
A Distributed Interleaving Scheme for Efficient Access to
WideIO DRAM Memory

Ciprian Seiculescu
LSI, EPFL

Lausanne, Switzerland
ciprian.seiculescu@epfl.ch

Luca Benini
DEIS, University of Bologna

Bologna, Italy

luca.benini@unibo.it

Giovanni De Micheli
LSI, EPFL

Lausanne, Switzerland
giovanni.demicheli@epfl.ch

ABSTRACT

Achieving the main memory (DRAM) required bandwidth at ac-
ceptable power levels for current and future applications is a ma-
jor challenge for System-on-Chip designers for mobile platforms.
Three dimensional (3D) integration and 3D stacked DRAM mem-
ories promise to provide a significant boost in bandwidth at low
power levels by exploiting multiple channels and wide data inter-
faces. In this paper, we address the problem of efficiently exploit-
ing the multiple channels provided by standard (JEDEC’s WIDE-
IO) 3D-stacked memories, to extract maximal effective bandwidth
and minimize latency for main memory access. We propose a new
distributed interleaved access method that leverages the on-chip in-
terconnect to simplify the design and implementation of the DRAM
controller, without impacting performance compared to traditional
centralized implementations. We perform experiments on realis-
tic workload for a mobile communication and multimedia platform
and show that our proposed distributed interleaving memory access
method improves the overall throughput while minimally impact-
ing the performance of latency sensitive communication flows.

Categories and Subject Descriptors

B.4.3 [INPUT/OUTPUT AND DATA COMMUNICATIONS]:
Interconnections (Subsystems)—topology

General Terms

Design

Keywords

NoC, WideIO, DRAM controller, interleaving

1. INTRODUCTION
Todays applications that drive the System-on-Chip (SoC) design

require more and more storage capacity as well as high bandwidth
to main memory. To provide the required storage capacity, high-
density commodity DRAM is the only cost-effective main memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’12, October 7-12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1426-8/12/09 ...$15.00.

option, and external DRAM modules are needed. To deliver the re-
quired bandwidth when accessing external DRAM is a major chal-
lenge and main memory access is the main bottleneck for scaling
computing performance, also known in literature as the Memory

Wall [1]. In mobile SoCs platforms that have strict power consump-
tion constraints, providing the required bandwidth to main memory
at manageable power levels is an even more challenging problem.
Mobile SoCs rely on parallelization and specialization of the func-
tionality in order to obtain the required performance for the applica-
tion at low power level. A natural solution for providing increased
memory bandwidth with low power would be to parallelize the ac-
cess to the memory. However, as the main storage is external, the
limited number of available off-chip IO ports prevents the design
of a parallel memory system.

Three dimensional integration is a promising technology for in-
creasing the number of transistors on-chip [2]. A major advantage
of 3D integration is the ability to integrate efficiently heterogeneous
manufacturing technologies in a single chip stack, by putting to-
gether dies that have been processed separately. 3D-stacked mem-
ories that leverage the benefits of heterogeneous integration have
been proposed as a solution to overcome the Memory Wall [3].
As each layer in a 3D stack is processed separately, high density
DRAM memory can be stacked on top of logic to satisfy the large
storage needs of applications (at low cost per MB). Through Sil-

icon Vias (TSVs) are used to provide vertical connectivity and as
3D integration technology matures the density of TSVs increases.
Stacked memories can benefit from the large number of TSVs to
provide wide interfaces and multiple channels, such that the large
bandwidth requirements can be met at low power levels. Apart
from the wider data-paths that allow the memory to operate at lower
frequency, while achieving the same bandwidth, power is saved in
3D stacked memories by removing the need to go off-chip through
power-hungry IO ports. On the other hand, having access to mul-
tiple ports, requires the SoC to be able to efficiently use them to
achieve the overall bandwidth requirement.

Given the promise of three-dimensional DRAM stacking, in-
dustry is actively pushing standardization of TSV-based interfaces.
WideIO 3D-stacked DRAM [4] is an emerging JEDEC standard.
WideIO memories use TSVs to provide interfaces to 4 channels
each with a 128bit wide data interface. By running at 200MHz with
single data rate the WideIO memory can provide a peak bandwidth
of 12.8GB/s at lower power levels than current Low-Power Double
Data Rate (LPDDR) DRAM. According to the JEDEC standard
WideIO will provide 50% more bandwidth with 20% less power
than an existing dual-channel LPDDR2 off-chip solution. In this
work, we focus on WideIO DRAM memory integration in the SoC
design and we address the problem of efficiently using the 4 chan-
nels to achieve the required application performance.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147988845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�
��
�
��

�
�
	

������

��	
� �

������

��	
�

������

��	
� �

������

��	
� �

�
��
�
��

�
�
	

�
��
�
��

�
�
	

�
��
�
��

�
�
	

����

��
���

����

��
��

�
�

�
�
�

���

�
�

�
�
�

������������

�����

��	
�

�����

��	
�

���

��	
�

��� ������� ��!

"����

��� ��!
����

����#

�
�
�
��

�
�
�
��
��

Figure 1: Example of SoC floorplan with WideIO TSV interfaces

�������

���	
��	 ����

�����

����

	��

�������

���	
��	 ����

�����

����

	��

�������

���	
��	 ����

�����

����

	��

�������

���	
��	 ����

�����

����

	��

Figure 2: Distributed DRAM controller with 4 separate channels

Networks-on-Chip (NoCs) have been proposed as a scalable in-
terconnect for on-chip communication [5]. NoCs have been already
adopted in many high-end mobile SoC products and can be found
on most of next-generation SoCs [6]. Therefore in this work, we
focus on SoC design that use a Noc for the global interconnect. We
analyze two architectures for the memory sub-system that access
the 4 channels of the WideIO DRAM: i) a simple to implement ar-
chitecture that uses 4 DRAM controllers to independently access
the four channels that rely on software to balance the traffic be-
tween the channels and ii) a complex centralized controller with
multiple ports and interleaved address space to balance the traffic
among the four channels. Since the TSV size is large, when com-
pared to transistor size, the wide data interfaces that require many
TSVs will be far apart on the floorplan. An example of such a het-
erogeneous SoC floorplan with WideIO connectivity is presented
in Figure 1. The position of the TSV interfaces in the example
was chosen to accommodate the WideIO interface from [4]. This
makes the centralized controller difficult and expensive to imple-
ment. Therefore, we also propose a new distributed interleaving
method to access the memory controller that leverages the advan-
tages of both of the previously mentioned designs, while avoid-
ing their most serious shortcomings. On one hand it uses a simple
memory interface design, as the first method, but provides an inter-
leaved address space such that balancing the traffic to the four chan-
nels is transparent to the software. Our proposed approach requires
the integrated design of both the NoC and the DRAM controller, as
the interleaving support is now distributed within the NoC, which
also result in balancing the traffic in the NoC itself.
We perform experiments on a realistic benchmark for a het-

erogeneous mobile communication and multimedia SoC platform.
An important contribution is given by our advanced traffic mod-
eling environment and by modeling the details of the NoC micro-
architecture (i.e., packetization, bandwidth inflation). From exper-
iments, we show that our proposed distributed interleaving mem-
ory access method improves the overall throughput while mini-
mally impacting the performance of latency sensitive communica-
tion flows. For example, our design improves the frame rate of the
video decoding and display subsystem by 2 frames/second when
compared to simple separated controller with the best memory al-
location (42 frames/second with the worst memory allocation) and
by 7 frames/second when compared to the complex controller with
interleaved address space.

