
JavaScript as an Embedded DSL

Grzegorz Kossakowski, Nada Amin, Tiark Rompf, and Martin Odersky

Ecole Polytechnique Fédérale de Lausanne (EPFL)
{first.last}@epfl.ch

Abstract. Developing rich web applications requires mastering different
environments on the client and server sides. While there is considerable
choice on the server-side, the client-side is tied to JavaScript, which poses
substantial software engineering challenges, such as moving or sharing
pieces of code between the environments. We embed JavaScript as a
DSL in Scala, using Lightweight Modular Staging. DSL code can be
compiled to JavaScript or executed as part of the server application.
We use features of the host language to make client-side programming
safer and more convenient. We use gradual typing to interface typed
DSL programs with existing JavaScript APIs. We exploit a selective CPS
transform already available in the host language to provide a compelling
abstraction over asynchronous callback-driven programming in our DSL.

Keywords: JavaScript, Scala, DSL, programming languages

1 Introduction

Developing rich web applications requires mastering a heterogeneous environ-
ment: though the server-side can be implemented in any language, on the client-
side, the choice is limited to JavaScript. The trend towards alternative ap-
proaches to client-side programming (as embodied by CoffeeScript [9], Dart [14]
& GWT [17]) shows the need for more options on the client-side. How do we
bring advances in programming languages to client-side programming?

One challenge in developing a large code base in JavaScript is the lack of static
typing, as types are helpful for maintenance, refactoring, and reasoning about
correctness. Furthermore, there is a need for more abstraction and modularity.
“Inversion of control” in asynchronous callback-driven programming leads to code
with control structures that are difficult to reason about. Another challenge is
to introduce helpful abstractions without a big hit on performance and/or code
size. Communication between the server side and the client side aggravates the
impedance mismatch: in particular, data validation logic needs to be duplicated
on the client-side for interactivity and on the server-side for security.

There are three widely known approaches for addressing the challenges out-
lined above. One is to create a standalone language or DSL that is compiled to
JavaScript and provides different abstractions compared to JavaScript. Exam-
ples include WebDSL [36], Links [10,11] and Dart [14]. However, this approach
usually requires a lot of effort in terms of language and compiler design, and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147988335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 JavaScript as an Embedded DSL

tooling support, although WebDSL leverages Spoofax [19] to alleviate this ef-
fort. Furthermore, it is not always clear how these languages interact with other
languages on the server-side or with the existing JavaScript ecosystem on the
client-side.

Another approach is to start with an existing language like Java, Scala or Clo-
jure and compile it to JavaScript. Examples include GWT [17], Scala+GWT [30]
and Clojurescript [8]. This approach addresses the problem of impedance mis-
match between client and server programming but comes with its own set of
challenges. In particular, compiling Scala code to JavaScript requires compil-
ing Scala’s standard library to JavaScript as any non-trivial Scala program uses
Scala collections. This leads to not taking full advantage of libraries and ab-
stractions provided by the target platform which results in big code size and
suboptimal performance of Scala applications compiled to JavaScript. For ex-
ample, a map keyed by strings would be implemented natively in JavaScript
as an object literal, while, in Scala, one would likely use the hash map from
the standard library, causing it to be compiled to and emulated in JavaScript.
Moreover, both approaches tend to not accommodate very well to different API
design and programming styles seen in many existing JavaScript libraries. A
drawback of this second approach is that the whole starting language needs to
be translated to JavaScript: there is no easy or modular way to limit the scope
of the source language. The F# Web Tools [26] are an interesting variation of
this approach that employ F# quotations to translate only parts of a program
and allow programmers to define custom mappings for individual data types.

A third approach is to design a language that is a thin layer on top of
JavaScript but provides some new features. A prime example of this idea is Cof-
feeScript [9]. This approach makes it easy to integrate with existing JavaScript
libraries but does not solve the impedance mismatch problem. In addition, it
typically does not give rise to new abstractions addressing problems seen in
callback-driven programming style, though some JavaScript libraries such as
Flapjax [22] and Arrowlets [20] are specifically designed for this purpose.

We present a different approach, based on Lightweight Modular Staging
(LMS) [28], that aims to incorporate good ideas from all the approaches pre-
sented above but at the same time tries to avoid their described shortcomings.
LMS is a technique for embedding DSLs as libraries into a host language such as
Scala, while enabling domain-specific compilation / code-generation. The pro-
gram is split into two stages: the first stage is a program generator that, when
run, produces the second stage program. Whether an expression belongs to the
first or second stage is decided by its type. Expressions belonging to the second
stage, also called “staged expressions”, have type Rep[T] in the first stage when
yielding a computation of type T in the second stage. Expressions evaluated
in the first stage become constants at the second stage. Other approaches to
staging include MetaML [34], LISP quasiquotations, and binding-time analysis
in partial evaluation. Previous work has established LMS as a pragmatic ap-
proach to runtime code generation and compiled DSLs. In particular, the Delite
framework [4,29,7] uses this approach to provide an extensible suite of high-



JavaScript as an Embedded DSL 3

performance DSLs targeting heterogeneous parallel platforms (with options to
generate code to Scala, C and Cuda) [21], for domains such as machine learn-
ing [33], numeric array processing [35] and mesh-based partial differential equa-
tion solvers [6]. LMS has also been used to generate SQL queries [37].

We propose to embed JavaScript as a DSL in a host language. 1 Through LMS
(reviewed in section 2), we tackle the challenges outlined above with minimal
effort, as most of the work is off-loaded to the host language. In particular, we
make the following contributions:

– Our DSL is statically typed through the host language, yet supports grad-
ual typing notably for incorporating external JavaScript libraries and APIs
(section 3).

– In addition to generating JavaScript code, our DSL can be executed directly
in the host language, allowing code to be shared between client and server
(section 4).

– We use advanced object-oriented techniques to achieve modularity in our
DSL: each language primitive and API is defined in a separate module (sec-
tion 5).

