size = N/4

...

Batch Bl
size=logN

N/2 3N/4

process p

Figure 6.8: The BitBatching algorithm. The process makes Θ(logn) random trials in each
batch, until it first wins a test-and-set object.

Lemma 14. The `-test-and-set object has expected step complexity O(logk). The m-valued

fetch-and-increment object has expected step complexity O(logk logm), where k is the number

of participating processes.

Proof. The upper bound on the complexity of `-test-and-set follows from Corollary 2. The

upper bound on the expected step complexity of the fetch-and-increment object follows from

the fact that the recursive construction unfolds to a tree of height O(logm), with an `-test-

and-set at each node, where `≤ m/2. By the above, we obtain that the resulting structure has

O(logm logk) expected step complexity.

6.5 Non-Adaptive Strong Renaming using Linear Space

In this section, we present an algorithm called ReShuffle, which renames into n names, using

at most O(log2 n) test-and-set operations per process, with high probability. The algorithm

assigns unique names to processes by repeatedly sampling over batches of test-and-set bits of

decreasing size.

We assume a model in which processes may perform atomic test-and-set operations. Alter-

natively, the test-and-set operations can be simulated using reads and writes, following the

RatRace algorithm in Chapter 5, at the cost of a poly-logarithmic increase in running time.

Thus, the time complexity of ReShuffle is higher than that of the adaptive renaming network;

also, the algorithm is not adaptive, since it assumes knowledge of n, and will only guarantee

names from 1 to n (as opposed to names from 1 to k). On the other hand, the ReShuffle

algorithm uses only n test-and-set objects to assign names, and is simpler than the adaptive

sorting network algorithm.

6.5.1 Algorithm Description

The n processes share a vector of n test-and-set objects. These objects can either be available

in hardware, or implemented using the RatRace algorithm. To simplify the presentation, we
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will assume that the objects are available in hardware, and are atomic. Also, we consider

n = 2κ, for an integer κ≥ 0.

We partition the vector of n test-and-set objects in batches as follows. Let `= blog(n/logn)c.
For 1 ≤ i < `, batch Bi consists of vector positions from n(2i−1 −1)/2i−1 +1 to n(2i −1)/2i . In

particular, batch B1 consists of the first half of the vector (from left to right), batch B2 consists

of the next quarter, and so on. Batch B`, which does not follow the above formula, consists of

positions from n(2`−1 −1)/2`−1 +1 to position n. For 1 ≤ i < `, the length of batch Bi is n/2i .

Batch B` has length between logn and 2logn (see Figure 6.8 for an illustration).

Fix a constant β≥ 6. Given this partitioning of the vector, processes (sequentially) compete

in β logn test-and-set objects in each batch, starting from batch number 1 up to batch `,

stopping when they first win a test-and-set object. More precisely, we define two stages in

the algorithm. In the first stage, for every 1 ≤ i < `, each process p (sequentially) competes

in β logn randomly chosen test-and-set objects from every batch Bi
2. If the process did not

stop before entering the last batch B`, the process competes in every test-and-set object in

this batch. If the process finishes competing in batch B` and still did not win a test-and-set,

then it enters the second stage, where it competes in all test-and-set objects from 1 to n, in

sequence, from left to right. In the following, we will show that, with high probability, every

process wins a test-and-set while in the first stage.

6.5.2 Algorithm Analysis

The algorithm ensures the same termination guarantees as the underlying test-and-set im-

plementation. In particular, if the test-and-set is provided in hardware, then termination is

guaranteed in every execution. Otherwise, if test-and-set is implemented from reads and

writes using randomization, the termination property holds with probability 1. The name

uniqueness property follows since no two processes may win the same test-and-set. In the

following, we prove upper bounds on the step complexity of the algorithm, assuming that the

test-and-set operations are provided in hardware and have unit cost.

The first Lemma shows that, with high probability in n, every process gets a name while doing

the first pass through the test-and-set vector.

Lemma 15 (Local Trials). For β≥ 6, with high probability in n, every process terminates while

executing the first stage, i.e. returns a name after competing in O(log2 n) test-and-set objects.

Proof. Assume that there exists a process p that enters the second stage, i.e. p competed in

test-and-set objects in all batches (Bi ) for i = 1, . . . ,` without winning any test-and-set object.

In particular, this implies that p has competed in all the test-and-set objects in the last batch

B`. Since p did not win any test-and-set in this batch, it follows that this batch is already

“full,” i.e. there are at least logn distinct processes that won each of the test-and-set objects in

2A process can pick a random number from a batch by flipping O(logn) independent fair coins locally.
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this batch (we consider the linearization order at each of these objects). Let S` be this set of

processes.

It follows that each of the processes in S` has performed β logn random trials in the batch

B`−1, and did not succeed in acquiring a name in this batch. We prove the following claim.

Claim 3. Fix β≥ 6, i ≥ 1, and let Bi be the corresponding batch. Let S be a set of at least |Bi |/2

processes that perform β logn random trials each in batch Bi , and none succeeds in winning a

test-and-set in batch Bi . Then the batch Bi is full with high probability, i.e. there exists a set of

processes Fi with |Fi | = |Bi | such that each process in Fi won a distinct test-and-set object in

batch Bi . Moreover, S ∩Fi =;.

Proof. Given that |Bi | processes performedβ logn random trials each in the batch Bi , it follows

that the batch Bi has been tried by a total of at least β/2 · |Bi | logn random probes. We now

use the following probabilistic fact, which is a variant of the well-known coupon collector

analysis [71, 75].

Proposition 4 (Coupon Collector). For m ≥ 1, consider a set of m bins, initially empty, and

a set of αm logn balls, each thrown independently at random into one of the m bins. The

probability that at the end of this process there exists an empty bin is at most 1−1/nα−1, for

c ≥ 2 constant.

Proof. Consider an arbitrary ordering of the m bins, and a sequential ordering of the αm logn

balls. Let er
i be the random event that bin number i ∈ {1, . . . ,m} contains no balls after r ≥ 1

trials have been performed. Then

Pr(er
i ) =

(
1− 1

m

)r

.

By a standard approximation, we get that Pr(er
i ) ≤ e−r /m . Replacing r with αm logn, we obtain

that this probability is upper bounded by

(
1

e

) αm logn
m =

(
1

e

)α logn

=
(

1

n

)α
.

By a union bound, we obtain that the probability that there exists an empty bin after αm logn

random balls have been thrown is at most

m∑
i=1

Pr(eαm logn
i ) = m

(
1

n

)α
≤ n−(α−1).

Returning to the proof of the Lemma, we have that the β/2|Bi | logn probes already been

scheduled by the adversary. We can use the Proposition above to conclude that each of the
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|Bi | test-and-sets has been accessed by one of the random probes, with probability at least

1−1/nβ/2−1. Since we can pick β≥ 6, it follows that the success probability is at least 1−1/nc ,

for some constant c ≥ 2.

None of these β/2|Bi | logn probes succeeds in winning the test-and-set it accesses, since the

processes won test-and-sets in the next batch. By the linearizability of test-and-set, it follows

that for each of these test-and-set objects, there exists a distinct process that either wins the

object or crashes while accessing the object. In both cases, the stops executing probes as part

of the algorithm. This holds with probability at least 1−1/nc , which concludes the proof of

the claim.

Returning to the proof, by Claim 3, we obtain that batch B`−1 is full with high probability (in n).

The processes occupying batches B` and B`−1 have tried for β logn times each in batch B`−2,

without success. In this case, Claim 3 implies that batch B`−2 is full, with high probability. By

backward induction over the batch index, we obtain that all batches (Bi )i∈{`,...,1} are full with

high probability. By the union bound, it follows that the vector is full, with high probability.

Since the algorithm guarantees that a process may win a single test-and-set object, it follows

that, if process p moves to stage two of the algorithm, then, with high probability, there are at

least n +1 participating processes in this execution, which contradicts the fact that n is the

maximum number of processes that may participate in the execution.

Using this bound on the number of trials, we obtain bounds on the local and total step

complexity of our algorithm.

Corollary 3. With high probability in n, every process returns after O(log2 n) steps. The ex-

pected step complexity of the algorithm is O(log2 n). With high probability in n, the total step

complexity of the algorithm is O(n logn), where we count each test-and-set operation as a step.

Proof. The per-process bound follows trivially from Lemma 15. For the total step complexity

bound, we first prove the following claim.

Claim 4. For any 1 ≤ i ≤ `, there are at most 2β|Bi | · logn process probes in batch Bi , with high

probability.

Proof. Assume for contradiction that there exists a batch in which there are more than

2β|Bi | logn trials with non-negligible probability γ. Since a process performs at most β logn

total random trials in a batch (this holds for the last batch B` as well since its length is less than

β logn), we obtain that there are strictly more than 2|Bi | processes that performed random

trials in batch Bi . Since there are at most 2|Bi | test-and-set objects in batches (B j ) j∈{i ,i+1,...,`},

it follows that, with probability at least γ, there exists a process q that cannot win a test-and-set

object in stage 1. This contradicts Lemma 3.
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Claim 4 ensures that there are at most 2β|Bi | · logn process probes in batch Bi , with high

probability. Summing over all batches, this implies that the total number of test-and-set

accesses performed by processes is less than 2βn logn.