2. RELATEDWORK
Several works have presented methods to improve DRAM access

efficiency by scheduling and reordering transactions in the DRAM

controller [7], [8], [9], [10], [11], [12]. In [8], [10] optimizations
for multicore systems are presented, and in [9] a predictable DRAM
controller is presented. Memory transaction scheduling is impor-
tant in increasing the efficiency of DRAM access, but it is orthog-
onal to the scope of this paper. We use the simulator model from
[12] to include these memory access optimizations in our simula-
tion framework.

Many research groups have focused on the technological as-
pects to manufacture 3D-integrated memory systems [13], [14],
[15], [16]. Others have investigated system architectures using 3D-
integrated on-chip DRAM [17], [18], [19], [20]. In [3], Weis et
al. present a design space exploration of SoCs with 3D-stacked
DRAM and in [21] the authors show an overview of 3D-integrated
DRAMs and the challenges associated with it. In this work we as-
sume a specific 3D-stacked DRAM architecture, i.e. the WideIO
JEDEC standard[4]. A study showing the advantages of using
multi-channel memory systems for video encoding SoCs is pre-
sented in [22]. The study shows the impact of multiple channels on
the system performance and our work is different from that as we
are concerned with how to efficiently access multiple channels.

Several researches have looked at the co-design of the NoC with
the DRAM controller. In [23] the authors present a way to reorder
DRAM transactions while in the network and simplify the DRAM
controller. However this work addresses the problem of schedul-
ing and not of accessing multiple channels. To reduce the traf-
fic to DRAM the authors propose in [24] to have a processor base
DRAM controller capable to process complex requests and return
only the results. A credit based flow control method is used in
[25] to prevent the DRAM traffic from waiting into the network
and interfering with non DRAM traffic. In [26] the authors propose
to give higher priority to transactions waiting in the DRAM queue
that have to be sent back to cores in areas of the NoC which are less
congested. These works however do not address the problem of ac-
cessing multiple channels. Memory centric NoC architectures with
real chip implementations are provided in [27] and [28]. However
in these systems there are several memories which are on-chip and
the communication between cores is done through these memories.

Arteris [29] and Sonics [30] offer memory interleaving support
that is integrated with their interconnect solutions. However they
do not provide any comparison to traditional solutions. Moreover
in the white paper from Sonics [30], experiments are shown only
for two channels using existing off-chip DDR3 memories. In this
work we target 3D-stacked WideIO with 4 channels and provide an
extensive comparison with traditional architectures like centralized
controllers and software managed independent channels.

����

���

���	
��	

�	�
�	
�����	

�����

����

	��

����

�
��
����

�����
�����

�
���
�������

�������	���

Figure 3: Centralized DRAM controller with interleaving at the

controller side

��������� ��������	 ��������
 ���������

���������������

��

��

�� ��������

����������

Figure 4: Example of a) partitioned- and b) interleaved address

space

3. NOC AND CONTROLLER ARCHITEC-

TURES FOR MULTI-CHANNEL DRAM
WideIO DRAM provides high-peak bandwidth at low power lev-

els by using multiple channels with independent wide data-interfaces
operated at low frequency. Efficiently exploiting the 4 channels of
theWideIOmemories, in order to satisfy the bandwidth demands of
the application, is up to the SoC designer. Having multiple channels
provides new opportunities for designing the memory controller to
efficiently access the memory subsystem. In this section, we intro-
duce three architectures: two traditional ones and we also propose
a new architecture that moves part of the DRAM controller com-
plexity into the NoC fabric to provide distributed parallel access to
the four channels of a WideIO memory.
In this section we describe the three analyze architecture and dis-

cuss their advantages and disadvantages:

• Distributed controller with separate independent channels.

This is a simple solution where an independent DRAM con-
troller is assigned to each channel.

• Centralized controller with interleaved address space. This
is a single multi-ported controller that can access all the four
channels of theWideIOmemory interface. The requests from
the four ports are interleaved based on the address to the four
channels to balance the traffic.

• Distributed controller with interleaving in the NI. This is our
proposed method that uses 4 simple DRAM controllers for
the 4 channels, but the transactions are split and interleaved
based on address within the interconnect at the Network In-
terfaces (NIs) of the NoC.

3.1 Distributed controller
The simplest solution to access the four channels is to have four

independent DRAM controllers and to split the address space in
four large contiguous blocks. A block diagram of such an architec-
ture is presented in Figure 2. By ensuring at software level that a
core does not access more than one channel at the same time, this
architecture does not require any changes to existing DRAM con-
troller or NoC architectures. To each channel a DRAM controller
is assigned that only needs a bus interface and address generator,
with FIFO buffers to drain the requests from the NoC and an out-
of-order back-end. Designing the memory subsystem of the SoC in
such a distributed fashion, with separate independent DRAM chan-
nels, is easy. The main drawback of this simple architecture is that
the performance of the memory subsystem is highly dependent on
the memory mapping. In the worst case, if the memory regions of
all cores are mapped to the same channel (which could happen for
certain periods of time in systems where the memory is dynami-
cally managed), then the peak-bandwidth of the WideIO DRAM
memory is effectively reduced four times. To tackle this problem,

such a system would have to expose hardware details to the soft-
ware and make sure that at software level, the memory is allocated
as to balance the accesses to the 4 channels. However as such an
allocation, reliant on the software, would be coarse grained it may
not be possible to efficiently balance the accesses to the channels.

