
Introduction
The ovarian hormones estrogen and progesterone play 
pre-eminent roles in the female reproductive system and 
orchestrate postnatal mammary gland development in 
conjunction with pituitary hormones and other factors 

[1]. Both estrogen and progesterone can interact with 
membrane receptors [2,3]. Yet most of their known 
biological functions are mediated by their binding to and 
activation of the ligand-dependent transcription factors, 
estrogen receptor (ER) and progesterone receptor (PR).

ER and PR are members of the nuclear hormone 
receptor (HR) superfamily; they contain structurally con-
served and functionally distinct domains that include a 
central DNA binding domain, a ligand binding domain 
close to the COOH terminus, variable NH2-terminal 
domains related to transcriptional activation/repression 
and the well-characterized transcriptional activation 
domains AF-1 and AF-2 [4]. Specifically, AF-1 is an NH2-
terminal ligand-independent transcriptional activator 
whereas AF-2 is a ligand-dependent activation domain 
located in the ligand binding domain, which regulates 
transcription by association with transcriptional co-
regulators [4-6]. There are two ERs (ERα and ERβ) 
encoded by distinct genes on different chromosomes and 
two known isoforms of PR (PRA and PRB) transcribed 
from the alternate usage of different promoters from the 
same gene [7].

The breast epithelium consists of basal cells, mostly 
myo epithelial, and luminal cells. ERα and PR are 
expressed in about 30% of the luminal cells [8], while 
basal cells do not express the HRs. Two-thirds of all 
breast cancers are ER-positive [9], which means that ERα 
expression is detectable by immunohistochemistry in 
more than 1% of the tumor cells [10]. HR status is a major 
biological parameter with important implications for 
prognosis and treatment. Interestingly, unsupervised 
clustering of global gene expression profiles of large sets 
of clinical breast cancer specimens reproducibly 
separates the tumors into ER-positive luminal tumors 
and ER-negative tumors [11,12].

Molecular mechanisms involved in ERα and PR 
signaling
In vitro studies, with the ER-positive breast cancer cell 
line MCF-7, have revealed that in their unliganded state 
ERα and PR are in complexes with heat shock proteins 
[13,14]. Upon hormone binding, the receptors dissociate 
from the heat shock proteins, dimerize and associate 
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with DNA [15]. The receptors can bind to DNA directly 
or indirectly, by physically interacting with other trans-
cription factors such as AP-1, SP-1, STAT3, or NF-κB 
[16-19]. Both ER and PR recruit coactivators and/or co-
repressors to elicit transcriptional changes [1]. In 
addition to these so-called genomic mechanisms, steroids 
activate rapid signaling events that involve the generation 
of second-messenger molecules, for instance cAMP, and 
activation of signal  transduction pathways in the 
cytoplasm [20], known as nongenomic mechanisms.

Coactivators/co-repressors regulate ER-dependent and 
PR-dependent gene expression
Regulation of target gene expression by 17β-estradiol 
(E2) and progesterone is mediated by direct interaction 
of their nuclear receptors with co-regulatory proteins 
and components of the RNA polymerase II transcription 
initiation complex. Co-regulatory molecules can be 
functionally divided into coactivators and co-repressors 
(reviewed in [21]). Coactivators include SRC/p160 family 
members, E3 ubiquitin-protein ligases, p300/CBP and 
related proteins that possess enzymatic activities which 
modify histones to relax chromatin, thereby promoting 
transcription [22]. Specifically, SRC and p300/CBP have 
histone acetyltransferase activity, whilst the E6-asso ciated 
protein that interacts with both ER and PR has ubiquitin 
ligase activity [23].

Co-repressors, such as N-CoR and SMRT, form 
complexes with deacetylases that modify histone tails, 
thereby stabilizing a more compact chromatin state. In 
addition, co-repressor complexes present high affinity for 
deacetylated histones, which further enhance the 
repression of ER and PR target genes [24].

