
On Fast Code Completion using Type Inhabitation

Tihomir Gvero Viktor Kuncak
Ivan Kuraj

École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland

firstname.lastname@epfl.ch

Ruzica Piskac
Max-Planck Institute for Software Systems, Germany

piskac@mpi-sws.org

Abstract
Developing modern software applications typically involves com-
posing functionality from existing libraries. This task is difficult
because libraries may expose many methods to the developer. To
help developers in such scenarios, we present a technique that syn-
thesizes and suggests valid expressions of a given type at a given
program point. As the basis of our technique we use type recon-
struction for lambda calculus with subtyping. We show that the in-
habitation problem in the presence of subtyping remains PSPACE-
complete. We introduce a succinct representation for type judge-
ments that merges types into equivalence classes to reduce the
search space. We introduce a proof rule on this succinct represen-
tation of types and show that it is sound and complete for inhabita-
tion. We implemented the resulting algorithm and deployed it as a
plugin for the Eclipse IDE for Scala.

1. Introduction
Libraries are one of the biggest assets for today’s software devel-
opers. Useful libraries often evolve into complex application pro-
gramming interfaces (APIs) with a large number of classes and
methods. It can be difficult for a developer to start using such APIs
productively, even for simple tasks. Existing Integrated Develop-
ment Environments (IDEs) help developers to use APIs by provid-
ing code completion functionality. For example, an IDE can offer a
list of applicable members to a given receiver object, extracted by
finding the declared type of the object. Eclipse [23] and IntelliJ [11]
recommend methods applicable to an object, and allow the devel-
oper to fill in additional method arguments. Such completion typ-
ically considers one step of computation. IntelliJ can additionally
compose simple method sequences to form a type-correct expres-
sion, but requires both the receiver object as well as user assistance
to fill in the arguments. These efforts suggest a general direction for
improving modern IDEs: introduce the ability to synthesize entire
type-correct code fragments and offer them as suggestions to the
developer.

One observation behind our work is that, in addition to the
forward-directed completion in existing tools, developers can pro-
ductively use a backward-directed completion. Indeed, when iden-
tifying a computation step, the developer often has the type of a
desired object in mind. We therefore do not require the developer
to indicate a starting value (such as a receiver) explicitly. Instead,
we follow a more ambitious approach that considers all values in
the current scope as the candidate leaf values of expressions to be
synthesized. Our approach therefore requires fewer inputs than the
recent work of Perelman et al [15] or the pioneering work on the
Prospector tool [13].

Considering this more general scenario leads us directly to the
type inhabitation problem: given a desired type T , and a type
environment Γ (a set of values and their types), find an expression

e of this type T , i.e. such that Γ ` e : T . In our deployment,
we compute Γ from the position of the cursor in the editor buffer.
We similarly look up T by examining the declared type appearing
left of the cursor in the editor. The goal of the tool is to find an
expression e, and insert it at the current program point, so that the
overall program type checks.

The type inhabitation in the simply typed lambda calculus is de-
cidable and PSPACE-complete. If we add finite intersection types
to the language, the type inhabitation becomes an EXPSPACE-
complete problem [17]. In this paper, we pursue a sweet spot be-
tween these: we consider ground types with function type construc-
tor and a subtyping relation. We develop an algorithm that is com-
plete in the lambda calculus sense, so it is able to synthesis not only
function applications, but also lambda abstractions. From the theo-
retical side, we show that the problem remains PSPACE complete.
We present our result in a succinct ground types calculus, which we
tailored for efficiently solving type inhabitation queries. The cal-
culus computes equivalence classes of types that reduce the search
space in goal-directed search, without losing completeness. We also
show how to use weights to guide the search, building on our previ-
ous experience [6, 7, 16]. We present an implementation within the
Eclipse IDE for Scala. Our experience show fast response times as
well as a high quality of the offered suggestions, even in the pres-
ence of thousands of candidate API calls.

Our work combines proof search with a technique to find mul-
tiple solutions and to rank them. We introduce proof rules that ma-
nipulate weighted formulas, where smaller weight indicates a more
desirable formula. Given an instance of the synthesis problem, we
identify several proofs determining the expressions of the desired
type, and rank them according to their weight. To estimate the ini-
tial weights of declarations we leverage 1) lexical nesting structure,
with closer declarations having lower weight, and 2) implicit sta-
tistical information from a corpus of code, with more frequently
occurring declarations having smaller weight, and thus being pre-
ferred.

We implemented our tool, InSynth2 within a Scala IDE. We
used a corpus of open-source Scala projects as well as the standard
Scala library to collect the usage statistics for the initial weights
of declarations. We ran InSynth2 on more than 60 examples from
the Web, written to illustrate API usage, as well as examples from
larger projects. The results show that in over 70% of examples the
expected snippet appears among the first five solutions. Moreover,
in over 40% of examples, the expected snippet appears first in the
list.

To estimate the interactive nature of InSynth2, we measured
the time needed to synthesize the expected snippet as a function
of a number of visible declarations. We found that a sufficient
number of snippets can be typically generated in half a second.
This suggests that InSynth2 can efficiently and effectively help the

1 2012/7/16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147988692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

user in software development. Furthermore, we evaluated a number
of techniques deployed in our final tool, and found that all of them
are important for obtaining good results.

1.1 Contributions
• Following the agenda set in [6, 7, 16] we propose a new code

generation feature for IDEs, and show that it closely corre-
sponds to a weighted version of the type inhabitation problem.
• As a sweet spot in the space of type systems suitable for gen-

erating code fragments, we identify the lambda calculus with
ground types and a subtyping relation structurally extended to
function types. Inspired with the properties of conjunction in in-
tuitionistic logic, we introduce succinct representation of types
in this system and presented a complete proof rule for solving
type inhabitation. Using this representation, we show that the
inhabitation problem is PSPACE complete, demonstrating that
there is fundemantally no extra price to be paid for supporting
subtyping.
• We design and implement an efficient goal-directed search al-

gorithm that solves the type inhabitation problem by operating
on the succinct representation of types. Furthermore, we intro-
duce a best-first search goal-directed version of the algorithm
that uses weights to guide the search and prioritize the synthe-
sized expressions. To compute the appropriate weights, we de-
veloped a Scala compiler plugin that performed off-line analy-
sis on a number of Scala open source projects to compute the
frequency of method uses. We also propose an effective policy
of giving higher priority to declarations closer to the cursor.
• We implemented all proposed techniques in the InSynth2 tool,

including the type inhabitation algorithm working on succinct
type representation and exploring the search space guided by
the computed weights, the encoding of Scala declarations into
our representation, and generation of valid Scala expressions.
We integrated these techniques with the Eclipse IDE for Scala.
• We evaluate InSynth2 on a number of examples and larger

projects. The evaluation shows that InSynth2 in many cases
synthesizes the expected solutions and ranks them reasonably
high in the list of offered choices. Our tool and evaluation
results are available from

http://lara.epfl.ch/w/insynth

2. Motivating Examples
Here we illustrate the functionality of InSynth2 through several ex-
amples. The first example is from the online repository of Java
API examples http://www.java2s.com/. The second example
is a real world example from Scala IDE for Eclipse project http:
//scala-ide.org/. The original code of the two examples im-
ports only declarations from a few classes. To make the problem
much harder we import all declarations from packages where those
classes reside. The final example demonstrates how InSynth2 deals
with subtyping.