To tackle this drawback of separated independent channels a
popular technique is to interleave the address space between the
channels [31]. By splitting the address space in fine-grained blocks
and assigning them interleaved to the channels as shown in Fig-
ure 4, we can make sure in hardware that the data is distributed
uniformly among the channels. Accessing the memory is now bal-
anced between the channels and it is transparent to the software.
The decision to which channel a transaction (or a piece of a trans-
action) belongs depends on the address of that transaction. De-
pending on where that decision is taken we look at two solutions:
i) centralized in the DRAM controller and ii) distributed at the ini-
tiator Network Interfaces (NIs) of the NoC.

3.2 Centralized Controller with Interleaving
One way to design an interleaved memory subsystem is to have

a centralized DRAM controller with multiple ports toward the NoC
and multiple channels to connect to the WideIO DRAM as shown
in Figure 3 similar with that from [32] (with different arbitration
scheme though as we do not require that level of predictability).
The advantage of this solution is that the memory controller and
the NoC can be designed separately and regardless of which port
you use you have access to the entire memory space. Such a cen-
tralized solution would require a crossbar to allow for parallel ac-
cess between ports and the back-end controllers connected to the
channels. In our architecture the bus interfaces, corresponding to
each port, take the bus request and generate transactions for the
DRAM back-end with the same size as the interleaving blocks.
These transactions are stored in the input FIFO of the port. The ar-
biter takes these transactions from the ports and using the crossbar
sends them to the appropriate channel according to the address. A
popular schemes for arbitration (which we also assume) is priority
with aging to prevent starvation. Ports can have different priorities
(in our case we use two) and the transactions in the low priority
ports keep an age counter. After a certain age given as parameter
their priority becomes the highest and get serviced next. The re-
ordering of the transaction to be memory friendly is done in the
back-end and that is beyond the scope of this work. However since
transactions from the same port are sent to different back-ends they
can be serviced and returned out of order, so the response buffers
in the ports have to be able to reorder the transactions.

While this solution fixes the problem of application memory map-
ping, there are two important drawbacks of this solution. The first
drawback relates to the physical implementation of the centralized
controller. The WideIO uses TSVs for connectivity, which are con-
siderably larger than other features, and has wide interfaces so re-

�����������	

�����������

������������

������������

��
��� ������

�������

Figure 5: Example of distributed interleaving where the NI sends

out a 4 beat burst transaction in 2 packets on different routes

������

���

�	
�����

������

�����

�����

�	�

������

����
��
��	

������
����

����	�

���

������

����
��
��	

������
����

����	�

 �����������

!�����
��

�����	"�	

Figure 6: DRAM controller port with priority

���

�����	

����

����

���
�	����

�	���	

����

���	���	

Figure 7: Simple reorder buffer schematic

quiring many such TSVs. According to the JEDEC standard the
size of the 4 channels interfaces is around 0.54mm by 5.27mm. So
the interfaces are far apart on the floorplan of the resulting chip as
shown in Figure 1. Therefore designing the crossbar to connect the
ports to the DRAM back-ends may be costly and slow. The second
drawback is that the as there are more IP-cores that used the DRAM
than ports, it is up to the designer to decide the assignment of the
IP-cores to ports. As different IP-cores may be active for differ-
ent application there could be cases where even a good assignment
could still result in over-congesting a port and parts of the NoC.
This would result in a degradation of performance.

3.3 Distributed Controller with Interleaving
A compromise between the two solutions discussed before is to

distribute the interleaving function from the DRAM controller in
the NoC. This solution would require the simpler controllers of the
first solution, which could be easily implemented next to the in-
terfaces to the WideIO memory. In this case the source NIs are
responsible to implement the interleaving function (performed by
the crossbar in the centralized controller). A schematic representa-
tion of this architecture which we will call as distributed controller
with interleaving in the NIs is presented in Figure 5. The NI needs
to have a route to each port of the independent memory controllers.
Based on the address the NI chooses the path to the correspond-
ing port. In case of transactions that are larger than the size of the
interleaving block, the NI is responsible to split these transactions
into multiple packets and to send those packets to the correspond-
ing controllers. In this case the responses or partial responses (as
the transaction can receive the responses in multiple packets) have
to be reordered and reassembled in the NI. The details describing
the NI are presented in Section 4.1. To provide two level of priority
as in the centralized controller case, we use two FIFO buffers per
port as shown in Figure 6. The assignment of the transactions to
the priority queue is done based on the ID of the source.
The disadvantage of this method is that it generates more band-

width in the NoC, due to the packetization overhead in the case
when transactions are split. An important thing to note is that even

in the previous case long transactions may need to be split to pre-
vent blocking the interfering traffic for too long from accessing the
memory controller as well. In this architecture the NoC and the
memory controller need to be designed together. The main advan-
tage of this architecture is that it balances the traffic in both the NoC
and at the DRAM controller channels, regardless of the application
memory mapping.

3.4 Simple Reorder-buffer Implementation
If the NI has support for interleaving and splitting of packets

then it needs to be able to reorder the transactions. However in
cases where there are only few routes handled by the NI the reorder
buffer can be implemented in a simpler way. By leveraging the
property that packets on the same route will arrive in order, then
the reorder buffer can be implemented only with FIFOs and few
comparators, instead of expensive CAM memories. In Figure 7,
we show an example of such a reorder buffer for an NI that uses
two routes to interleave the packets.

To track the order, the transactions are assigned an ID (consecu-
tive values of a counter) when they are sent out to the target. The
responses from the target will contain the same ID that was as-
signed to the request. We need as many FIFO buffers as there are
routes. As the transaction responses coming from the same path
arrive in-order, we can use simple FIFOs to buffer them. Based on
the ID of the source (the ID of the target that responds) the transac-
tion are stored to the corresponding FIFO. A counter at the receiver
NI also indicates the ID of the transaction that has to be delivered
next and it is incremented whenever a transaction is delivered from
the FIFO to the bus interface. One comparator per FIFO buffer
compares the ID of the transaction that is in the front of the buffer
to the ID counter. If the ID of the transaction matches the ID of the
counter it indicates that as the next transaction to be transfered.