Nuclear receptor phosphorylation has been related to 
recruitment of coactivators/co-repressors. Different sig-
nal ing pathways can affect specific interactions; phos-
phorylation of ERα is necessary for interactions of the 
receptor with certain coactivators while it reduces inter-
actions with co-repressors (reviewed in [25]). Interest-
ingly, receptor binding to coactivator can induce allo-
steric changes in coactivators enhancing the recruit ment 
of other coactivators, consequently increasing receptor-
dependent transcription.

ER and PR nongenomic mechanisms
Nongenomic effects of ER/PR signaling include crosstalk 
with growth factor receptors and G-protein-coupled 
receptors in the cytosol (see Figure 1) within seconds to 
minutes after exposure to estrogens or progesterone. 
Ligand-bound receptors can initiate membrane proximal 
kinase cascades; for instance, ERα can activate Src-kinase 
leading to epidermal growth factor receptor (EGFR), 
mitogen-activated protein kinase (MAPK) and phos-
phatidylinositol-3-kinase signaling [26-31], whereas PR 

can trigger Src-MAPK and Akt signaling [32,33] 
(Figure 1).

At the same time, other signaling pathways impinge on 
ER and PR signaling by phosphorylating the receptors on 
multiple sites, thereby modulating their function [34,35]. 
In particular, Ser-118 phosphorylation is important for 
ERα transcriptional activity [35]. ER is phosphorylated in 
Ser-188 by MAPKs after EGFR activation by epidermal 
growth factor [36] or after estrogen stimulation [37]. 
Other phosphorylation sites, such as Ser-305 and Thr-331, 
affect ER–coactivator interactions [38-40]. Besides, 
Thr-331 phosphorylation is required for nuclear localiza-
tion and transcriptional activation of ERα [35]. Not only 
serines and threonines are phosphorylated in ERα, but 
also tyrosine residues such as Tyr-537 that is a substrate 
for src family kinases and is required for the optimal 
ligand binding conformation of ERα [41]. Interestingly, a 
single signaling pathway can activate HRs by several 
mechanisms. For example, protein kinase A can directly 
phosphorylate and thereby activate ERα [39], or can act 
through cAMP to activate ERα-mediated transcription 
[42]. In addition, protein kinase A phosphorylates the 
coactivator-associated arginine methyltransferase-1, allow-
ing it to interact with the ERα. This interaction, in turn is 
necessary for cAMP activation of ERα [43] (Figure 1).

In the case of PR, the best-characterized phos phory-
lation sites are Ser-294, Ser-345 and Ser-400. Ser-294 
phosphorylation is important for PR nuclear trans-
location, ligand-dependent PR transactivation and the 
half-life of the receptor as Ser-294 phosphorylation 
targets the receptor for ubiquitination [44]. A particularly 
interesting example of the complex crosstalk with 
tyrosine kinase receptor-driven signaling is the inter-
action between PR and EGFR; progestins can activate 
EGFR, resulting in activation of c-Src and the down-
stream MAPK. This activation, in turn, leads to PR phos-
phorylation on Ser-345 and activation of trans cription 
[45]. Besides, PR phosphorylation on Ser-294 has been 
implicated in PR ligand-independent activation of Src, 
and consequently Stat-3, resulting in increased prolifera-
tion of tumor cell lines [46]. Phosphorylation on Ser-400 
modulates ligand-independent transcriptional activities 
of PR. Cyclin-dependent kinase 2 can phos phorylate on 
PR Ser-400 in the absence of progestins and is required 
for PR nuclear translocation in the absence of ligand [47].

HRs can hence be activated in a ligand-independent 
fashion by multiple kinase cascades [48-51]. Nongenomic 
estrogen effects predominantly involve classical ERs 
residing in cytoplasm and at the cell membrane, where 
ERα can be found in direct association with palmitic acid 
[52]. However, other membrane receptors for estrogens 
and progesterone acting through nongenomic mecha-
nisms have been described and are reviewed elsewhere 
[53].
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With all ER and PR signaling converging on trans-
criptional regulation, the identification of target genes 
has long been of interest. Various global gene expression 
profiling studies identified between 100 and 500 

E2-responsive genes (reviewed in [54]) and multiple PR 
targets [55-57]. More recently, large-scale detection of ER 
binding sites by chromatin immunoprecipitation (ChIP), 
initially combined with tiling arrays and more recently 

