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Abstract We describe a low-temperature thermodynamic model for dynamic

nuclear polarization (DNP) via continuous-wave partial saturation of electron spin

resonance (ESR) lines that are both homogeneously and inhomogeneously broad-

ened. It is a variant of a reasoning proposed by Borghini, which in turn used

Redfield’s thermodynamic treatment of saturation. Our variant is furthermore based

on Provotorov’s insight that under partial saturation of a coupled-spin system two

distinct spin temperatures should appear in a thermodynamical theory. We apply our

model to DNP results obtained at a temperature of 1.2 K and in magnetic fields of

3.35 and 5 T on 1-13C labeled sodium acetate dissolved in a frozen D2O/ethanol-d6

solution doped with the free radical TEMPO.

Dynamic Nuclear Polarization (DNP) by thermal mixing can be described in

thermodynamic terms [1, 2]. The basic idea is that the electron spin Hamiltonian

may consist of two commuting parts (typically the Zeeman and the truncated dipolar

Hamiltonians) that cannot exchange energy, because the relevant quanta are not

commensurate. However, when a suitable microwave field is added, the thermo-

dynamics can be applied in a rotating frame, where the total Hamiltonian is time-

independent [3]. In that frame, the Zeeman and dipolar Hamiltonians do have

commensurate quanta, and it is found that energy will flow out of the dipolar energy

reservoir into the Zeeman reservoir, and from there, by spin–lattice relaxation, to the

lattice. A stationary state may be created, where the dipolar reservoir has a
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temperature considerably lower than that of the lattice. When furthermore the

nuclear Zeeman Hamiltonian is considered it is again found that it may have

commensurate quanta with the electronic dipolar reservoir: by nuclear–electron spin

dipolar coupling the nuclear Zeeman reservoir is cooled as well and the nuclear

polarization is enhanced. The experimental technique and some theories at various

levels of sophistication have been known for half a century [4, 5]. The main

motivation was the development of polarized targets for particle research [6]. A

typical target sample consists of small glassy frozen spheres of a suitable solvent

(that provides the nuclei, usually protons or deuterons), to which suitable radicals

(that provide the electron spin system) have been added. As such, the practical

knowledge of these systems has been restricted to a few high-energy facilities in the

world. A completely new, and by now very active, field was opened by the

discovery [7] that it is possible to transform a typical target sample into a liquid

solution, while retaining essentially all of the nuclear polarization. The method is

known as dissolution-DNP. Molecules of interest, added in the solvent together with

the radicals, see their nuclear polarization enhanced as well: and the product of

dissolution-DNP is transferred to an NMR or MRI machine, where they can be

studied with a much enhanced sensitivity (for a limited time: in the end the nuclear

spin–lattice relaxation will drive the polarization back to its Boltzmann equilibrium

value). It is therefore of interest to improve the theoretical understanding of this, in

principle rather complex, process of DNP by thermal mixing. The hope would be to

find guidelines for the choice of the optimal type and concentration of the radicals,

so as to maximize the enhancement that can be obtained through dissolution-DNP.

Apart from the proprietary tri-aryl-methyl (TAM) radicals used in the original work

[7], quite some research, in targets as well as in dissolution-DNP, has been based on

the widely available TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) radical. The

peculiarity of the latter is that it has quite some g-anisotropy, so that its ESR glass-

spectrum is rather wide. It was realized already in the context of target-research that

this feature might hold a clue to some far-reaching implications in the theoretical

treatment [5]. In particular, it can be argued that the electron ‘Zeeman’ Hamiltonian

should refer only to the average ESR frequency, while the width of the spectrum is

described by an ‘offset’ Hamiltonian. Again we have two commuting Hamiltonians

that have (in the laboratory frame) no commensurate quanta, whereas in a Redfield-

style rotating frame treatment they do.

It is the purpose of the present paper to show that a very similar approach, but

allowing for partial saturation, can go a step further to quantitative agreement

between experimental and calculated microwave spectra (a microwave spectrum

displays the nuclear polarization, in our case of the 1-13C in enriched acetate, as a

function of the microwave frequency). We make an important extension, based on

Provotorov’s ideas [4], of the discussion in [1] concerning the model in [5]. We

adhere more strictly to the rotating-frame concept [3], and allow for partial

saturation. The available space for the present paper does not allow us to show that

indeed the high-temperature limit of our model agrees (apart from some formal

differences) with the steady-state solution of the well-known Provotorov equations.

Our model takes the following as input parameters:
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1. The ESR line-shape f(x) (see Fig. 1).