4. EXPLORATION ENVIRONMENT
Our experimental setup is based on a cycle-accurate NoC simu-

lator. The simulator models accurately the×pipes NoC library [33]
which includes: accurate NI models that account for packetization
effects, FLIT size converter models and switch models. On top of
that we extended the initiator NI models to add support for multi-
ple outstanding transactions and for reordering responses and for
transaction splitting and interleaving. We implemented three types
of traffic generators: i) the initiator traffic generator, ii) the tar-
get traffic generator and iii) the DRAM target traffic generator. The
initiator traffic generator supports multiple outstanding transactions
and out-of-order execution and it is described in detail in the next
sub-section. The target traffic generator receives the requests from
the initiator traffic generators and generates the response traffic.
The target traffic generator can also be configured as synchroniza-

���������	
��

�����
��

�����������	
��

���

�����������	
��

���

��	
�	��

���	���

�	���

��	��

���

�������

�
���������
�
��	���
����

Figure 8: Initiator traffic generator

����������	

���������	

���

���������

�������������

����

��������

����

���������

��������	

��������	

Figure 9: Initiator network interface

tion block. The DRAM target traffic generator uses DRAMSim 2
[12] to accurately emulate the functionality of the back-end of the
DRAM controller. The DRAM traffic generator interface the NI to
the DRAMSim instances and can be configured with multiple ports
as well as channels in order to simulate all the architectures pro-
posed in Section 3. Our benchmarking is oriented to real-life traffic
in a state-of-the-art mobile SoC. We model different types of traf-
fic and addressing modes to emulate different IP-cores like: video
and graphic accelerators, display drivers, DMAs, peripherals and
not just CPUs. Hence our environment is a significant step forward
with respect to homogeneous architecture modeling environments
with traffic generated only by cache misses.

4.1 Traffic Generators and NIs
The initiator traffic generator (ITGen) along with the initiator

NI are some of the most important components of the simulator.
The ITGen has to be able to emulate the traffic patterns gener-
ated by processors, accelerators, custom controllers, communica-
tion IP-cores. To be able to emulate all these behaviors, we added
described in the simulator the ITGen to have the structure as pre-
sented in Figure 8. The basic blocks of the ITGen are the transac-
tion generators, the read and write queues, the arbiter between the
read and the write queues, the bus interface and the reorder buffer.
The transaction generators are responsible to generate the high-

level read/write transactions (e.g. cache line refill or write-backs in
a cache controller). The transaction generator can be programmed
to generate different patterns of transactions, with different sizes
and different time intervals between them. The types of transac-
tions we use are: i) reads, ii) non posted writes and iii) barriers
which are used for synchronization. We only considered non posted
writes in this work as we assume that acknowledgments are needed
to implement memory consistency protocols since data is shared
among some cores. However posted writes can also have be used
without impacting the results, especially since no acknowledgment
traffic is necessary in that case. The transaction in the pattern are
dependent as the transaction generator blocks if it tries to inject a
transaction in a full queue. Consequently the following transaction
are delayed by the same amount of time that the transaction gener-
ator is blocked. A ITGen can have multiple transaction generators
which are independent from one another. For example if a trans-
action generator blocks on a full read queue another transaction
generator could still generate write transactions if the write queue
is not full. The use of multiple transaction generator can emulate
multiple threads in a multi-threaded CPU or multiple independent
units in an accelerator. The arbiter selects between the read and the
write queue the transaction that has the highest priority, and which
will be sent next to the bus interface. The bus interface has to con-
vert the current selected transaction to bus requests (i.e. similar to
AXI bus requests), which could comprise of a burst of requests in
case of writes. Once a transaction has been processed by the bus in-
terface, it is placed in the reorder buffer to await the response from
the target traffic generator. The ITGen can be configured to expect
responses in-order or out-of-order. In the first case when a response

it received the ITGen checks that the response corresponds to the
first transaction in the reorder buffer. In the latter case the response
is matched to the corresponding request transaction in the reorder
buffer. The serviced transactions in the reorder buffer are commit-
ted in-order, and the latency is tracked at commit time.

One important feature of the transaction generators is that they
support multiple addressing modes, which can be configured when
they are instantiated. The supported addressing modes are: i) incre-
mental, ii) incremental with synchronization, iii) block addressing,
iv) random block addressing and v) trace. Incremental addressing
as the name suggests generates addresses incrementally with the
possibility of wrapping around after a certain number of transac-
tions. This mode can be used to emulate IP-cores that work with
arrays or that move large amounts of data (e.g. DMA). In case of
the incremental with synchronization addressing mode at the end of
the accessed address range when it wraps around or moves to an-
other address range it requires to synchronize with other IP-cores.
New transactions are not generated until the synchronization com-
pletes. This mode can be used for IP-cores like the LCD or HDMI
which read a frame with incremental transaction, but require syn-
chronization before moving to another frame. Block addressing is
designed to emulate the addressing mode of the video decoder. The
frame is viewed as an M by N matrix which is further divided in
blocks of size m by n (m < M and n < N). The blocks are chosen
in row order and for each block the addresses are generated in row
order as well. This mode also requires synchronization at the end
of the frame. In case of random block addressing, the next block to
be accessed is chosen in a random manner, to emulate the fact that
video decoding is data dependent. For trace addressing, we read a
trace of addresses from file. These traces can be generated before-
hand with a functional simulator and can be used to have a realistic
behavior of IP-core for which the behavior is harder to emulate.

The initiator NI is described in Figure 9. The initiator NI con-
tains the following blocks: the bus interface, the request queues (as
header information and payload data queues), the FLIT generator
block, the FLIT assembler block, the FLIT FIFOs and an optional
reorder buffer. The bus interface is required to connect the NI to the
traffic generators. The FLIT generator and FLIT assembler blocks
convert the bus transactions into NoC packets and vice versa. FLIT
buffers are used toward the switch as well to improve performance.
In the case when the ITGen supports multiple outstanding trans-
action, but it requires the responses in order, a reorder buffer is
necessary. To prevent deadlocks, the FLIT generator block will
reserve space in the reorder buffer when generating a packet. If
there is not enough space in the reorder buffer, the FLIT generator
will block until space becomes available. In case the transaction
requires more space than the size of the buffer the FLIT generator
will wait until the buffer is completely free before starting to gener-
ate the packet. If transaction splitting and interleaving is supported
by the NI then the reorder buffer is also necessary as the different
pieces of a single transaction sent as different packets have to be
reassembled in-order into the response transaction, which will be
returned to the ITGen.

The target traffic generator is simpler. It only has the bus in-
terface and a queue in which to store the incoming requests. The
bus interface takes the stored requests and generates the appropri-
ate response. The target traffic generator can be configured as a
synchronization block as well. In that case it will only generate the
responses when it received requests from all the ITGens that need
to be synchronized. The DRAM controller simulation is done as
described in Section 3. The target NI is similar to the initiator ver-
sion, but it is simpler as it does not need support for reordering or
splitting and interleaving.