– Our DSL supports typed object literals and class-based objects. The trans-
lations to JavaScript are lightweight and intuitive: the object literals trans-
late to JSON-like object literals and the class-based objects to JavaScript
constructor-based objects (section 6).

– On top of the straightforward embedding, we implement advanced abstrac-
tions in the host language. With minimal effort, we exploit the selective CPS
transform already existing in Scala to provide a compelling abstraction over
asynchronous callback-driven programming in our DSL (section 7). The new
insight here is that CPS transforming a program generator allows it to gen-
erate code that is in CPS. This case-study demonstrates the fruitfulness of
re-using existing host language features to enhance our embedded DSL.

In section 8, we describe our experience in using the DSL, and conclude in
section 9.

In addition to the contributions above, the present work significantly ex-
tends the LMS framework, which is beneficial to future DSL efforts taking
the JavaScript work as a case study. Previous LMS embeddings had to define
each staged operation explicitly (like in section 2.2). This paper contributes
lifting of whole traits or classes (through the repProxy mechanism described
and used in sections 3.1& 6.3), untyped or optionally typed operations (sec-
tions 3.2, 3.3& 3.4), and typed object literals (section 6.2) including necessary
language support of the Scala-Virtualized [24] compiler.

1 Surely, the embedded language is not exactly JavaScript: it naturally is a subset of
Scala, the host language. However, it is quite close to JavaScript. Often one can take
snippets of JavaScript code and use them in the DSL with minor syntactic tweaking,
as demonstrated by the Snowflake example described in section 4.



4 JavaScript as an Embedded DSL

2 Introduction to LMS

In LMS, a DSL is split into two parts, its interface and its implementation.
Both parts can be assembled from components in the form of Scala traits. DSL
programs are written in terms of the DSL interface only, without knowledge of
the implementation.

Part of each DSL interface is an abstract type constructor Rep[_] that is
used to wrap types in the DSL programs. The DSL implementation provides
a concrete instantiation of Rep as IR nodes. When the DSL program is staged,
it produces an intermediate representation (IR), from which the final code can
be generated. In the DSL program, wrapped types such as Rep[Int] represent
staged computations while expressions of plain unwrapped types (Int, Bool, etc.)
are evaluated at staging time as in [5,18].

Consider the difference between these two programs:
def prog1(b: Bool, x: Rep[Int]) = if (b) x else x+1
def prog2(b: Rep[Bool], x: Rep[Int]) = if (b) x else x+1

The only difference in these two programs is the type of the parameter b,
illustrating that staging is purely type-driven with no syntactic overhead as the
body of the programs are identical.

In prog1, b is a simple boolean, so it must be provided at staging time, and
the if is evaluated at staging time. For example, prog1(true, x) evaluates to x.
In prog2, b is a staged value, representing a computation which yields a boolean.
So prog2(b, x) evaluates to an IR node for the if: If(b, x, Plus(x, Const(1))).

For prog2, notice that the if got transformed into an IR node. To achieve
this, LMS uses Scala-Virtualized [24], a suite of minimal extensions to the reg-
ular Scala compiler, in which control structures such as if can be reified into
method calls, so that alternative implementations can be provided. In our case,
we provide an implementation of if that constructs an IR node instead of act-
ing as a conditional. In addition, the + operation is overloaded to act on both
staged and unstaged expressions. This is achieved by an implicit conversion from
Rep[Int] to a class IntOps, which defines a + method that creates an IR node Plus
when executed. Both of Plus’s arguments must be staged. We use an implicit
conversion to stage constants when needed by creating a Const IR node.

2.1 Example: a DSL program and its generated JavaScript code

The following DSL snippet creates an array representing a table of multiplica-
tions:
def test(n: Rep[Int]): Rep[Array[Int]] =
for (i <- range(0, n); j <- range(0, n)) yield i*j

Here is the JavaScript code generated for this snippet:
function test(x0) {
var x6 = []
for(var x1=0;x1<x0;x1++){
var x4 = []



JavaScript as an Embedded DSL 5

for(var x2=0;x2<x0;x2++){
var x3 = x1 * x2
x4[x2]=x3

}
x6.splice.apply(x6, [x6.length,0].concat(x4))

}
return x6

}

The generated code resembles single-assignment form. The nested for-loop
is desugared into a flatMap which generates the nested for-loop and the splice

pattern concatenating the inner x4 arrays into one x6 array in the JavaScript
code.2

2.2 Walkthrough: defining a DSL component

To conclude the introduction to LMS, we show how to add a component for
logging in a DSL, generating JavaScript code which calls console.log.

We start by defining the interface:
trait Debug extends Base {

def log(msg: Rep[String]): Rep[Unit]
}

The Base trait is part of the core LMS framework and provides the abstract
type constructor Rep.

Now, we define the implementation:
trait DebugExp extends Debug with EffectExp {

case class Log(msg: Exp[String]) extends Def[Unit]
def log(msg: Exp[String]): Exp[Unit] = reflectEffect(Log(msg))

}

The EffectExp trait is part of the core LMS framework. It inherits from
BaseExp which instantiates Rep as Exp. Exp represents an IR via two subclasses:
Const for constants and Sym for named values defining a Def. Def is the base class
for all IR nodes. In our DebugExp trait, we extend Def to support a new IR node:
Log.

IR nodes are defined as Defs but they are never referenced explicitly as such.
Instead each Def has a corresponding symbol (an instance of Sym). IR nodes
refer to each other using their symbols. This is why, in the code shown, the
msg parameter is of type Exp (not Def). The method log returns an Exp. Calling
reflectEffect is what creates this symbol from the Def.

In general, the framework provides an implicit conversion from Def to Exp,
which performs common subexpression elimination by re-using the same symbol
for identical definitions. We do not use the automatic conversion here, because
log is a side-effecting operation, and we do not want to (re)move any such calls
even if their message is the same.