Figure 1. Integration of genomic and nongenomic estrogen receptor and progesterone receptor signaling pathways. Estrogen receptor 
(ER) and progesterone receptor (PR) can bind directly to DNA-specific sequences or indirectly by binding to other transcription factors. In addition, 
ERα and PR are able to activate several signaling pathways (mitogen-activated protein kinases (MAPKs), JAK/STAT, SRC or phosphatidylinositol-3-
kinase (PI3K)) (blue arrows). In parallel, epidermal growth factor receptor (EGFR) activation by epidermal growth factor (EGF) or mediated by ERα 
activates MAPKs, which in turn can phosphorylate and probably activate ERα or PR. Protein kinase A (PKA) and PAK phosphorylate and activate ERα 
(red arrows). cAMP is involved in the activation of both ERα and PR receptors and can be induced by membrane receptors such as GPR30 or mPR. 
Besides, coactivators can participate in ERα activation by crosstalk with other signaling pathways; the coactivator coactivator-associated arginine 
methyltransferase-1 (CARM1) activates ERα by cAMP signaling, leading to ERα phosphorylation. Once phosphorylated, ER and CARM1 interact and 
can bind to the DNA to regulate target genes. E2, 17β-estradiol; HB, heparin-binding; PG, progesterone.
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with deep sequen cing, have established genome-wide 
maps (reviewed in [58]). These studies revealed more 
than 5,000 ER binding sites, of which only 4% were 
located in promoter regions. Most binding occurs at 
distant regulatory elements, suggesting very complex 
mechanisms of transcriptional regulation [59].

ERα and PR signaling in the mammary gland
Estrogens and progesterone play prominent roles in 
driving and coordinating postnatal mammary gland 
develop ment. The mouse mammary gland offers unique 
experimental opportunities to genetically dissect signal-
ing pathways involved in the development of this organ. 
In 3-week-old females, the inguinal gland can be cleared 
of its endogenous epithelium; any piece of mammary 
epithelium can then be engrafted into such a cleared fat 
pad and will grow out and recapitulate development [60]. 
Comparison of HR-deficient and wild-type epithelia 
engrafted into contralateral cleared fat pads discerned 
that estrogens trigger expansion of the rudimentary 
ductal system into the mammary fat pad during puberty 
acting via epithelial ERα [61], whereas the epithelial PR is 
required in adulthood during estrous cycles and 
pregnancy to bring about side branching, thereby 
enhancing the complexity of the ductal system [1]. When 
divested fat pads were reconstituted with ERα–/– or PR–/– 
epithelial cells mixed with wild-type cells the former 
contributed to all aspects of mammary gland develop-
ment, establishing that the two hormones can act by 
para crine mechanisms [61,62]. HR-positive cells have 
thus emerged as sensor cells that act as mediators 
translating the systemic signals into local commands, 
thereby amplifying and prolonging the initial stimulus 
and coordinating the behavior of multiple cell types [63]. 
Interestingly, HR-positive cells proliferate less than HR-
negative cells [64,65]. This has been attributed to negative 
regulation by transforming growth factor beta-1, which is 
specifically activated in the extracellular matrix of ERα-
positive cells [66].

Paracrine mediators of estrogen function during puberty
ERα signaling is activated when estrogens are secreted by 
the ovaries with puberty. The EGFR ligand, amphiregulin 
(AREG), is the only EGFR ligand induced by estrogens in 
the pubertal mouse mammary gland and is an essential 
paracrine mediator of estrogen-induced proliferation 
that drives ductal elongation [67,68] (Figure 2). AREG is a 
membrane-anchored protein and needs to be cleaved to 
be active [69,70]. The metalloproteinase ADAM17 (TNFα-
converting enzyme) is essential for this activation, as 
illustrated by studies showing that ADAM17–/– 
epithelium, like ERα–/– and AREG–/– epithelia, fails to 
grow out in a cleared fat pad but can be rescued by 
exogenous AREG [70].