4.2 Benchmark and Use-cases
To perform experiments we use a realistic benchmark that de-

scribes a mobile multimedia platform capable of running applica-
tions on a CPU cluster with 3D acceleration, perform video decod-
ing, support multiple high definition displays and wireless com-
munication. The communication requirements are represented by
the graph from Figure 10. The vertices in the graph represent the
task/IP-cores. In some case several tasks are performed by the same
IP-core (e.g. Display LCD and CPU cluster). The edges in the
graph represent a communication flow between two IP-cores. The
weights on the edges represent the read/write bandwidth demands
in MB/s. As can be seen from the plot this benchmark is DRAM
centric with most communication going to the WideIO SDRAM.
The communication graph describes all the possible communica-

tion flows in the SoC, however different operating modes may re-
quire only a subset of the IP-cores to be active. To emulate this be-
havior and to see from experiments the trends on bandwidth and la-
tency as more flow become active, we define four use-cases. Three
of the use-case activate only a subset of the flows, while the last
one will use all. A description of the use-case is provided in Table
1.
Use-case 1 (UC1) uses only the Video decoder IP-core and the

HDMI display IP-core to provide basic video playback. Use-case
2 assumes that along with the video playback, applications are also
running on the CPU that require 3D graphic acceleration. In use-
case 3, two displays are used. In case of the LCD display the reso-
lution is considered to be less than 1080p so downscaling and rota-
tion operations are needed. All the IP-cores that are active in UC3
are high bandwidth. In use-case 4 we consider the influence of
the remaining IP-cores most of which are low bandwidth, but may
require low latency as is the case of the Modem IP-core.

4.3 Topology
For the experiments we use a 6 switch NoC topology. To prevent

message level deadlocks, we use two separate networks so 3 of the
switches are used for the request network and 3 for the response
network. The request network topology is presented in Figure 11
and the response network is symmetric, the only difference being
that the data flows in the opposite direction. In the figure the round
nodes represent the IP-core (in the simulator these require an in-
stance of the traffic generator as well as an instance of an NI) and
the number below the name represents the size of the data inter-
face for that IP-core. The low bandwidth IP-cores have a 32 bit
interface, while the high bandwidth IP-cores use 64 bits. Since the
WideIO SDRAM has 4 channels with a data size of 128 bits, to
be able to transfer full bandwidth we assume the DRAM controller
interface toward the NoC is also 128 bit wide. Similarly some if
the IP-core that generate large regular transactions like the display
drivers also use 128 bit data interfaces.
As can be seen from the figure the IP-cores that have the same

data width are clustered on the same switch. To reduce the power
consumption the switches have a FLIT size similar to the data size

of the cores connected to it. The only exception is the Video IP-
core which is connected directly to the 128 bit switch. When trans-
actions are converted into packets the bandwidth requirements in-
crease due to the extra information that is added in each packet.
Since the Video IP-core has high bandwidth demands, a link in the
NoC with a 64bit FLIT width could not support the bandwidth re-
sulting after packetization and therefore we connected it directly
to the wider switch. Even though the Video IP-core generates sig-
nificant traffic, it does so in small transaction and therefore we as-
sumed that it has a 64bit data-interface. Also this setup allows us
to capture the packetization effects from different data-sizes.

Since the switches have different FLIT sizes, converters need to
be used on each link to change the width of the FLITS in each
packet. It is important to accurately simulate the size converters
as they can also increase the bandwidth when going from narrow
to wide. Since we use wormhole switching, once the head of a
packet has reserved a channel, that channel remains reserved until
the tail of the packet passes through it. Since the narrow network
cannot provide sufficient data to generate a FLIT every cycle af-
ter the size converter. Since the channels remain reserved until the
tail passes, the resulting packet appears to have more FLITs in the
wide network. This effect manifests itself as having a higher band-
width flow. However in case of downstream contention these empty
FLITS can be dropped. To have accurate results we model all these
effects.

Apart from the IP-cores described in the communication graph
of the benchmark, we attached another target IP-core on the narrow
32 bit switch. This core called Semaphore is used to synchronize
the operation of the Video, LCD and HDMI IP-cores when they
change from one frame to another.

5. EXPERIMENTAL RESULTS
In the experiments, using the benchmark described in Section

4.2, we analyze how the bandwidth and latency are affected by the
presence of interfering flows at the WideIO DRAM memory. We
analyze 5 setups based on the three architectures described in Sec-
tion 3. The simulations setups with their corresponding names are
the following:

• Separate 1CH: uses a distributed DRAM controller architec-
ture with separate independent channels. This simulates the
worst-case when all the active memory regions addressed by
the ITGens are mapped to the same channel;

• Separate 4CH: uses the same distributed architecture, but in
this case the active memory regions were carefully mapped to
different channels. For example for the Video IP-core which
generate high bandwidth traffic, the address memory regions
have been distributed in all channels.

• Controller I 3 Port: uses a centralized DRAM architecture
with interleaving at the controller. As there are more ITGens
than ports in this setup several ITGens have been assigned to
use the same port (only three of the 4 ports are used).

• Controller I 4 Port: uses the same centralized architecture,
but the ITGens have been assigned to all four ports so that
there is less contention at the DRAM controller ports.

• NI I: uses a distributed DRAM controller architecture, how-
ever the address space it is interleaved between the four chan-
nels of the WideIO memory. In this case the initiator NIs are
responsible to split transactions into packets and to send the
packets to the appropriate memory channel according to the
address.

��������	
�
���������

��

������

�����
������ ������

�����

�����

�����

������

����� ������� ����� �� �
�������

!��"

��� 	����#
 ���$

��� ����"� �����

%&'()

%&'(*&'

&'(&' *&'()

*%%'(+#'

'(' *#(*#

,(,
%'(%'

+-'(#-'�

'('

'('
-()

'('

''(''

''(''

'#%(-#

'('

Figure 10: Benchmark communication graph

���

��

���

��

��	

��

����

��

��������

���

��

	����

��

�������

��

�����

��

�� �

��

�������

!��"

��

#$�

��

����#�

��

 ���%

����

��

����"$

��#	�

��

��

��

���

��

��

���

���	
��

���	
��

���	��

���	��

���	
��

��

��

���

����

�%���

��

Figure 11: Topology

CPU GPU Video LCD HDMI DMA Audio Sensors WiFi Modem

UC1 x x

UC2 x x x x

UC3 x x x x x

UC4 x x x x x x x x x x

Table 1: Description of the use-cases

The simulation parameters used for the initiator traffic genera-
tors are presented in Table 2. For the initiator NIs, we used 2-deep
bus transaction buffers and 5-deep FLIT FIFOs. For the setups
using the distributed DRAM controller with independent channels
and for the centralized DRAM controller, reorder buffers are not
needed as there is a single route to reach the memory controller for
the ITGens that require responses to be return in-order. In case of
the distributed controller with splitting and interleaving at the NI,
reorder buffers are not needed for the CPU, GPU and Video IP-
cores. That is because the largest transaction is the same size as the
interleaving size so no splitting is required. Also these traffic gener-
ators accept responses out-of-order. In case of the LCD and HDMI
display controllers as well as the DMA, the transactions have to be
split and therefore we need a reorder buffer. We used 24-deep re-
order buffer (each entry in the reorder buffer is a bus transaction).
In case of the Audio, WiFi, Sensor and Modem IP-cores, no split-
ting is necessary, but the responses have to be delivered in order so,
there is a reorder buffer. Since these cores are low bandwidth, we
use 16 deep reorder buffers.