2 Obviously, the generated code can be optimized further.



6 JavaScript as an Embedded DSL

The framework schedules the code generation from the graph of Exps and
their dependencies through Defs. It chooses which Sym/Def pairs to emit and
in which order. To implement code generation to JavaScript for our logging IR
node, we simply override emitNode to handle Log:
trait JSGenDebug extends JSGenEffect {
val IR: DebugExp
import IR._
override def emitNode(sym: Sym[Any], rhs: Def[Any])(

implicit stream: PrintWriter) = rhs match {
case Log(s) => emitValDef(sym, "console.log(" + quote(s) + ")")
case _ => super.emitNode(sym, rhs)

}
}

Notice that in order to compose nicely with other traits, the overridden method
just handles the case it knows and delegates to other traits, via super, the emit-
ting of nodes it doesn’t know about.

3 Gradual Typing for Interfacing with Existing APIs

Since our DSL is embedded in Scala, it inherits its static type system. However,
the generated JavaScript code doesn’t need the static types. Therefore, to help in-
tegrate external JavaScript libraries and APIs (for example, the browser’s DOM
API), we support a form of gradual typing. This has proved especially useful for
rapid-prototyping, where external libraries are first incorporated dynamically,
and later declared as typed APIs. Various practical and theoretical aspects of
gradual typing have been studied by [38,2,1,31,32].

3.1 Typed APIs

First, we show how to incorporate an external JavaScript API in a fully-typed
way into our DSL. As an example, consider the following DSL snippet, which
gets the context of an HTML5 canvas element selected by id:
val context = document.getElementById("canvas").as[Canvas].getContext()

At the DSL interface level, we declare our typed APIs as abstract Scala traits:
trait Dom {

val document: Rep[Element]
trait Element
trait ElementOps {

def getElementById(id: Rep[String]): Rep[Element]
}
trait Canvas extends Element
trait CanvasOps extends ElementOps {

def getContext(context: Rep[String]): Rep[Context]
}
trait Context
trait ContextOps {



JavaScript as an Embedded DSL 7

def lineTo(x: Rep[Int], y: Rep[Int]): Rep[Unit]
// etc.

}
}

Notice that document has type Rep[Element], and needs to implement the in-
terface of ElementOps, so that document.getElementById("canvas") is well-typed.
We achieve this using an implicit conversion from Rep[Element] to ElementOps.
At the DSL implementation level, the ElementOps returned by this implicit con-
version needs to generate an IR node for each method call, as shown in the
walkthrough in section 2.2. For example, document.getElementById("canvas") be-
comes the IR node MethodCall(document, "getElementById", List("canvas")).
This is a mechanical transformation, implemented by repProxy, a library method
using reflection to intercept method calls and generate IR nodes based on the
method name and the arguments of the invocation. Note that this use of reflec-
tion is purely at staging time, so there is no overhead in the generated code.
trait DomLift extends Dom with JSProxyBase {
implicit def repToElementOps(x: Rep[Element]): ElementOps =

repProxy[Element,ElementOps](x)
implicit def repToCanvasOps(x: Rep[Canvas]): CanvasOps =

repProxy[Canvas,CanvasOps](x)
implicit def repToContextOps(x: Rep[Context]): ContextOps =

repProxy[Context,ContextOps](x)
}

Note also that since getElementById returns an arbitrary DOM element, we
need to cast it to a Canvas using as[Canvas]. The as operation is implemented
simply as a cast in the host language (no IR node is created):
trait AsRep {

def as[T]: Rep[T]
}
implicit def asRep(x: Rep[_]): AsRep = new AsRep {
def as[T]: Rep[T] = x.asInstanceOf[Rep[T]]

}

Instead of this no-op implementation, it is possible to insert run-time check-cast
assertions in the generated JavaScript code.

3.2 Casting and Optional Runtime Type Checks

The need for casting arises in a few contexts. One of them is the boundary
between typed and untyped portions of a program [38,2]. Passing a value from
an untyped portion to a typed one usually requires a cast. Another situation
where casts are needed is interaction with external services. For example, to
process data from an external service such as Twitter, we cast it to its expected
type (an array of JSON objects, each with a field called text):
type TwitterResponse = Array[JSLiteral {val text: String}]
def fetchTweets(username: Rep[String]) = {
val raw = ajax.get { ... }



8 JavaScript as an Embedded DSL

raw.as[TwitterResponse]
}

A more complete example is provided in section 7. In this situation, it is useful
to generate runtime checks either as an aid during development and debugging
time or as a security mechanism that validates data coming from an external
source. In the example above, if runtime checks are enabled, by failing early,
we obtain a guarantee that all data returned from fetchTweets conforms to
type TwitterResponse which means that any later access to the text field of any
element of the data array will never fail, and always return a string.

Notice that when a typed API is defined for an external library, there are
implicit casts introduced for argument and return types of the defined methods.
These casts can also be checked at runtime to ensure compliance.

We have implemented a component that generates JavaScript code that as-
serts casts at runtime. It was fairly straightforward as the host language allows
us to easily inspect types involved in casting. Since this component just provides
a different implementation of the same casting method as, it can be enabled
selectively for performance reasons.

3.3 Scala Dynamic

Since our DSL compiles to JavaScript, which is dynamically typed, it is appealing
to allow expressions and APIs in our DSL to also, selectively, be dynamically
typed. This is especially useful for rapid-prototyping.

We provide a component, JSDynamic, which allows any expression to become
dynamically typed, by wrapping it in a dynamic call. The dynamic wrapper returns
a DynamicRep, on which any method call, field access and field update is possible.
A dynamic method call and field access returns another DynamicRep expression,
so dynamic expressions can be chained.

DynamicRep exploits a new Scala feature3, based on a special trait Dynamic:
An expression whose type T is a subtype of Dynamic is subject to the following
rewrites:

– x.f rewrites to x.selectDynamic("f"),
– x.m(a, ..., z) rewrites to x.applyDynamic("m")(a, ..., z),
– x.f = v rewrites to x.updateDynamic("f")(v).

These rewrites take place when the type T doesn’t statically have field f and
method m.