Sequence of Streams. Our first goal is to create a
SequenceInputStream object, which is a concatenation of two
streams. Suppose that the developer has the following code in the
editor:

import java.io.
...
def main() = {
var body = ”email.txt”
var sig = ”signature.txt”
val all:SequenceInputStream =
}

If we invoke InSynth2 at the program point indicated by , in a
fraction of a second it displays the following ranked list of five
expressions:

1. new SequenceInputStream(new FileInputStream(sig),
new FileInputStream(sig))

2. new SequenceInputStream(new FileInputStream(body),
new FileInputStream(sig))

3. new SequenceInputStream(new FileInputStream(sig),
new FileInputStream(body))

4. new SequenceInputStream(new FileInputStream(body),
new FileInputStream(body))

5. new SequenceInputStream(new FileInputStream(sig),
System.in)

Seeing the list, the developer can decide that e.g. the second
item in the list matches his intention, and select it to be inserted into
the editor buffer. This example illustrates that InSynth2 only needs
the current program context, and does not require additional infor-
mation from the user. InSynth2 is able to use both imported values
(such as the constructors in this example) and locally declared ones
(such as body and sig). InSynth2 supports methods with multiple
arguments and synthesizes expressions for each argument.

In this particular example, InSynth2 loads over 3000 initial
declarations from the context, and finds the expected solution in
less than 250 milliseconds, as shown in Table 2, benchmark 7.

The effectiveness in the above example is due to several aspects
of InSynth2. InSynth2 ranks the resulting expressions according
to the weights and selects the ones with the lowest weight. The
weights of expressions and types guide not only the final ranking
but also make the search itself more goal-directed and effective.
InSynth2 learns weights from a corpus of declarations, assigning
lower weight (and thus favoring) declarations appearing more fre-
quently.

TreeFilter We demonstrate the generation of expressions with
higher order functions on a real code from the Scala IDE project
(see the code bellow). The example shows how a developer should
properly check if a Scala AST tree satisfies a given property. In
the code, the tree is kept as an argument of the class TreeWrapper,
whereas property p is an input of the method filter.

// Scala IDE for Eclipse: org.scala−ide.sdt.core/src/scala/tools/
// eclipse/semantichighlighting/classifier/TypeTreeTraverser.scala
import scala.tools.eclipse.javaelements.
import scala.collection.mutable.

trait TypeTreeTraverser {
val global: tools.nsc.Global
import global.

class TreeWrapper(tree: Tree) {
def filter(p: Tree => Boolean): List[Tree] = {
val ft:FilterTypeTreeTraverser =
ft.traverse(tree)
ft.hits.toList
}
}
}

The property is a predicate function that takes the tree and
returns true if the tree satisfies it. In order to properly use p,
inside filter, the user first needs to create an object of the type
FilterTypeTreeTraverser. If the developer calls InSynth2 at the place
, the system suggests several suggestions, and the one ranked first

turns out to be exactly the one expected, namely

new FilterTypeTreeTraverser(var1 => p(var1))

The constructor FilterTypeTreeTraverser is an higher order func-
tion that takes another function, in this case p. In this example, In-

2 2012/7/16

Synth2 loads over 4000 initial declarations and finds the snippets
in less than 300 milliseconds.

Drawing Layout. Consider next the problem of implementing a
getter method that returns a layout of an object Panel stored in a
class Drawing. The following code is used to demonstrate how to
implement such a method.

import java.awt.

class Drawing(panel:Panel) {

def getLayout:LayoutManager =
}

Note that handling this example requires support for subtyping,
because the type declarations are given by the following code.

class Panel extends Container with Accessible { ... }
class Container extends Component {
...
def getLayout():LayoutManager = { ... }
}

The Scala compiler has access to the information about all super-
types of all types in a given scope. InSynth2 supports subtyping and
in 426 milliseconds returns a number of solutions among which the
second one is the desired expression panel.getLayout(). While do-
ing so, it examines 4965 declarations.

3. Evaluation of the Effectiveness of InSynth2
We implemented InSynth2 and evaluated it on over 66 examples.
This section evaluates the effectiveness of InSynth2, showing that
the techniques we developed and implemented result in a useful
tool, appropriate for interactive use within an integrated develop-
ment environment (concretely, the Eclipse IDE for Scala).

3.1 Creating Benchmarks
There is no standarized set of benchmarks for the problem that we
examine, so we constructed our own benchmark suite. We collected
benchmarks primarily from http://www.java2s.com/. These
examples illustrate correct usage of particular API functions and
(possibly generic) classes. We manually translated the examples
from Java into equivalent Scala code. The original code imports
only the classes used in the example. We therefore generalize the
import declaration to include more definitions and thereby make
the synthesis problem more difficult.

Our idea of measuring tool effectiveness is to estimate its ability
to reconstruct a missing expression from a program. We therefore
chose a declaration that is used to initialize a variable in an example
code. This initialization may be written in several steps, spanning
several lines. We identify one or all expressions that contribute to
this initialization, save them as the expected result, and delete them
from the program. The resulting benchmark is a partial program,
much like a program sketch [20]. We measure whether a tool can
reconstruct the expression equal to the one removed modulo literal
constants (integers, strings, and booleans). Our benchmark suite is
available from the InSynth2 web site.

When we invoke InSynth2, it returns N recommended expres-
sions. We call a run successful if the expression that was removed
from the example code appears among these N expressions. Usu-
ally we run InSynth2 with N = 5 and using a time limit of 0.5
seconds for the core quantitative type inhabitation engine; the table
(and our experience) shows that the overall response time remains
below one second. By using a time limit, we aim to evaluate the
usability of InSynth2 in an interactive environment.

Project Description
Akka Transactional actors

CCSTM Software transactional memory
GooChaSca Google Charts API for Scala

Kestrel Tiny queue system based on starling
LiftWeb Web framework

LiftTicket Issue ticket system
O/R Broker JDBC framework with support for externalized SQL
scala0.orm O/R mapping tool
ScalaCheck Unit test automation

Scala compiler Compiles Scala source to Java bytecode
Scala Migrations Database migrations

ScalaNLP Natural language processing
ScalaQuery Typesafe database query API

Scalaz ”Scala on steroidz” - scala extensions
simpledb-scala-binding Bindings for Amazon’s SimpleDB

smr Map Reduce implementation
Specs Behaviour Driven Development framework

Talking Puffin Twitter client

Table 1. Scala open source project used for the corpus extraction.

3.2 Corpus for Computing Symbol Usage Frequencies
Our algorithm searches for type bindings that can be derived from
an initial environment and that minimize a weight function. To
compute these initial weights we use the technique from Sec-
tion 7.3. This technique requires, among others, an initial assign-
ment of weights to variables names. To compute this initial assign-
ment of weights to names, we mine usage frequency information
from 18 Scala open source projects. Table 1 lists these open source
projects. Among others we analyze the Scala compiler, which is
written in the Scala language itself. In addition to the projects listed
in the table we analyze the Scala standard library, which mainly
consists of wrappers around Java API calls. We extract usage infor-
mation only about Java and Scala APIs, but not declarations spe-
cific to the projects themselves. Overall we extracted 7516 symbol
declarations and identified a total of 90422 uses of these symbols.
The maximal number of occurrences of a single symbol is 5162
(for the symbol &&), whereas 98% of symbols have less than 100
uses in the entire corpus.

3.3 Platform for Experiments
We ran all experiments on an Intel(R) Core(TM) i7 CPU 2.67
GHz with 4 GB RAM machine. InSynth2 is currently implemented
sequentially and does not make use of multiple CPU cores. The
operating system was Windows 7(TM), Scala version is 2.8, and
Java(TM) Virtual Machine is version 1.6.0 22.