2. The lattice temperature TL.

3. The microwave frequency xm.

4. The leakage parameter fL (see Eq. 16 for definition).

5. The saturation rate rs (see Eq. 20 for definition).

The items one to three are experimentally determined; the items four and five are

treated as parameters, to be adjusted to obtain the best agreement between

calculation and experiment. For convenience of discussion, we start by summarizing

the ideas behind the Redfield thermodynamic treatment of the rotating-frame

transformation. The expectation value AðtÞh i of an observable described by an

operator A pertaining to a system described by a density operator q(t) is given by

AðtÞh i ¼ Tr qðtÞAð Þ ð1Þ

If the system has a (possibly time-dependent) Hamiltonian H(t), the time evolution

of q(t) is given by the Liouville-von Neumann equation

dqðtÞ
dt
¼ �i�h½qðtÞ;H� ð2Þ

A stationary state should by definition be independent of t, and therefore have a

time-independent Hamiltonian, so that q(t) in Eq. 2 can settle (after an unknown

time) to an (unknown) time-independent form q. Now, even though the microwave

Hamiltonian is relatively small on the energy scale, it is essential for the DNP

process, so we follow Redfield’s idea of a rotating-frame transformation [3], where

H(t) becomes H* (independent of time) and q(t) becomes q*(t) according to

H� ¼ UxmtHU�1
xmt � xmSz ð3Þ

and

q�ðtÞ ¼ UxmtqðtÞU�1
xmt ð4Þ

With Uxmt ¼ expðixmtSzÞ; so that

dq�

dt
¼ �i�h½q�;H�� ð5Þ

and the Redfield hypothesis is that in the stationary state, where the commutator in

Eq. 5 is zero, q* will have some time-independent canonical form. To establish that

Fig. 1 Calculated ESR line-
shape of TEMPO radical in a
field of 3.35 T
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canonical form, we follow to some extent ideas established in chapter 6F of [1], but

stay much closer to Redfield thermodynamics. We follow Borghini’s idea [3],

namely (a) for a glass spectrum the energy in the rotating frame is mainly deter-

mined by the Zeeman-offset Hamiltonian; (b) in the energy equations the electron

dipole–dipole term as well as the microwave Hamiltonian can be neglected, and (c)

in the energy equations the nuclear Zeeman Hamiltonian must be included along

with the electron Zeeman-offset Hamiltonian. The two additional steps we propose

here are, first, the introduction of a common inverse temperature bm for the com-

bined nuclear Zeeman and electron offset-Zeeman reservoirs, and second, the

introduction of an inverse temperature am associated with the part of the laboratory

frame electron Zeeman energy that is canceled through the transformation described

in Eq. 4. The index m of am and bm indicates that their values depend on the

microwave frequency xm. The physical reason justifying the hypothesis of a single

common temperature bm is that in a glassy matrix the spectral diffusion and the

thermal mixing process equilibrating the nuclear Zeeman reservoir and the electron

offset-Zeeman reservoir are very fast compared with all other relaxation mecha-

nisms involved in the DNP process. As will be shown in the following, the original

Borghini result is obtained by setting am = 0, which corresponds to the case of large

saturation rate (rs = ?, see below). We will assume that a stationary state is

reached after a finite and reasonably short amount of time, on the order of hours. If

we further assume that all five ‘input parameters’ of the model previously described

are known, we are left with the task of solving for am and bm. From bm, we will find

the nuclear polarization according to the original Borghini reasoning and deduce the

microwave spectrum. To accomplish this task we will write two energy balance

equations under stationary conditions: in the laboratory frame and in the rotating

frame. More precisely they are power equations, stating that the power going out is

equal to the power coming in. In the lab frame, there is the saturating power of the

microwave field, as in Provotorov theory [4]. In the rotating frame the microwave

field is just a transverse component of the Zeeman field, and neglected with respect

to the offset field. The electron Zeeman reservoir is heated by the Redfield mech-

anism and cooled through spin–lattice relaxation. Under stationary conditions, its

temperature is somewhat above that of the lattice. The combined electron Zeeman-

offset and nuclear Zeeman energy reservoir is on the one hand cooled by the

Redfield mechanism, and on the other hand heated by the nuclear spin–lattice

relaxation. Following [8] we will call the latter process ‘‘leakage’’ (but its physics is

different from what was called by that name in the literature on DNP in inorganic

crystals [2]; it is strictly defined by Eq. 16 below). The experimental goal is of

course that the combined energy flows must lead to a cooling of the latter reservoir

(note that spin systems can have positive and negative temperatures; the terms

‘cooling’ and ‘heating’ refer to the absolute value). The Zeeman Hamiltonian H for

one electron spin S together with NI/NS nuclear spins I is

H ¼ �hxSz þ �hxI

XNS=NI

j¼1

Iz;j þ HlwðtÞ ð6Þ

With the rotating-frame transformation of Eq. 3 this becomes
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H� ¼ �hðx� xmÞSz þ �hxI

