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Abstract—We consider single-hop broadcast packet erasure
channels (BPEC) with degraded message sets and instantaneous
feedback regularly available from all receivers, and demonstrate
that the main principles of the virtual-queue-based algorithms
in [1], which were proposed for multiple unicast sessions, can
still be applied to this setting and lead to capacity-achieving
algorithms. Specifically, we propose a generic class of algorithms
and intuitively describe its rationale and properties that result
in its efficiency. We then apply this class of algorithms to
three examples of BPEC channels (with different numbers of
users and 2 or 3 degraded message sets) and show that the
achievable throughput region matches a known capacity outer
bound, assuming feedback availability through a separate public
channel. If the feedback channel is not public, all users canstill
decode their messages, albeit at some overhead which results
in an achievable throughput that differs from the outer bound
by O(N/L), where L is the packet length. These algorithms do
not require any prior knowledge of channel statistics for their
operation.

I. I NTRODUCTION

The capacity region of anN -user BPEC channel has been
determined for the cases of a single multicast session and,
recently in [2], [1], forN unicast sessions. Both scenarios can
be considered as extremes of a more generalN -user setting,
in which there exists, for eachS ⊆ {1, . . . , N}, a message
WS (equivalently, a set of packetsKS) that is intended for all
users inS.

Since the determination of the capacity region under the
most general setting is still an open problem, this paper
studies some special cases, in the hope that the results will
provide further insight into the general case, as well as indi-
cate the necessary properties of high-throughput algorithms.
Specifically, motivated by the fact that feedback can strictly
increase the capacity region of a BPEC channel (as has been
convincingly demonstrated in [3] for 2 unicast sessions), this
paper considers anN -user BPEC with feedback and a two-
degraded message set, as well as the special case of a 3-user
BPEC with 3 degraded messages, and modifies the algorithms
in [1] to propose capacity-achieving algorithms in this setting.

The algorithms in [1] are recast into a systematic queue-
based approach for performing inter-session network coding,
which can also be tailored to problems other than the ones
studied here (for example, a modification of the algorithm
presented for the 3-user BPEC with a 3-degraded message
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set can be used for the 3-user BPEC with 2 messages, where
messageW1 is intended for users 1,2 whileW2 is intended
for user 3). To this end, and in order to illustrate all aspects of
this class of algorithms, we present three concrete examples
of application.

The problem of degraded multicasting (considered here for
the caseN = 3) has received a lot of attention, since this
setting naturally models situations such as multiple-layer video
transmission, where different users request different quality
versions of essentially a single entity (e.g. a video stream). A
recent work is [4], where it was shown that an extension of
the result by Körner and Marton from two to three users (with
a two-message degraded set) is not optimal. As a special case,
[5] studied a 3-user system with 2 degraded messages over a
combination network whose links are subject to iid erasures
and derived its capacity region. However, in contrast to this
paper, these works did not consider the use of feedback.

The paper is structured as follows. Section II contains
the description of the system model and presents the three
examples that will be used to illustrate the proposed class of
algorithms, along with a summary of the results. Section III
presents the class of algorithms and explains, in intuitiveterms,
the main ideas behind it, including the important feedback-
based actions taken by the transmitter. After a brief summary,
in Section IV, of the approach used to derive capacity outer
bounds for the BPEC channels, Section V presents the exact
algorithmic procedure for each of the three selected examples
as well as the derivation of the achievable throughput region
(inner bound). The latter is seen to match the outer bound in
all 3 cases. Section VI concludes the paper.

II. PROBLEM FORMULATION

A. System model

We consider a time-slotted communication system consist-
ing of a single source/transmitter andN users/receivers with a
degraded message set requirement. Denote the set of users with
N = {1, . . . , N}. The source hasN messagesW1, . . . ,WN of
ratesR1, . . . , RN , respectively, where userk wants to receive
all messages up to and includingWk. In each slot, the input to
the channel is a packet of lengthL bits (hereafter referred to
as “input symbol”) and the channel is modelled as memoryless
broadcast erasure so that each broadcast packet/symbol is
either received unaltered at a user or is “erased” and is not
received by the user at all. At the end of each slot, all users
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Fig. 1. The message sets of the three channels under investigation.

send a simple ACK/NACK reply (through a separate error-free
and zero-delay channel) to inform the transmitter whether the
packet was received or not.

