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Abstract Cross polarization can provide significant enhancements with respect to

direct polarization of low-c nuclei such as 13C. Substantial gains in sample

throughput (shorter polarization times) can be achieved by exploiting shorter build-

up times sDNP(1H) \ sDNP(13C). To polarize protons rather than low-c nuclei,

nitroxide radicals with broad ESR resonances such as TEMPO are more appropriate

than Trityl and similar carbon-based radicals that have narrow lines. With TEMPO

as polarizing agent, the main Dynamic Nuclear Polarization (DNP) mechanism is

thermal mixing (TM). Cross polarization makes it possible to attain higher polari-

zation levels at 2.2 K than one can obtain with direct DNP of low-c nuclei with

TEMPO at 1.2 K, thus avoiding complex cryogenic technology.

A. Bornet � S. Jannin (&) � G. Bodenhausen

Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale

de Lausanne (EPFL), Batochime, 1015 Lausanne, Switzerland

e-mail: sami.jannin@gmail.com

R. Melzi

Bruker Italia S.r.l, Viale V. Lancetti, 43, 20158 Milan, Italy

G. Bodenhausen
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Université Pierre-et-Marie Curie, Paris, France

G. Bodenhausen

UMR 7203, CNRS/UPMC/ENS, Paris, France

123

Appl Magn Reson (2012) 43:107–117

DOI 10.1007/s00723-012-0358-1

Applied

Magnetic Resonance

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147989388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Dissolution Dynamic Nuclear Polarization (DNP) [1] is generally carried out at low

temperatures (1.2 \ T \ 1.5 K) where nuclear spins S = 1/2 with low gyromag-

netic ratios cS (13C, 15N [2], 129Xe [3], 89Y [4], etc.) are polarized directly by

microwave irradiation that saturates the EPR transitions of stable radicals such as

TEMPO or Trityl. This is followed by rapid dissolution [5] and transport to a

solution-state NMR or MRI system. This technique can yield enhancements of

NMR signals on the order of e = 10,000 with respect to the Boltzmann polarization

at room temperature, provided that the highly polarized nuclear spins retain most of

their polarization during dissolution and transfer.

Nuclear spins with high gyromagnetic ratios cI such as 1H and 19F tend to return

rapidly to thermal equilibrium, so that, by the time the samples have arrived in the

solution-state NMR or MRI system, the remaining enhancements are modest [6].

Moreover, it is often not feasible to follow a chemical reaction or a metabolic

process on the short T1 time scale of spins with high gyromagnetic ratios. Recently,

several techniques have been developed to extend their lifetimes beyond T1 [7–9].

Nevertheless, nuclear spins S with low gyromagnetic ratios cS such as 13C or 15N are

much preferred in most dissolution DNP experiments.

It has been demonstrated that Trityl radicals can be very efficient as polarizing

agents for 13C. These carbon-centered radicals feature ESR lines with narrow widths

Dme, thus facilitating the direct build-up of 13C polarization by thermal mixing since

Dme [ m0(13C), while leaving the 1H spins close to their thermal equilibrium since

Dme \ m0(1H). The highest 13C polarization reported so far [10] (without cross

polarization) in a field B0 = 3.35 T is PDNP(13C) = (Pa - Pb)/(Pa ? Pb) = 35 %

with a build-up time constant sDNP(13C) = 2300 s at T = 1 K. Although such high

polarization levels can provide intense NMR signals after dissolution, the long DNP

build-up times sDNP(13C) do not allow one to perform several dissolution processes

in rapid succession, as required for many in vivo experiments with high throughput.

Two approaches have been described recently to enable multiple in vivo

experiments at higher repetition rates: the design of a multiple-sample DNP

polarizer [11] and the use of cross polarization [12–14].

While the design of a sample changer at very low temperatures is a challenge, the

implementation of cross polarization (CP) appears more straightforward. Until

recently, CP did not raise much interest, for a significant part of the dissolution DNP

community focused on the use of Trityl radicals that are efficient for spins with low

gyromagnetic ratios c like 13C, 15N, 129Xe, 89Y, etc., but not for protons. This is not

true for DNP combined with MAS (usually around T = 100 K) where the dominant

DNP mechanism for nitroxide biradicals is usually the cross effect, and where CP

schemes have been successfully applied [15].