At the implementation level, as these rewriting take place, we generate IR
nodes which allow us to then generate straightforward JavaScript for the origi-
nal expressions. For example, for the expression dynamic(x).foo(1, 2), we would
generate an IR node like MethodCall(x, "foo", List(Const(1), Const(2))). From
this IR node, it is easy to generate the JavaScript code x.foo(1, 2). Note the
similarity with the IR nodes generated for typed APIs.

3 C#’s type “dynamic” [3] can serve the same purpose.



JavaScript as an Embedded DSL 9

3.4 From Dynamic to Static

This possibility to escape into dynamic typing is particularly useful in simplifying
the incorporation of external JavaScript APIs and libraries. Sometimes, the user
might not want to build a statically typed API for each external JavaScript
library. In addition, for some library, it might be awkward to come up with such
a statically-typed interface. In general, we expect users to start with a dynamic
API for an external library, and progressively migrate it to a typed API as the
code matures. Consider again the example introduced in the typed API section:
val context = document.getElementById("canvas").as[Canvas].getContext()

In a fully dynamic scenario, we declare the DOM API simply as:
trait Dom extends JSDynamic {
val document: DynamicRep

}

The as[Canvas] cast is not necessary in this dynamically typed setting:
val context = document.getElementById("canvas").getContext()

As a first step towards statically typing the API, we declare the type Element:
trait Dom extends JSProxyBase with JSDynamic {

val document: Rep[Element]
trait Element
trait ElementOps {
def getElementById(id: Rep[String]): DynamicRep

}
implicit def repToElementOps(x: Rep[Element]): ElementOps =

repProxy[Element,ElementOps](x)
}

Since the method getElementById returns a DynamicRep, only the emphasized part
of the expression is statically typed:
val context = document.getElementById("canvas").getContext()

We can then complete the static typing by declaring types for Canvas and
Context as seen in the typed API section.

In our gradual typing scheme, an expression is either completely statically
typed or completely dynamically typed. Once document is declared as Rep[Element]
instead of DynamicRep, it is a type error to call an arbitrary method which is not
part of its declared ElementOps interface. If needed, it is always possible to ex-
plicitly move from a statically-typed expression to a dynamically-typed one by
wrapping it in a dynamic call.

4 Sharing Code between Client and Server

In addition to generating JavaScript / client-side code, we want to be able to
re-use our DSL code on the Scala / server-side. In the LMS approach, the DSL
uses the abstract type constructor Rep [23]. When generating JavaScript, this
abstract type constructor is defined by IR nodes. Another definition, which we



10 JavaScript as an Embedded DSL

dub “trivial embedding”, is to use the identity type constructor: Rep[T] = T. By
stripping out Reps in this way, our DSL can operate on concrete Scala types,
replacing staging with direct evaluation. Even in the trivial embedding, when
the DSL code operates on concrete Scala types, virtualization still occurs because
the usage layer of the DSL is still in terms of abstract Reps.

As an example, consider the following DSL snippet, which computes the
absolute value:
trait Ex extends JS {
def abs(x: Rep[Int]) = if (x < 0) -x else x

}

We can use this DSL snippet to generate JavaScript code:
new Ex with JSExp { self =>
val codegen = new JSGen { ... }
codegen.emitSource(abs _, "abs", ...)

}

We can also use this DSL snippet directly in Scala via the trivial embedding
(defined by JSInScala):

new Ex with JSInScala { self =>
println(abs(-3))

}

In the JavaScript example (when mixing in JSExp) evaluating abs(x) results in
an IR tree roughly equivalent to If(LessThan(Sym("x"), Const(0)), Neg(Sym("x")),

Sym("x")). In the trivial embedding, when abs(-3) gets called, it evaluates to 3 by
executing the virtualized if as a normal condition. In short, in the trivial embed-
ding, the virtualized method calls are evaluated in-place without constructing
IR nodes.

In the previous section, we showed how to define typed APIs to represent
JavaScript external libraries or dependencies. In the trivial embedding, we need
to give an interpretation to these APIs. For example, we can implement a Canvas
context in Scala by using native graphics to draw on a desktop widget instead
of a web page. We translated David Flanagan’s Canvas example from the book
“JavaScript: The Definitive Guide” [16], which draws Koch snowflakes on a can-
vas [15]. First, the translation from JavaScript to our DSL is straightforward:
the code looks the same except for some minor declarations. Then, from our
DSL code, we can generate JavaScript code to draw the snowflakes on a canvas
as in the original code. In addition, via the trivial embedding, we can execute
the DSL code in Scala to draw snowflakes on a desktop widget. Screenshot pre-
senting snowflakes rendered in a browser using HTML5 Canvas and Java’s 2D
are presented in figure 1.

HTML5 Canvas is a standard that is not implemented by all browsers yet so
a fall-back mechanism is needed to support users of older browsers. This can be
achieved through the trivial embedding by drawing using Java’s 2D API, saving
the result as an image and sending it to the browser. The decision to either
generate a JavaScript snippet that draws on canvas and send it to the browser,
or render the image on the server can be made at runtime (e.g. after inspecting



JavaScript as an Embedded DSL 11

Fig. 1. Snowflakes rendered using HTML5 Canvas and Java’s 2D

information about the client’s browser). In the case of rendering on the server-
side, one can store computation that renders an image using Java’s graphics 2D
in a hash map and send back to the client the key as an url for an image. When
a browser makes a second request, computation can be restored from the hash
map, executed and the result sent back to the browser. All of that is possible
because the computation itself is expressed against an abstract DSL API so we
can swap implementations to either generate JavaScript or run the computation
at the server side. Moreover, our DSL is just a library and computations are
expressed as first-class values in a host language so they can be passed around
the server program, stored in a hash map, etc.

A drawback of the trivial embedding is that although lightweight, virtualiza-
tion is not completely free, and a small virtualization overhead is incurred each
time the program is evaluated. To avoid this, we could generate Scala code in
the same way as we now generate JavaScript code, relying on a mechanism to
incorporate the generated Scala code into the rest of the program. In fact, this
approach is taken by the Delite framework.