6.6 Related Work

The first paper to analyze randomized renaming in an asynchronous system was by Panconesi

et al. [79]. The authors presented a non-adaptive solution ensuring a namespace of size (1+ε)n,

for ε> 0 constant, with expected O(M log2 n) total step complexity, where M is the size of the

initial namespace. Their strategy was to introduce a new test-and-set implementation, and to

award names to processes based on the index of the test-and-set object they acquire. Along

the same vein, Eberly et al. [44] obtained tight non-adaptive randomized renaming based

on the test-and-set by Afek et al. [3]. Their implementation has O(n logn) amortized step

complexity per process, under a given cost measure. The average-case total step complexity of

their algorithm isΩ(n3).

A paper by Alistarh et al. [9] generalized the approach by Panconesi et al. [79] by introducing

a new, adaptive test-and-set implementation with logarithmic step complexity, and a new

strategy for the processes to pick which test-and-set to compete in: each process chooses a

test-and-set between 1 and n at random. The authors prove that this approach results in a

non-adaptive tight algorithm with O(n polylog n) total step complexity. A modified version of

this approach generates an adaptive algorithm with similar complexity, which ensures a loose

namespace of size (1+ε)k, for ε> 0 constant.

The algorithms presented in this chapter first appeared in [7]. The renaming network algorithm

is the first algorithm to achieve strong adaptive renaming in sub-linear time, improving

exponentially on the time complexity of previous solutions. In Chapter 8, we show that this

algorithm is in fact time-optimal. The fact that any sorting network can be used as a counting

network when only one process enters on each wire was observed by Attiya et al. [24] to follow

from earlier results of Aspnes et al. [14]; this is equivalent to our use of sorting networks for

non-adaptive renaming in Section 6.2.1.
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7 The Time Complexity of Deterministic
Renaming

In this section, we prove a linear lower bound on the time complexity of deterministic re-

naming in asynchronous shared memory. The lower bound holds for algorithms using reads,

writes, test-and-set, and compare-and-swap operations, and is matched within constants by

existing algorithms, as discussed in Section 7.6. We first prove the lower bound for adaptive

deterministic renaming, and then extend it to non-adaptive renaming by reduction. The lower

bound will hold for algorithms that either rename into a sub-exponential namespace in k

(if the algorithm is adaptive) or into a polynomial namespace in n (if the algorithm is not

adaptive). Arguably, this covers the spectrum of all “useful" renaming algorithms.

The Strategy. We obtain the result by reduction from a lower bound on mutual exclusion.

The argument can be split in two steps, outlined in Figure 7.1. The first step assumes a wait-

free algorithm R, renaming adaptively into a loose namespace of sub-exponential size M(k),

and obtains an algorithm T (R) for strong adaptive renaming. As shown in Chapter 6, the

extra complexity cost of this step is an additive factor of O(log M(k)). The second step uses

the strong renaming algorithm T (R) to solve adaptive mutual exclusion, with the property

that the RMR complexity of the resulting adaptive mutual exclusion algorithm ME(T (R))

is O(C (k)+ log M(k)), where C (k) is the step complexity of the initial algorithm R. Finally,

we revert to an Ω(k) lower bound on the RMR complexity of adaptive mutual exclusion

by Anderson and Kim [63]. When plugging in any sub-exponential function for M(k) in

the expression bounding the RMR complexity of the adaptive mutual exclusion algorithm

ME(T (R)), we obtain that the algorithm R must have step complexity at least linear in k.

Applications. We notice that we can also apply the result to obtain a linear lower bound on

the time complexity of non-adaptive renaming algorithms, that guarantee names from 1 to

some polynomial function in n, with n known. We prove this generalization by reduction:

we first show that virtually every non-adaptive renaming algorithm can be transformed into

a renaming algorithm with fails, which returns a fail indication whenever the number of

processes k accessing the algorithm is > n. Then, we show that any renaming algorithm with

fails can be used to obtain an adaptive renaming algorithm with similar step complexity and
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Renaming 
Algorithm R

 
Namespace M(k)
Complexity C(k)  

Strong Renaming 
Algorithm T( R )

 
Namespace k

Complexity 
O( C(k) + log (M(k)) ) 

Adaptive Mutex 
Algorithm 
ME(T(R))

 
RMR Complexity 

O( C(k) + log (M(k)) )  

Claim 5 Claim 6

Figure 7.1: The structure of the reduction in Theorem 8.

namespace guarantees. The lower bound follows from our result on adaptive algorithms.

A second application follows from the observation that practical shared-memory objects such

as queues, stacks, and fetch-and-increment registers can be used to solve adaptive strong

renaming. In turn, this will imply that the linear lower bound will also apply to deterministic

shared-memory implementations of these objects using read, write, compare-and-swap or

test-and-set operations. We analyze the limitations of this lower bound and ways to circumvent

it in Section 7.5.

Finally, the reduction from renaming to mutual exclusion will also imply the existence of a

non-adaptive mutual exclusion algorithm with optimal O(logn) RMR complexity.

In Section 7.1, we give some preliminaries on mutual exclusion and the remote memory

reference complexity measure. In Section 7.2 we give the main result, i.e. the linear lower

bound on the complexity of deterministic adaptive mutual exclusion. In Section 7.3, we give

the generalization to non-adaptive renaming. The applications of the lower bound to practical

objects is given in Section 7.4, while Section 7.4.2 presents the mutual exclusion protocol. We

conclude with an overview of related work in Section 7.6.

7.1 Preliminaries

7.1.1 Mutual Exclusion

The goal of the mutual exclusion (mutex) problem is to allocate a single, indivisible, non-

shareable resource among n processes. A process with access to the resource is said to be

in the critical section. When a user is not involved with the resource, it is said to be in the

remainder section. In order to gain admittance to the critical section, a user executes a trying

section; after it is done with the resource, it executes an exit section. Each of these sections can

be associated with a partitioning of the code that the process is executing.

Each process cycles through these sections in the order: remainder, entry, critical, and exit.

Thus, a process that wants to enter the critical section first executes the entry section; after

that, it enters the critical section, after which it executes the exit section, returning to the
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remainder section. We assume that in all executions, each process executes this section pattern

infinitely many times. For simplicity, we assume that the code in the remainder section is

trivial, and every time the process is in this section, it immediately enters the trying section.

An execution is admissible if for every process pi , either pi takes an infinite number of steps,

or pi ’s execution ends in the critical section.

An algorithm solves mutual exclusion problem with no deadlock if the following hold. We

adopt the definition of [26].

• Mutual exclusion: In every configuration of every execution, at most one process is in

the critical section.

• No deadlock: In every admissible execution, if some process is in the trying section in a

configuration, then there is a later configuration in which some process is in the critical

section.

• No lockout: In every admissible execution, if some process is in the trying section in

a configuration, then there is a later configuration in which the same process is in the

critical section.

• Unobstructed exit: In every execution, every process returns from the exit section in a

finite number of steps.

In this thesis, we focus on shared-memory mutual exclusion algorithms. As for renaming, there

exists a distinction between adaptive and non-adaptive solutions. A classical, non-adaptive,

mutual excusion algorithm is an algorithm whose complexity depends on n, the maximum

number of processes that may participate in the execution, which is assumed to be known

by the processes at the beginning of the execution. On the other hand, an adaptive mutual

exclusion algorithm is an algorithm whose complexity may only depend on the number

of processes k participating in the current execution, also known as the contention in the

execution.

7.1.2 Remote Memory References (RMRs)

So far, we have used step complexity, i.e. the number of shared-memory read and write

operations that a process performs during an execution, to measure the time complexity of an

algorithm. In this chapter, we will also employ a stronger measure of complexity, by counting

the number of remote memory references (RMRs). In cache-coherent (CC) shared memory,

each process maintains local copies of shared variables inside its cache. The consistency of the

cache among processes is ensured by a coherence protocol. A variable is remote to a process if

its cache contains a copy of the variable whose value is out of date (or if the cache contains no

copy of the variable); otherwise, the variable is local. A process step is local if it accesses a local

variable. Otherwise, the step is a remote memory reference (RMR). A similar definition exists
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for the distributed shared memory (DSM) model. Notice that, since an RMR is a consequence

of a process step, for wait-free algorithms the RMR complexity is always a lower bound on step

complexity.

7.1.3 Queues and Stacks

The queue is a data structure which maintains a set of elements with first-in-first-out (FIFO)

semantics. More precisely, the state of a stack can be described as an array [x0 =⊥, x1, . . . , xm].

A queue is empty if its state is [⊥], i.e. .

Assume a queue in state [x0 =⊥, x1, . . . , xm]. The sequential specification of a queue supports

two operations:

• The Enqueue(v) operation changes the state of the stack to [x0 =⊥, x1, . . . , xm , v], return-

ing success.

• The Dequeue() operation returns the “oldest" element in the queue. More precisely, if

x1 6= ⊥, then the Dequeue() operation returns x1 and changes the state of the stack to

[x0 =⊥, x2, . . . , xm]. Otherwise, the operation returns ⊥.