3.4 Measuring Overall Effectiveness
We ran InSynth2 in its optimal configuration to recover 66 removed
expressions from benchmarks (see Table 2 for a subset of our re-
sults). The results show that the desired expression appears in the
top 10 snippets (suggested expressions) in 48 benchmarks (73%).
It appears as the top snippet (with rank 1) in 32 benchmarks (48%).
Note that our corpus (Section 3.2) is disjoint (and somewhat differ-
ent in nature) from the examples on which we performed the eval-
uation. The results suggest that InSynth2 can synthesize expected
expressions in useful pieces of software.

Table 2 presents the results, in more details, on 10 benchmarks
out of 66 benchmarks that we examined. The length column rep-
resents the number of declarations in the expected expression. The
“Initial” column is the number of initial type declarations that In-
Synth2 extracts at a given program point and gives to the search
procedure. Time includes declaration loading, encoding and weight
assignment time, as well as the time within the prover (which was
set to 0.5 seconds). InSynth2 was able to synthesize expected ex-

3 2012/7/16

Benchmarks Length # Initial Solution Rank Time [ms]
1 BufferedReaderInputStreamReader 2 3328 1 370
2 BufferedReaderReaderin 4 4011 6 681
3 DataInputStreamFileInputStreamfileInputStream 2 3328 1 259
4 FileReaderFilefile 2 3329 2 241
5 PipedReaderPipedWritersrc 2 3328 2 238
6 ServerSocketintport 2 4011 1 319
7 SequenceInputStreamInputStreams1InputStreams2 5 3329 2 246
8 TimerintvalueActionListeneract 3 6794 1 575
9 TransferHandlerStringproperty 2 8764 1 742
10 URLStringspecthrowsMalformedURLException 3 4010 1 410

Table 2. Measuring Overall Effectiveness.

pressions in all these benchmarks. We therefore measured the times
for InSynth2 to reach the expression that was expected; we found
that this time ranges from below 6 to 48 millisecond.

In summary, the expected snippets appear among the top 10
solutions in many examples in short period of time (less than a
second).

4. Type Inhabitation Problem for Succinct
Ground Types

To answer whether there is a code snippet of the given type, we
recall a related problem, the so called type inhabitation problem.
In this section we first establish a connection between the type
inhabitation problem and the problem of finding code snippets.
Furthermore, we review relevant definitions and theorems from
type theory, and describe an algorithm for checking whether a type
is inhabited. Our algorithm is constructive: if the given type is
inhabited, it returns an inhabitant.

Let T be a set of types and let E be a set of expressions. A
type environment Γ is a finite set {e1 : τ1, . . . , en : τn} containing
pairs of the form ei : τi, where xi is an expression of a τi. The pair
ei : τi is called a type declaration.

With Γ ` e : τ we denote that from the environment Γ we can
derive the type declaration e : τ by applying rules of some calculus.
The type inhabitation problem is defined as: for a given calculus, a
type τ , and a type environment Γ, does there exist an expression e
such that Γ ` e : τ?

The type system of Scala [4] is complex, based on Fω . How-
ever, the type inhabitation problem is undecidable already for the
Hindley-Milner type system (there are only universal quantifiers
on the top level). Therefore, in InSynth2 we focus on the subset of
Scala. We investigate the type inhabitation problem for the standard
simply typed lambda calculus, defined on the ground types, in the
presence of subtyping constraints. We describe in Section 6 how to
derive types from Scala.

At a high-level, the algorithm on which our tool is based con-
sists of he following three steps:

1. Parse the program and derive type constraints.

2. Following the standard typing rules (as for example, in the
simply typed lambda calculus) derive new type declarations,
directing the search towards the inhabitants of the required type.

3. Rank the found type inhabitants, create the code snippets from
the found terms and output them to the user.

In the remainder of this section we first describe the standard
lambda calculus and afterwords introduce a new succinct represen-
tation of the lambda calculus. In order to distinguish the two cal-
culi we use `λ and `S to denote derivability in the simply typed
lambda calculus and in the succinct ground types calculus, respec-
tively. Similarly, we use Γλ and ΓS for type environments. We next

review the definition of the simply typed lambda calculus and in-
troduce a new succinct representation and reasoning.

4.1 Simply Typed Lambda Calculus with Subtyping
Let B be a set of basic types. The types are formed according to
the following syntax:

τ ::= τ → τ | v, where v ∈ B
We denote the set of all types as τλ(B). When it is clear from the
context we only write τλ. With τ <: σ we denote that τ is a subtype
of σ. We assume that if there are some subtyping relations, they are
initially explicitly defined on T .

Let V be a set of typed variables. The typed expressions are
constructed according to the following syntax:

e ::= x | λx :τ.e | e e, where x ∈ V
From a given type environment Γ one can derive new type dec-

larations by applying the rules given in Figure 1. This calculus also
contains rules for subtyping. Although <: is a reflexive and transi-
tive relation, for the purpose of finding type inhabitants we do not
consider the rule for reflexivity. The other axioms, Subsume, Trans
and CVarian, are necessary for inferring further type declarations
based on the given initial subtyping relations.

AXIOM
x : τ ∈ Γ

Γ `λ x : τ
APP

Γ `λ e1 :σ → τ Γ `λ e2 :σ

Γ `λ e1 e2 :τ

ABS
Γ, x :σ `λ e :τ

Γ `λ λx :σ. e :σ → τ
SUBSUME

Γ `λ e :τ τ <: σ

Γ `λ e :σ

TRANS
τ <: σ σ <: ρ

τ <: ρ
CVARIAN

τ1 <: σ1 σ2 <: τ2

σ1 → σ2 <: τ1 → τ2

Figure 1. Calculus Rules for the Simply Typed Lambda Calculus
with Subtyping

4.2 Succinct Ground Types
Consider the following code

val a:Int = 0
def f(i1: Int, i2: Int, i3: Int):String = {...}

In the standard lambda calculus this code translates to type environ-
ment Γ = {a : Int, f : Int → Int → Int → String}. Checking
whether there is an inhabitant of type String requires three calls
of the App rule. In order to reduce the search space we introduce
succinct ground types. This new formalism enables us to find an
inhabitant in only one step.

4 2012/7/16

DEFINITION 4.1 (Succinct Ground Types). Let BS be a set con-
taining basic types. Ground succinct types τs are constructed by
the grammar:

τs ::= {τs, . . . , τs} → BS

We denote the set of all ground succinct types with τs(Bs), some-
times also only with τs.

A type declaration f : {t1, . . . , tn} → t is a type declaration
for a function that takes arguments of n different types and returns
a value of type t. A special role has a type ∅ → t : it is a type of
a function that takes no arguments and returns a value of type t.
Therefore for us types t and ∅ → t are equivalent.

Every type τ ∈ τλ(B) can be converted into a succinct ground
type in τs(B). With v we denote a basic type, v ∈ B. A translation
function Tr : τλ(B)→ τs(B) is defined as follows:
Tr(v) = v Tr(τ1 → τ2) = {Tra(τ1)} ∪ Sr(τ2)→ Rr(τ2)

Tra(v) = v Tra(τ1 → τ2) = Tr(τ1 → τ2)
Trr(v) = ∅ → v Trr(τ1 → τ2) = C(τ1 → τ2)
Let Trr(τ) = S → τr . Then:
Sr(τ) = S and Rr(τ) = τr

In the implementation we made the rule for Tr(τ1 → τ2)
more general and it became Tr(τ1 → . . . → τn−1 → τn) =
{Tra(τ1), . . . , T ra(τn−1)} ∪ Sr(τn) → Rr(τn). This way we
converted the example from the beginning of this section in a single
step to the type environment Γs = {a : Int, f : {Int} → String}.