We denote withǫ{i} the probability that a packet is erased
by useri and withǫS the probability that a packet is erased by
all usersk ∈ S (the packet may also be erased by some users
in N−S; such an outcome also belongs to the event measured
by ǫS). Hence, we explicitly allow for spatial correlation
between erasures at different users, although the memoryless
property implies that erasures are temporally iid. We use the
standard information-theoretic definitions [6] of code with
feedback, achievable rate and capacity region. Furthermore,
instead of working with messagesW1, . . . ,WN , we assume
that there exist setsK1, . . . ,KN of packets intended for the
same users. We denoteKj

△

= |Kj |, for j = 1, . . . , N , and
assumeKj to be sufficiently large to invoke the strong law of
large numbers.

B. Main Results

We give a full capacity characterization for this problem
whenN = 3 and partial capacity characterization when there
areN users and only two message sets present. More precisely,
we consider the message sets shown in Fig. 1 and prove the
following results:

Theorem 1:The capacity region of the 3-user 3-degraded
message set (case (a) in Fig. 1) is given by

C(a) =

{

R ≥ 0 :
R1

1− ǫ{1}
+

R2 +R3

1− ǫ{1,3}
≤ 1,

R1 +R2

1− ǫ{2}

+
R3

1− ǫ{2,3}
≤ 1, R1 +R2 +R3 ≤ 1− ǫ{3},

R1

1− ǫ{1}
+

R2

1− ǫ{1,2}
+

R3

1− ǫ{1,2,3}
≤ 1

}

,

(1)

for arbitrary erasure spatial dependence.
Theorem 2:The capacity regions for the BPEC channels

with message sets shown in cases (b), (c) of Fig. 1 are given,

respectively, by

C(b) =

{

R ≥ 0 : max
i=1,...,N−1

(

RN

1− ǫ{i,N}
+

R1

1− ǫ{i}

)

≤ 1,

R1 +RN ≤ 1− ǫ{N}

}

,

(2)

and

C(c) =

{

R ≥ 0 : max
i=2,...,N

(

R1

1− ǫ{1}
+

R2

1− ǫ{1,i}

)

≤ 1,

R1 +R2 ≤ min
i=2,...,N

(1 − ǫ{i}), R1 ≤ 1− ǫ{1}

}

,

(3)

for arbitrary spatial erasure dependence in both cases.

III. A CLASS OF ENCODING ALGORITHMS

A. Algorithmic description

For the reader’s convenience, we first succinctly describe the
proposed class of encoding schemes, followed by a discussion
on the intuition behind it and the reason for its throughput ef-
ficiency (we hereafter use the term “efficiency” to exclusively
refer to high throughput achievability). We adopt the random
linear network coding approach, in which the transmitted
packets are viewed as elements of a finite fieldFq (of size
q = 2L) and the transmitter keeps sending suitable linear
combinations of information packets until all users receive a
sufficient number of linearly independent combinations with
respect to their intended packets. This can be achieved with
probability arbitrarily close to 1 for sufficiently largeq.

We assume that the random coefficient generator used by
the transmitter is also available to all receivers. For a public
feedback channel, this allows the receivers to use their local
generators to create the values of the coefficients without the
need of having the transmitter append them as packet pream-
bles. For non-public feedback (where each user only knows
its own ACK/NACK), the issue of conveying ACK/NACK to
all users (so that they can again create the coefficients by
themselves) can be solved through an overhead scheme in the
spirit of [1]; the induced overhead isO(N/L).

The algorithm is next described in general terms so that
it can also be applied to BPEC channels with more general
degraded message sets than those described in Fig. 1. We
analyze this algorithm and characterize the rates it achieves
for the BPEC channels of Fig. 1 in Section V.

1) Virtual queue structure and indices:the source main-
tains a group of virtual queuesQS , indexed by all non-empty
subsetsS ⊆ N , as well as non-negative integersT i

S , for
all S ⊆ N and i ∈ S. The above queues and indices are
dynamically updated during the algorithm’s execution, as will
be subsequently described.



2) Initialization: for the case where useri requests the
packets of all setsK1, . . . ,Ki, the packets of setKi are placed
in queueQN−{1,...,i−1}, for i = 1, . . . , N .1 TheT indices are
initialized asT i

S = ‖QS‖, where‖·‖ denotes the number of
packets stored in the queue.