The stack is a data structure which maintains a set of elements with last-in-first-out (LIFO)

semantics. More precisely, the state of a stack can be described as an array [x0 =⊥, x1, . . . , xm],

where the last element xm is the top of the stack. A stack is empty if its state is [⊥].

Assume a stack in state [x0 =⊥, x1, . . . , xm]. The sequential specification of a stack supports

two operations:

• The Push(v) operation changes the state of the stack to [x0 =⊥, x1, . . . , xm , v], returning

success.

• The Pop() operation returns the top of the stack. If xm 6= ⊥, then the Pop() operation

also changes the state of the stack to [x0 =⊥, . . . , xm−1].

7.2 Adaptive Lower Bound

In this section, we prove the following result.

Theorem 8 (Individual Time Lower Bound). For any k ≥ 1, given n =Ω(k2k
), any wait-free

deterministic adaptive renaming algorithm that renames into a namespace of size at most 2 f (k)

for any function f (k) = o(k) has a worst-case execution with 2k −1 participants in which (1)

some process performs k RMRs (and k steps) and (2) each participating process performs a

single rename operation.
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Proof. We begin by assuming for contradiction that there exists a deterministic adaptive

algorithm R that renames into a namespace of size M(k) = 2 f (k) for f (k) ∈ o(k), with step

complexity C (k) = o(k). The first step in the proof is to show that any such algorithm can

be transformed into a wait-free algorithm that solves adaptive strong renaming in the same

model; the complexity cost of the resulting algorithm will be O(C (k)+ log M(k)). This result

follows trivially from Theorem 7.

Claim 5. Any wait-free algorithm R that renames into a namespace of size M(k) with complexity

C (k) can be transformed into a tight adaptive renaming algorithm T (R) with complexity

O(C (k)+ log M(k)).

Returning to the main proof, in the context of assumed algorithm R, the claim guarantees

that the resulting algorithm T (R) solves strong adaptive renaming with complexity o(k)+
O(log2 f (k)) = o(k)+O( f (k)) = o(k).

The second step in the proof shows that any wait-free strong adaptive renaming algorithm

can be used to solve adaptive mutual exclusion with only a constant increase in terms of step

complexity.

Claim 6. Any deterministic algorithm R for adaptive strong renaming implies a correct adaptive

mutual exclusion algorithm ME(R). The RMR complexity of ME(R) is upper bounded asymp-

totically by the RMR complexity of R, which is in turn upper bounded by its step complexity.

Proof. We begin by noting a few key distinctions between renaming and mutual exclusion.

Renaming algorithms are usually wait-free, and assume a read-write shared-memory model

which may be augmented with atomic compare-and-swap or test-and-set operations; com-

plexity is measured in the number of steps that a process takes during the execution. For

simplicity, in the following, we slightly abuse notation and call this the wait-free (WF) model.

Mutual exclusion assumes a more specific cache-coherent (CC) or distributed shared memory

(DSM) shared-memory model with no process failures (otherwise, a process crashing in the

critical section would block the processes in the entry section forever). Thus, solutions to

mutual exclusion are inherently blocking; the complexity of mutex algorithms is measured in

terms of remote memory references (RMRs). We call this second model the failure-free, local

spinning model, in short LS.

The transformation from adaptive tight renaming algorithm R in WF to the mutex algorithm

ME(R) in LS uses the algorithm R to solve mutual exclusion. The key idea is to use the names

obtained by processes as tickets to enter the critical section.

Processes share a copy of the algorithm R , and a right-infinite array of shared bits Done[1,2, . . .],

initially false. For the enter procedure of the mutex implementation, each of the k participating

processes runs algorithm R, and obtains a unique name from 1 to k. Since the algorithm R is

wait-free, it can be run in the LS model with no modifications.
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The process that obtained name 1 enters the critical section; upon leaving, it sets the Done[1]

bit to true. Any process that obtains a name id ≥ 2 from the adaptive renaming object spins

on the Done[id−1] bit associated to name id−1, until the bit is set to true. When this occurs,

the process enters the critical section. When calling the exit procedure to release the critical

section, each process sets the Done[id] bit associated with its name to true and returns. This

construction is designed for the CC model.

We now show that this construction is a correct mutex implementation.

• For the mutual exclusion property, let qi be the process that obtained name i from the

renaming network, for i ∈ {1, . . . ,k}. Notice that, by the structure of the protocol, for any

i ∈ {1, . . . ,k−1}, process qi+1 may enter the critical section only after process qi has exited

the critical section, since process qi sets the Done[i ] bit to true only after executing

the critical section. This creates a natural ordering between processes’ accesses in the

critical section, which ensures that no two processes may enter it concurrently.

• For the no deadlock and no lockout properties, first notice that, since the mutex algo-

rithm runs in a failure-free model, and the test-and-set instances we use in the renaming

network are deterministically wait-free, it follows that every process will eventually reach

an output port in the renaming network. Thus, by Theorem 7, each process will eventu-

ally be assigned a name from 1 to k. Conversely, each name i from 1 to k will eventually

get assigned to a unique process qi . Therefore, each of the Done[ ] bits corresponding to

names 1, . . . ,k will be eventually set to true, which implies that eventually each process

enters the critical section, as required.

• The unobstructed exit condition holds since each process performs a single operation in

the exit section.

For the complexity claims, first notice that the RMR complexity of the algorithm R ′ is at most

a constant plus the RMR complexity of algorithm R. Next, notice that, once a process obtains

the name from algorithm R, it performs at most two extra RMRs before entering the critical

section, since RMRs may be charged only when first reading the Done[v−1] register, and when

the value of this register is set to true. Therefore, the (individual or global) RMR complexity of

the mutex algorithm is the same (modulo constant additive factors) as the RMR complexity

of the original algorithm R. Since the algorithm R is wait-free, its RMR complexity is a lower

bound on its step complexity.

The last remaining claim is that the resulting renaming algorithm is adaptive, i.e. its complexity

only depends on the contention k in the execution, and the algorithm works for any value of

the parameter n. This follows since the original algorithm R was adaptive, and by the structure

of the transformation. In fact, the transformation does not require an upper bound on n to

be known; if such an upper bound is provided, then it can be used to bound the size of the

Done[. . .] array. This concludes the proof of the claim.
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Final argument. To conclude the proof of Theorem 8, notice that the algorithm resulting from

the composition of the two claims, ME(T (R)), is an adaptive mutual exclusion algorithm that

requires o(k)+O( f (k)) = o(k) RMRs to enter and exit the critical section, in the cache-coherent

model.

However, the existence of this algorithm contradicts theΩ(k) lower bound on the RMR com-

plexity of adaptive mutual exclusion by Anderson and Kim [63, Theorem 2], stated below.

Theorem 9 (Mutex Time Lower Bound [63]). For any k ≥ 1, given n =Ω(k2k
), any deterministic

mutual exclusion algorithm using reads, writes, and compare-and-swap operations that accepts

at least n participating processes has a computation involving (2k −1) participants in which

some process performs k remote memory references to enter and exit the critical section [63].

The algorithm R is adaptive and therefore works for unbounded n. Therefore, the adaptive

mutual exclusion algorithm ME(T (R)) also works for unbounded n. Hence the above mutual

exclusion lower bound contradicts the existence of algorithm ME(T (R)). The contradiction

arises from our initial assumption on the existence of algorithm R. The claim about step

complexity follows since, for wait-free algorithms, the RMR complexity is always a lower

bound on step complexity. The claim about the number of rename operations follows from

the structure of the transformation and from that of the mutual exclusion lower bound of [63],

in which each process performs the entry section once.

7.2.1 Technical Notes

Relation between k and n. The lower bound of Anderson and Kim [63] from which we obtain

our result assumes large values of n, the maximum possible number of participating processes,

in the order of k2k
. Therefore, algorithms that optimize for smaller values of n may be able to

circumvent the lower bound for particular combinations of n and k. (For example, the lower

bound does not preclude an algorithm with running time O(min(k, logn)) if n is known in

advance.) On the other hand, the lower bound applies to all algorithms that work for arbitrary

values of n.

Read-write algorithms. Notice that, although the first reduction step employs compare-and-

swap (or test-and-set) operations for building the renaming network, the lower bound also

holds for algorithms that only employ read or write operations, since the renaming network is

independent from the original renaming algorithm R.

Progress conditions. Known adaptive renaming algorithms, e.g. [73, 7], do not guarantee

wait-freedom in executions where the number of participants is unbounded, since a process

may be prevented indefinitely from acquiring a name by new incoming processes. Note that

our lower bound applies to these algorithms as well, as the original mutual exclusion lower

bound of Anderson and Kim [63] applies to all mutex algorithms ensuring livelock-freedom,

and our transformation does not require a strengthening of this progress condition.
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7.3 Non-Adaptive Renaming Lower Bound

This technique also implies an linear lower bound on the step complexity of non-adaptive re-

naming algorithms. Recall that, for non-adaptive algorithms, the size of the set of participants

is bounded by a fixed, known parameter n, and the size of the resulting namespace depends

on this parameter.