Succinct Ground Terms. With f{a1 : t1, . . . , an : tn} : t
we denote the application of a function of type {t1, . . . , tn} → t
to values ai of type ti. Note that f{a1, . . . , an} is not equivalent
to f(a1, . . . , an), since some of arguments might appear several
times. Similarly, the expression {λx : t}.e represents an expression
λx1 : t.λxn : t.e(x1, . . . , xn), where n depends on the original
type declaration in the simply typed lambda calculus.

We assume there is a method Orig that translates a succinct
ground term into a lambda term. Intuitively, we could define Orig
as:
Orig(x : v,Γ) = x : v, for v ∈ B
Orig(f{a1 : t1, . . . , an : tn} : t,Γ) = e : t

where:
Orig(ai : ti,Γ) = tdi
f : T ∈ Γ
{td1, . . . , tdn, f : T} `λ e : t

Similarly, we can define Orig function for succinct lambda
terms.

It is clear that using the succinct representation to generate only
one term might not be very efficient. The succinct representation
shows its advantages when we generate more terms simultaneously.
In Section 7 we give an overview how our implementation for term
reconstruction works, but at this point it is enough to know that a
succinct ground term can be converted to a lambda term.

Calculus. Figure 2 describes the calculus for deriving new type
declarations for ground succinct types.

The AppAbs rule allows forward and backwards reasoning. In
general, in the forward reasoning we generate new type declara-
tions by applying functions to already existing terms. In contrast
to the forward reasoning, we apply the backward reasoning when
there is a function f that returns the required type. In backward rea-
soning we try to generate the arguments for f and then apply f to
those arguments.

Additionally, the AppAbs rule unites the abstraction and appli-
cation rule from the standard simply typed lambda calculus. When
all Si = ∅, then each ΓSi is also the empty set and term ei is de-
rived directly from Γ. In such settings the AppAbs rule corresponds
to the standard application rule. If any of Si is a non-empty set, then

f takes a lambda term (a function) as an argument. In that case we
need to generate a lambda term and to do that we add fresh typed
variables of the types appearing in Si to Γ and we try to construct an
expression ei of type ti. If we succeed, we construct a lambda term
: a function that takes arguments from Si and returns ei. Clearly,
this function has the required type Si → ti. The operator Λ that
appears in the App rule creates an expression of the required type.
It can be either an expression of type ti (is Si = ∅), or a lambda
term.

Type Inhabitation Problem. For a given type environment Γ
and a succinct ground type τ , we address the type inhabitation
problem by adding a new type declaration goal : {τ} → ⊥ and
directing the search towards an inhabitant of type⊥. Symbols goal
and ⊥ are fresh and previously unused, so an inhabitant of type ⊥
can only be an expression of the form goal{e}, where e : τ .

Although the AppAbs rule cannot generate functions (lambda
terms) at the top-level, with such encoding of the type inhabitation
problem we can still search for inhabitants of functions, as lambda
terms can be generated as arguments for the goal function.

4.3 Subtyping using Coercions
While the simply typed lambda calculus in Figure 1 contained the
rules for subtyping, the calculus given in Figure 2 does not contain
them. This is because we encode subtyping constraints directly into
the type environment.

A powerful method to model subtyping is to use coercion func-
tions [2, 12, 18]. This approach raises non-trivial issues when we
perform type checking or type inference, but becomes simple and
natural if the types are given and we search for the terms.

On the given set of basic types, we model each subtyping rela-
tion A <: B by introducing into the environment a fresh coercion
expression cAB : {A} → B. If there is an expression e : τ , and e
was generated using the coercion functions, then while translating
e into a simply typed lambda terms, e is simply removed.

4.4 Soundness and Completeness of Succinct Ground
Calculus

In this section we show that the succinct ground calculus is sound
and complete with respect to the type inhabitation problem. Let
Γλ = {x1 : τ1, . . . , xn : τn} be a type environment. We first
observe that for the purpose of answering the type inhabitation
problem we can transform Γλ to a type environment Γ′λ where the
following holds: for every two type declarations xi : ti ∈ Γ′λ and
xj : tj ∈ Γ′λ i 6= j ⇒ ti 6= tj . To construct Γ′λ let us assume
that Γ contains y1 : t and y2 : t. Every occurrence of y2 in Γλ
can be replace with y1 and no term will change its type with this
substitution. Thus we can freely eliminate y2 : t from Γλ. Note
that for every type holds: it is inhabited in Γλ iff it is inhabited in
Γ′λ. From now on we assume that Γλ contains only distinct type
declarations.

Given a type environment Γλ = {x1 : τ1, . . . , xn : τn} and a
type τ , we define type environment ΓTIP (Γλ, τ) as follows:

1. We translate Γλ to a succinct type environment, by translating
every type:

Γ1 = {x1 : Tr(τ1), . . . , xn : Tr(τn)}

2. For every subtyping relation defined on the basic types, we add
a coercion function:

Γ2 = ∪{cτ1,τ2 : Tr(τ1 → τ2) | τ1 <: τ2}

3. For type τ we add a type declaration

Γ3 = {goal : {Tr(τ)} → ⊥}

5 2012/7/16

AX
x : t ∈ Γ

Γ `s x : t

APPABS
Γ `s f : {S1 → t1, . . . , Sn → tn} → t Γ ∪ ΓS1 `s e1 : t1 . . . Γ ∪ ΓSn `s en : tn

Γ `s f{Λ(ΓS1 , e1) : S1 → t1, . . . ,Λ(ΓSn , en) : Sn → tn} : t

ΓS =
⋃
ti∈S

{xi : ti | xi fresh } Λ(∅, e) = e Λ({x : t} ∪ Γ1, e) = {λx : t}.Λ(Γ1, e)

Figure 2. Calculus for deriving new type declaration for succinct ground types

4. Finally,
ΓTIP (Γλ, τ) = Γ1 ∪ Γ2 ∪ Γ3

THEOREM 4.2 (Soundness and Completeness). Given a type en-
vironment Γλ and a type τ , τ is inhabited (i.e. there is a term e
such that Γλ `λ e : τ) iff ⊥ is inhabited (i.e. there is e′ such that
ΓTIP (Γλ, τ) `s e′ : ⊥).

Proof By induction on the structure of a term derivation - we show
that each rule in one calculus can be simulated in the other calculus.
As all the simulation steps are similar, we use the Abs rule as an
illustration; the other simulations are proved the same way. Let
Γ′λ = Γλ ∪ {x : σ}. The Abs rule says that if we can conclude
from Γ′λ that τ is inhabited, then from Γλ follows that σ → τ is
inhabited. To prove that the same holds in the succinct ground types
calculus, let us assume that from Γ′λ follows that τ is inhabited. By
the induction hypothesis, we know that ⊥ is inhabited and it can
be derived fromΓTIP (Γ′λ, τ). Now we need to prove that there is
a term e such that ΓTIP (Γλ, σ → τ) `s e : ⊥. We prove that by
induction on the structure of τ .

Let τ be a basic type v. Then Tr(τ) = Tr(v) = v. Based on
the fact that from ΓTIP (Γ′λ, τ) we can show that ⊥ is inhabited,
and on the fact that goal and⊥ are previously unused, we conclude
that there must be a term e1 such that ΓTIP (Γ′λ, τ) `s e1 : v,
and in that case goal{e1} is an inhabitant of ⊥. By construction
ΓTIP (Γλ, σ → τ) = (ΓTIP (Γ′λ, τ) \ {goal : {Tr(τ)} →
⊥} \ {x : Tr(σ)}) ∪ {goal1 : Tr(σ → τ) → ⊥}. Using this set
equality and the fact that there exists a derivation tree for e1 : v, we
can show that ΓTIP (Γλ, σ → τ) `s goal1{Λ({x : Tr(σ)}, e1) :
σ → v} : ⊥.