3) Encoding scheme:the source sequentially processes
each non-empty queueQS , for all S ⊆ N , in order of
increasing|S|; queues with equal|S| are processed in order
of increasing number of non-zeroT i

S indices (an arbitrary
tie-breaker is used for queues with equal|S| and number of
non-zero indices). The reason for selecting this order of pro-
cessing will become apparent soon and further demonstrated
in Section V. During the processing ofQS , the transmitter
sends a linear combination ofall packets stored in queues
QS andQT , for all T ⊃ S. We hereafter denote this joint
group of queues asQT ⊇S , so that the transmitted packets
has the forms =

∑

p∈QT ⊇S
as(p)p, with as(p) the randomly

chosen coefficients. Note that, although multiple queues are
involved, we formally consider this phase as being applied to
the “processing” ofQS .

4) Feedback-based queue management:while “processing”
queueQS , the source takes certain actions after each trans-
mitted packet based on its received feedback. Denote the
transmitted packet withs and let G be the set of users
that successfully receiveds. The source now performs the
following actions, collectively referred to asACTFB:

Step 1: if G = ∅ or it holdsT i
T = 0, for all T ⊇ S and

i ∈ G, then s is retransmitted (using the same coefficients).
Otherwise,

Step 2: for each useri ∈ S∩G, find the smallest cardinality
setS∗ ⊇ S such thatT i

S∗ > 0 (with an arbitrary tie-breaker
if more than one such sets exist) and decreaseT i

S∗ by 1.
Step 3: if G ∩ (N − S) 6= ∅ and s was erased by at least

one user inS, thens is added to queueQS∪G . Additionally,
for each i ∈ S − G with T i

S > 0, indices T i
S , T i

S∪G are
decreased/increased by 1, respectively.

The second and third items in the above list do not refer
to mutually exclusive cases, and both of them may indeed be
performed in a single slot.

5) Condition for stopping the processing ofQS : the source
keeps processing each queueQS (i.e. it performs items 3,4 of
this list) until it holdsT i

S = 0 for all i ∈ S. The algorithm
terminates when all queuesQS , with S ⊆ N , have been
processed.

B. The intuition behind the algorithm

The interpretation of the algorithm is greatly facilitated
using the concept of token from [1].

Token: We denote withDi, for i ∈ N , the set of packets
intended for useri so that any transmitted packets is,
potentially, a linear combination of all packets in∪i∈NDi.

Definition 1: Let s =
∑

p∈QT ⊇S
as(p)p be a transmitted

packet. Then,s is called atokenfor useri iff it can be written

1equivalently, the packets in setKi are intended for usersi, . . . , N . For
the most general case where a set of packetsKS is intended for all users in
setS, the packets ofKS are placed in queueQS .

in the form
s =

∑

u∈Di

b(i)s (u)u+ c(i)s , (4)

whereb(i)s (u), c
(i)
s are both known to useri.

The vectorb(i)s can become known to useri due to the
fact that the random coefficient generator ofas(p) is also
available toi, along with public feedback, which allows user
i to recreate the values ofas(p), and thereforeb(i)s . The value
of c(i)s can become known to useri due to packets received
by i prior to packets.

We now turn to the intuition behind the algorithm. A packet
s that is transmitted from the source at time slott can be
“useful” for useri, if received byi, in two different ways:

(1) At the time of transmission, packets is already a token
for user i, so that, upon reception ofs, user i creates
an equation, which can be made linearly independent of
previously created equations at useri (through a proper
selection ofas(p)). In this sense, packets offers an
immediate “benefit” to useri.

(2) At the time of transmission, packets is not a token for
user i, but since it is received at useri, it can offer
side information to useri. In this sense, packets can
be combined in the future with a side information packet
of another user and create a packet that is useful to both
of them, thus offering a “delayed benefit”. Note that from
the arrival time of packets at useri onwards, this packet
becomes a token for useri as well.