7.3.1 Renaming with Fails

We define a renaming algorithm with fails as a non-adaptive renaming algorithm RF , that has

the same specification as a renaming algorithm as long as the number of participants k does

not exceed the maximum number of participants N that the algorithm allows. On the other

hand, if k > N , then the algorithm RF may return a special value fail to the calling process

instead of a (unique) name. We call an instance of the algorithm a variant of RF for some fixed

N .

Definition 7 (Renaming with Fails). The renaming with fails task for parameter N in namespace

M(N ) assumes k > 0 processes with unique initial identifiers from an unbounded namespace,

and ensures the following.

1. Termination: In every execution, every correct process returns either an integer name or a

fail indication.

2. Namespace Size: In every execution, no two processes may return the same integer name.

3. Uniqueness: In every execution, every integer name returned is from 1 to M(N ).

4. Progress when k ≤ N : If the contention k in the current execution is at most N , no process

returns fail.

Note that, by the specification of the renaming problem, an instance assumes no limit on the

size of the initial identifiers that participating processes may have; however, a non-fail return

value is guaranteed only if at most N processes participate. Also, this property ensures that the

complexity of a renaming algorithm may not depend on the size of the initial namespace that

the algorithm accepts. Otherwise, since the algorithm accepts a virtually infinite namespace,

the algorithm would have unbounded complexity.

From non-adaptive renaming to renaming with fails. In the following, we consider non-

adaptive renaming algorithms that ensure the following three properties:

1. Every step of the algorithm executed by a correct process terminates eventually;

2. Any step can only update variables that are part of the algorithm;

3. The algorithm works for unbounded input namespace size.
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It is straightforward to see that any wait-free algorithm can be modified to ensure properties

(1) and (2), while property (3) is ensured by the original specification of the (non-adaptive)

renaming problem, given in [17]. Given these properties, we give a procedure to transform any

non-adaptive renaming algorithm R into a renaming algorithm with fails RF with the same

asymptotic complexity.

Let M(N ) be the namespace that R renames into, and let C (N ) be R’s complexity. We associate

with each process a local program counter that counts the number of steps that the process

has performed in the current execution. Processes share an instance of the algorithm R, and

an array Split of M(N ) deterministic splitter objects, as defined in Chapter 5.

Transformation. Each process executes algorithm R, checking the local program counter at

every step. If the local program counter exceeds the value C (N ) while running R, then the

process automatically returns fail. If the process obtains a name that is larger than M(N )

from R, then it automatically returns fail. If the process obtains a name r from the current

instance of R, then it checks that this name is unique by accessing the auxiliary array Split

of deterministic splitter objects in position r . If the splitter returns stop, then the process

returns that name as its decision value (recall that the splitter properties ensure that at most

one process may return stop at a splitter). Otherwise, if the splitter returns left, or right, then

the process returns fail.

We now check that this transformation results in a renaming algorithm with fails, whose

asymptotic step complexity is the same as the one of the original algorithm R. Although, in

general, the behavior of a non-adaptive renaming algorithm is not specified when k exceeds

N , this transformation is natural, and works for all known non-adaptive renaming algorithms

that do not assume an upper bound on the size of the initial namespace.

Lemma 16 (Renaming with Fails). For any N > 0, given a renaming algorithm R for at most

N processes with complexity C (N ) ensuring a namespace of size M(N ), the transformation

yields a renaming with fails algorithm RF with parameter N , having the same asymptotic step

complexity as R, ensuring the same properties as R as long as k ≤ N .

Proof. Consider a renaming algorithm R as above. If k ≤ N , it is easy to see that no process

returns a fail indication, and the algorithm RF ensures the same properties as R, with the

same asymptotic complexity.

Otherwise, if k > N , then the algorithm R may break correctness either by returning a name

that is outside the range M(N ), or by having two processes return the same integer name, or by

having a process run forever. Other deviations from correctness are excluded, since we assume

that every step by a correct process eventually returns, and steps may only update memory

allocated by the algorithm. However, we cover these possibilities in the transformation by

having processes return fail indications whenever one of these events occurs: a process

returning a name out of range returns fail; processes getting the same name detect the conflict

through the Split array; a process returns fail if it takes more than C (N ) steps as part of the
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algorithm R. Therefore the transformation implements a renaming algorithm with fails for

parameter N .

7.3.2 From Renaming with Fails to Adaptive Renaming

In this section, we show that any renaming algorithm with fails can be transformed into an

adaptive renaming algorithm, at the cost of a multiplicative logarithmic increase in running

time, conserving polynomial namespace size.

Transformation. We start from a non-adaptive renaming with fails algorithm R, which, for

any N ≥ 1, renames into a namespace of size M(N ), with complexity C (N ), as long as the

number of participants k to the instance does not exceed N . We consider an infinite series

(Ri )i=1,2,... of instances of algorithm R, where instance Ri is the algorithm R for parameter

N = 2i .

The transformation proceeds as follows. Each process accesses the instances (Ri )i in order,

until it first obtains an integer name from an instance Ri (as opposed to a fail indication). If, on

the other hand, a process obtains a fail indication from Ri , it increments its instance counter

i , and proceeds to the next instance. Once it has obtained a name v , the process returns v

plus the sum resulting from adding up the namespace sizes for the previous instances, i.e., for

j ≥ 2,
∑i−1

j=1 M(2 j ).

We now prove that the algorithm described above is a correct adaptive renaming algorithm,

and bound its complexity and namespace size.

Lemma 17. Let A be an algorithm that renames with fails such that, for any N ≥ 1, it guarantees

a namespace of size polynomial in N with step complexity o(N ). Then the above transformation

yields an adaptive renaming algorithm that renames in a namespace polynomial in the number

of participants k, whose complexity is o(k).

Proof. Fix an arbitrary execution of the transformation, and let k be the number of participants

in the execution. Let m be highest index of an instance in the series (Ri )i that a process accesses

in this execution. Since a process may only access an instance of a higher index if it fails in

the current instance, and an instance Ri may return fail only if the number of participants k

exceeds the number of allowed participants 2i , it follows that m =O(logk).

For bounded k, each correct process eventually returns a name in the transformation. (On the

other hand, if k is infinite, then the transformation no longer guarantees starvation-freedom.)

The name uniqueness property follows since renaming with fails guarantees uniqueness, and

the namespace resulting from the transformation is partitioned into the namespaces returned

by the instances (Ri )i .

We now bound the size of the namespace that the algorithm generates as a function of k, the

number of participants. Assume that, for any N , the algorithm R returns names between 1
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and N c . If m is the largest index of an accessed instance, then the size of the namespace is

bounded by
∑m

i=1 2ci ≤ 2c(m+1) =O(kc ), i.e. polynomial in k. Notice that the transformation

uses no knowledge of n, the actual upper bound on the maximum number of processes that

may participate in the execution. Therefore, the transformation is an adaptive renaming

algorithm that renames into a namespace of size polynomial in the contention k.

Finally, we bound the step complexity of the transformation. By its structure, the number

of steps a process takes in total is bounded by C (2m)+C (2m−1)+ . . .+C (1). Since Rm is the

highest accessed instance of algorithm R, it follows that 2m > k ≥ 2m−1. We want to show that

C (2m)+C (2m−1)+ . . .+C (1) is in o(2m) = o(k), knowing that C (2m) = o(2m). Therefore, we

need to show that the quantity

C (2m)+C (2m−1)+ . . .+C (1)

2m

converges to 0 as m →∞. Let Am =C (2m)+C (2m−1)+ . . .+C (1), and let Bm = 2m+1 −1. Recall

the following result from basic calculus.

Lemma 18 (Stolz-Cesàro). Let (An)n≥1 and (Bn)n≥1 be two sequences of real numbers, such

that (Bn)n≥1 is positive, strictly increasing, and unbounded. Then

lim
n→∞

An

Bn
= lim

n→∞
An+1 − An

Bn+1 −Bn
,

if the limit on the right hand side exists.

We apply this result to Am and Bm as defined above, and obtain that

lim
m→∞

C (2m)+C (2m−1)+ . . .+C (1)

2m+1 −1
= lim

n→∞
Am+1 − Am

Bm+1 −Bm
= lim

m→∞
C (2m+1)

2m+1 = 0,

where the second limit exists and is 0, since C (k) = o(k). Therefore, by a change of variables,

the complexity of the transformation is o(k), as claimed.

On the other hand, the existence of such an adaptive renaming algorithm contradicts Theo-

rem 8. Therefore, it follows that every deterministic renaming algorithm with fails with param-

eter N , guaranteeing a namespace polynomial in N has complexityΩ(N ). From Lemma 16,

the same result holds for non-adaptive renaming algorithms.

Corollary 4. Any deterministic non-adaptive renaming algorithm, with the property that for

any n ≥ 1 the algorithm ensures a namespace polynomial in n, has worst-case step complexity

Ω(n).
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7.4 Applications

7.4.1 Lower Bounds for Other Objects

These results imply time lower bounds for implementations of other shared objects, such as

fetch-and-increment registers, queues, and stacks. Some of these results are new, while others

improve on previously known results.

We first show reductions between fetch-and-increment, queues, and stacks, on the one hand,

and adaptive strong renaming, on the other hand.