Surprisingly, tissue recombination experiments revealed 
that AREG’s cognate receptor, the EGFR, is not important 
in the mammary epithelium but is required in the 
mammary stroma [70-72]. Consistent with AREG pro-
duced by epithelial cells signaling to the stroma, stromal 
EGFR phosphorylation is decreased in the absence of 
epithelial ADAM17 [70]. There are several candidates 
that may signal back from the stroma to ultimately trigger 
epithelial cell proliferation, foremost being insulin-like 
growth factor-1 (Figure  2). Expression of insulin-like 
growth factor-1 mRNA is restricted to the stromal 
compartment and can induce ductal elongation [73,74]. 
Insulin-like growth factor-1 expression is also induced by 
estrogens in the mammary stroma of ovariectomized 
heifers [75], suggesting that this pathway is important 
and conserved across species.

Further attractive candidate mediators of stromal–
epithelial crosstalk in response to AREG–EGFR signaling 
are members of the fibroblast growth factor (FGF) family. 
FGFs are required for the branching morpho genesis in 
several organs including the lungs and salivary glands 
[76,77]. Specifically, FGF2 and FGF7 elicit branch ing of 
mammary organoids in three-dimensional matrigel 
cultures even in the absence of EGFR signaling [70], and 
in vivo stromal FGF7 expression is induced upon E2 
stimulation [78]. Deletion of the cognate FGF receptor 2b 
in mammary epithelial cells results in delayed ductal 
growth during puberty. Remarkably, in mosaic FGF 
receptor 2b mutant epithelia the highly proliferative 
ductal tips consist almost exclusively of wild-type cells. 
This indicates that FGF receptor 2b is required for 
epithelial cell proliferation [79], which may be elicited by 
FGFs released from stromal cells in response to EGFR 
activation by AREG (Figure  2). Importantly, around the 
proliferative ductal tips the basal lamina that typically 
separates epithelial and stromal compartments is thinned 
out or absent, a circumstance that facilitates interactions 
between epithelial and stromal cells.

Global gene expression profiling of mammary stroma 
after estrogen stimulation has revealed additional candi-
dates that may signal back to the epithelium, such as a 
transforming growth factor beta extracellular inhibitor 
protein CAP-GLY domain containing linker protein 1, 
and thrombospondin 2 [80].

Paracrine mediators of progesterone receptor 
signaling function in the adult mammary gland
Wnt4 and receptor activator of NF-κB ligand (RANKL) 
have been implicated as important paracrine mediators 
of progesterone function (Figure  2). Wnt4 is a secreted 
protein that belongs to the Wnt signaling pathway, 
involved in many developmental processes. Epithelial 
outgrowths derived from Wnt4–/– or wild-type mammary 
buds transplanted in contralateral cleared fat pads 
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revealed that Wnt4 is required for side branching [81]. 
Wnt4 mRNA expression is induced by progesterone, and 
depends on intact epithelial PR signaling. In situ 
hybridization studies revealed that the spatial distribution 
of Wnt-4 and PR mRNA are overlapping, suggesting that 
Wnt4 is expressed in PR-positive cells [81].

RANKL is a TNF family member that activates NF-κB 
[82] and plays a fundamental role in antigen-presenting 
cells and during osteoclastogenesis [83]. The observation 
that RANKL-deficient females fail to lactate first pointed 

to a role of this factor in the mammary gland [84]. 
RANKL mRNA expression is induced in ovariectomized 
mice stimulated with progesterone [85], and depends on 
intact PR signaling as PRB-deficient mammary glands 
show decreased RANKL expression [86]. RANKL protein 
is exclusively expressed in PR-positive cells in the 
mammary epithelium [65,86].