When τ is a complex type, the proof is almost identical, only,
in addition to Tr(σ), we need to consider Sr(τ). By applying the
demonstrated techniques we can show that each rule of the simply
typed lambda calculus can be simulated in the succinct ground
types calculus. The proofs for the subtyping rules in Section 4.5.

To prove that the converse holds as well, we again use the same
methods. However, for the complete proof we also need the Orig
function which takes a succinct ground expression and returns a
lambda expression. We prove that depending on the emptiness of
the Si set, the rule AppAbs is either simulated by the App rule
or by the Abs rule. Nevertheless, the proof is again inductive, and
applies the same reasoning as before (inductive case splitting based
on the complexity of types), so we omit it.

4.5 Complexity of the Type Inhabitation Problem for
Ground Types with Subtyping

The type inhabitation problem for the simply typed lambda calculus
is decidable, although of a high complexity (PSPACE-complete
[21]). As a direct consequence of Theorem 4.2 we conclude:

THEOREM 4.3. The type inhabitation problem for the succinct
ground types is PSPACE-complete.

We are interested in whether the complexity of the type inhabi-
tation problem will increase if we add the rules for subtyping. The
original proof by Statman [21] and a later, more constructive, proof
by Urzyczyn [25] did not consider subtyping constraints.

The type constraints are defined only on the set of the basic
types. However, at first sight it may appear that the subtyping
constraints can result in instantiating exponentially many additional
constraints, because of the transitivity and the CVarian rule. To
address this problem we observe that each of the three rules for
subtyping given in Figure 1 can be encoded into the calculus for
succinct ground types as a single rule:

• Subsume: Let Γ1 = ΓTIP (Γλ, τ). There is an inhabitant of
⊥ of the form goal{e} : ⊥. We create Γ2 which is the same
as Γ1 only {goal : {Tr(τ)} → ⊥} is replaced with {goal :
{Tr(σ)} → ⊥}. We can easily construct an inhabitant of ⊥ in
Γ2 using term e

• Trans: If there is an inhabitant of type Tr(τ → σ) (coercion
function c1) and an inhabitant of type Tr(σ → ρ) (coercion
function c2), by induction on the structure of τ (basic type
or a composed type) we can show that then there is also an
inhabitant of type Tr(τ → ρ) – it is a composition of two
coercion function c1 and c2.
• CVarian: For clarity of exposition, let us assume that τ, σ and ρ

are basic types. The premises of the CVarian rule are then en-
coded as: c1 is an inhabitant of type {τ1} → σ1 and c2 is an
inhabitant of type {σ2} → τ2. We need to show that there is
an inhabitant of type {{σ1} → σ2, τ1} → τ2. Applying the
AppAbs rule, we show that it is an inhabited type, and gen-
erate the following witness term: {λf : {σ1} → σ2}.{λx :
τ1}.c2{f{c1{x}}}. When the types τ, σ and ρ are composed
types, the same reasoning is applicable, only we need to addi-
tionally include the Tr function.

The above reasoning shows that we do not need to additionally
instantiate new type constraints: it is enough to encode those that
are already present on the basic types. The other properties (like
subsumption, transitivity, and covariance and contravariance) sim-
ply follow from the calculus rules. This observation is crucial in
establishing the complexity result for the type inhabitation prob-
lem in the presence of subtyping constraints.

THEOREM 4.4. Given a type environment with type constraints
defined on the set of basic types, checking whether some type
is inhabited is an PSPACE-complete problem in both, the simply
typed lambda calculus and in the succinct ground types calculus.

Proof We follow the constructive proof given in [25] to establish
the PSPACE-completeness of the type inhabitation problem. In that
proof Urzyczyn did not consider the subtype constraints. However,
we show that adding them does not increase the complexity of the
problem. The full proof is available in [25]. In this paper we provide

6 2012/7/16

the highlight of the proof and show how it has to be modified so that
it can also support the subtyping constraints.

The lower bound of the problem (PSPACE-hardness) is shown
by taking a classical PSPACE-complete problem, the satisfiability
problem of second-order propositional formulas (QBF), and encod-
ing it into into the type inhabitation problem. Note that this encod-
ing does not in any way effect the subtyping constraints.

To prove that the type inhabitation problem is in PSPACE,
Urzyczyn described a deterministic polynomial space algorithm
that determines whether a given type is inhabited. The algorithm
is similar to the algorithm given in Figure 3. Urzyczyn’s algorithm
is a recursive algorithm, with the depth of recursion bounded by
n2, where n is the cardinality of the set of all types appearing in Γ.

As we showed earlier, formalizing coercion functions on the ba-
sic types only is sufficient to answer the type inhabitation problem,
we do not need to instantiate any additional axioms. Therefore, if
subtyping constraints are present in the specification and we en-
code them by using coercion functions, we can still apply the same
algorithm to check if a type is inhabited.

The original algorithm did not change, and the only thing that
changed is the depth of recursion – now it is bounded by the
(c + n)2, where c is the number of coercion functions defined on
the basic types. This change does not effect the complexity of the
algorithm, i.e. it remains in polynomial space.

4.6 Basic Algorithm Used in InSynth2
Finally, in Figure 3 we present a high-level overview of the algo-
rithm used in the implementation of InSynth2. The algorithm cor-
responds to a repeated execution of the AppAbs command.

INPUT: type environment Γs and type τ
OUTPUT: expression e such that Γs `s e : τ ,

UNDEF if e does not exist

TIP(Γ, τ) =
switch (τ)
case S → τ1: // S 6= ∅
val e = TIP(Γ ∪ ΓS , τ1)
if e == UNDEF return e
else return Λ(ΓS , e)

case ∅ → τ1:
val R = {f : {A1, . . . , An} → τ1 | f : {A1, . . . , An} → τ1 ∈ Γ}
if R == ∅ return UNDEF
run in parallel forall r ∈ R

// with weights this line is
// ”run in parallel [sorted by weights] forall r ∈ R”

let r ∈ R := g : {B1, . . . , Bm} → τ1
if m == 0 return g
foreach Bi do
val ei = TIP(Γ \ {r}, Bi)
if (∀i.ei 6= UNDEF) return g {e1, . . . , em}

else return UNDEF

Figure 3. Constructive algorithm for checking whether a type τ is
inhabited, i.e. whether there is an expression e such that Γs `s e : τ

In the description of the algorithm we use the same notation
as in the succinct ground calculus rules. With ΓS we denote the
type environment extended with fresh new variables of the types
appearing in S, and Λ(ΓS , e) constructs a succinct lambda term, as
defined in Figure 2.

We already mention that the most important role in ranking the
snippets plays the weight function. The above algorithm can be
easily extended so that it reasons about weighted terms. In the next
section we show how to do it.

5. Quantitative Type Inhabitation Problem
When answering the type inhabitation problem, there might be
many terms having the required type τ . A question that naturally
arises is how to find the best term, for some meaning of the word
“best”. For this purpose to every term we assign a weight. We
decided that, similarly as in resolution-based theorem proving, a
lower weight will indicate the higher relevance of the term. Having
weights we extend the type inhabitation problem to the quantitative
type inhabitation problem – given a type environment Γ, a type τ
and a weight function w, is τ inhabited and if it is, return a term
that has the lowest weight.