Lemma 19. For any k > 0, we can solve adaptive strong renaming using a fetch-and-increment

register, a queue, or a counter.

Proof. Given a linearizable fetch-and-increment register, we can solve adaptive strong re-

naming by having each participant call the fetch-and-increment operation once, and return

the value received plus 1. The renaming properties are follow trivially from the sequential

specification of fetch-and-increment.

Given a linearizable shared queue, we can solve renaming by initializing it with n distinct

integers 1,2, . . . ,n, where 1 is the element at the head of the queue, and n is the element at

the tail of the queue. Given this initialized object, we can solve adaptive strong renaming by

having each participant call the dequeue operation once, and return the value received. Again,

correctness follows trivially from the sequential specification of the queue.

Finally, given a stack, we initialize it with values 1,2, . . . ,n, where 1 is the top of the stack. To

solve renaming, each process performs pop on the stack and returns the element received.

This implies a linear time lower bound for these objects.

Corollary 5 (Queues, Stacks, Fetch-and-Increment). Consider a wait-free linearizable imple-

mentation A of a fetch-and-increment register, queue, or stack, in shared memory with read,

write, test-and-set, and compare-and-swap operations. If the algorithm A is deterministic, then,

for any k ≥ 1, given n =Ω(k2k
), there exists an execution of A with 2k −1 participants in which

(1) each participant performs a single call to the object, and (2) some process performs k RMRs

(or steps).

7.4.2 A Time-Optimal Non-Adaptive Mutex Algorithm

Another application of the lower bound argument is that we can obtain an asymptotically op-

timal mutual exclusion algorithm from an AKS sorting network [5]. We present this algorithm

in the cache-coherent (CC) model.

Description. Processes share an AKS sorting network with n input (and output) ports, and
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Shared:1

An AKS renaming network R, with n input and output ports2

An array Done of n registers, initially false3

procedure entry-section(vi )4

w ← input wire corresponding to vi5

while w is not an output wire do6

T ← next test-and-set on wire w7

res ← T.test-and-set( )8

if res = 0 then9

w ← output wire x ′ of T10

else11

w ← output wire y ′ of T12

/* w is an output wire */
idi ← w.index13

if idi = 1 then14

execute critical section15

else16

spin until Done[idi −1] = true17

execute critical section18

return19

procedure exit-section( )20

Done[idi ] ← true21

return22

Figure 7.2: Pseudocode for the mutex algorithm.

a vector Done of boolean bits, initially false. We replace each comparator in the network

with a two-process test-and-set object with constant RMR complexity [52, 53]. In the mu-

tual exclusion problem processes are assumed hold unique initial identifiers vi from 1 to n,

therefore we use these initial identifiers to assign unique input ports to processes. A process

progresses through the network starting at its input port, competing in test-and-set objects,

as in a renaming network. A process takes the top comparator output if it wins (returns 0

from) the test-and-set, and the bottom output otherwise. The process adopts the index of the

output port it reaches as a temporary name i d . If i d = 1, then it enters the critical section;

otherwise it busy-waits until the bit Done[i d −1] is set to true. Upon exiting the critical section,

the process sets the Done[i d ] bit to true.

The correctness of the algorithm above follows from Claims 5 and 6. In particular, the asymp-

totic local RMR complexity of the above algorithm is the same as the depth of the AKS sorting

network (plus at most two RMRs for reading the Done bits), i.e. O(logn), therefore the algo-

rithm is optimal by the lower bound of Attiya et al. [23]. Anderson and Yang [54] presented

an upper bound with the same asymptotic complexity, but significantly better constants,

using a different technique. The same construction can be used starting from constuctible
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sorting networks, e.g. bitonic sorting networks [64], at the cost of increasing complexity by a

logarithmic factor. Notice that the linear RMR lower bound of Anderson and Kim [63] does not

yield aΩ(n) RMR lower bound for non-adaptive mutual exclusion (which would contradict

the existence of our algorithm).

7.5 Circumventing the Lower Bound

In brief, the lower bound shows that, if the number n of potential participating processes

is very large, then, for any k ¿ n, one can obtain a schedule with participating processes in

which one process takes a step for roughly every other participating process. There are two

ways for algorithms to circumvent the argument.

Randomization. As shown in Chapter 6, one can avoid the worst-case linear schedules with

high probability by allowing processes to flip coins as part of the execution. In particular, for

renaming, the complexity of an operation is O(logk) with high probability, i.e. exponentially

less than the worst-case deterministic schedule.

Limiting the parameter n or the size of the initial namespace. Another way of circumvent-

ing the lower bound is assuming that the maximum number of participants n is small, and

that processes already have unique names from 1 to n. (For example, this can be achieved

by running a renaming algorithm at the beginning of the execution.) An example of such

an algorithm is the O(logn log v) counter algorithm by Aspnes et al. [12], which assigns a

unique “input port" in the data structure to each of the n processes. For n large, if k =Θ(logn)

processes are participating, each of them performs a number of operations which is at least

linear in k, although this number is in O(logn log v). For n small, linear contention in k can be

seen as negligible.

7.6 Related Work

Renaming was introduced in [17], where the authors showed a lower bound of (n +1) names

in the wait-free asynchronous case. The lower bound on namespace size for deterministic

read-write solutions was improved to (2n −2) in a landmark paper by Herlihy and Shavit [57],

with refinements by Rajsbaum and Castañeda [34, 35]. This lower bound can be circum-

vented using hardware compare-and-swap or test-and-set operations [73], as well as using

randomization [44] (at the cost of allowing a vanishing probability that the algorithm does not

terminate). Renaming has been shown to be related to weak symmetry breaking in [50]; it is

also related to the processor identity problem [65]; the key difference is that, for renaming,

participants are assumed to have distinct initial identifiers (from an unbounded namespace).

Several renaming algorithms were proposed in the literature, e.g. [17, 31, 73, 21, 9, 7]. The

lower bound given in this chapter is matched by the algorithm of [73] which assumes hardware

test-and-set operations; for read-write algorithms, it is matched by the algorithm of [73], which
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achieves a namespace of size O(k2); it is also matched (within a logarithmic factor) by the

algorithm of [21], which ensures a linear namespace of size (6k−1). Chlebus and Kowalski [39]

showed a linear lower bound for deterministic renaming algorithms under the assumption

that the number of available registers is limited. (By contrast, our lower bounds do not require

such a restriction.)

As we pointed out, the lower bound applies to fetch-and-increment, queues, and stacks, and

extends previous results obtained for these objects. Indeed, Jayanti, Tan and Toueg [61], as

well as Ellen et al. [48] already presented linear lower bounds for deterministic counters,

queues and stacks. One limitation of these two results is that the worst-case executions they

build require processes to perform an exponential number of operations–by contrast, there

exist counter implementations that have polylogarithmic step complexity for polynomially

many increment operations [12]. Our linear bound does not have this limitation, since each

process performs only one operation in the worst-case execution (note that our deterministic

linear lower bound does not apply to counters). In essence, we show that the linear threshold

is inherent for worst-case executions of fetch-and-increment, queues, and stacks, even if

each process performs only one operation. For practical objects, the linear lower bound

can be matched by universal construction implementations, which use reads, writes, and

compare-and-swap operations [56, 45].

85





8 A Tight Time Lower Bound for Adap-
tive Randomized Renaming

In this section, we present lower bounds on the expected total step complexity of randomized

renaming and counting. (Naturally, the result also applies to deterministic algorithms, yielding

a worst-case total step complexity lower bound.) The lower bound holds for algorithms using

reads, writes, test-and-set, or compare-and-swap operations, and is matched by the renaming

network algorithm, as discussed in Section 8.7.

Strategy. We analyze an adversarial strategy that schedules the processes lock-step, and

show that this limits the amount of information that each process may gather throughout an

execution. We then relate the amount of information that each process must gather with the

set of names that the process may return in an execution. For executions in which everyone

terminates and the adversary follows the lock-step strategy, we obtain a lower bound of

Ω(k log(k/c)) for c-loose renaming. We then notice that a similar argument can be applied to

obtain a lower bound for c-approximate counting.

Our argument generalizes a previous result by Jayanti [60], which in turn is similar to a lower

bound by Cook, Dwork, and Reischuk [40] on the complexity of computing basic logical

operations on PRAM machines. Jayanti proved an Ω(logk) lower bound on the expected

step complexity of shared counters, queues, and stacks, which can be tweaked to apply to

strong adaptive renaming. We generalize his result in two ways: first, we consider total

step complexity, and thus obtain a strongerΩ(logk) lower bound on the average worst-case

expected step complexity of the problem. Second, our results also apply to loose (approximate)

versions of renaming and counting, showing that the time complexity benefits of relaxing the

object semantics in this way are at most constant.

We begin by discussing some basic definitions and properties related to adversarial schedules

in Section 8.1. We then describe the adversarial scheduler and analyze its properties in

Section 8.2. From these properties, we obtain the lower bound for adaptive renaming in

Section 8.3. We refine this argument to obtain a lower bound for approximate counting in

Section 8.4. We then discuss applications to more complex objects 8.6 and conclude with an

overview of related work in Section 8.7.
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8.1 Preliminaries

8.1.1 Loose Adaptive Renaming and Approximate Counting

We recall the definitions of these two objects. For c ≥ 1, the c-loose renaming problem requires

processes to return unique names from 1 to ck, where k is the contention in the execution.