We give an example for these two types of useful informa-
tion. A packetp3 ∈ K3 offers immediate benefit only to user3,
if received successfully at useri. Nonetheless,p3 can also offer
delayed benefit as follows: ifp3 is only received at user2 (so
that we denotep with p23, where the upper index indicates the
user who received the packet), it can be potentially combined
with a packet of the formp2 ∈ K2 later on, so that the resulting
linear combination〈p2, p23〉 allows both users2 and3 to create
an equation upon successful reception. Clearly, this efficient
mixing of side information requires the transmitter to know
exactly which user knows which packets; this knowledge is
acquired through feedback.

The following statement indicates that the property of
“tokeness” is maintained through linear combinations [1].

Proposition 1: Consider a set of packetsP such that each
p ∈ P is a token for all users in a setU . Then, any packet of
the forms =

∑

p∈P as(p)p is also a token for all usersi ∈ U .
Based on the above, the most “useful” type of transmitted

packet is a linear combination of packets each of which is
a token forall N users. Before any transmissions occur and
when no side information has been received yet, each packet
is a token only for its intended destinations, so that the most
efficient packets, at the beginning of the algorithm, belong
to K1. However, as transmissions are scheduled and side
information is created, additional packets may become tokens
for all N users. For example, for the caseN = 3, a packet
p2 ∈ K2 that is received by 1 becomes, after its reception,
a token for all 3 users. Hence, tokeness is a time-dependent



notion with an absorbing property, i.e. once a packet becomes
a token for a user, it remains a token for this user until the
end of the algorithm.

The indicesT i
S are interpreted as the number of linearly

independent combinations that useri still needs to receive dur-
ing the processing ofQS (item 3 in the list of Section III-A).
When it holdsT i

S = 0, then useri has gathered all available
information fromQS and the queue is no longer useful fori,
though it is still useful for other usersj ∈ S with T j

S > 0.
Processing ofQS therefore stops, as explained, only whenall
T i
S , i ∈ S, become 0.
The efficiency of the algorithm lies in the fact that it

tries to “exploit” each slot as much it can, in the sense
that the transmitted packet potentially allows each user, upon
successful reception of the packet, to either create an equation
or gain side information. While processingQS , packets are
being transmitted that are tokens for all users inS. When
such a packet is received by a useri ∈ S, the user forms an
equation. When such a packet is, however, received at a user
i /∈ S (for which it is not a token at the time of transmission),
the packet can still be useful, if properly handled.ACTFB tries
to optimally handle this based on the feedback received and
according to the following principle:

Maximal tokeness (MT):a transmitted packets should be
placed in queueQS′ iff S ′ is the maximal set such thats
is a token forall users inS ′ (e.g. if packets is a token for
users1, 2 as well as1, 2, 4, and is not a token for any user
j 6∈ {1, 2, 4}, thens is placed in queueQ{1,2,4}).

Notice that the queue initialization also conforms to the MT
rule. Since we have qualitatively defined the “efficiency” ofa
packet as the number of users for which it is a token, we
conclude that enforcing the MT principle results in a packet
becoming more efficient as it is stored inQS of increasing
|S|.

Interpretation ofACTFB: The three steps ofACTFB follow
naturally from the MT principle and the interpretation of
indices T i

S . Specifically, step 1 captures the fact that it is
possible for a packets to be received by no user, in which case
s is retransmitted, since it still contains useful information. The
second condition in step 1 ofACTFB is more intriguing but can
be simply restated as follows: if a packets, which is a linear
combination of all packets inQT ⊇S is receivedonly by users
which have already recovered all available equations inall
queuesQT ⊇S (i.e. T i

T = 0 for all T ⊇ S), then the packet is
retransmitted, since it cannot offer any new information tothe
users that received it. Although this may lead to inefficiency,
the analysis performed in Section V indicates that this does
not happen for the message sets in Fig. 1 (i.e. the algorithm
achieves a capacity outer bound). The question of whether this
property holds for generalN is an open problem.

Step 2 says that a useri ∈ S that receivess can construct
an equation for its unknown packets (due to Proposition 1 and
the fact that all packets inQS are, by construction, tokens for
all users inS). Hence, the corresponding counterT i

S should
be decreased by 1 to capture this fact.