XNS=NI

j¼1

Iz;j þ �hx1Sx

� �hDSz þ �hxI

XNS=NI

j¼1

Iz;j ð7Þ

If all dipolar couplings are neglected, then the density matrix for this spin system is

of the following form:

q ¼ qS;D

Y

j

qI;j ð8Þ

where the tensorial product P has NI/NS factors and qS,DD and qI,j are the density

matrices associated with an electron spin S belonging to a homogeneous ESR line

fitting at a frequency offset D from the microwave frequency xm, and its NI/NS

surrounding nuclear spins Ij. The Ansatz is that in the rotating frame, a stationary

state is attained after a generally unknown time, and that the forms of the two

density matrices qS,D and qI,j are

q�S;D / expð�amxmSz � bmDSzÞ ð9Þ

q�I;j / expð�bmDIzÞ ð10Þ

and trivially, from the general relation expressed in Eq. 4, the laboratory frame

density matrices qS;D ¼ q�S;D and qI;j ¼ q�I;j. Since the relevant parts of the Hamil-

tonian are linear in SZ and IZ and the density matrices factorize, the total energy of

the spin system is the sum of the individual energies so that, in the rotating frame,

E�D ¼ �
�h

2
DPSðDÞ �

�h

2

NI

NS

xIPI

¼ E�S;D þ
NI

NS

EI ð11Þ

with

PS Dð Þ ¼ tanh
1

2
amxm þ bmDð Þ

� �
ð12Þ

PI ¼ tanh
1

2
bmxI

� �
ð13Þ

We now extend this equation to an ensemble of NS electron spins, for a normalized

ESR line-shape function f(D) and NI nuclear spins. Under the assumption of fast

electron spin spectral diffusion compared with the electron spin lattice relaxation, a

unique spin temperature is established for all electron spins. So bm is constant across

the inhomogeneous ESR line. In the stationary state, the energy is constant;

therefore,
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Z1

�1

f ðDÞ D
PSðDÞ � PS;0ðDÞ

T1;S
þ NI

NS

xI
PI � PI;0

T1;IðDÞ

� �
dD ¼ 0 ð14Þ

If we call T1,I,0 the nuclear spin relaxation time at low (‘zero’) electron spin

polarization, then we have [1, 8]

1

T1;IðDÞ
¼ 1

T1;I;0
1� P2

SðDÞ
� �

ð15Þ

We define a ‘leakage’ factor

f L ¼ NI

NS

T1;S

T1;I;0
ð16Þ

and Eq. 14 becomes

Z1

�1

f ðDÞðDðPSðDÞ � PS;0ðDÞÞ þ f LxIðPI � PI;0Þð1� P2
SðDÞÞÞdD ¼ 0 ð17Þ

This equation contains the two temperature variables am and bm. One needs another

equation to solve the system. In the laboratory frame, the total electron spin Zeeman

energy is equal to

Elab ¼ �
�h

2

Z1

�1

f ðDÞðxm þ DÞPSðDÞdD ð18Þ

in the stationary state, q and q* are the same. If W ¼ p
2
x2

1f ð0Þ (where f(0) is the

normalized amplitude at the microwave frequency) is the transition rate driven by

the microwaves, the variation of the electron spin Zeeman energy is canceled in the

stationary state:

0 ¼ � �h

2

Z1

�1

f ðDÞðxm þ DÞPSðDÞ � PS;0ðDÞ
T1;S

dD� �hWxmPSð0Þ ð19Þ

where PS(0) = tanh (amxm/2) is the polarization at the microwave frequency.

Introducing a parameter rs that we call the ‘saturation rate’

rS ¼ 2px2
1T1;S ð20Þ

we have

Z1

�1

f ðDÞðxm þ DÞðPSðDÞ � PS;0ðDÞÞdD ¼ �rsf ð0ÞxmPSð0Þ ð21Þ

The set of the two Eqs. 17 and 21 can be numerically solved to extract am and bm,

with the leakage fL and the saturation rate rs as parameters. In Fig. 2 we show three

curves at each of our two experimental magnetic fields. The continuous lines
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represent the original Borghini model: fL = 0 and rs ? ? [8, 9]. This model

already captures an interesting feature of the experimental data: the negative

polarization is larger than the positive one (in particular visible at 5 T), but it lacks

in quantitative agreement. The long-dashed lines are the equivalent of a variant that

de Boer [8] has applied (to another radical, and at much lower temperatures), with a

finite leakage, but still with infinite saturation. Both our curves have been drawn for

fL = 0.5 and rs ? ?. The value 0.5 has been chosen rather arbitrarily, but is

similar to the value 0.3 for which [8] gave some experimental evidence. As should

be expected, the addition of the leakage diminishes the polarizations; but the model

still has unrealistically large wings. Finally, the short-dashed lines add a finite value

for the saturation rate: fL = 0.5 and rs = 2p 9 197 MHz at 3.35 T; fL = 0.5 and

rs = 2p 9 62 MHz at 5 T. This model clips the wings, and even represents to some

extent the structure in the positive polarization at 3.35 T (which is due to hyperfine

interactions in the ESR spectrum). It is important to note that the addition of a single