Ectopic expression of RANKL or its receptor (receptor 
activator of NF-κB) in the mammary epithelium is 
sufficient to induce side branching in virgin mammary 

Figure 2. Control of mammary gland development by estrogen and progesterone. Systemic hormones act on estrogen receptor (ER) alpha/
progesterone receptor (PR)-positive sensor cells. During ductal elongation, estrogen (17β-estradiol) induces expression of amphiregulin (AREG) 
that is activated by the extracellular protease ADAM17. AREG acts via the epidermal growth factor receptor (EGFR) on stromal cells. In response to 
this stimulation, the stromal cells release factors such as fibroblast growth factors (FGFs) and insulin-like growth factor-1 (IGF-1) that signal back to 
the epithelium, inducing proliferation. Other proteins are also induced by estrogen (E), such as LCN2, SLP1 and HbP17, but their biological function 
remains to be elucidated. During adulthood, in the presence of estrogens, progesterone (P) induces side branching. In response to progesterone, 
the ER/PR-positive sensor cells release several paracrine factors such as Wnt4, receptor activator of NF-κB ligand (RANKL) and calcitonin (CT), 
which act on neighboring cells, inducing proliferation and stem cell expansion. Ad, adipocyte; BM, basal membrane; CTR, calcitonin receptor; Fb, 
fibroblast; IC, immune cell; LC, luminal cell; MC, myoepithelial cell; RANK, receptor activator of NF-κB; TGF, transforming growth factor.
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glands [87], and RANKL–/– mammary epithelia lack side 
branches and alveoli [65]. RANKL is necessary for the 
extensive proliferation of HR-negative epithelial cells in 
response to progesterone stimulation [65]. Transgenic 
RANKL expression in ER-positive mammary epithelial 
cells of PR-deficient females rescued the phenotype of PR 
knockout, unequivocally demonstrating that RANKL is 
an essential mediator of progesterone signaling [88].

Another paracrine mediator of PR signaling is calci-
tonin (Figure  2), a 32-amino-acid peptide hormone 
involved in calcium homeostasis [89]. Calcitonin expres-
sion is induced by progesterone in the luminal cells [90]. 
The cognate calcitonin receptor is expressed in the 
myoepithelium, suggesting that calcitonin may act as a 
paracrine factor in a heterotypic interaction; its biological 
function remains to be defined [90].

Taken together ER and PR nodes in the mammary 
gland involve paracrine signaling loops, with a strong 
involvement of the stroma in the case of pubertal ER 
signaling and possibly more crosstalk with myoepithelial 
cells in PR-driven epithelial proliferation.

ER, PR and mammary stem cells
Mammary stem cells have been defined as cells with the 
ability to reconstitute cleared fat pads and were shown to 
be enriched in a basal cell population characterized by a 
cell surface antigen profile consisting of low levels of the 
glycosyl phosphatidylinositol-anchored protein CD24 
and high expression levels of β1-integrin (CD29) and α6-
integrin (CD49) (CD24+CD29highCD49high) [91,92]. As these 
cells do not express HRs [93], it has been proposed that 
they are activated by hormones through paracrine signal-
ing [63,94]. Elegant fluorescence-activated cell sorting 
experiments revealed that the size of the stem-cell-
enriched population depends on the hor monal status of 
the animal, increasing during diestrous and pregnancy 
and decreasing with ovariectomy and antiestrogen treat-
ments [95,96]. RANKL has been pro posed to act as a 
para crine mediator of stem cell activa tion because expres-
sion of its cognate receptor, RANK, is enriched in the 
basal compartment [95,96]. However, recent lineage tracing 
experiments indicate that luminally and basally restricted 
stem cells coexist in the postnatal mammary gland [97]; 
hence a factor that activates luminal stem cells remains to 
be ascertained.

Clues about hormone receptor function from 
studies on breast cancer samples
Global gene expression profiling studies on large sets of 
breast cancer samples have consistently revealed five 
different breast tumor subtypes (luminal A, luminal B, 
HER2-enriched, claudin-low, basal-like) [98]. Luminal A 
and luminal B profiles represent ER-positive tumors. 
Comparison of different luminal/ER-specific signatures 

reveals major discrepancies and a limited number of 
genes that are repeatedly associated with the ER 
signature [11,99-106] (Table 1). These genes include X-
box binding protein 1 transcription factor, the LIV-1 
subfamily of ZIP zinc transporter 9/solute carrier family 
39 member 6, solute carrier family 1 member 4, solute 
carrier family 1 member 2, trefoil factor 1, trefoil factor 
3, c-Myb, runt-related transcription factor 1, B-cell 
CLL/lymphoma 2 and stanniocalcin 2. Due to the 
heterogeneity in cellular composition of different 
tumors, the view is widely held that signature genes are 
highly expressed in the most abundant cell type within a 
given tumor – hence in the case of luminal tumors they 
are not necessarily related to ER function. Yet the strong 
correlation between GATA-3, forkhead box protein A1 
(FOXA1) and ERα stipulated functional studies, which 
have revealed connections between these transcription 
factors and ERα function in the mammary gland and in 
mammary tumor models.