On the other hand, for those who prefer to avoid Trityl radicals for 13C DNP

(possibly for economic reasons), the inexpensive radical (2, 2, 6, 6-tetramethylpi-

peridin-1-yl)oxyl (TEMPO) turns out to be a good option. Admittedly, the

polarization levels that have been quickly achieved with TEMPO, typically

PDNP(13C) = 10 % with sDNP(13C) & 600 s in a field B0 = 3.35 T at T = 1.5 K

[16, 17], are modest compared to those achieved with Trityl. TEMPO has a broad
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inhomogeneous ESR line, mainly broadened by g-anisotropy, and its line-width at

1.2 K can exceed the 1H Larmor frequency m0(1H) = 142.7 MHz at 3.35 T. These

properties allow one to fulfill the conditions for 1H DNP to occur preferably via

thermal mixing (TM). One of the main consequences of TM, predicted theoretically

[18] and observed experimentally [17], is that all nuclear spins with spin S = 1/2 in

the sample acquire a common spin temperature TS and a polarization P that is

determined by their Larmor frequency:

P ¼ tanh
�hx

2kBTS

� �

Thermal contact with the 1H spins inevitably results in an enhancement not only

of the polarization P(13C) but also of P(1H), albeit at the price of a higher (less

favorable) spin temperature TS because of the ‘heat load’ of the 1H spin bath.

2 ESR Features of the Polarizing Agent

Excessively wide ESR lines are detrimental to the efficiency of DNP via TM. This

effect has been thoroughly described by Provotorov [19] in the high temperature

approximation and by Borghini [20] for low temperatures, and experimental results

have been published by Heckmann and co-workers [21]. If the ESR lines are too

wide, nuclear spins I with high cI, tend to become involved in the DNP process

when TM is dominant. Nuclear spins with high cI acquire an enhanced polarization,

in part at the expense of the polarization of spins S with low cS. A ‘leakage factor’

was introduced in the Borghini theory by De Boer [22] to account for this

phenomenon, which can simply be described by a loss of polarization via spin–

lattice relaxation of the I spins. The importance of this leakage for the polarization

of the S spins (such as 13C) is illustrated in Fig. 1. For 3 M 13C-labeled sodium

acetate (CH3COONa) samples dissolved with 30 mM TEMPO in 2:1 v/v

Fig. 1 The proton and carbon-13 polarizations and the spin temperature in 3 M 13C-labeled sodium
acetate with 30 mM TEMPO in a partly deuterated water:ethanol (2:1 v/v) mixtures at 1.2 K and
3.5T under 35 mW microwave irradiation at 97.2 GHz suffer from leakage depending on the level of
deuteration of the solvent. Adapted with permission from Ref. [17]
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water:ethanol mixtures that are partly deuterated (water and ethanol being

deuterated in the same proportion) (see Fig. 1), the enhancement of the 13C

polarization strongly depends on the deuteration of the solvent. The rate of the

leakage of spins I and/or S increases with the square of the gyromagnetic ratio cI;

hence spins S with low cS only play a minor role that could not be determined

quantitatively.

3 Sample Properties for Cross Polarization Combined with Dynamic Nuclear
Polarization (CP-DNP)

Since DNP with TEMPO takes place via TM, an uniform spin temperature TS is

established after a certain time. Once the ‘DNP equilibrium’ is reached, the

polarizations PDNP(I) and PDNP(S) of different nuclear spin species I and S in the

samples are simply proportional to their gyromagnetic ratios. Thus proton spins

display the highest spin polarization among all nuclear spins except tritium.

Figure 2 shows how both 13C and 1H end up with identical spin temperatures TS and

polarizations PDNP(1H)/PDNP(13C) = c(1H)/c(13C) & 4 regardless of the micro-

wave frequency. Figure 3 presents DNP build-up curves for both 13C and 1H. The

DNP build-up time sDNP(1H) = 70 s is shorter than sDNP(13C) = 324 s by a factor

j = 4.6. These two facts provide ample evidence of the utility of CP for DNP

experiments when TM is the dominant mechanism, as occurs with TEMPO. As

explained above, one has to carefully choose the degree of deuteration of the solvent

in order to achieve efficient CP without significantly sacrificing the DNP

enhancement. In many molecules, the presence of covalently attached protons in

the neighborhood of the 13C nuclei (separated by only two bonds for 13C=O in

acetate) turns out to be sufficient for CP to be efficient. In this study, we therefore

chose 3 M solutions of 13C enriched sodium acetate with 30 mM TEMPO dissolved

in a fully deuterated water:ethanol (2:1 v/v) mixture.