Finally, step 3 corresponds to the case where packets is not

ǫ{1}ǫ{1}ǫ{1}

ǫ{1}

ǫ{2}ǫ{2}ǫ{2}

ǫ{2}

ǫ{3}ǫ{3}ǫ{3}

ǫ{3}

C

Ĉ C̃ C̊

Fig. 2. ChannelC shows a BPEC withN = 3 users. ChannelŝC, C̃,
C̊ are the auxiliary channels used to derive capacity outer bounds for the
three-message set problem.

received by all receivers for which it is a token (i.e., all users in
S) but is received by some users that do not belong toS (i.e.,
packets is not a token for them in the time of transmission).
After reception of this packet, it also becomes a token for all
such users (in setG −S) so that, before the next transmission
occurs, packets has become a token for all users inS∪G, the
latter set being maximal. Hence, according to the MT rule,s
should be placed inQS∪G for the next transmission time slot.

Furthermore, although there might be some userj ∈ S that
did not receive packets (i.e. j ∈ S −G), this information can
be sent in the future through linear combinations transmitted
from queueQS∪G, into which packets has been moved. In
fact, sinces is now a token for all users inS ∪ G, it is more
efficient for userj ∈ S − G to receive a linear combination
(containings) from QS∪G rather thans itself fromQS , since
the former combination can provide information to more users.
This is accounted for by decreasing/increasingT i

S , T i
S∪G by

one.
Remark 1:Since the processing ofQS may place some

packets inQS′ , with S ′ ⊃ S (as well as increase some
T i
S′) and since all queues with non-zeroT indices have to

be processed eventually, selecting the order of processing
according to increasing|S| means that each queueQS will
be processed, according to item 3 of Section III-A, in only
one stage. Selecting a different order such that, for two sets
S1,S2 with S1 ⊃ S2, queueQS1

is processed beforeQS2

allows for the possibility thatQS1
may have to be processed

twice, the second time being due to packets newly moved from
QS2

. To avoid this issue, which would make the analysis of
the algorithm more difficult, we stick to processing the queues
in order of increasing|S|.

Before we apply this class of algorithms to the message
sets of Fig. 1 and determine the achievable throughout regions,
we briefly summarize, in the next Section, the procedure for
deriving a capacity outer bound.

IV. CAPACITY OUTER BOUND

In this Section, we prove an outer bound only for the 3-user
3-degraded message set (case (a) in Fig. 1). The other cases



are similarly handled and we refer the reader to [7] for the
detailed derivation.

Consider any encoding scheme at the source that achieves
ratesR1, R2 and rateR3 over the original erasure channelC.
The cut-set bound yields a trivial outer capacity region of the
form Ccs =

{

R ≥ 0 :
∑i

k=1 Rk ≤ 1− ǫ{i}, i = 1, . . . , 3
}

.
The derivation of a tighter capacity outer bound thanCcs
follows the often-used procedure [8], [3] of introducing ad-
ditional auxiliary links of infinite capacity among the users.
More precisely, we consider the auxiliary channels shown in
Fig. 2, where dashed lines indicate infinite capacity links.

It is not difficult to see that any encoding scheme at the
source that achieves ratesR1, R2 and rateR3 over the original
erasure channelC, could be used over channelĈ to reliably
communicate messagesW2 andW3 to user3 and messageW1

to user1. Similarly, any such code could be used over channel
C̃ to reliably communicate messagesW1 andW2 to user2
and messageW3 to user3. Finally, the same code could be
used over channel̊C to communicate messageWi to useri
for i = 1, 2, 3. Therefore, these 3 unicast problems give outer
bounds on the capacity region of our interest; i.e., denoting
with Ĉ, C̃, C̊ the capacity regions of the aforementioned unicast
problems overĈ, C̃, C̊ we get

C(a) ⊆ Ccs ∩ Ĉ ∩ C̃ ∩ C̊. (5)

Over channelĈ, a symbol is actually erased at user3 in
channelĈ iff both users1, 3 erase the symbol in channelC,
while user2 erases the symbol in channelĈ iff all three users
erase it in channelC. This implies thatĈ is also a BPEC with
parameterŝǫ{1} = ǫ{1}, ǫ̂{2} = ǫ{1,2,3} and ǫ̂{3} = ǫ{1,3}.
Analogous conclusions can be drawn for channelC̃, C̊.

Furthermore, since channelŝC, C̃, C̊ are physically de-
graded [9], we have the following well-known results:

• feedback does not increase the capacity of a physically
degraded channel [10].