Let C be a counter implementation, supporting operations read and increment. The counter

is c-approximate if, for any read operation R, its return value v satisfies the relation

γ/c ≤ v ≤ cγ,

where γ is the number of increment operations linearized before the read operation R.

8.1.2 Operations and Schedules

Recall that we consider a shared-memory model with atomic read, write, and compare-and-

swap operations. Notice that the read and write operations always succeed, whereas the

compare-and-swap operation is conditional, meaning that it may or may not change the

value of the register on which it is called, depending on the value of the register when the

operation is called. Notice that certain operations change the value of the underlying object

(such as a write with a new value), whereas others are “invisible", such as reads, and failed

compare-and-swap operations. In the following, we make this intuition precise, and analyze

the existence of schedules in which few operations are visible. We follow the presentation

of [22], where these notions were first defined.

Definition 8 (Invisible Operations [22]). Let e be an operation applied by a process p to an

object O, in an execution E = E1eE2. We say that e is invisible in e if either the value of the

object O is not changed by e, or if E2 = E ′e ′E ′′, where e ′ is a write operation on O, E ′ contains

no operations by p, and no operation in E ′ is applied to O. If e is not invisible in E, we say that

it is visible in E.

Based on this definition, we now define a weakly-visible schedule, which minimizes the

number of operations that a process sees during an execution.

Definition 9 (Weakly-Visible Schedule [22]). Let S = {e1, . . . ,e`} be a set of operations by dif-

ferent processes that are enabled after some execution prefix E, all about to apply write or

compare-and-swap operations. We say that an ordering of the operations in S is a weakly-

visible schedule of S after E, denoted by σ(E ,S), if the following holds. Let E1 = Eσ(E ,S).

• At most a single operation of S is visible on any one object in E1. If e j ∈ S is visible on a

base object in E1, then e j is issued by a process that is not aware of any event of S in E1.

• Any process is aware of at most a single event of S in E1.
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Given these definitions, Attiya and Hendler [22] proved the following result on the existence

of weakly-visible schedules. The proof follows by constructing a suitable ordering of the

operations in S.

Lemma 20 (Weakly-Visible Schedules [22]). Let S = {e1, . . . ,e`} be a set of operations by different

processes that are enabled after some execution E, all about to apply write or compare-and-swap

operations. Then there is a weakly-visible-schedule of S after E.

8.1.3 Worst-case Expected Step Complexity

In the following lower bounds, we will use the following basic fact, whose proof follows from

the definition of the expectation of a random variable.

Proposition 5 (Expected Complexity). Fix constants α ∈ [0,1] and γ> 0. Given an algorithm

A that terminates with probability α, if there exists an adversarial strategy S (A) such that, in

every execution under S (A) in which every process terminates, the processes take at least γ

steps, then the (worst-case) expected step complexity of A is at least αγ.

8.2 The Adversarial Scheduler

We consider an algorithm A in shared-memory allowing atomic read, write, and compare-and-

swap operations (notice that the test-and-set operation can be trivially replaced by compare-

and-swap. The adaptive adversary follows the pseudocode described in Figure 8.1. The

adversary schedules the processes in rounds: in each round, each process that has not yet

returned from A is scheduled to perform the next shared-memory operation that they have

enabled. More precisely, at the beginning of each round, the adversary allows each process to

perform local coin flips until it either terminates or has to perform an operation that is either

a read, a write, or a compare-and-swap (lines 3-5).

In each round, the adversary partitions processes that have an operation enabled into three

sets: R, the readers, W , the writers, and C , the swappers. Processes in R are scheduled by

the adversary to perform their enabled read operations, in the order of their initial identifiers

(line 9). Then each process in W is scheduled to perform the write, again in the order of initial

identifiers (line 10). Finally, the swappers are scheduled following a particular weakly-visible

schedule σ, formally defined and shown to exist in Lemma 20, whose goal is to minimize the

information flow between processes. Once each process has either been scheduled or has

returned, the adversary moves on to the next round.

Before we proceed with the analysis, we explain the role of the weakly-visible schedule for

the processes performing compare-and-swap operations in round r . Notice that, if a set of

processes all perform compare-and-swap operations in a round, there exist interleavings of

these operations such that the last scheduled process “finds out" about all other processes

after performing its compare-and-swap, by reading a value that these processes successively
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procedure adversarial-scheduler()1

r ← 12

while true do3

for each process p do4

schedule p to perform coin flips until it has enabled a shared-memory operation, or p5

returns
R ← processes that have read operations enabled6

W ← processes that have write operations enabled7

C ← processes that have compare-and-swap operations enabled8

schedule all processes in R to perform their operations, in the order of their initial9

identifiers
schedule all processes in W to perform their operations, in the order of their initial10

identifiers
schedule all processes in C to perform their in the order defined by the weakly-visible11

schedule σ
r ← r +112

Figure 8.1: The adversarial strategy for the global lower bound.

modified. However, the adversary can always break such interleavings and ensure that, given

any set of compare-and-swap operations, a process only finds out about one other operation,

using a weakly-visible schedule, as described in Section 8.1.2.

Analysis. First, notice that, since the algorithms we consider are randomized, the adversar-

ial strategy we describe creates a set of executions in which all processes take steps (if the

algorithm is deterministic, then the strategy describes a single execution). We denote the set

of such executions by S (A). In the following, we study the flow of information between the

processes in executions from S (A).

We prove that the adversarial strategy described above prevents any process from “finding

out" about more than 2r active processes by the end of round r in any execution from S (A).

More precisely, for each process p following the algorithm A, each register R, and for every

round r ≥ 0, we define the sets UP(p,r ) and UP(R,r ), respectively. Intuitively, UP(p,r ) is the

set of processes that process p might know at the end of round r as having taken a step in an

execution resulting from the adversarial strategy. Similarly, UP(R,r ) is the set of processes that

can be inferred to have taken a step in an execution resulting from the adversarial strategy, by

reading the register R at the end of round r . Our notation follows the one in [60], which defines

similar measures for a model in which LL/SC, move, and swap operations are available.

Formally, we define these sets inductively, using the following update rules. Initially, for r = 0,

we consider that UP(p,0) = {p} and UP(R,0) =;, for all processes p and registers R. For any

later round r ≥ 1, we define the following update rules:

1. At the beginning of round r ≥ 1, for each process p and register R, we set UP(p,r ) =
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UP(p,r −1) and UP(R,r ) = UP(R,r −1);

2. If process p performs a successful write operation on register R in round r , then

UP(R,r ) = UP(p,r −1). Informally, the knowledge that process p had at the end of round

r −1 is reflected in the contents of register R at the end of round r . On the other hand,

the writing process p gains no new knowledge from writing, i.e. UP(p,r ) = UP(p,r −1);

3. If process p performs a successful compare-and-swap operation on register R in round

r , i.e. if the operation returns the expected value, then the information contained in

the register is overwritten with p’s information, that is UP(R,r ) = UP(p,r −1). We also

assume that the process p gets the information previously contained in the register

UP(p,r ) = UP(p,r − 1)∪UP(R,r ) (the contents of UP(R,r ) might have been already

updated in round r );

4. If process p performs an unsuccessful compare-and-swap operation on register R in

round R, then UP(R,r ) remains unchanged. On the other hand, the process gets the

information currently contained in the register, i.e. UP(p,r ) = UP(p,r −1)∪UP(R,r );

5. If process p performs a successful read operation on register R in round r , then UP(R,r )

remains unchanged, and UP(p,r ) = UP(R,r )∪UP(p,r −1).

Based on these update rules, we can compute an upper bound on the size of the UP sets for

processes and registers, as the rounds progress.

Lemma 21 (Bounding information). Given a run of the algorithm A controlled by the adver-

sarial scheduler in Figure 8.1, for any round r ≥ 0, and for every process or shared register X ,

|UP(X ,r )| ≤ 2r , where the set UP is considered at the beginning of the round r .

Proof. The proof follows by induction on the round number r ≥ 0. For r = 0, the claim holds

by definition.

Given r > 0 for which the claim holds, we prove it for r + 1. We first prove the claim for

UP(R,r +1), where R is a register. Notice that the amount of information in R may change

only as a consequence of it being written, or updated by a compare-and-swap operation. In

both cases, the set UP(R,r +1) takes the value of UP(p,r ). By the induction step, this is at

most 4r , and the claim holds.

We now consider UP(p,r +1) for a process p. Following the update rules, since the adversary

uses a weakly-visible schedule, the size of the set UP(p,r +1) can be at most

|UP(p,r )|+ |UP(q,r )|,

where q another process, whose operation is visible to p during round r . The claim follows by

the induction step.
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Indistinguishability. Let E be an execution of the algorithm obtained using the adversarial

strategy above, i.e. E ∈ S (A). Given the previous construction, the intuition is that, for a

process p and a round r , if UP(p,r ) = S for some set S, then p has no evidence that any

process outside the set S has taken a step in the current execution E . Alternatively, there exists

a parallel execution E ′ in which only processes in the set S take steps, and p cannot distinguish

between the two executions.