‘‘fit parameter’’ improves the fit at many experimental points. This is our main

reason to believe that finite saturation is an essential feature of our experiments. At

the much lower bath-temperature used in [8] this effect may have been much

smaller (electron spin–lattice relaxation times go up very fast when the temperature

is lowered).

Of course this brings up immediately the question as to what would have

happened if we had increased our experimental microwave power and also whether

any realistic a priori estimates could be made for the parameters fL and rs. To start

with the latter part, the two ‘‘fit-parameters’’ depend on three unknown quantities:

Fig. 2 DNP microwave spectra
measured in a field of 3.35 and
5.0 T. For the parameters used
to calculate theoretical curves,
see the text
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the strength of the microwave field x1, and the electron and nuclear spin–lattice

relaxation times. Concerning x1, we can remark that DNP experiments are not done

in a resonant cavity and that anyway we only know the microwave power at the

entrance of a fairly long slightly oversized circular waveguide (data in Fig. 2 were

obtained at 30 mW). Concerning the relaxation times, such theories as exist refer to

paramagnetically dilute systems, whereas any Borghini-based argument assumes

couplings strong enough for thermodynamic considerations to hold. In a weak sense,

fL and rs are ‘‘thermodynamic’’ parameters that hide the many microscopic

complexities of a system of coupled electron and nuclear spins. So if in the

following we nevertheless propose values for those unknown experimental

quantities, they should be considered as illustrative only.

Qualitatively, the importance of fL can be shown from a comparison of data for

samples with protonated and deuterated solvents [10]. There are reasons [1] to think

that fL varies with the square of the nuclear c. In a qualitative comparison, one might

say that with protonated solvents there will be ‘‘big’’ leakage, and with deuterated

solvents ‘‘zero’’ leakage. Indeed [10] found that the 13C polarization in the two types

Fig. 3 A modeling of the
effect of heating by increasing
the microwave power and
experimental data (filled circle)
obtained at 5 T. The main
hypothesis is that the sample
temperature goes up as in the
dotted line in (b); there is some
theoretical justification to think
that the electron T1 then will
vary as in (d). The panel (c) is
the simple parabolic dependence
of microwave field on
microwave power. The dotted
lines in (b) to (d) then predict
the dotted line in (a). For
cautionary remarks, see the text
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of solvents varies by a factor of two; again qualitatively, this is captured by the

difference of the full curves and the long-dashed curves in Fig. 2, but note that our

experiments were done in deuterated solvents, and in our case, the remaining

protons are mainly on the acetate molecules.

Concerning the saturation rate, one might have hoped (see Eq. 20) that it simply

goes up linear in the microwave power. However, as we have shown before [9], the

bath temperature goes up with increasing microwave power; this will affect the

spin–lattice relaxation times and the equilibrium electron spin polarization. So, with

many precautions, we present in Fig. 3 a modeling of these temperature effects. The

top panel gives the experimental extremal (the negative value in Fig. 2) 13C

polarization as function of microwave power at the input to the waveguide. The full

curve is a calculation of what would be expected if only rs would go up linear in the

microwave power. The dotted curve in that panel gives the calculated results if the

sample temperature goes up as in the dotted curve in the second panel (a kind of fit

to the experimental points in that panel). The third panel gives our estimated values

for x1; and the fourth panel our estimated value for the electron spin–lattice

relaxation time and its temperature-variation according to the second panel. Not

shown is our estimated value for T1,I,0 as per Eq. 16, but if we assume that the main

leakage channel are the protons on the acetate molecules, then their spin–lattice

relaxation comes out at several hundred seconds. It is just for the sake of argument

that Fig. 3 shows calculated extrapolations to very high microwave powers;

experimentally such sources are not readily available. But, acknowledging all

doubts that went into the modeling of Fig, 3, it shows at least that the general

suggestion of partial saturation (competing with sample heating) as the limit to the

obtainable polarization in our systems can be described in a fairly consistent way.

We believe that our modeling in Fig. 2 shows once more the amazing power of

thermodynamic reasoning [3–5] to describe the behavior of strongly interacting spin

systems under external perturbations.
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