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a-Synuclein can be degraded by both the ubiquitin–proteasomal system and the chaperone–lysosomal
system. However, the switching mechanism between the two pathways is not clearly understood. In
our study, we investigated the mutual association between the binding of a-synuclein to heat shock cog-
nate 70 and the lysosomal translocation of a-synuclein. Tyrosine phosphorylation of Y136 on a-synuclein
increased when it bound to heat shock protein 70. We also found that tyrosine phosphorylation of a-syn-
uclein can be regulated by focal adhesion kinase pp125 and protein tyrosine phosphatase 1B. Further-
more, protein tyrosine phosphatase 1B inhibitor protected dopaminergic neurons against cell death
and rescued rotarod performance in a Parkinson’s disease animal model. This study provides evidence
that the regulation of Y136 phosphorylation of a-synuclein can improve behavioral performance and pro-
tect against neuronal death by promoting the turnover of lysosomal degradation of a-synuclein. As a
result, protein tyrosine phosphatase 1B inhibitor may be used as a potential therapeutic agent against
Parkinson’s disease.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

a-Synuclein (a-SYN) exists in presynaptic nerve terminals and
is an intrinsically unfolded, acidic neuronal protein composed of
140 amino acids [1]. a-SYN can normally be degraded by the ubiq-
uitin–proteasomal system (UPS) and chaperone–lysosomal system
(CLS). A number of studies have verified that both of these path-
ways are relevant in the clearance of a-SYN [2–5].

Recently, the importance of the UPS in the neuron has been
highlighted, and many researchers are interested in understanding
the role of proteolytic systems in neurodegenerative disease. Since
neuronal intracellular inclusions consist of ubiquitin-attractive
protein aggregates that are thought to be a common characteristic
of several neurodegenerative diseases, it has been considered that
the failure of the UPS is the etiological cause of many neurodegen-
erative diseases [6]. Specifically, it was reported that aggregates of
a-SYN can be removed by the CLS [3] and to induce this phenom-
enon, a-SYN must bind to heat shock proteins. We wondered
ll rights reserved.
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which factor in a-SYN is influenceable for binding with heat shock
proteins.

a-SYN can be post-translationally modified by phosphorylation
[7,8], oxidation [9], nitration [10,11], sumoylation [12], and ubiqui-
tination [13,14]. Several studies have shown that a-SYN can be
phosphorylated on serine or tyrosine residues [15,16]. Moreover,
in other studies, functions of phosphorylation were suggested that
phosphorylation of some serine residues is related to changes in a-
SYN localization [17], and tyrosine phosphorylation on residue 125
inhibits toxic oligomer formation and protects neurons from
neurotoxicity in a PD Drosophila model, while serine phosphoryla-
tion has oligomer-promoting effects [18].

In our study, we demonstrated that the induction and continu-
ous increase of a-SYN phosphorylation on a-SYN tyrosine residues,
especially Y136, can accelerate its degradation. Furthermore, an in-
crease in CLS activity in a model for neurodegenerative diseases
effectively enhanced the degradation of misfolded or aggregated
a-SYN and reduced cellular toxicity.
2. Materials and methods

2.1. Materials

MG132, PTP1B inhibitor (3-(3,5-dibromo-4-hydroxy-benzoyl)-
2-ethyl-benzofuran-6-sulfonic acid-(4-(thiazol-2-ylsulfamyl-
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phinyl)- amide inhibitor) were purchased from Calbiochem (CA,
USA), and 1,10-Dimethyl-4-40-bipyridinium dichloride hydrate
(paraquat, PQ) was purchased from Sigma Aldrich (MO, USA). To si-
lence the gene encoding FAK, siRNA was purchased from Santa
Cruz Biotechnology (CA, USA). For immunoprecipitation and detec-
tion of tyrosine phosphorylated a-synuclein, anti-a-SYN (211),
anti-pY20, anti-HSC70, anti-ubiquitin (Ub), anti- focal adhesion
kinase pp125 (FAK), anti-p-FAK (925) antibodies and all of the
HRP-conjugated antibodies were purchased from Santa Cruz
Biotechnology (CA, USA). Alexa Fluor 488 goat-anti-mouse IgG
and LysoTracker� were purchased from Invitrogen (CA, USA). The
ubiquitination Kit was purchased from Biomol International (PA,
USA).