GATA-3 was shown to be expressed in the luminal cells 
of the normal mouse mammary gland and to be required 
to maintain luminal epithelial differentiation [107,108]. 
Loss of GATA-3 resulted in a decreased number of ERα-
expressing cells [108], suggesting that GATA-3 is up-
stream of ERα. In cell lines, however, estrogen stimulation 
results in an increase of GATA-3 transcripts, indicating 
that GATA-3 itself may be regulated by ERα [109]. 
Further more, ERα binds to the GATA-3 gene in ChIP 
assays [110-113]. Accordingly, it has been postulated that 
GATA-3 and ERα are involved in a positive cross-regu la-
tory loop, with each of them required for the transcrip-
tion of the other [109]. In the MMTV-PyMT mammary 
tumor model, GATA-3 loss marks progression from 
adenoma to early carcinoma and the onset of tumor 
spreading [114]. Clinically, GATA-3 expression shows 
inverse association with histological grade and human 
epidermal growth factor receptor 2 expression [107] and 
has been validated as a predictor for response to 
hormonal therapy in ERα-positive tumors [115,116].

FOXA1 is also important for mammary gland develop-
ment [11,102,117]. Like GATA-3 or ERα loss, FOXA1 
deletion from the mammary epithelium leads to impaired 
pubertal ductal morphogenesis [118]. ERα expression is 
undetectable in tissue recombinants with FOXA1–/– 
epithelium engrafted under the kidney capsule, suggest-
ing that FOXA1 is necessary for ERα expression [118]. 
Besides, FOXA1 and ERα interact in the yeast two-hybrid 
system [119] and between 7 and 48% of genes recruiting 
ER have been suggested to also bind FOXA1 in MCF-7 
cells [110,120], whereas FOXA1 enhances the interaction 
between ER and chromatin [121-123]. FOXA1 expression 
in ER-positive tumors correlates with a good prognosis 
[124], and is inversely associated with tumor size, histolo-
gical grade, lymph vascular invasion, lymph node stage 
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and human epidermal growth factor receptor 2 over-
expression [125].

FOXA1 and GATA-3 are also related to each other; 
ectopic expression of GATA-3 induces FOXA1 mRNA 
[126] and GATA-3 binds to FOXA1 promoter in ChIP 
assays in MCF-7 cells [107] and in the normal mammary 
gland [107], suggesting that FOXA1 is a GATA-3 target 
gene.

Cyclin D1 is linked in multiple ways to ER/PR function. 
In the mouse mammary gland, cyclin D1 was shown to be 
required for proliferation of HR-positive cells in response 
to progesterone [65]. Amplification and overexpression 
occurs almost exclusively in ER-positive tumors [127]; 
cyclin D1 and ERα are frequently coexpressed in ductal 
hyperplasias and in breast carcinomas [128,129]. Within 
ER-positive tumors, cyclin D1 amplification identifies a 
group of women with poor prognosis [130].

Trefoil factor 1 and trefoil factor 3 may be of functional 
importance as their overexpression accelerates tumori-
genesis in xenografted MCF-7 and T47D cells [131,132].

Interestingly, when T47D and MCF-7 cells are exposed 
to E2, the expression profiles between both cell lines 
shared several regulated genes and are similar, and some 
of them overlap with genes expressed in ERα-positive 
tumors [133]. Furthermore, similar studies have shown 
that several of the ERα signature genes are upmodulated 
upon E2 stimulation in breast cancer ERα-positive cell 
lines, with estrogen-responsive genes including GATA-3, 
FOXA-1, cyclin D1, trefoil factor 1, X-box binding protein 
1, LIV-1, stanniocalcin 2, B-cell CLL/lymphoma 2, and 
Myb [111,134-140]. Interestingly, several genes identified 
as E2-regulated genes in MCF-7 cells (such as cyclin D1 
and GATA-3) [141] are present in tumor-defined 
luminal/ER gene clusters and help to predict outcome in 
response to tamoxifen treatment [141].