Fig. 2 Carbon and proton spin polarizations and spin temperature in 3 M 13C-labeled sodium acetate
with 30 mM TEMPO in a partly deuterated water:ethanol (2:1 v/v) mixture at 1.2 K and 3.5T under
35 mW microwave irradiation near 97.2 GHz as a function of the offset of the microwave frequency with
respect to the center of the ESR line of TEMPO. Adapted with permission from Ref. [17]

110 A. Bornet et al.

123



4 Methods for Dynamic Nuclear Polarization (DNP)

Our home-built polarizer [16] operates at 3.35 T in the temperature range

1.2 \ T \ 4.2 K, with a tunable microwave source (ELVA) operating in CW

mode in the power range 1.5 \ Plw \ 225 mW. Apart from T = 1.2 K, where a

maximum DNP could be achieved with Plw = 35 mW, the maximum available

power Plw = 225 mW was used for all other experiments. The NMR signals were

observed with a solid-state NMR spectrometer coupled to a home-built doubly

tuned probe providing radio frequency field (rf) amplitudes up to cB1/

(2p) = 50 kHz for both spins I and S (142.6 MHz for 1H and 35.87 MHz for 13C

at 3.35T) with a moderate rf power Prf = 25 W on both channels [13].

5 DNP Results

Table 1 shows the polarization levels P(13C) and P(1H) and build-up times

sDNP(13C) and sDNP(1H) obtained at different temperatures, with and without CP.

Figure 4 shows how the maximum polarization levels obtained at different

temperatures are roughly inversely proportional to the sample temperature for both
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Fig. 3 Build-up behavior of carbon-13 (squares) and proton (triangles) polarization in 3 M 13C-labeled
sodium acetate with 30 mM TEMPO in a 100 % deuterated water:ethanol (2:1 v/v) mixture at 1.2 K and
3.35 T with 35 mW microwave irradiation at 93.9 GHz

Table 1 Polarizations PDNP(13C) and PDNP(1H) and corresponding build-up times sDNP(13C) and

sDNP(1H) determined in 3 M 13C-labeled sodium acetate with 30 mM TEMPO in a 100 % deuterated

water:ethanol (2:1 v/v) mixture at T = 1.2, 2.2, 3.0 and 4.2 K

T (K) PDNP(13C) (%) sDNP(13C) (s) PDNP(1H) (%) sDNP(1H) (s)

1.2 10 324 40 70

2.2 6 267 24 57

3 3 222 12 32

4.2 2 158 8 22
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13C and 1H, as expected from spin temperature considerations [19, 20]. Thus, the

proton polarization PDNP(1H, 4.2 K) = 8 % at a comparatively high sample

temperature of 4.2 K is nearly as high the carbon-13 polarization PDNP(13C,

1.2 K) = 10 % at 1.2 K.

As the temperature is increased, electron spin–lattice relaxation times become

shorter, regardless of whether electron relaxation is dominated by direct or by two-

phonon Raman processes. As a result, higher microwave intensities are needed to

saturate the ESR line at higher temperatures since:

I ¼ I0

1þ c2B2
1T1gðxÞ

Figure 5 shows 13C polarizations obtained for different temperatures and

microwave power levels Plw. Saturation can easily be achieved at T = 1.2 K with

a modest microwave power (Plw & 30 mW), but more power is required at higher

temperatures. Although the build-up times (Fig. 5b) do not depend significantly on

microwave power, they are dramatically accelerated at higher temperatures. The 1H

polarization build-up time is boosted by a factor j(1H) = RDNP(4.2 K)/

RDNP(1.2 K) = sDNP(1.2 K)/sDNP(4.2 K) = 3.2.

6 Cross Polarization Combined with Dynamic Nuclear Polarization (CP-DNP)

In the regime of thermal mixing that dominates if one uses TEMPO, CP allows one

to boost the polarization from PDNP(13C) to PCP-DNP(1H ? 13C) & PDNP(1H). The

use of CP makes it possible for example to obtain better performance at 2.2 K as

direct 13C DNP without CP at 1.2 K, thus allowing the cryogenic equipment to be

greatly simplified. Another advantage of CP is the acceleration of the experiments

by a factor jCP = RDNP(1H)/RDNP(13C) = sDNP(13C)/sDNP(1H). Table 2 and Fig. 6

show polarization levels PCP-DNP(1H ? 13C) and PDNP(13C) that can be compared
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Fig. 4 Polarizations of carbon-13 (squares) and protons (triangles) in 3 M 13C-labeled sodium acetate
with 30 mM TEMPO in a 100 % deuterated water:ethanol (2:1 v/v) mixture obtained without CP at
temperatures T = 1.2, 2.2, 3, and 4.2 K plotted as a function of the inverse temperature 1/T. The dashed
lines are fits with P = a/T with a = 11.7 K for carbon-13 and a = 46.9 K for protons
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with those presented in Table 1. In practice, with our instrumentation, CP provides

an approximately twofold enhancement compared to conventional direct DNP.