2.1.1. In vitro ubiquitination assay
For the assay, ubiquitin, Mg-ATP, E1, E2 enzymes such as UB-

CH5a, UBCH5b, and UBCH8, SH-SY5Y cell lysate for the E3 ligase
and histidine-tagged recombinant a-synuclein were mixed gently
and incubated at 37 �C for 1 h. For Western blotting, the mixtures
were quenched to terminate the reaction. For precipitation with
Ni–NTA super flow beads (Qiagen, CA, USA), the reaction was
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Fig. 1. Proteasomal dysfunction increases binding of ub-a-SYN to HSC70. (A) SH-SY5Y
antibody (green), LysoTracker� (red) and DAPI (Blue) using confocal microscope. Scale bar
24 h) treated SH-SY5Y cells were probed with an anti-a-SYN or HSC70 antibody. Binding
graph showed the level of a-SYN (⁄). (C) For in vitro ubiquitination assay, His-tagged recom
immunoblotted (IB) with anti-His or anti-ubiquitin antibodies. And binding of His-SYN
Binding form of a-SYN with HSC70 was ubiquitinated but its affinity was weak. (D) Im
Western blot with phosphotyrosine, ubiquitin, hsc70, and a-SYN antibody. Phosphoryla
represented by bar graph. (E) Schematic diagram of turnover between proteasomal and
incubated with beads and SH-SY5Y cell lysate and rotated at 4 �C
for 30 min. The samples were analyzed by Western blotting.
2.2. GST pull-down assays

Each of the four tyrosine residues in a-SYN was mutated to ala-
nine using the KOD-Plus-Mutagenesis Kit (TOYOBO, Osaka, Japan).
The point-mutated a-SYN (Y39A, Y125A, Y133A, Y136A) was also
expressed in TKB1-competent cells (Stratagene, CA, USA). GST
pull-downs and Western blot analyses were performed with the
wild-type and point-mutated GST-a-SYN.
2.3. Behavioral testing using the rotarod

Eight-to 10-week-old male (20–25 g) C57BL6 mice were treated
with paraquat (PQ, 30 mg/kg) by a single intraperitoneal injection
(i.p.) once a week for 3 weeks. The PTP1B inhibitor was dissolved in
95% EtOH and diluted with PBS and administered by i.p. injection
at a dose of 1 mg/kg every 2 days and 3 h before the PQ injection
for 3 weeks.
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Motor coordination and fatigue resistance of the PD mouse
model were measured using an accelerating rotarod. Mice were
conditioned three times at a speed of 8 rpm for 1 min. Thirty min-
utes after the last training, the locomotor activity of the mice was
tested. The rotarod test was started by placing the mouse on a rod
and was stopped when the mouse fell off the rod or after 300 s had
passed, whichever came first. The rotation speed was gradually
accelerated from 4 to 40 rpm. Each mouse was subjected to 5 trials
per day with a 5 min interval between trials. The mice were di-
vided into 3 groups with 7 animals in each group. Mice were
housed one per cage on a 12:12 reversed light–dark cycle under
controlled temperature (25 �C) with proper humidity and free ac-
cess to food and water.
2.4. Ethics statement

The animals used in this experiment were handled according to
the Guidelines for Animal Experimentation. This study was
approved by the Ethics Committee of Seoul National University
Institutional Animal Care and Use (SNU IACUC; approval ID;
SNU-110105-4).
2.5. Statistical analysis

The Student’s t-test and one-way ANOVA were performed using
PASW statistics 18 (SPSS Inc., Chicago, IL, USA) to determine the
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Fig. 2. Binding of HSC70 with p-Y136 a-SYN. (A) Incubated GST-a-SYN or phosphorylate
HSC70, and a-SYN antibodies for immunoblot (left panel). Right panel shows the sche
Phosphorylation of a-SYN was critical factor in binding with HSC70. (B) GST-a-SYN mu
tyrosine motif in a-SYN (Y39, 125, 133, 136). Y136 of a-SYN was important to binding w
SYN. However, Y125 of a-SYN could not significantly affect the binding to HSC70. (C) The
P < 0.01 (⁄⁄).
relationships among the groups. Values of P < 0.05 were considered
to be significant.
3. Results