Letw be a weight function that assigns to each term variable and
to each type variable a non-negative number. As the weight plays
the crucial role in directing the search for inhabitants, it is important
to assign the right weights. In Section 7.3 we describe how do we
compute the weight function and which techniques and heuristics
are we using. In general, two main sources of determining the value
of the weight of a symbols, are:

1. a proximity to the point at which InSynth2 is invoked. We
assume that the user would more likely prefer to get a code
snippet composed from values and methods defined nearer to
the program point. Thus we assign the lower weight to the
functions which are declared closer to the program point where
InSynth2 is invoked.

2. a frequency with which the symbol appears in the training data
corpus, which is described in Section 3.2.

But for now, we assume that there is an initial, pre-computed non-
negative weight function assigned to every symbol.

Given the weight function w defined on the term and type
variables, the weights of terms and composed types are then defined
as:
w(f{e1, . . . , en}) = w(f) + w(e1) + . . .+ w(en)
w(f{λx : τ}.e) = w(λ) + w(x) + w(τ)
w(S → τ) = w(S) + w(→) + w(τ)
w(∅) = 0
w({τ1, . . . , τn}) = w(τ1) + . . .+ w(τn)

In summary, to compute the weight of non-symbols we sum the
weights of all the symbols appearing in the term or he type. All the
introduced term variables have the same weight.

The weight of an entire type declaration is defined as w(e :
τ) = w(e) + w(τ).

The quantitative type inhabitation problem can be seen as an
extension of the type inhabitation problem and in Section 7 we
describe how is the underlying algorithm of InSynth2 guided by
the weights of the terms.

6. From Scala Programs to Simply Typed
Lambda Calculus

In this section we describe the translation of the Scala declarations
with ground and function types into simply typed Lambda calculus
variables. First we define the subset of the Scala types we translate
and later we define the translation function and finally we give a
table with the examples of the translation.

DEFINITION 6.1 (Scala Ground Types). Let Cscala be a fixed fi-
nite set. For every c ∈ Cscala, with c/n we denote the arity of the
element. The elements of arity 0 are called constants. The set of all
Scala ground types Tscala is defined by the grammar:

Tscala ::= TscalaFun | TscalaSimple

TscalaFun ::= (Tscala × . . .× Tscala)→ Tscala

TscalaSimple ::= Cscala(Tscala, . . . , Tscala)

7 2012/7/16

For instance, we translate a Scala type declaration a : Int
with the simple type Int ∈ TscalaSimple or g(x1 : Int, x2 :
Boolean) : String with the function type (Int × Boolean) →
String ∈ TscalaFun.

In Figure 4 we define the translation procedure Tr that takes a
Scala type τscala ∈ Tscala and translate it to τλ ∈ Tλ.

Tr(τscala) =
switch (τscala)
case (τ1 × · · · × τn)→ τr:

(Tr(τ1)→ · · · → Tr(τn)→ Tr(τr))
case c(τ1, . . . , τn):
c(Tr(τ1), . . . , T r(τn))

end switch

Figure 4. The type translation algorithm.

We translate each Scala type declaration a : τ where τ ∈ Tscala
to the simply typed Lambda calculus variable a : Tr(τ). For
every Scala subtype relation (e.g. class τ1 extends τ2) over simple
types, we introduce subtyping relation in the simply typed lambda
calculus (e.g. τ1 <: τ2).

We illustrate the translation function on examples in Table 3.

7. Extensions of the Basic Algorithm
We next present the extensions of the algorithm to make it use-
ful as an interactive tool for synthesizing expression suggests from
which the developer can select a suitable expression. Such an algo-
rithm needs to 1) generate multiple solutions (and not just a single
one), and 2) rank these solutions to maximize the chances that the
suggestions will be relevant for the developer. We therefore first
present the extension with generation a representation of all solu-
tions, and then add the complexity of weights to arrive at our final
algorithm.

7.1 Generating a Representation of All Solutions
To provide an intuition for our final algorithm, Figure 5 presents
first a simpler extension: an algorithm that generates a representa-
tion of all solutions. Before we start the algorithm, we group all
declarations by type and choose the one representative declaration
and put it into the environment. The algorithm terminates because
every used declaration is further excluded from the environment in
the next step of the recursion. Furthermore, the set of new syn-
thesized declarations whose types differ is finite. The algorithm
effectively constructs a graph, whose unrolling could generate in-
finitely many solutions. For example, if we run the algorithm with
Γ = {f : τ1 → τ1, g : τ2 → τ1, x : τ2, y : τ2} and τ = τ1, the
algorithm will generate solutions

g(x), g(y), f(g(x)), f(g(y))

This representation identifies the relevant components that generate
all of the infinitely many solutions

{fk(g(x)) | k ≥ 0} ∪ {fk(g(y)) | k ≥ 0}
We will next present a method to extract a desired subset of these
solutions according to given weights.

7.2 Generating Best N Solutions
Our final algorithm, presented in Figure 6, presents the search for
best N solutions according to a given ranking function. The first
phase of the algorithm computes the representation of all solutions,
similarly to the previous algorithm in Figure 5; the result is stored
in the variable graph. The function reconstruction then performs
unfolding of the graph greedily, following partial expressions of
minimal weight. Because of the properties of the weight function,
this method detects the case when a complete expression has a

INPUT: type environment Γ and type τ
OUTPUT: set of complex expressions with type τ

TIP−ALL(Γ, τ) =
switch (τ)
case ∅ → τ1:
val R = { f:T | f:T ∈ Γ, T = {A1, . . . , An} → τ1}
if R == ∅ return ∅
var RES = ∅
foreach r ∈ R do

switch (r)
case g : ∅ → τ2

RES = RES ∪ {g}
case g: S → τ2
foreach Bi ∈ S do
ei = TIP−ALL(Γ− {r}, Bi)

if (∀i.ei 6= ∅) RES = RES ∪ { g{e1, . . . , em} }
return RES

case S → τ1:
val e = TIP−ALL(Γ ∪ ΓS , τ1)
if e == ∅ return ∅

else return { Lambda(ΓS , e) }

Figure 5. An algorithm for generating a representation of all ex-
pressions that have a given type τ given the environment Γ

weight smaller than the weight of all other partial expressions, and
adds such complete expression to the resulting list.

7.3 Weights for the Initial Type Environment
Previous subsection shows a search algorithm that is guided by a
weight function. We next present the weight assignment strategy
for declared symbols and their types as implemented in InSynth2.
While we believe that our strategy is fairly reasonable, we arrived at
the particular constants via trial and error, so further improvements
are likely possible.

The most interesting aspect of the weight assignment is the as-
signment of weights to names of variables. Note that this assign-
ment differentiates between different symbols of the same type and
therefore would be neglected in a system that was only focusing on
checking whether a type is inhabited, as opposed to finding actual
inhabitants. The first factor in the weight of a name is the proxim-
ity of the declaration to the point where InSynth2 is invoked. We
take the proximity into account by assigning weights as shown in
Table 4. We assign the least weight to local symbols declared in the
same method. We assign the weight at the next level to symbols de-
fined in a class where a query is initiated. We assign an even higher
weight to symbols in the same package. For an imported symbol x,
we determine its weight using the formula in Table 4. Here f(x)
is the number of occurrences of x in the corpus, computed by ex-
amining syntax trees in a corpus of code (see Section 3.2 for the
characteristic of the corpus we used for our experiments). We as-
sign the highest weight to an inheritance conversion function that
witnesses the subtyping relation.