5 Modularity Interlude

The design of our DSL supports modularity at many levels. We use Scala’s
traits heavily to allow our DSL to be assembled from and extended with com-
ponents [25].

For example, the feature to escape into dynamic typing is implemented as an
independent component that can be mixed and matched with others. Similarly,
users specify external APIs as components. The separation between the interface
level and the implementation level is also done by having distinct components



12 JavaScript as an Embedded DSL

for each level. This allows the same DSL program to be interpreted in multiple
ways, as has been shown with the trivial embedding to Scala.

As the features available in a DSL program are specified by composing com-
ponents, it is possible to use this mechanism to enforce that a subprogram only
uses a restricted set of features. For example, worker threads in JavaScript (“Web-
Workers”) are not allowed to manipulate the DOM. This can be enforced by not
mixing in the DOM component in the subprogram for a worker thread.

The code generation level is assembled from components as in the interface
and implementation levels. Furthermore, optimizations in code generation can
be implemented as optional components to be mixed in.

6 Reification of Objects

By exploiting staging, the generated code can remain simple and relatively un-
structured as many of the high-level constructs can be evaluated away at staging
time. However, it is sometimes useful to be able to reify more complex structures.
For example, APIs sometimes expect arguments or return results as object liter-
als. Therefore, we support a few type-safe ways to create more complex staged
structures, which we explain below.

6.1 Functions

A function in the host language acting on reified types has type: Rep[A] => Rep[B].
For example, the function inc has type Rep[Int] => Rep[Int]:
val inc = (x: Rep[Int]) => x + 1

Invoking such a function at staging time simply inlines the call: inc(4*x) re-
sults in 4*x + 1. This is useful and nice, because it removes abstraction overhead
from the generated code.

We also want the ability to treat functions as first-class staged values, since
JavaScript supports them. In order to do this, we provide a higher-order function
fun which takes a function of type Rep[A] => Rep[B] and converts4 it to a staged
function of type Rep[A => B]. For example, if we define inc in the following way,
its type is Rep[Int => Int]:
val inc = fun { (x: Rep[Int]) => x + 1 }

Calling inc(4*x) results in an Apply IR node. We actually generate JavaScript
code for the staged inc function, while we did not for the unstaged one, since
it is inlined at every call site during staging. The generated code looks roughly
like the following:
var inc = function(a) {
return a+1

}
inc(4*x)

4 We refer the reader to [28] for implementation details.



JavaScript as an Embedded DSL 13

First-class functions are widely used in JavaScript. One particular common
case is for callback-driven programming. Therefore, staged functions are impor-
tant to interface with existing libraries. They will also play a crucial role in
section 7, where we abstract over callback-driven programming.

6.2 Typed Object Literals

Our DSL provides typed immutable object literals to represent JavaScript object
literals. As an example:
val o = new JSLiteral {
val a = 1
val b = a + 1

}

o has type Rep[JSLiteral {val a: Int; val b: Int}]. All the fields of o are Reps,
so o.a has type Rep[Int]. The translation to JavaScript is straightforward:
var o = { a : 1, b : 2 }

This straightforward translation makes it possible to pass the typed object lit-
erals of our DSL to JavaScript functions which expects object literals, such as
JSON.stringify or jQuery’s css.

As for implementation, notice that the type of a new JSLiteral {...} ex-
pression is not JSLiteral {...} but Rep[JSLiteral {...}]. This is achieved with
support from the Scala-Virtualized compiler. JSLiteral inherits from a special
trait, which indicates its new expressions should be reified. So the new expression
is turned into a method call, with information about all the field definitions. A
complication is that a field definition might reference another field being defined
(such as b being defined in terms of a in the example above). So each definition
is represented by its name and a function which takes a self type for the object
literal. These definition functions are evaluated in an order which allows the self
references to be resolved.

6.3 Classes

Our DSL also supports reified classes. For convenience, these are defined as traits,
use the repProxy mechanism underlying typed APIs and are also implemented
using reflection. The translation to JavaScript, based on constructors and pro-
totypes, is straightforward. Through the trivial embedding, classes implemented
in our DSL can be used on both the server and client sides.

7 CPS Transformation for Asynchronous Code Patterns

A callback-driven programming style is pervasive in JavaScript programs. Be-
cause of lack of thread support, callbacks are used for I/O, scheduling and event-
handling. For example, in an Ajax call, one has to provide a callback that will
be called once the requested data arrives from the server. This style of program-
ming is known to be unwieldy in more complicated scenarios. To give a specific



14 JavaScript as an Embedded DSL

example, let’s consider a scenario where we have an array of Twitter account
names and we want to ask Twitter for the latest tweets of each account. Once
we obtain the tweets of all users, we would like to log that fact in a console.

We’ll implement this program both in JavaScript and in our DSL. Let’s start
by implementing logic that fetches tweets for a single user by using the jQuery
library for Ajax calls (listings 1.1 & 1.2).

Listing 1.1. Fetching tweets in JavaScript

function fetchTweets(username, callback) {
jQuery.ajax({

url: "http://api.twitter.com/1/
statuses/user_timeline.json/",

type: "GET",
dataType: "jsonp",
data: {

screen_name : username,
include_rts : true,
count : 5,
include_entities : true

},
success: callback

})
}

Listing 1.2. Fetching tweets in DSL
def fetchTweets(username: Rep[String]) =

(ajax.get {
new JSLiteral {
val url = "http://api.twitter.com/1/

statuses/user_timeline.json"
val ‘type‘ = "GET"
val dataType = "jsonp"
val data = new JSLiteral {

val screen_name = username
val include_rts = true
val count = 5
val include_entities = true

}
}

}).as[TwitterResponse]

type TwitterResponse =
Array[JSLiteral {val text: String}]

Note that JavaScript version takes a callback as second argument that will be
used to process the fetched tweets. We provide the rest of the logic that iterates
over an array of users and makes Ajax requests (listings 1.3 & 1.4).