3.1. Proteasomal dysfunction increases the binding of a-SYN to HSC70

To verify the changes in the location of a-SYN, SH-SY5Y cells
were treated with 1 lM of MG132 for 24 h. The cells were then
stained with anti-a-SYN (green) antibody. To determine the lyso-
somal stability and CLS activation, the cells were co-stained with
LysoTracker� (red). Under conditions of proteasomal dysfunction,
lysosomes co-localized with a-SYN were increased (Fig. 1A). This
result suggests that degradation via the lysosomal pathway is acti-
vated and that a-SYN is translocated into the activated lysosome,
resulting from a blockage of the proteasomal degradation pathway.

We also found that the binding between HSC70 and a-SYN was
increased by treatment with 1 lM MG132 using immunoprecipita-
tion by anti-HSC70 antibody. That binding was increased in the
proteasome dysfunctional condition and the binding form of
a-SYN was high molecular weight (Fig. 1B).

Therefore, to identify the status of high molecular weight
a-SYN, we performed the in vitro ubiquitination assay and we ob-
served that ubiquitination of a-SYN increased its binding to HSC70.
His-tagged a-SYN was ubiquitinated and precipitated by Ni–NTA
resin after incubation with SH-SY5Y cell lysate. Consequentially,
we identified that the amount of HSC70 bound to a-SYN was
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increased when it was ubiquitinated (Fig. 1C). Moreover, we con-
firmed that the level of shifted a-SYN, corresponding to ubiquitina-
tion, and the level of HSC70 bound to a-SYN were increased with
1 lM MG132 treatment using immunoprecipitaion by anti-a-SYN
antibody. And the phosphorylation of ubiquitinated a-SYN was in-
creased when the proteasome was not functional. (Fig. 1D).
3.2. Tyrosine phosphorylation is most effective in promoting its
binding of HSC70 to a-SYN

To investigate the factors that are important for binding a-SYN
and HSC70, tyrosine-phosphorylated GST-a-SYN and nonphos-
phorylated GST-a-SYN were prepared and used in a GST pull-down
assay. GST-a-SYN was expressed from the pGEX-4T1 plasmid vec-
tor in transformed competent cells. BL21- and TKB1-competent
cells were used to express the nonphosphorylated and phosphory-
lated forms, respectively. Tyrosine phosphorylation of a-SYN can
be induced in TKB1 competent cells containing the plasmid of tyro-
sine kinase (Fig. 2A right). Nonphosphorylated or tyrosine phos-
phorylated a-SYN were purified from bacterial cell lysates with
GST beads and then incubated with SH-SY5Y cell lysate. The bind-
ing of HSC70 to tyrosine-phosphorylated a-SYN was higher rela-
tive to its binding to nonphosphorylated a-SYN. The level of
HSC70 bound to a-SYN was quantified using Image J (Fig. 2A left).

Next, we determined which of the four tyrosine residues (Tyr39,
Tyr125, Tyr133 and Tyr136) in a-SYN was most effective at pro-
moting the binding to HSC70. Each tyrosine residue was mutated
to alanine using the KOD-Plus-Mutagenesis Kit, and we performed
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band (B) is represented for graph by analysis of image J. (C) a-SYN was immunoprecipitat
immunoblotted with anti-phosphotyrosine and anti-a-SYN antibodies. The phosphory
treatment. In fak silenced SH-SY5Y, the phosphorylation of a-SYN was not induced by P
GST pull-down assays with the point-mutated a-SYN. a-SYN bind-
ing to HSC70 was significantly decreased by dephosphorylation of
Y136, although tyrosine phosphorylation of a-SYN was decreased
not only by Y136A but also by Y125A (Fig. 2B) but phosphorylation
of a-SYN at Y125 has not effect on the binding between a-SYN and
HSC70 and therefore we did not concern about Y125. The intensity
of each band was measured using Image J, and the results are
shown in Fig. 2C.
3.3. PTP1B inhibitor regulated the phosphorylation of focal adhesion
kinase (FAK) and a-SYN