Nature of Declaration or Literal Weight
Local 5
Class 10
Package 15
Literal 400

Imported 215 + 785
1+f(x)

Inheritance function 4000

Table 4. Weights for Names Appearing in Declarations

8 2012/7/16

Scala declaration Simply typed Lambda calculus declaration
a : Int a : Int
b : Map[String, Int] b : Map(String, Int)
f : (x1 : Int, x2 : Boolean) : String f : Int→ Boolean→ String
g : (x1 : (Int⇒ Char), x2 : Long) : Boolean g : (Int→ Char)→ Long → Boolean
class A extends B A <: B

Table 3. Examples of the Scala to the simply typed Lambda calculus type declaration translation.

The weight of an expression, w(e), is the sum of weights of all
symbols that occur in the expression.

We assign weights to type variables as well. A type is repre-
sented by a term that may contain ⊥ and → symbols, type con-
structors and primitive types. Their weights are given in Table 5.
Additionally, the term may contains variables, to which we assign
the weight of 2. A weight of a type, w(τ), is the sum of weights of
all symbols that occur in the type term.

Initial Type & Constructors Weight
⊥ 1
→ 1
Primitive type 2
Type constructor 2

Table 5. Weights for Simple Types and Constructors

8. Related Work
We started this line of work with the first version of our tool, In-
Synth [6, 7, 16]. In the demo tool we used a theorem prover for
classical logic for synthesis. Based on an extensive evaluation and
various implementation improvements, we concluded that the code
completion problem is more related to the type inhabitation prob-
lem. Furthermore, we now also provide a method to mine initial
weights of declarations, which was very important for obtaining
useful results.

Several tools including Prospector [13], XSnippet [19], Strath-
cona [9], PARSEWeb [24] and SNIFF [3] that generate or search for
relevant code examples have been proposed. In contrast to all these
tools we support expressions with higher order functions. Addition-
ally, we synthesize snippets using all visible methods in a context,
whereas the other existing tools build or present them only if they
exist in a corpus. Prospector, Strathcona and PARSEWeb do not
incorporate the extracted examples into the current program con-
text; this requires additional effort on the part of the programmer.
Moreover, Prospector does not solve queries with multiple argu-
ment methods unless the user initiate multiple queries. In contrast,
we generated expressions at once. We could not effectively com-
pare InSynth2 with those tools, since unfortunately, the authors did
not report exact running times. We next provide more detailed de-
scriptions for some of the tools, and we compare their functionality
to InSynth2.

Prospector [13] uses a type graph and searches for the shortest
path from a receiver type, typein, to the desire type, typeout.
The nodes of the graph are monomorphic types, and the edges
are the names of the methods. The nodes are connected based
on the method signature. Prospector also encodes subtypes and
downcasts into the graph. The query is formulated through typein
and typeout. The solution is a chain of the method calls that starts
at typein and ends at typeout. Prospector ranks solutions by the
length, preferring shorter solutions. On the other hand, we find
solutions that have minimal weights. This potentially enables us to
get solutions that have better quality, since the shortest solution may
not be the most relevant. Furthermore, in order to fill in the method

parameters, a user needs to initiate multiple queries in Prospector.
In InSynth2 this is done automatically. Prospector uses a corpus for
down-casting, whereas we use it to guide the search and rank the
solutions. Moreover Prospector has no knowledge of what methods
are used most frequently. Unfortunately, we could not compare
our implementation with Prospector, because it was not publicly
available.

XSnippet [19] offers a range of queries from generalized to
specialized. The tool uses them to extract Java code from the
sample repository. XSnippet ranks solutions based on their length,
frequency, and context-sensitive as well as context-independent
heuristics. In order to narrow the search the tool uses the parental
structure of the class where the query is initiated to compare it with
the parents of the classes in the corpus. The returned examples are
not adjusted automatically into a context—the user needs to do this
manually. Similar to Prospector the user needs to initiate additional
queries to fill in the method parameters.

In Strathcona [9], a query based on the structure of the code un-
der development, is automatically extracted. One cannot explicitly
specify the desired type. Thus, the returned set of examples is often
irrelevant. Moreover, in contrast to InSynth2, those examples can
not be fitted into the code without additional interventions.

PARSEWeb [24] uses the Google code search engine to get
relevant code examples. The solutions are ranked by length and
frequency. In InSynth2 the length of a returned snipped also plays
an important role in ranking the snippetsm but InSynth2also has an
additional component by taking into account also the proximity of
derived snippets and the point where InSynth2 was invoked.

The main idea behind the SNIFF [3] tool is to use natural lan-
guage to search for code examples. The authors collected the cor-
pus of examples and annotated them with keywords, and attached
them to corresponding method calls in the examples. The keywords
are collected from the available API documentation. InSynth2 is
based on a logical formalism, so it can overcome the gap between
programming languages and natural language.

The synthesized code in our approach is extracted from the
proof derivation. Similar ideas have been exploited in the context
of sophisticated dependently typed languages and proof assistants
[1]. Our goal is to apply it to simpler scenarios, where proposi-
tions are only partial specifications of the code, as in the current
programming practice. Agda is a dependently typed programming
language and proof assistant. Using Agda’s Emacs interface, pro-
grams can be developed incrementally, leaving parts of the program
unfinished. By type checking the unfinished program, the program-
mer can get useful information on how to fill in the missing parts.
The Emacs interface also provides syntax highlighting and code
navigation facilities. However, because it is a new language and
lacks large examples, it is difficult to evaluate this functionality on
larger numbers of declarations.

There are several tools for the Haskell API search. The Hoogle
[10] search engine searches for a single function that has either
a given type or a given name in Haskell, but it does not return
a composed expression of the given type. The Hayoo [8] search
engine does not use types for searching functions: its search is
based on function names. The main difference between Djinn [22]
and our system is that Djinn generates a Haskell expression of a

9 2012/7/16

Global variables :
unpropagated = set of new requests that are not propagated
propagated = set of propagated requests
processed = set of answered request
graph = the map that keeps answer
N = the max number of solutions

TIP−Rank−ALL(Γ, τdesired, N) =
query = {τdesired} → ⊥
goal = ⊥
var ws = { query }
unpropagated = { Request(Γ̄init, goal, query) }
propagated = ∅
processed = ∅
graph = ∅
while (ws 6= ∅) do
val decl = best(ws)
ws = ws − {decl}
val decls ’ = propagateRequests(decl)
ws = ws ∪ decls’
processRequests(decl)

end
reconstruction (N, graph)

propagateRequests(decl) =
var set = ∅
for all request ∈ { r | r ∈ unpropagated, r == Request(, ,decl)}
switch (request)
case Request(Γ̄, sender, receiver)

switch (receiver)
case r : S → τ

foreach paramType ∈ S
switch (paramType)
case S1 → τ1

Γ̄′ = Γ̄ ∪ Γ̄S1
val decls ’ = { f: T | f:T ∈ Γ̄′

, T = S2 → τ1}
forall decl ’ ∈ decls’
val request ’ = Request(Γ̄′, receiver, decl’)

if (request ’ /∈ propagated)
unpropagated = unpropagated ∪ request’
set = set ∪ decls’

unpropagated = unpropagated − { request }
propagated = propagated ∪ { request }
return set

processRequests(decl) =
var decls ’ = ∅
foreach request ∈ {r | r ∈ propagated,

r /∈ processed, r == Request(, ,decl)}
switch (request)
case Request(Γ̄, sender, receiver)

switch (receiver)
case r : S → τ

map = allParamsAnswered(Γ̄, S)
if (map 6= null)

update(Key(Γ̄, τ), Node(r, map))
processed = processed ∪ request
decls ’ = decls’ ∪ { sender }

foreach decl ’ ∈ decls’
processRequests(decl ’)

Figure 6. Constructive algorithm guided by weights for generating
a ranked list of best N expressions of a given type τ

Definitions:
best(WS) − Returns the declaration with the smallest weight.

map.contains(key) − Returns ’true’ if the map contains a
mapping for the specified key.

map.get(key) − Returns the value to which the specified key
is mapped.

map.replace(key, value) − Replaces any existing mapping for
the specified key with the mapping that associates the key
with the specified value.

map.put(key, value) − Associates the specified value
with the specified key in this map.