• the capacity region (without feedback) of theN -user
physically degraded BPEC is achieved through timeshar-
ing among the users [11].

Combining the above to evaluatêC, C̃ andC̊ in (5), the RHS
of (5) matches (1) of Theorem 1 and provides an outer bound
to the capacity region of the 3-message set broadcast problem.
We next show that the region in (1) is also achievable, which
completes the proof of Theorem 1.

V. EXAMPLES OF APPLICATION

A. The 3-message degraded set

The algorithm uses all queuesQS , with S ⊆ {1, 2, 3},
except forQ{1,2}, which remains empty for the entire duration
of the algorithm. After placing the packets of setsK1, K2,
K3 into queuesQ{1,2,3}, Q{2,3}, Q{3}, respectively, and
initializing theT indices according to item 2 of Section III-A,
the source processes the queues in the following order:Q{3},
Q{1,3}, Q{2,3}, Q{1,2,3}. This order is dictated by the rule (see
item 3 of Section III-A) of processing queuesQS in order of
increasing|S| and the fact that it holdsT 1

{1,3} = 0 for the

entire algorithm’s execution. Hence,Q{1,3} has fewer non-
zeroT indices thanQ{2,3} and is processed first. Recall that
the processing ofQS entails transmitting linear combinations
from all queuesQT ⊇S until all T i

S become 0.
We denote withT ∗

S the (average) number of slots required
for processing queueQS , and withT i

S(t) the value ofT i
S at

slot t. Hence, it follows that

T ∗
3 =

T 3
{3}(0)

1− ǫ{1,2,3}
=

K3

1− ǫ{1,2,3}
, (6)

since any packet that is received by at least one user leads,
due to step 3 ofACTFB, to a reduction ofT 3

{3} by 1.
The values of the indices at the end of processingQ{3}

(denote this epoch ast3) are

T 3
{2,3}(t3) = K2 + T ∗

{3}(ǫ{1,3} − ǫ{1,2,3}),

T 3
{1,3}(t3) = T ∗

{3}(ǫ{2,3} − ǫ{1,2,3}), T 1
{1,3}(t3) = 0,

T 3
{1,2,3}(t3) = K1 + T ∗

{3}(ǫ{3} − ǫ{1,3} − ǫ{2,3} + ǫ{1,2,3}),

T 2
{2,3}(t3) = K2, T 1

{1,2,3}(t3) = T 2
{1,2,3}(t3) = K1,

(7)

and follow again from the logic of step 3 ofACTFB (the terms
inside parentheses express the probability that a packet isonly
seen by a specific subset of the 3 users).

To make the equations more compact, we denote with
∆+

ST
i
T , ∆−

S T
i
T the total increase/decrease, respectively, of

index T i
T when the algorithm processesQS , with S ⊂ T .

Using this notation, we can write, for example,∆+
{3}T

3
{2,3} =

T ∗
{3}(ǫ{1,3} − ǫ{1,2,3}).
The source next processesQ{1,3} for a total of

T ∗
{1,3} =

T 3
{1,3}(t3)

1− ǫ{2,3}
, (8)

time slots (sinceT 3
{1,3} is reduced if the transmitted packet is

received by either 2 or 3), while the indicesT 3
{1,2,3}, T 1

{1,2,3}
are modified, due to step 3 ofACTFB as follows

∆+
{1,3}T

3
{1,2,3} = T ∗

{1,3}(ǫ{3} − ǫ{2,3}),

∆−
{1,3}T

1
{1,2,3} = T ∗

{1,3}(1− ǫ{1}).
(9)

Notice that ifT 1
{1,2,3} becomes zero before the processing of

Q{1,3} is complete, then user 1 has received enough linear
combinations to decode its packets.

The source next processesQ{2,3} for a total of

T ∗
{2,3} = max

(

T 2
{2,3}(t3)

1− ǫ{1,2}
,
T 3
{2,3}(t3)

1− ǫ{1,3}

)

, (10)

time slots. The modification of the indices inQ{1,2,3} during
this stage is

∆+
{2,3}T

3
{1,2,3} =

T 3
{2,3}(t3)

1− ǫ{1,3}
(ǫ{3} − ǫ{1,3}),

∆+
{2,3}T

2
{1,2,3} =

T 2
{2,3}(t3)

1− ǫ{1,2}
(ǫ{2} − ǫ{1,2}),

(11)



∆−
{2,3}T

3
{1,2,3} =

(

T ∗
{2,3} −

T 3
{2,3}(t3)

1− ǫ{1,3}

)

(1− ǫ{3}),

∆−
{2,3}T

2
{1,2,3} =

(

T ∗
{2,3} −

T 2
{2,3}(t3)

1− ǫ{1,2}

)

(1− ǫ{2}).