To search for a kinase that phosphorylates a-SYN, we used
protein interaction prediction sites [PIPS (http://www.comp-
bio.dundee.ac.uk/www-pips/) or PRISM (http://prism.ccbb.ku.edu.
tr/prism/)]. The results included CAM kinase II, protein kinase C,
Fyn kinase, pp58, tyrosine kinase c-Src, FAK, pp60 (src), MKNK2
and the receptor for activated C kinase (RACK1).

Then, we confirmed that in SH-SY5Y cells, the phosphorylation
of FAK is increased by treatment with PTP1B inhibitor, a specific
membrane-permeable inhibitor of tyrosine phosphatase PTP1B
(50 lM), in a time-dependent fashion [19]. In previous reports, it
has been shown that the activity of FAK is regulated by phosphor-
ylation of tyrosine 925 [20]. To evaluate the FAK activity, we used
an anti-phospho FAK antibody directed against tyrosine 925. Phos-
phorylation of tyrosine 925 on FAK was markedly increased after a
30 min treatment with PTP1B inhibitor (Fig. 3A and B). Also, the
phosphorylation of high molecular weights of a-SYN was increased
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by PTP1B inhibitor in a time-dependent manner (Fig. 3A). To iden-
tify of FAK as the kinase responsible for a-SYN phosphorylation,
phosphorylated a-SYN was immunoprecipitated in the fak silenced
or PTP1B inhibitor (50 lM, 30 min) treated SH-SY5Y cell lysates
and immunoblotted with anti-phosphotyrosine and anti-a-SYN
antibodies. The phosphorylated a-SYN was decreased by knock
down of fak while the phosphorylated a-SYN was increased by
PTP1B inhibitor. And, in fak silenced SH-SY5Y, PTP1B inhibitor
could not induce the phosphorylation of a-SYN (Fig. 3C).
3.4. The effects of the PTP1B inhibitor in PQ-induced PD mouse model
and SH-SY5Y cells

To determine the effects of the PTP1B inhibitor in a PD mouse
model, PQ and PTP1B inhibitor were injected into the C57BL6 mouse.
The mice were divided into three groups: the control group (CTL),
the PQ-only injected group (PQ) and the PQ- and PTP1B inhibitor-in-
jected group (PQ/PTP1B inhibitor). PQ and PTP1B inhibitor were
administered by i.p. injection for 3 weeks, and the behavioral test
was performed in the 4th week. First, using immunohistochemistry,
we determined if the PTP1B inhibitor had a protective effect in the
dopaminergic neurons. The immunohistochemical analysis showed
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the PTP1B inhibitor-injected group (Fig. 4A). Fig. 4B showed the
measurement by Image J. In addition, we confirmed the effect of
the PTP1B inhibitor in behavioral performance using the rotarod test
and the elevated body swing test. Rotarod performance was signifi-
cantly improved in the PTP1B inhibitor-injected group (Fig. 4C) but
performance on the elevated body swing test was not. Moreover, to
identify the level of a-SYN and TH in midbrain tissue lysate, we per-
formed Western blot analysis. The increased level of a-SYN was de-
creased and the decreased level of TH was recovered by PTP1B
inhibitor (Fig. 4D). Furthermore, we performed cell viability assays
to confirm whether the PTP1B inhibitor has a protective effect
against cytotoxicity. SH-SY5Y cells were treated with PQ (1 mM) in
the presence of the PTP1B inhibitor (0, 1, 5, 10 lM) and incubated
for 24 h. The viability of the cells was dose-dependently increased
by co-treatment with the PTP1B inhibitor (Fig. 4E).
4. Discussion

Taken together, our experiments suggest a new direction for PD
therapeutic targets through the regulation of a-SYN phosphorylation
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at Y136. Briefly, ubiquitinated a-SYN is normally degraded by the
proteasome, but during proteasomal dysfunction, a-SYN can be de-
graded by the lysosome by binding Y136 phosphorylated a-SYN to
HSC70.