5.1 Throughput oriented communication
In our benchmark, we have IP-cores that are throughput sensitive

(Video, HDMI, LCD) and some that are latency sensitive (CPU,
Modem). In this section, we will have a closer look at two rep-
resentative throughput sensitive IP-cores, namely he Video accel-
erator and the HDMI display controller. Both IP-cores require a
significant amount of bandwidth and have to synchronize after fin-
ishing a frame. The Video controller generates small transactions,
while the HDMI display controller transfers data in long 1kB burst
transactions. In Figure 12, we show the trend of the average latency
for the Video transactions as more interfering bandwidth is intro-
duced with the more complex use-cases (in UC1 only the Video
and the HDMI cores are active, while in UC4 all the IP-cores in
the benchmark are active). As can be seen from the plot the dis-

�

���

����

����

����

����

����

����

����

��	
�
��

���

��	
�
��

���

����������

������

����������

������

���

��
��
�
��
�	
�

�

���

���

���

���

Figure 12: Average latency for the Video IP

tributed interleaving scheme that balances the traffic in the network
as well has the lowest latency. Moreover compared to the other
schemes, the distributed interleaving is also the least sensitive to
the interfering bandwidth, as it has the lowest growth. The figure
also shows that the mapping of data in memory has a significant
impact on the performance of the distributed controller with inde-
pendent channels. However with the best memory mapping as well
as with the distributed controller with NI interleaving the latency is
lower than in the case of the centralized controller. This is because
both schemes exploit the parallelism in the NoC as well.

Similarly, in Figure 13, we show the average latency of the HDMI
transactions. An important thing to remember is that we measure
latency of a transaction from the time it is generated by the ITGen
and placed in the read/write buffer of the ITGen until the time it
received the response and it is committed by the ITGen (in case

Out-of-order Maximum outstanding Number of Address Transaction
Reads Writes transaction generators mode sizes

CPU yes 4 8 6 trace+incremental 64b, 512b

GPU yes 8 8 1 incremental 512b

Video yes 30 30 5 block + random block addressing 128b, 256b

LCD yes 10 10 1 incremental with synchronization 1kB

HDMI yes 10 10 1 incremental with synchronization 1kB

DMA yes 10 10 3 incremental 128b, 1kB

WiFi no 4 4 1 incremental 128b

Sensors no 2 2 1 incremental 32b

Audio no 2 2 1 incremental 128b

Modem no 2 2 1 incremental 256b

Table 2: Simulation parameters for the ITGens

�

���

���

���

���

����

����

����

����

��	
�
��

���

��	
�
��

���

����������

������

����������

������

���

��
��
�
��
�	
�

�

���

���

���

���

Figure 13: Average latency for the HDMI IP

of out-of-order ITGens the transactions are committed in-order so
any completed transactions cannot be committed until all previous
transactions have been completed and committed). In case of the
HDMI core, data is transfered in 1kB transactions. Therefore in
case of the distributed controller with interleaving in the NI, the
transactions have to be split over multiple packets, in order to be
sent to the appropriate channel. The different response packets
have to be reordered and assembled such that the response from
the NI to the ITGen is sent as a single burst of in-order bus trans-
fers. The number of packets of the transactions that can be sent out
is limited by the size of the reorder buffer. This results in a higher
latency per transaction for the HDMI core as can be seen from the
figure. However since a single transactions transfers 1kB of data
these transfers are very efficient and the increased latency does not
impact the overall performance of the system. If we look at the
latency per byte for these 1kB transfers we can see that they are
11 times more efficient than the smaller transfers generated by the
Video core (1.1 ns/byte for HDMI and 12.2 ns/byte for the Video
in UC4), which explains why the larger latency of the HDMI core
does not impact the system performance.
To analyze the overall system performance, in Figure 14, we

show the frame rates obtained for the different use-cases in each
simulation setup. The distributed DRAM controller with interleav-
ing at the NI obtains the best frame rate and also has the lowest
degradation of the frame rate as more interfering communication
flows are activated. The frame rate of this setup is better even than
that of the distributed controller with separate independent chan-
nels even for the best memory allocation scheme, as it balances

�

��

��

��

��

��

��

��

	
����
�

���

	
����
�

���

�������
�

�������

�������
�

�������

����

�
��
�
�
��
�
��
��
	�
�
�
�

�

�

���

���

���

���

Figure 14: Average frame-rate

the traffic from all the cores in the network as well. Surprisingly
the centralized controller where only three ports are used has better
frame rate than when 4 ports are used. That is because in the case
of the three port setup some of the interfering flows that are mapped
on the same port interferer among themselves impacting their per-
formances and in this particular case favoring the Video core. This
also shows the sensitivity of the centralized controller scheme to
the mapping of the communication flows to ports.

5.2 Bandwidth analysis
As the benchmark is representative of real applications, it is

DRAM centric with all communication being between the IP-cores
and the DRAM controller. Therefore one important metric to assess
the performance of the SoC is also the total read/write bandwidth
to the DRAM memory. In Figure 15, we show the bandwidth ob-
tained with each simulation setup for all use-cases normalized to
the bandwidth required by that use-case. The reported bandwidth
refers to the effective data bandwidth measured by the ITgens, the
actual bandwidth transfered in the NoC is higher due to packetiza-
tion and the bandwidth inflation generated by the size converters.

As expected, due to the balancing of traffic through the NoC as
well, the distributed DRAM controller with NI interleaving setup
achieves the best performance in terms of total average bandwidth
as well (6184MB/s out of 6980MB/s demanded by use-case 4). The
distributed controller with separate independent channels achieves
similar performance for the most demanding use-case when the al-
located memory is well distributed in the channels. However, to
achieve that performance with independent channels the hardware

�

���

���

���

���

�

�	
���	�

���

�	
���	�

���

�������	��

�������

�������	��

�������

����

��
��
��
�
�
�
	

�	
��
�
�
�
��

�
��
��
	
�

���

���

���

���

Figure 15: Average total bandwidth

�

���

���

���

���

����

����

����

����

��	
�
��

���

��	
�
��

���

����������

������

����������

������

���

��
��
�
��
�	
�

�

���

���

���

Figure 16: Average latency for the CPU IP

would need to be exposed to the software and the managing oper-
ating systems should be smart enough to allocate memory such as
to balance the channel usage. In case of the hardware interleaving
scheme the memory access is transparent to the software, favoring
the NI interleaved scheme which balances traffic in the interconnect
as well.