//auxiliary functions
update(key, node) =
if (graph.contains(key))

graph.replace(key, (graph.get(key) ∪ { node }))
else

graph.put(key, { node })

allParamsAnswered(Γ̄, paramTypes) =
var map = ∅
foreach(S → τ) ∈ paramTypes
val key = Key(Γ̄, τ)
if (graph.contains(key))

graph.put(map,((S → τ), graph.get(key)))
else
return null

return map

Figure 7. Definitions and auxiliary functions for the algorithm
guided by weights

given type, but unlike our system it does not use weights to guide
the algorithm and rank solutions.

Recently we have witnessed an increased interest in semi-
automated code completion [15]. In their tool Perelman et al. gen-
erate partial expressions to help a programmer write code more
easily. While their tool helps to guess the method name based on
the given arguments, or it suggests arguments based on the method
name, we generate complete expressions based only on the type
constraints. In addition, we work with higher order functions, and
the returned code snippets can be arbitrarily nested and complex
(no bound on the number and depth of arguments).

As having a witness term that a type is inhabited is a vital
ingredient of our tool, one could think of InSynth2 as a prover for
intuitionistic logic. One of the most effective modern intuitionistic
theorem provers, Imogen [14], can reason about very expressive
non-classical logic (such as linear logics). In contrast, InSynth2’s
prover is used for reasoning about the fragment of intuitionistic
logic which is complete. InSynth2 provides additional functionality
such as generating multiple solutions and ranking them.

The use of type constraints was explored in interactive theorem
provers, as well as in synthesis of code fragments. SearchIsos [5]
uses type constraints to search for lemmas in Coq, but it does not
use weights to guide the algorithm and rank the solutions. Hav-
ing the type constraints, a natural step towards the construction of
proofs is the use of the Curry-Howard isomorphism. The draw-
back of this approach is the lack of a mechanism that would au-
tomatically enumerate all the proofs. By representing proofs using
graphs, the problem of their enumeration is solvable [26]. The In-
Synth2 tool does not enumerate them but instead it returns several
best ranked proofs.

10 2012/7/16

9. Conclusions
We have presented the notion of quantitative type inhabitation,
which searches for expressions of a given type in a type environ-
ment while minimizing a metric on the type binding. We imple-
mented an algorithm supporting parametric types and subtyping
and deployed it as a tool for suggesting expressions within an IDE
for Scala. The synthesized expressions can combine all declared
values, fields, and methods that are in the scope at the current pro-
gram point, so the problem is closely related to the problem of type
inhabitation in type systems. Among the key results is a weight-
driven version of the theorem proving algorithm, which uses prox-
imity to the declaration point as well as weights mined from a cor-
pus to prioritize among the declarations to consider and sort the so-
lutions. We have deployed the algorithm in an IDE for Scala. Our
evaluation on synthesis problems constructed from Java API usage
indicate that the technique is practical and that several technical in-
gredients had to come together to make it powerful enough to work
in practice. Our tool and additional evaluation details are publicly
available.

References
[1] A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda - a

functional language with dependent types. In TPHOLs, pages 73–78,
2009.

[2] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheri-
tance as implicit coercion. Inf. Comput., 93:172–221, July 1991. ISSN
0890-5401. doi: 10.1016/0890-5401(91)90055-7.

[3] S. Chatterjee, S. Juvekar, and K. Sen. SNIFF: A search engine for java
using free-form queries. FASE ’09, pages 385–400, 2009.

[4] V. Cremet, F. Garillot, S. Lenglet, and M. Odersky. A core calculus for
scala type checking. In Proceedings of the 31st international confer-
ence on Mathematical Foundations of Computer Science, MFCS’06,
pages 1–23. Springer-Verlag, 2006. ISBN 3-540-37791-3, 978-3-540-
37791-7.

[5] D. Delahaye. Information retrieval in a Coq proof library using type
isomorphisms. In TYPES, pages 131–147, 1999.

[6] T. Gvero, V. Kuncak, and R. Piskac. Code completion using
quantitative type inhabitation. Technical Report EPFL-REPORT-
170040, EPFL, July 2011. http://infoscience.epfl.ch/
record/170040.

[7] T. Gvero, V. Kuncak, and R. Piskac. Interactive synthesis of code
snippets. In CAV, pages 418–423, 2011.

[8] Hayoo! API Search. http://holumbus.fh-wedel.de/hayoo/
hayoo.html.

[9] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. ICSE ’05, pages 117–125, 2005.

[10] Hoogle API Search. http://www.haskell.org/hoogle/.

[11] IntelliJ IDEA website, 2011. URL http://www.jetbrains.com/
idea/.

[12] Z. Luo. Coercions in a polymorphic type system. Mathematical
Structures in Computer Science, 18(4):729–751, 2008.

[13] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid mining:
helping to navigate the api jungle. In PLDI, 2005.

[14] S. McLaughlin and F. Pfenning. Efficient intuitionistic theorem prov-
ing with the polarized inverse method. In CADE, pages 230–244,
2009.

[15] D. Perelman, S. Gulwani, T. Ball, and D. Grossman. Type-directed
completion of partial expressions. In PLDI, pages 275–286, 2012.

[16] R. Piskac. Decision procedures for software verification and code
synthesis. In Eight-Minute Presentations at POPL’11, ACM SIGPLAN
Symp. Principles of Programming Languages, January 2011.

[17] J. Rehof and P. Urzyczyn. Finite combinatory logic with intersection
types. In TLCA, pages 169–183, 2011.

[18] J. C. Reynolds. Using category theory to design implicit conversions
and generic operators. In Semantics-Directed Compiler Generation,
pages 211–258, 1980.

[19] N. Sahavechaphan and K. Claypool. Xsnippet: mining for sample
code. In OOPSLA, 2006. ISBN 1-59593-348-4.

[20] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodı́k, V. A. Saraswat, and
S. A. Seshia. Sketching stencils. In PLDI, 2007.

[21] R. Statman. Intuitionistic propositional logic is polynomial-space
complete. Theoretical Computer Science, 9(1):67 – 72, 1979.

[22] The Djinn Theorem Prover. http://www.augustsson.net/
Darcs/Djinn/.

[23] The Eclipse Foundation. http://www.eclipse.org/.
[24] S. Thummalapenta and T. Xie. PARSEWeb: a programmer assistant

for reusing open source code on the web. ASE ’07, pages 204–213,
2007.

[25] P. Urzyczyn. Inhabitation in typed lambda-calculi (a syntactic ap-
proach). In P. de Groote and J. Roger Hindley, editors, Typed Lambda
Calculi and Applications, volume 1210 of Lecture Notes in Computer
Science, pages 373–389. 1997.

[26] J. B. Wells and B. Yakobowski. Graph-based proof counting and
enumeration with applications for program fragment synthesis. In
LOPSTR, pages 262–277, 2004.

11 2012/7/16