Global mapping of ERα binding sites through ChIP-seq 
has revealed sites in FOXA1 [111,113], GATA-3 [111,113], 
CCND1 [111,142] and Runt-related transcription factor 1 
[103]. Interestingly, ERα also binds to AREG [110], which 
is an important mediator of ER function in pubertal 
mammary gland development and is regulated by E2 in 
breast cancer cell lines [133]. AREG is not part of the 
luminal signatures but nevertheless may still have a role 
in breast tumors, possibly early in breast carcinogenesis 
when paracrine control mechanisms are still intact that 
might be lost later during tumor progression.

Global ER-binding events were mapped recently for the 
first time in tumor samples [143]. Excitingly, this study 
revealed signatures that predict clinical outcome.

PR-associated nodes in breast cancer
In most cases, PR-positive tumors also express ER and 
are studied within the ER-positive tumor group. Based on 
global gene expression studies on T47D and primary Ta
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human bronchial epithelial cells [144], expression of 
RANKL and Wnt4 is not regulated by progesterone 
[55-57], yet PR has been shown to bind to the Wnt4 
promoter by ChIP assay in T47D cells [145].

Clinically, 27% of primary tumors express receptor 
activator of NF-κB [146]. RANKL expression was found 
in 11% of human invasive breast carcinoma [147], sug-
gest ing that the pathway may be active. Similarly, a role 
for Wnt signaling in breast cancer is suggested by the 
finding that extracellular inhibitors of the pathway such 
as secreted frizzled-related proteins, Dickkopf-3, Wnt-
inhibitory factor-1 and the intracellular antagonist of β-
catenin, adenomatous polyposis coli, are epi geneti cally 
silenced in breast tumors [148-154]. Hence, these 
paracrine factors and the signaling they elicit may have a 
role in breast carcinogenesis.

Conclusions
HR-positive cells in the mammary gland act as sensor 
cells; they detect the systemic requirements reflected in 
hormone levels and translate them into local commands. 
The molecular underpinnings of this switching station 
are ERα and PR and their signaling nodes. Mouse 
genetics have established that in vivo paracrine signaling 
is of central importance to coordinate the behavior of 
luminal and stromal cells (ER) during puberty and of 
luminal and myoepithelial cells (PR) in the adult mammary 
gland. In vitro experiments with ER-positive breast 
cancer cell lines have revealed that these receptor-
signaling nodes coordinate the actions of distantly acting 
endocrine signals with locally acting receptor tyrosine 
kinase and G-protein-coupled receptor ligands that 
ultimately modulate transcription. At least for ER we 
now know that the vast majority of its genomic action 
occurs through distant control elements.

Despite the limited overlap between the nodes 
emerging from the distinct approaches in breast cancer 
cell lines, during mammary gland development and in 
breast tumors, the EGFR pathway appears tightly linked 
to ERα and PR signaling at different levels. There is 
continuous crosstalk between EGFR and HRs [155] by 
nongenomic mechanisms, and in vivo the EGFR ligand 
AREG is an important paracrine mediator of estrogen 
action. AREG is also implicated early in breast 
carcinogenesis, as it was the most upregulated gene in a 
comparison between hyperplastic enlarged lobular units 
and normal terminal duct lobular units [156].

A major challenge remains to integrate the information 
acquired from the different approaches. Whether the 
intracellular signaling cascades triggered by hormones in 
cell lines work similarly in vivo remains to be determined. 
Increasingly sophisticated fluorescence-activated cell 
sorting-based cell separation approaches, laser capture 
dissection as well as in vivo signaling/imaging approaches 

should help to connect the currently separated views of 
ERα/PR signaling, taking into account that they operate 
only in a minor subset of cells in vivo.
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