Listing 1.3. Twitter example in
JavaScript
var processed = 0
var users = ["gkossakowski", "odersky",
"adriaanm"]

users.forEach(function (user) {
console.log("fetching " + user)
fetchTweets(user, function(data) {
console.log("finished fetching " + user)
data.forEach(function (tweet) {

console.log("fetched " + tweet.text)
})
processed += 1
if (processed == users.length) {

console.log("done")
}

})
})

Listing 1.4. Twitter example in DSL
val users = array("gkossakowski", "odersky",

"adriaanm")
for (user <- users.parSuspendable) {

console.log("fetching " + user)
val tweets = fetchTweets(user)
console.log("finished fetching " + user)
for (t <- tweets)

console.log("fetched " + t.text)
}
console.log("done")

Because of the inverted control flow of callbacks, synchronization between
callbacks has to be handled manually. Also, the inverted control flow leads to



JavaScript as an Embedded DSL 15

a code structure that is distant from the programmer’s intent. Notice that the
in JavaScript version, the call to console that prints “done" is put inside of the
foreach loop. If it was put it after the loop, we would get “done” printed before
any Ajax call has been made leading to counterintuitive behaviour.

As an alternative to the callback-driven programming style, one can use an
explicit monadic style, possibly sugared by a Haskell-like “do”-notation. This
is the approach taken by F# Web Tools [26]. However, this requires rewriting
possibly large parts of a program into monadic style when a single async oper-
ation is added. Another possibility is to automatically transform the program
into continuation passing style (CPS), enabling the programmer to express the
algorithm in a straightforward, sequential way and creating all the necessary
callbacks and book-keeping code automatically. Links [10] uses this approach.
However, a whole-program CPS transformation can cause performance degrada-
tion, code size blow-up, and stack overflows. In addition, it is not clear how to
interact with existing non-CPS libraries as the whole program needs to adhere to
the CPS style. We suggest using a selective CPS transformation, which precisely
identifies what needs to be CPS transformed.

In fact, the Scala compiler already does selective CPS transformations of
Scala programs, driven by @suspendable type annotations [27,12,13]. We show
how this mechanism can be used for transforming our DSL code before stag-
ing and stripping out most CPS abstractions at staging time. The generated
JavaScript code does not contain any CPS-specific code but is written in CPS-
style by use of JavaScript anonymous functions.

Our implementation to support continuations is an example of an interesting
technique of applying selective cps transformation to embedded DSLs by means
of a deep linguistic reuse, exploiting a host language feature to implement the
corresponding DSL feature without (much) additional work. An interesting in-
sight is that our method of CPS transforming a direct-style program generator
allows it to generate code that is in CPS.

7.1 CPS in Scala

Before presenting how CPS transformations are used in our DSL, let’s consider
a typical situation where CPS rewrites act on Scala programs.

As an example, we consider a sleep method implemented in non-blocking,
asynchronous style. This is useful, for example, when using ThreadPools as no
thread is being blocked during the sleep period. Let’s see how our sleep method
written in CPS can be used:
def foo() = {

sleep(1000)
println("Called foo")

}
reset {

println("look, Ma ...")
foo()



16 JavaScript as an Embedded DSL

sleep(1000)
println(" no threads!")

}

The reset delimits the scope of CPS rewrite. Let’s see how the rewrite itself
looks like:
def foo(): ControlContext = {

sleep(1000).map((tmp1: Unit) => println("Called foo"))
}
reset {

println("look, Ma ...")
foo().flatMap((tmp2: Unit) =>

sleep(1000).map((tmp3: Unit) => println(" no threads!"))
)

}

There are a few things worth noting here. First, the return type of foomethod
is rewritten to be ControlContext.5 This is due to the fact that sleep is used in the
body of foo. Also, note that the code to be executed after sleeping is captured as
a continuation (anynomous function) and passed to the ControlContext through
a call of the map method. The body of the reset block is rewritten in a similar
vein.

Now, let’s have a closer look how sleep itself is implemented:

Listing 1.5. sleep implementation

import java.util.{Timer,TimerTask}
val timer = new Timer
def sleep(delay: Int): Unit @suspendable = shift { k =>

val task = new TimerTask { def run() = k() }
timer.schedule(task, delay.toLong)

}

Notice the @suspendable type annotation attached to sleep’s return type
Unit. The @suspendable annotation means that the sleep method can be used
in a side-effecting continuation context. In the definition of the sleep method,
we use Java’s Timer and TimerTask abstractions for asynchronous, delayed task
execution. The TimerTask interface has one method, run, that will be executed
after a specified period of time. The shift control abstraction allows us to capture
the continuation as a first-class value and then use it in the body of the run

method. Both the reset and shift control abstractions are described in detail
in [12].

After the CPS transformation, the code presented above becomes
def sleep(time: Int): ControlContext =

shiftR { k =>

5 The ControlContext class implements the continuation monad and is provided by
Scala’s standard library. ControlContext[A,B,C] is similar to C#’s Task<T>, but
more general. In our discussion, we omit the type parameters for simplicity.



JavaScript as an Embedded DSL 17

val task = new TimerTask { def run() = k() }
timer.schedule(task, delay.toLong)

}

After the rewriting, all CPS-related type annotations are dropped and use
of the ControlContext class that supports continuation passing is introduced.
The shiftR method is an internal method that takes a block (which itself is a
function) and wraps it in ControlContext structure.

7.2 CPS and Staging

Let’s write the example from listing 1.5 in our DSL. We need to define sleep to
use JavaScript’s setTimeout 6 as a replacement for the Timer abstraction.
def sleep(delay: Rep[Int]) = shift { k: (Rep[Unit]=>Rep[Unit]) =>

window.setTimeout(fun(k), delay)
}

The setTimeout method expects an argument of type Rep[Unit=>Unit] which
denotes a representation of a function of type Unit=>Unit. The shift method
offers us a function of type Rep[Unit] => Rep[Unit], so we need to reify it to
obtain the desired representation. The reification is achieved by the fun function
(described in 6.1) provided by our framework and performed at staging time.