5.3 Latency sensitive communication
So far we have analyzed the bandwidth oriented communication

flows. In this section we analyze two of the latency sensitive IP-
cores. One of them is the CPU where read are on the critical execu-
tion path and therefore the CPU performance is dependent on the
latency of reads. On the other hand the CPU generates a significant
amount of bandwidth as well. Another latency sensitive core is the
Modem which has strict latency requirement imposed by the com-
munication protocol, however the Modem core only requires little
bandwidth.
In Figure 16, we present the average latency of the CPU for the

three use-cases where the CPU is active. As can be seen from
the figure the latency of the CPU is only slightly larger for the
distributed controller with interleaving at the NI when compared
to the centralized controller (around 17% for UC4). That is be-
cause in the NI interleaving scheme the transaction from the CPU
are distributed to all ports and they interfere with the traffic of the
high-bandwidth cores at all the ports. In the other case the CPU is
mapped by itself to one port. One aspect to remember however is
that in the case of the distributed controller with separate indepen-

�

���

���

���

���

����

����

����

��	
�
��

���

��	
�
��

���

����������

������

����������

������

���

��
��
�
��
�	
�

�

���

Figure 17: Average latency for the Modem IP

dent channels the mapping of memory to channels is application
dependent and it may not be possible to achieve a good mapping
in all cases. As can be seen from the figure for a bad mapping
of the memory to channels, the controller with separated channels
has very poor performance. Similarly the latency of our solution is
slightly larger than that of the centralized controller. Nevertheless,
it may be very expensive to physically implement the centralized
controller (due to the distance between the channel interfaces), and
as such the distributed interleaving method provides a good trade
off. Moreover the distributed controller can provide other oppor-
tunities for the adaptation of the NoC topology (i.e., connect the
different channel controller to different switches).

In Figure 17, we show the average latency for the Modem core.
This core is latency sensitive, but has low bandwidth requirements.
From the setups that perform interleaving the NI interleaved case
has the lowest latency. The latency for the controller with separated
independent channels, for the best mapping has the lowest latency.
That is because in this case the communication of the Modem is
to a separated channel where there are no high-bandwidth cores
mapped. Interestingly, as the core has low bandwidth its latency is
more affected by the port assignment in the case of the centralized
controller.

6. CONCLUSIONS
3D-stacked WideIO DRAM memory promises to deliver the re-

quired bandwidth to satisfy the demands of current and future ap-
plication running on mobile SoCs at acceptable power-levels, by
providing multiple channels and wide data interfaces. The chal-
lenge for SoC designers is to efficiently access the multiple chan-
nels provided by theWideIO interface, to achieve the required band-
width and latency for communication flows.

In this work we analyze three architecture for designing the mem-
ory controller that access the WideIO DRAMmemory. We propose
for one of the architectures a new distributed interleaving method.
The new method capitalizes on the advantages of the two analyzed
methods, to provide a simple DRAM controller design and to bal-
ance the traffic in both the NoC and at the memory channels trans-
parent to the software. From experiments, we show that our pro-
posed distributed interleaving memory access method improves the
overall throughput while minimally impacting the performance of
latency sensitive communication flows.

Future work will focus on understanding the relationship be-
tween network topology and the distributed interleaving scheme,

and to analyze how to implement low overhead Quality-of-Service

support to aggressively reduce latency for critical flows.

7. ACKNOWLEDGMENTS
Wewould like to acknowledge the contributions of Eric Flamand

from STMicroelectronics and Denis Dutoit from CEA LETI, for
their help in the construction of a realistic evaluation environment.
This work was supported in part by The European Research Coun-
cil under project AdG-246810-NANOSYS, by the Pro3D project
grant agreement number: 248776 and the ARTIST-DESIGN Net-
work of Excellence.

8. REFERENCES

[1] WULF, W. A., AND MCKEE, S. A. Hitting the memory wall:
implications of the obvious. SIGARCH Comput. Archit. News 23, 1
(Mar. 1995), 20–24.

[2] BORKAR, S. 3d integration for energy efficient system design. In
Proc. 48th ACM/EDAC/IEEE Design Automation Conf. (DAC)

(2011), pp. 214–219.

[3] WEIS, C., WEHN, N., IGOR, L., AND BENINI, L. Design space
exploration for 3d-stacked drams. In Proc. Design, Automation &
Test in Europe Conf. & Exhibition (DATE) (2011), pp. 1–6.

[4] KIM, J.-S., OH, C. S., LEE, H., LEE, D., HWANG, H.-R.,
HWANG, S., NA, B., MOON, J., KIM, J.-G., PARK, H., RYU,
J.-W., PARK, K., KANG, S.-K., KIM, S.-Y., KIM, H., BANG,
J.-M., CHO, H., JANG, M., HAN, C., LEE, J.-B., KYUNG, K.,
CHOI, J.-S., AND JUN, Y.-H. A 1.2v 12.8gb/s 2gb mobile wide-i/o
dram with 4x128 i/os using tsv-based stacking. In Proc. IEEE Int.

Solid-State Circuits Conf. Digest of Technical Papers (ISSCC)

(2011), pp. 496–498.

[5] DE MICHELI, G., AND BENINI, L. Networks on Chips: Technology
and Tools; electronic version. Elsevier, Burlington, MA, 2006.

[6] DE MICHELI, G., SEICULESCU, C., MURALI, S., BENINI, L.,
ANGIOLINI, F., AND PULLINI, A. Networks on Chips: From
research to products. In Proc. 47th ACM/IEEE Design Automation

Conf. (DAC) (2010), pp. 300–305.

[7] RIXNER, S., DALLY, W. J., KAPASI, U. J., MATTSON, P., AND

OWENS, J. D. Memory access scheduling. In Proc. 27th Int
Computer Architecture Symp (2000), pp. 128–138.

[8] AHN, J. H., EREZ, M., AND DALLY, W. J. The Design Space of
Data-Parallel Memory Systems. In Proc. ACM/IEEE SC 2006 Conf

(2006).