(12)

Hence, at the end of processingQ{2,3} (denote this
epoch with t23), the indices in Q{1,2,3} have the val-
ues T i

{1,2,3}(t23) = [T i
{1,2,3}(t3)+

∑

S ∆+
ST

i
{1,2,3} −

∑

S ∆−
S T

i
{1,2,3}]

+, where the summation is performed over
S ∈ {{1, 3}, {2, 3}} and [x]+ = max(x, 0). Therefore,
the processing ofQ{1,2,3} by itself requiresT ∗

{1,2,3} =

maxi=1,...,3 T
i
{1,2,3}(t23)/(1 − ǫ{i}) slots. Denoting the sum

of the slots for all phases asT ∗, the algorithm achieves a
rate ofRj = Kj/T

∗ for j = 1, . . . , 3. Simple algebra reveals
that the throughput region exactly matches (1). Notice thatno
assumption on spatially independent erasures was made, so
that the result holds for arbitrary erasures.

B. 2-message degraded set: case (b) in Fig. 1

The algorithm only operates on queuesQS such thatN ∈
S and initially places the packets of setsK1, KN into QN ,
Q{N}, respectively. Additionally, since, fori 6= N andS ⊂ N ,
all indicesT i

S are always 0 (users1, . . . , N − 1 only require
packets fromQN ), there is no point in combining eachQS

with all queuesQT , with T ⊃ S. Hence, it suffices to combine
QS directly with QN .

For S ⊂ N , we denote withT ∗
S , TN

S (ts), respectively, the
number of slots required for processingQS and the value of
indexTN

S at the beginning of the processing, so that it holds
T ∗
S = TN

S (ts)/(1 − ǫN−(S−{N})). A recursive formula can
be written [7] for computingTN

S (ts) for all S ⊆ N , from
which the total number of slots required by the algorithm
can be computed (and hence, the achieved rate). Again, the
proposed algorithm achieves capacity for arbitrary erasure
spatial dependence.

C. 2-message degraded set: case (c) in Fig. 1

This is the simplest of the 3 cases to be examined, in the
sense that only two queues are required, namelyQN and
QN−{1}. The packets of setsK1, K2 are placed intoQN ,
QN−{1}, respectively, along with the suitable initialization of
T i
N and T i

N−{1}. The source first combines the two queues
until all T i

N−{1} become 0 and then processesQN by itself
as usual.

Thinking in similar lines as for the analysis of the 3-message
degraded set, the number of slotsT ∗

N−{1} required to process
QN−{1} is T ∗

N−{1} = maxi∈N−{1}
K2

1−ǫ{1,i}
. The cumulative

increase and decrease ofT i
N can be computed similar to (11),

(12) as

∆+T i
N =

K2

1− ǫ{1,i}
(ǫ{i} − ǫ{1,i}),

∆−T i
N =

(

T ∗
N−{1} −

K2

1− ǫ{1,i}

)

(1 − ǫ{i}).

(13)

The rest of the analysis follows the lines of Section V-A and
reveals, after some simple algebra, that the proposed algorithm
achieves capacity. Notice that, again, this result holds for
arbitrary erasure spatial dependence.

VI. CONCLUSIONS

This paper revisited the virtual-queue based coding algo-
rithm proposed in [1] for BPEC channels with multiple unicast
sessions and demonstrated that its main concepts of token
handling and keeping track of the number of linearly inde-
pendent equations required by each user are still applicable
for the setting of degraded message sets, essentially creating a
whole “class” of algorithms for BPEC channels. Three simple
examples were chosen to illustrate the main ideas of this class,
and it became apparent that the complexity of this algorithmic
class (in terms of the number of virtual queues needed) is
mainly determined by the number of sessions and the relation
between the message sets rather than the number of users.
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