It is important to note that reification preserves function composition (roughly
speaking it is a homomorphism between DSL code and generated JavaScript
code). Specifically, let f: Rep[A] => Rep[B] and g: Rep[B] => Rep[C] then fun(g

compose f) == (fun(g) compose fun(f)) where we consider two reified functions
to be equal if they yield the same observable effects at runtime 7. That property
of function reification is at the core of reusing the continuation monad in our
DSL. Thanks to the fact that the continuation monad composes functions, we
can just insert reification at some places (like in a sleep) and make sure that
we reify effects of the continuation monad without the need to reify the monad
itself.

7.3 CPS for Suspendable Traversals

We need to be able to suspend our execution while traversing an array in order
to implement functionality from listing 1.4. Let’s consider a simplified exam-
ple where we want to iterate over an array and sleep during each iteration. We
present both code written in JavaScript and our DSL that achieves that (list-
ings 1.6 & 1.7).

Both programs, when executed, will print the following to the JavaScript
console:
6 The setTimeout function asynchronously executes a function passed as argument
after a specified delay.

7 Note that composition on the left and the right hand side of the equation is not the
same operation but they have the same observable runtime effect.



18 JavaScript as an Embedded DSL

Listing 1.6. JavaScript
var xs = [1, 2, 3]
var i = 0
var msg = null
function f1() {
if (i < xs.length) {

window.setTimeout(f2, xs[i]*1000)
msg = xs[i]
i++

} else {
console.log("done")

}
}
function f2() {
console.log(msg)
f1()

}
f1()

Listing 1.7. DSL

val xs = array(1, 2, 3)
// shorthand for xs.suspendable.foreach
for (x <- xs.suspendable) {

sleep(x * 1000)
console.log(String.valueOf(x))

}
log("done")

//pause for 1s
1
//pause for 2s
2
//pause for 3s
3
done

In the DSL code, we use a suspendable variant of arrays, which is achieved
through an implicit conversion from regular arrays:
implicit def richArray(xs: Rep[Array[A]]) = new {

def suspendable: SArrayOps[A] = new SArrayOps[A](xs)
}

The idea behind suspendable arrays is that iteration over them can be suspended.
We’ll have a closer look at how to achieve that with the help of CPS. The
suspendable method returns a new instance of the SArrayOps class defined here:

Listing 1.8. Suspendable foreach

class SArrayOps(xs: Rep[Array[A]]) {
def foreach(yld: Rep[A] => Rep[Unit] @suspendable):

Rep[Unit] @suspendable = {
var i = 0
suspendableWhile(i < xs.length) { yld(xs(i)); i += 1 }

}
}

Note that one cannot use while loops in CPS but we can simulate them with
recursive functions. Let’s see how a regular while loop can be simulated with a
recursive function with call-by-name parameters:
def recursiveWhile(cond: => Boolean)(body: => Unit): Unit = {

def rec = () => if (cond) { body; rec() } else {}
rec()



JavaScript as an Embedded DSL 19

}

By adding CPS-related declarations and control abstractions, we implement
suspendableWhile:
def suspendableWhile(cond: => Rep[Boolean])(

body: => Rep[Unit] @suspendable): Rep[Unit] @suspendable =
shift { k =>

def rec = fun { () =>
if (cond) reset { body; rec() } else { k() }

}
rec()

}

7.4 Defining the Ajax API

With the abstractions for suspendable loops and traversals at hand, what re-
mains to complete the Twitter example from the beginning of the section is the
actual Ajax request/response cycle.

The Ajax interface component provides a type Request that captures the
request structure expected by the underlying JavaScript/jQuery implementation
and the necessary object and method definitions to enable the use of ajax.get
in user code:
trait Ajax extends JS with CPS {

type Request = JSLiteral {
val url: String
val ‘type‘: String
val dataType: String
val data: JSLiteral

}
type Response = Any
object ajax {

def get(request: Rep[Request]) = ajax_get(request)
}
def ajax_get(request: Rep[Request]): Rep[Response] @suspendable

}

Notice that the Request type is flexible enough to support an arbitrary object
literal type for the data field through subtyping. The Response type alias points
at Any which means that it is the user’s responsibility to either use dynamic or
perform an explicit cast to the expected data type.

The corresponding implementation component implements ajax_get to cap-
ture a continuation, reify it as a staged function using fun and store it in an
AjaxGet IR node.
trait AjaxExp extends JSExp with Ajax {

case class AjaxGet(request: Rep[Request],
success: Rep[Response => Unit]) extends Def[Unit]



20 JavaScript as an Embedded DSL

def ajax_get(request: Rep[Request]): Rep[Response] @suspendable =
shift { k =>

reflectEffect(AjaxGet(request, fun(k)))
}

}

During code generation, we emit code to attach the captured continuation
as a callback function in the success field of the request object:
trait GenAjax extends JSGenBase {

val IR: AjaxExp
import IR._
override def emitNode(sym: Sym[Any], rhs: Def[Any])(

implicit stream: PrintWriter) = rhs match {
case AjaxGet(req, succ) =>

stream.println(quote(req) + ".success = " + quote(succ))
emitValDef(sym, "jQuery.ajax(" + quote(req) + ")")

case _ => super.emitNode(sym, rhs)
}

}

It is interesting to note that, since the request already has the right structure
for the jQuery.ajax function, we can simply pass it to the framework-provided
quote method, which knows how to generate JavaScript representations of any
JSLiteral.

The Ajax component completes the functionality required to run the Twitter
example with one caveat: The outer loop in listing 1.4 uses parSuspendable to
traverse arrays instead of the suspendable traversal variant we have defined in
listing 1.8.