Further improvement in coil design (better B1 homogeneity and less arching), faster

switching of the rf phase and power (currently about 4 ls) may allow us to further

boost the enhancement factors.

The CP efficiency strongly depends on the amplitudes of the rf fields, which

should ideally be larger than the NMR linewidths. In static samples at low

temperatures, the main limitation arises from the breadth of the 1H spectrum,

which is typically on the order of 50 kHz. Figure 7 shows the CP efficiency as a

function of the rf amplitude B1 for conventional CP, which suggests that a higher

CP efficiency could be attained with higher B1, provided the probe can be made

less prone to arching. More elaborate CP schemes employing frequency swept

pulses could be used [14] to improve the CP efficiency despite the limited rf
amplitudes.
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Fig. 5 (a) 13C polarization in 3 M 13C-labeled sodium acetate with 30 mM TEMPO in a 100 %
deuterated water:ethanol (2:1 v/v) mixture as a function of the microwave power at 93.9 GHz and 3.35 T
for T = 1.2 (triangles), 2.2 (circles), 3.0 (diamonds), and 4.2 (squares) K. (b) Build-up times sDNP(1H) at
the same temperatures
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Table 2 13C polarization in 3 M 13C-labeled sodium acetate with 30 mM TEMPO in a 100 % deu-

terated water:ethanol (2:1 v/v) mixture obtained after CP achieved at 3.35 T in the range 1.2 \ T \ 4.2 K

T (K) PCP(1H ?13C) (%) eCP j

1.2 19 1.9 4.6

2.2 14.6 2.4 4.7

3 7.2 2.4 6.9

4.2 4.4 2.2 7.2

The enhancement eCP is defined as the 13C signal obtained after cross polarization normalized by the

signal obtained by direct excitation
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Fig. 6 Polarization levels PCP-DNP(1H ? 13C) and PDNP(13C) in 3 M 13C-labeled sodium acetate with
30 mM TEMPO in a 100 % deuterated water:ethanol (2:1 v/v) mixture obtained with (triangles) and
without (circles) CP at 3.35T for temperatures T = 1.2, 2.2, 3, and 4.2 K plotted as a function of the
inverse temperature 1/T. The dashed lines represent linear fits with P = a/T with a = 24.3 K and 11.7 K
for carbon-13 with (triangles) and without (circles), respectively
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Fig. 7 The enhancement eCP as a function of the rf amplitude B1 applied to both nuclei I and S (in this
case 1H and 13C) in 3 M 13C-labeled sodium acetate with 30 mM TEMPO in a 100 % deuterated
water:ethanol (2:1 v/v) mixture
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7 Relaxation after CP

In view of performing rapid dissolution to produce hyperpolarized samples for

solution-state NMR, we studied the relaxation behavior of the highly polarized 13C

spins immediately after CP (Fig. 8). If the microwave field remains ‘on’, the

polarization PCP-DNP(1H ? 13C) returns to the stationary state PDNP(13C). We do

not intend to give a detailed analysis of the time constant of this process, but it is

worth stressing the fact that it is much shorter than T1(13C), and close to sDNP(13C).

This behavior can be explained by the fact that DNP occurs via TM. The result is

even more intriguing when microwaves are switched ‘off’ after CP, since in this

case the protons also start to relax, so that the return of PCP-DNP(1H ? 13C) to

thermal equilibrium will depend on T1(1H), T1(13C) and sDNP(13C). However, all

these time constants are sufficiently long ([100 s even at 4.2 K) to allow one to

perform rapid dissolution within a few seconds after CP.

8 Conclusions

Cross polarization is a method of choice for dissolution DNP experiments. It

provides significant enhancements with respect to direct polarization of low-c nuclei

such as 13C, and substantial gains in build-up times. If one uses the radical TEMPO

as polarizing agent, the main DNP mechanism is thermal mixing, and the lifetime of

CP-enhanced 13C polarization is sufficiently long to allow one to carry out

dissolution experiments. Compared to direct polarization of low-c nuclei, cross

polarization provides a means of reaching higher polarization levels at a given

temperature. The use of CP makes it possible to attain higher polarization levels at

2.2 K with TEMPO than one can obtain with direct DNP at 1.2 K, thus avoiding

complex cryogenic technology.

Fig. 8 Longitudinal 13C relaxation in 3 M 13C-labeled sodium acetate with 30 mM TEMPO in a 100 %
deuterated water:ethanol (2:1 v/v) mixture after CP at 4.2 K and 3.35 T, either with 93.9 GHz microwave
irradiation ‘on’ continuously (black dots) or switched ‘off’ after CP (gray dots)
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