[9] AKESSON, B., GOOSSENS, K., AND RINGHOFER, M. Predator: A
predictable SDRAM memory controller. In Proc. 5th
IEEE/ACM/IFIP Int Hardware/Software Codesign and System

Synthesis (CODES+ISSS) Conf (2007), pp. 251–256.

[10] LEE, K.-B., LIN, T.-C., AND JEN, C.-W. An efficient quality-aware
memory controller for multimedia platform SoC. Circuits and
Systems for Video Technology, IEEE Trans. on 15, 5 (2005), 620–633.

[11] RAFIQUE, N., LIM, W.-T., AND THOTTETHODI, M. Effective
Management of DRAM Bandwidth in Multicore Processors. In Proc.
16th Int. Conf. Parallel Architecture and Compilation Techniques

PACT 2007 (2007), pp. 245–258.

[12] WANG, D., GANESH, B., TUAYCHAROEN, N., BAYNES, K.,
JALEEL, A., AND JACOB, B. DRAMsim: a memory system
simulator. SIGARCH Comput. Archit. News 33 (November 2005),
100–107.

[13] DUTOIT, D., AND JERRAYA, A. 3D integration opportunities for
memory interconnect in mobile computing architectures. Future Fab
CEA-Leti MINATEC Issue 34 (2010), pp. 38–45.

[14] ANIGUNDI, R., SUN, H., LU, J.-Q., ROSE, K., AND ZHANG, T.
Architecture design exploration of three-dimensional (3d) integrated
dram. In Proc. Quality Electronic Design Quality of Electronic

Design ISQED 2009 (2009), pp. 86–90.

[15] FACCHINI, M., CARLSON, T., VIGNON, A., PALKOVIC, M.,
CATTHOOR, F., DEHAENE, W., BENINI, L., AND MARCHAL, P.
System-level power/performance evaluation of 3d stacked drams for

mobile applications. In Proc. DATE ’09. Design, Automation & Test

in Europe Conf. & Exhibition (2009), pp. 923–928.

[16] WOO, D. H., SEONG, N. H., LEWIS, D. L., AND LEE, H.-H. S.
An optimized 3d-stacked memory architecture by exploiting
excessive, high-density tsv bandwidth. In Proc. IEEE 16th Int High

Performance Computer Architecture (HPCA) Symp (2010), pp. 1–12.

[17] LOI, I., AND BENINI, L. An efficient distributed memory interface
for many-core platform with 3d stacked dram. In Proc. Design,
Automation & Test in Europe Conf. & Exhibition (DATE) (2010),
pp. 99–104.

[18] LOH, G. H. 3d-stacked memory architectures for multi-core
processors. In Proc. 35th Int. Symp. Computer Architecture ISCA ’08

(2008), pp. 453–464.

[19] LOH, G. H. Extending the effectiveness of 3d-stacked dram caches
with an adaptive multi-queue policy. In Proc. MICRO-42

Microarchitecture 42nd Annual IEEE/ACM Int. Symp (2009),
pp. 201–212.

[20] SUN, H., LIU, J., ANIGUNDI, R. S., ZHENG, N., LU, J.-Q., ROSE,
K., AND ZHANG, T. 3d dram design and application to 3d multicore
systems. IEEE Design & Test of Computers 26, 5 (2009), 36–47.

[21] AKESSON, B., HUANG, P.-C., CLERMIDY, F., DUTOIT, D.,
GOOSSENS, K., CHANG, Y.-H., KUO, T.-W., VIVET, P., AND

WINGARD, D. Memory controllers for high-performance and
real-time mpsocs requirements, architectures, and future trends. In
Proc. 9th Int Hardware/Software Codesign and System Synthesis

(CODES+ISSS) Conf (2011), pp. 3–12.

[22] AHO, E., NIKARA, J., TUOMINEN, P. A., AND KUUSILINNA, K. A
case for multi-channel memories in video recording. In Proceedings
of the Conference on Design, Automation and Test in Europe (3001
Leuven, Belgium, Belgium, 2009), DATE ’09, European Design and
Automation Association, pp. 934–939.

[23] JANG, W., AND PAN, D. Z. An SDRAM-Aware Router for
Networks-on-Chip. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on 29, 10 (2010), 1572–1585.

[24] YOO, J., YOO, S., AND CHOI, K. Multiprocessor system-on-chip
designs with active memory processors for higher memory efficiency.
In Proc. 46th ACM/IEEE Design Automation Conf. DAC ’09 (2009),
pp. 806–811.

[25] WALTER, I., CIDON, I., GINOSAR, R., AND KOLODNY, A. Access
Regulation to Hot-Modules in Wormhole NoCs. In Proc. First Int.
Symp. Networks-on-Chip NOCS 2007 (2007), pp. 137–148.

[26] KIM, D., YOO, S., AND LEE, S. A Network Congestion-Aware
Memory Controller. In Proc. Fourth ACM/IEEE Int

Networks-on-Chip (NOCS) Symp (2010), pp. 257–264.

[27] KIM, D., KIM, K., KIM, J.-Y., LEE, S.-J., AND YOO, H.-J.
Solutions for Real Chip Implementation Issues of NoC and Their
Application to Memory-Centric NoC. In Proc. First Int. Symp.
Networks-on-Chip NOCS 2007 (2007), pp. 30–39.

[28] KIM, D., KIM, K., KIM, J.-Y., LEE, S., AND YOO, H.-J.
Implementation of Memory-Centric NoC for 81.6 GOPS object
recognition processor. In Proc. IEEE Asian Solid-State Circuits Conf.

ASSCC ’07 (2007), pp. 47–50.

[29] ARTERIS. http://www.arteris.com/pr_22_oct_08, 2008.

[30] CASINI, P. SoC Architecture to Multichannel Memory Management
Using Sonics IMT. Tech. rep., Sonics, Inc., 2008.

[31] WANG, F., AND HAMDI, M. Scalable router memory architecture
based on interleaved dram. In High Performance Switching and

Routing, 2006 Workshop on (0-0 2006), p. 6 pp.

[32] AKESSON, B., AND GOOSSENS, K. Architectures and modeling of
predictable memory controllers for improved system integration. In
Proc. Design, Automation & Test in Europe Conf. & Exhibition

(DATE) (2011), pp. 1–6.

[33] STERGIOU, S., ANGIOLINI, F., CARTA, S., RAFFO, L., BERTOZZI,
D., AND MICHELI, G. D. ×pipes Lite: A Synthesis Oriented Design
Library For Networks on Chips. In Proceedings of the conference on
Design, Automation and Test in Europe - Volume 2 (Washington, DC,
USA, 2005), DATE ’05, IEEE Computer Society, pp. 1188–1193.