Many studies have already reported that a-SYN can be de-
graded by the UPS and the CLS [21,22]. We found that when the
UPS was blocked by treatment with MG132, lysosomes were acti-
vated, a-SYN could translocate into activated lysosomes and the
binding of a-SYN to HSC70 was increased. In addition, activation
of the lysosomal degradation pathway by starvation resulted in
an increased binding of a-SYN to HSC70, which was rapidly de-
graded by the CLS.

The key modifications that determine the binding between
a-SYN and HSC70 have not been well characterized. The pentapep-
tide binding motif in the a-SYN sequence has been studied [4,23].
To elucidate the crucial factors involved in the degradation
pathway of a-SYN, we determined if phosphorylation of tyrosine
residues on a-SYN regulates its binding to HSC70. In our study,
the binding of a-SYN to HSC70 was increased when a-SYN was
tyrosine phosphorylated. These results suggest that tyrosine
phosphorylation of a-SYN is essential for regulating the binding
of a-SYN to HSC70. Many studies have shown that the 4 tyrosine
residues (Tyr39, Tyr125, Tyr133 and Tyr136) of a-SYN can be phos-
phorylated [15,16]. Our point mutation study also indicated that
among the four tyrosine residues, Y136 in the C-termini of a-SYN
is most important for a-SYN binding to HSC70. In human and
mouse brains, a-SYN aggregates contain the C-terminally trun-
cated form [24]. Additionally, multiple tyrosine phosphorylations
in the C-terminal segment of a-SYN prevent eosin-induced oligo-
merization [7]. Therefore, it has been proposed that the C-terminus
of a-SYN may have an important role in its clearance mechanisms.

Recently, the importance of tyrosine phosphorylation of a-SYN
in the regulation of many cellular processes has been highlighted.
Phosphorylation at tyrosine residues affects neurotoxicity and oli-
gomer formation [7,18,25]. Some research has reported that the
tyrosine residues of a-SYN are phosphorylated by members of
the Src family of protein–tyrosine kinases (PTKs) such as Fyn, c-
Src and Syk [7,15]. Prior to kinase/phosphatase study, we predicted
that FAK can be associated with a-SYN using protein interaction
prediction sites. Even in other predicted kinases, most of them
are in the Src kinase family, and in this study, we examined Src-
associated phosphatases using inhibitors of SHP-1/SHP-2, PTP1B,
CD45, PTPa, LAR, CDC 25 and PTPN1. Among them, PTP1B inhibitor
was effective for phosphorylation of FAK and a-SYN and we se-
lected PTP1B inhibitor as the target phosphatase inhibitor.

In this study, the level of phosphorylated a-SYN was decreased
in the fak silenced SH-SY5Y cells and PTP1B inhibitor cannot in-
duce the phosphorylation of a-SYN without FAK. According to
the results, we suggest that FAK is directly related to the phosphor-
ylation of a-SYN and retainment of FAK activity by PTP1B inhibitor
brought about the phosphorylation of a-SYN, increased binding of
a-SYN to HSC70 and continuous movement into lysosomal com-
partment of a-SYN. And the long-term treatment with PTP1B
inhibitor increased neuronal survival in PQ-treated SH-SY5Y cells
or in a PQ-induced PD mouse model and also conspicuously de-
creased the level of high molecular weight a-SYN in the midbrain
tissue. Moreover, motor balance and coordination of the mice was
improved in the PTP1B inhibitor-injected group.

In summary, tyrosine phosphorylation of a-SYN increased the
binding of a-SYN to HSC70. Among several phosphorylation
sites, tyrosine Y136 in a-SYN was the most influential for bind-
ing between two molecules. Tyrosine phosphorylation of a-SYN
was increased by PTP1B inhibitor. Increased binding of Y136 of
a-SYN to HSC70 enhanced neuronal survival in PQ treated SH-
SY5Y cells and PQ induced PD mouse model through PTP1B
inhibitor.
Therefore, the PTP1B inhibitor might potentially be used as a
therapeutic agent against PD.
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