We make this intuition precise. First, we define state(E , p,r ) as the local state of process p at

the end of round r (i.e. the values of its local registers and its current program counter), and

val(E ,R,r ) as the value of register R at the end of round r . We also define numtosses(E , p,r )

as the number of coin tosses that the process p performed by the end of round r of E . Two

executions E and E ′ are said to be indistinguishable to process p at the end of round r if (1)

state(E , p,r ) = state(E ′, p,r ), and (2) numtosses(E , p,r ) = numtosses(E ′, p,r ).

Starting from the execution E , the adversary can build an execution E ′ in which only pro-

cesses in S participate, that is indistinguishable from E from p’s point of view, by starting

from execution E and only scheduling processes in S = UP(p,r ) up to the end of round r of

E ′. The proof is identical to the one presented by Jayanti [60] in the context of local lower

bounds for shared-memory with LL/SC operations. Therefore, we only give an overview of the

construction in this thesis.

Lemma 22 (Indistinguishability). Let E be an execution in S (A) and p be a process with

UP(p,r ) = S at the end of round r . There exists an execution E ′ of A in which only processes in

S take steps, such that E and E ′ are indistinguishable to process p.

Proof. To prove the claim, we provide an algorithm for the adversary to build an execution E ′

based on the original execution E ∈S (A), and prove that E ′ and E are indistinguishable for

process p at the end of round r . The construction is an adaptation to the read-write model of

the one presented by Jayanti in [60]. Given the execution E , let coins(E , p, j ) be the outcome

of the j th coin toss that process p performs in execution E .

Constructing the execution. The procedure to build the desired execution E ′ of algorithm A

in which only |S| processes participate is described in Algorithm 8.2. The run is also structured

in rounds. Of note, only processes that are scheduled in round r are the processes in S that

have not witnessed processes outside of S by the end of round r −1. Each process is scheduled

to perform local coin tosses until it has a shared-memory operation enabled. For every coin

toss j by a process q , the adversary feeds the outcome that occurred in the execution E , that is

coins(E , q, j ). Depending on their enabled shared-memory operation, the processes that have

not yet terminated are then split into a set of readers, a set of writers, and a set of swappers, that

is processes having compare-and-swap operations enabled. The readers are then scheduled

in the order of their initial identifiers, after which the writers are scheduled in the order of their

initial identifiers. The swappers are scheduled in the order of their weakly visible schedule.

Finally, the adversary increments the round counter and moves to the next round.
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Parameters: the execution E , the set S1

procedure build(E , S)2

r ← 13

while true do4

// we schedule processes that have not seen a process outside of S in
the first r −1 rounds of E

Sr ← {processes q |UP(q,r −1) ⊆ S }5

for each process q in Sr do6

process q performs coin tosses until it returns or has enabled a shared-memory7

operation
the j th coin toss by process q is supplied with outcome coins(E , q, j )8

R ← processes in Sr that have read operations enabled9

W ← processes in Sr that have write operations enabled10

C ← processes that have compare-and-swap operations enabled11

schedule all processes in R to perform their operations, in the order of their initial12

identifiers
schedule all processes in W to perform their operations, in the order of their initial13

identifiers
schedule all processes in C to perform their operations14

in the order defined by the weakly-visible schedule σ15

r ← r +116

Figure 8.2: The procedure for building the indistinguishable execution.

Correctness of the construction. The proof of correctness proceeds by induction on the

round number r , and is identical to the one outlined in [60], Lemma 5.2. More precisely, the

execution E is the (All ,A ) run, and the execution E ′ is the (S,A )-run. We refer the reader to

reference [60] for the proof.

8.3 Renaming Lower Bound

We now prove anΩ(k log(k/c)) lower bound on the total step complexity of c-loose adaptive

renaming algorithms. In particular, this lower bound implies that we cannot gain more than a

constant factor in terms of step complexity by relaxing the tight namespace requirement by a

constant factor. There are two key technical points: first, we relate the amount of information

that a process gathers with the set of names it may return (we show this relation holds even if

renaming is loose); second, for each process, we relate the number of steps it has taken with

the amount of information it has gathered.

Theorem 10 (Renaming). Fix c ≥ 1 constant. Given k participating processes, any c-loose

adaptive renaming algorithm that terminates with probability α has worst-case expected total

step complexityΩ(αk log(k/c)).
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Proof. Let A be a c-loose adaptive renaming algorithm. We consider a terminating execution

E ∈S (A) with k participating processes, i.e. every participating process returns in E . We first

prove that a process that returns name j ∈ [1,ck] in execution E has to performΩ(log( j /c))

shared-memory operations.

First, notice that each execution E ∈S (A) contains no process failures, so each process has

to return a unique name in the interval 1, . . . ,ck in such an execution. Therefore, there exist

distinct names m1, . . . ,mk ∈ {1,2, . . . ,ck} and processes q1, . . . , qk such that process qi returns

name mi in execution E . Without loss of generality, assume that the names returned by

processes q1, . . . , qk are in monotonically increasing order; since the names are distinct, we

have that mi ≥ i for i ∈ 1, . . . ,k.

Consider process qi returning name mi in E . Let `i be the number of shared-memory opera-

tions that qi has performed in E . Since the adversary schedules each process once in every

round of E , until termination, it follows that process qi has returned at the end of round `i . Let

S = UP(qi ,`i ), as defined in Section 8.2. Since E ∈S (A), by Lemma 21, we have that |S| ≤ 2`i .

Assume for the sake of contradiction that the number of processes that qi “found out" about

in this execution, |S|, is less than mi /c. By Lemma 22, there exists an execution E ′ of A which

is indistinguishable from E from qi ’s point of view at the end of round `i , in which only

|S| < mi /c processes take steps. However, since the algorithm is c-loose, the highest name

that process qi may return in execution E ′, and thus in E , is strictly less than c · (mi /c) = mi , a

contradiction.

Therefore, it has to hold that |S| ≥ mi /c , which implies that `i , the number of shared-memory

operations that process qi performs in E , is at least log2(mi /c) = log(mi /c). Therefore, for any

i ∈ 1, . . . ,k, process qi returning name mi has to perform at least log(mi /c) shared memory

operations. Then the total number of steps that the k processes perform in execution E is

k∑
i=1

`i ≥
k∑

i=1
log(i /c) =Ω(k log(k/c)),

where in the last step we have used the standard Stirling approximation of k !. Since this

complexity lower bound holds for every execution resulting from the adversarial strategy,

using Proposition 5, we obtain that the expected total step complexity of the algorithm A is

Ω(αk log(k/c)).

8.4 Counting Lower Bound

Using a similar argument, we can show that any c-approximate counter implementation has

worst-case expected total step complexityΩ(k log(k/c2)) in executions where each process

performs one increment and one read.

One key difference from the proof in the previous section, which implies the extra c factor, is
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that processes may return the same value from the read operation; we take this into account

by studying the linearization order of the increment operations.

Theorem 11 (Counting). Fix c ≥ 1 constant. Let A be a linearizable c-approximate counter

implementation that terminates with probability α. For any k, the algorithm A has worst-

case expected total step complexity Ω(αk log(k/c2)), in runs where each process performs an

increment followed by a read operation.

Proof. Let A be a c-approximate counting algorithm in this model. We consider terminating

executions E with k participating processes, in which each process performs an increment

operation followed by a read operation, during which which the adversary applies the strategy

described in Figure 8.1, i.e. E ∈S (A).

Again, we start by noticing that, since no process crashes during E , each process has to return

a value from the read operation. Depending on the linearization order of the increment and

read operations, the processes may return various values from the read. Let γi be the number

of increment operations linearized before the read operation by process pi , and let vi be

the value returned by process pi ’s read. Without loss of generality, we will assume that the

processes pi and their return values vi are sorted in the increasing order of their γi values.

First, notice that, since every process calls increment before its read operation, for every

1 ≤ i ≤ k, γi ≥ i . Second, by the c-approximation property of the counter implementation,

vi ≥ γi /c. Therefore, vi ≥ i /c.

Second, consider process pi returning value vi in execution E . Let `i be the number of shared-

memory operations that pi has performed in E . Since the adversary schedules each process

once in every round of E , it follows that process pi has returned at the end of round `i . Let

S = UP(pi ,`i ), as defined in Section 8.2. By Lemma 21, we have that |S| ≤ 2`i .

Assume for the sake of contradiction that |S| < vi /c. By Lemma 22, there exists an execution

E ′ of A which is indistinguishable from E from qi ’s point of view at the end of round `i , in

which only |S| < vi /c processes take steps. However, since the counter is c-approximate, the

highest value that process pi can return in execution E ′, and thus in E , is strictly less than

c · (vi /c) = vi , a contradiction.

Therefore, |S| ≥ vi /c, and `i ≥ log(vi /c) ≥ log(i /c2), for every 1 ≤ i ≤ k. We obtain that the

total number of steps is bounded as follows.

k∑
i=1

`i ≥
k∑

i=1
log(i /c2) ≥ log(k !/c2k ) =Ω(k log(k/c2)).
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8.5 Circumventing the Lower Bound

In brief, the lower bound in this chapter states that for implementations of adaptive renaming

and related counting objects, the average worst-case expected step complexity is logarithmic

if the adversary is adaptive, i.e. may adapt its schedule based on the results of the processes’

coin flips. Thus, this logarithmic threshold is stronger than the linear one shown in Chapter 7,

as it cannot be avoided by the use of randomization in the presence of a strong adversary.

On the other hand, if the adversary is weak, or oblivious, and may not adapt the schedule based

on the results of the processes coin flips (i.e. fixes the schedule before the execution), then

there exist objet implementations that avoid this lower bound. In particular, the approximate

counter of Bender and Gilbert [29] guarantees a constant approximation factor with expected

running time O(loglogn) against an oblivious adversary.

A third method of potentially circumventing the lower bound would be to allow the algorithm

to break the approximation guarantee with small probability. Notice that the lower bound

argument, as written, only applies to algorithms that guarantee approximation within a factor

of c in all executions. The counter of Bender and Gilbert [29] is an example of such an object,

since it guarantees the constant approximation only with high probability. Another example is

the AdaptiveSearch renaming algorithm of [9], which only ensures a namespace from 1 to ck

with high probability in k.

8.6 Applications to Other Objects

Given that adaptive renaming can easily be solved using queues, stacks, or fetch-and-increment

objects, as shown in Section 7.4, the lower bound in Section 8.3 applies to these objects.

Corollary 6 (Applications). Consider a wait-free linearizable (randomized) implementation A

of a fetch-and-increment register, queue, or stack, in shared memory with read, write, test-and-

set and compare-and-swap operations. Then, for any k ≥ 1, if A terminates with probability α,

then its expected worst-case step complexity isΩ(αk logk), where k is the number of participat-

ing processes.

8.7 Related Work

The first lower bound to apply to randomized renaming was a logarithmic lower bound on

the individual step complexity of strong renaming, derived in [7], generalizing the technique

of Jayanti [60]. The lower bound in this chapter was first published in [8], and improves on

Jayanti’s result [60] and the subsequent generalization by Alistarh et al. [7] in two ways: first,

since we consider total step complexity, our results imply the local bounds of [60, 7]; second,

the results in this chapter also cover the loose version of the problem, which relaxes the tight

namespace requirements. The lower bound technique by Jayanti, which we generalize, is

in turn similar to a lower bound by Cook, Dwork, and Reischuk [40] on the complexity of
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computing basic logical operations on PRAM machines.

A similar technique was used by Attiya et al. [22], who analyzed the complexity of deterministic

implementations when stronger `-location compare-and-swap primitives are available in

memory. They derived Ω(n log`n) time lower bounds on deterministic data structures im-

plementing counters, queues, or stacks. The results in this chapter are stronger in that they

apply to randomized and approximate versions of these objects, although, as given, they do

not apply to the case when `-location compare-and-swap is available.

TheΩ(k log(k/c)) renaming lower bound is matched asymptotically for c = 1 by the renaming

algorithm presented in Chapter 6. For counters, the deterministic algorithm of Aspnes et

al. [12] guarantees exact counting with complexity O(logn logm), where m is the maximal

value of the counter, and thus matches the lower bound within a logarithmic factor for c = 1

and k = n = m. Since this almost-matching algorithm [12] is deterministic and exact, this

lower bound limits the gain that can be obtained by randomization or approximation to a

logarithmic factor in a shared-memory setting. Note that the counter implementation given

in Section 6.4.1 does not match this lower bound, since it is not linearizable.
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9 Summary and Open Questions

This thesis studies the complexity of concurrent data structures in shared memory, motivated

by the classic renaming problem. We have presented and analyzed randomized algorithms for

renaming, test-and-set, and counters, and we gave tight lower bounds for deterministic and

randomized renaming. Despite this progress, open questions remain. We enumerate some of

these questions in this chapter.

9.1 Renaming

In Chapter 7, we have given a linear lower bound on the step complexity of deterministic

adaptive renaming into a sub-exponential namespace. We also extended this result to a linear

lower bound on the step complexity of non-adaptive renaming into a polynomial namespace.

These bounds are matched by algorithms in the literature: for algorithms assuming hardware

test-and-set primitives, the matching upper bounds achieve a tight namespace [72]. For

algorithms using only reads and writes, which have been studied more extensively in the

literature, the algorithm of Chlebus and Kowalski [39] matches the time lower bound, giving

a namespace of size (8k − logk −1); an elegant algorithm by Attiya and Fouren [21] achieves

a tighter namespace of size (6k − 1); however, this last algorithm only matches the time

lower bound within a logarithmic factor. The fastest known algorithm to achieve an optimal

namespace using only reads and writes (of size (2k −1)) was given by Afek et al. [4], with time

complexity O(k2). Thus, obtaining a read-write deterministic algorithm which is optimal both

in terms of time complexity and namespace size is an intriguing open question.

In Chapter 6, we presented a randomized renaming algorithm with logarithmic complexity

with high probability, which achieves a tight adaptive namespace. The total time complexity

lower bound in Chapter 8 shows that this algorithm is optimal against an adaptive adversary,

and that no asymptotic time complexity gains may be obtained for adaptive renaming by

relaxing the namespace size within constant factors. This implies that our randomized solution

is optimal from two points of view: time complexity and namespace size.
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One disadvantage of the renaming network algorithm is that it is based on an AKS sorting

network [5], which has prohibitively high constants hidden inside the asymptotic notation [64].

Thus, it would be interesting to see whether one can obtain constructible randomized solutions

that are time-optimal and namespace-optimal. On the other hand, the total lower bound

holds only for adaptive algorithms; it is not known whether faster non-adaptive algorithms

exist, which could in theory go below the logarithmic threshold. We conjecture thatΩ(logn)

steps is a lower bound for non-adaptive randomized algorithms as well.

The global lower bound applies to deterministic adaptive algorithms as well, implying an

Ω(k logk) worst-case global time complexity lower bound. On the other hand, the fastest

known algorithm to rename into a namespace of size ck for c ≥ 1 constant has O(k2) total step

complexity [39]. Closing the gap between upper and lower bounds is still an open question.

Another open question concerns randomized shared-memory renaming in weaker adversarial

models, in particular in the oblivious adversary model, i.e. when the scheduler has knowledge

of the algorithm but fixes the schedule without knowing the results of random coin flips.

In this case, there are indications that the logarithmic threshold could be broken, since

sub-logarithmic algorithms have been shown to exist for test-and-set [6] and approximate

counters [29] against the oblivious adversary.

One aspect of these concurrent data structures, which has been somewhat neglected by re-

search is space complexity, i.e. the number of registers necessary for correct shared-memory

implementations. Our renaming network algorithm uses O(k logk) registers assuming hard-

ware test-and-set operations, while the BitBatching implementation uses O(n) registers. The

linear space complexity lower bounds of Jayanti, Tan, and Toueg [61] apply to adaptive renam-

ing, therefore the renaming network is space-optimal within a logarithmic factor. However,

the tight space complexity thresholds for renaming remain an open question.

9.2 Counting and Set Data Structures

The individual (per-process) and total step complexity lower bounds in Chapters 7 and 8 also

extend to counting and set data structures. In particular, the individual lower bound suggests

that deterministic implementations of data structures solving renaming have worst-case

schedules with linear time complexity. Practically, this implies that such widely-used data

structures do not scale in the worst case, so a key question is how to circumvent this lower

bound.

One natural alternative, which we emphasize in this thesis, is the use of randomization in

the design of concurrent data structures. In fact, we show that, using randomization, this

lower bound can be broken in the case of renaming, as we exhibit randomized algorithms with

exponentially better step complexity, with high probability. Thus, it is very tempting to ask

whether these randomized techniques can be extended to obtain fast sub-linear versions of

practical concurrent data structures.
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On the other hand, the total step lower bound suggests that there are complexity thresholds

which cannot be avoided even with the use of randomization. In particular, the average step

complexity for adaptive versions of these data structures is logarithmic, even when using

randomization. However, for many such objects there do not exist algorithms that match this

logarithmic lower bound. In terms of circumventing this bound, recent results [6, 29] suggest

that weaker adversarial models and relaxing object semantics, e.g. allowing approximate

implementations, could be used to go below this logarithmic threshold.

9.3 Test-and-set

Another concurrent object is test-and-set, for which we have presented a randomized loga-

rithmic solution in Chapter 5. Our implementation is the fastest known against an adaptive

adversary. Faster, sub-logarithmic solutions exist if the adversary is oblivious [6].

Test-and-set is computationally weaker than renaming, thus our time complexity lower bounds

do not generalize to test-and-set. It does appear that logarithmic step complexity is the

best achievable for this object using randomization against a strong adversary; on the other

hand, proving this is an intriguing open question. On the other hand, recent results [6] show

that there exist sub-logarithmic solutions if the adversary is oblivious. Exact bounds on the

complexity of test-and-set against an oblivious adversary are also open.
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