In fact, if we change the code to use suspendable instead of parSuspendable
and run the generated JavaScript program, we will get following output printed
to the JavaScript console:
fetching gkossakowski
finished fetching gkossakowski
fetched [...]
fetched [...]
fetching odersky
finished fetching odersky
fetched [...]
fetched [...]
fetching adriaanm
finished fetching adriaanm
fetched [...]
fetched [...]
done

Notice that all Ajax requests were done sequentially. Specifically, there was
just one Ajax request active at a given time; when the callback to process one
request is called, it would resume the continuation to start another request, and



JavaScript as an Embedded DSL 21

so on. In many cases this is exactly the desired behavior, however, we will most
likely want to perform our Ajax request in parallel.

7.5 CPS for Parallelism

The goal of this section is to implement a parallel variant of the foreach method
from listing 1.8. We’ll start with defining a few primitives like futures and
dataflow cells. Let’s start with cells, which we decide to define in JavaScript,
as another example of integrating external libraries with our DSL:

Listing 1.9. JavaScript-based implementation of a non-blocking Cell

function Cell() {
this.value = undefined
this.isDefined = false
this.queue = []
this.get = function (k) {

if (this.isDefined) {
k(this.value)

} else {
this.queue.push(k)

}
}
this.set = function (v) {

if (this.isDefined) {
throw "can’t set value twice"

} else {
this.value = v
this.isDefined = true
this.queue.forEach(function (f) {

f(v) //non-trivial spawn could be used here
})

}
}

}

A cell object allows us to track dependencies between values. Whenever the
get method is called and the value is not in the cell yet, the continuation will
be added to a queue so it can be suspended until the value arrives. The set

method takes care of resuming queued continuations. We expose Cell as an
external library using our typed API mechanism and we use it for implementing
an abstraction for futures.
def createCell(): Rep[Cell[A]]
trait Cell[A]
trait CellOps[A] {

def get(k: Rep[A => Unit]): Rep[Unit]
def set(v: Rep[A]): Rep[Unit]

}



22 JavaScript as an Embedded DSL

implicit def repToCellOps(x: Rep[Cell[A]]): CellOps[A] =
repProxy[Cell[A],CellOps[A]](x)

def spawn(body: => Rep[Unit] @suspendable): Rep[Unit] = {
reset(body) //non-trivial implementation uses

//trampolining to prevent stack overflows
}
def future(body: => Rep[A] @suspendable) = {

val cell = createCell[A]()
spawn { cell.set(body) }
cell

}

The last bit of general functionality we need is RichCellOps that ties Cells
and continuations together inside of our DSL.

class RichCellOps(cell: Rep[Cell[A]]) {
def apply() = shift { k: (Rep[A] => Rep[Unit]) =>

cell.get(fun(k))
}

}
implicit def richCellOps(x: Rep[Cell[A]]): RichCell[A] =

new RichCellOps(x)

It is worth noting that RichCellOps is not reified so it will be dropped at
staging time and its method will get inlined whenever used. Also, it contains
CPS-specific code that allows us to capture the continuation. The fun function
reifies the captured continuation.

We are ready to present the parallel version of foreach defined in listing 1.8.

def foreach(yld: Rep[A] => Rep[Unit] @suspendable):
Rep[Unit] @suspendable = {

val futures = xs.map(x => future(yld(x)))
futures.suspendable.foreach(_.apply())

}

We instantiate each future separately so they can be executed in parallel.
As a second step we make sure that all futures are evaluated before we leave
the foreach method by forcing evaluation of each future and “waiting” for its
completion. Thanks to CPS transformations, all of that will be implemented in
a non-blocking style.

The only difference between the parallel and serial versions of the Twitter
example 1.4 is the use of parSuspendable instead of suspendable so the parallel
implementation of the foreach method is used. The rest of the code stays the
same. It is easy to switch between both versions, and users are free to make their
choice according to their needs and performance requirements.



JavaScript as an Embedded DSL 23

8 Evaluation

We have implemented our DSL in Scala.8 We used our DSL to develop a few
web applications, which are simple but not trivial. First, we implemented a
few drawing examples like the snowflakes of figure 1. We extended the Twitter
example from section 7, which presents the latest tweets from selected users in
an interactive way. In order to do so, we incorporated a useful subset of the
DOM API and jQuery library using our typed APIs.

Moreover, we integrated our DSL with an existing web framework, Play 2.0.9
Our DSL can be used to define Play form validators that are executed on both
the client and server sides. We managed to achieve that without deep changes
to the framework, proving that our DSL can be used as a library.

Finally, we developed a collaborative
drawing application, which includes a server-
side component (implemented using the Jetty
web server). We use web sockets to commu-
nicate between the server and clients. Each
client transmits drawing commands to the
server, which broadcasts them to all the
clients. When a new client joins, the server
sends the complete drawing history to the
new client, and the client reconstructs the im-
age by playing back the commands. A very
simple improvement is to make the server
execute the drawing commands as well, and
keep an up-to-date bitmap of the drawing –
this can easily be achieved by using the triv-
ial embedding described in section 4. New clients then just obtain the bitmap
instead of replaying the history, which can be large and grow unboundedly.

9 Conclusion

In this paper, we have shown how to embed a JavaScript DSL in Scala using
LMS. A recurring theme of our approach is to exploit the features of the host
language to enhance the DSL with minimal effort. Moreover, through staging, we
can use many abstractions at the code-generation stage, without complexity and
performance overhead in the generated code. We believe this approach addresses
some important challenges of developing rich web applications.

10 Acknowledgments

We thank Adriaan Moors for maintaining the Scala-Virtualized compiler, adding
our feature requests, fixing our reported bugs, and for insightful discussions.
8 The code can be found at http://github.com/js-scala
9 http://www.playframework.org

http://github.com/js-scala
http://www.playframework.org


24 JavaScript as an Embedded DSL

References

1. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically
typed language. ACM Trans. Program. Lang. Syst., 13:237–268, April 1991.

2. A. Ahmed, R. B. Findler, J. Matthews, and P. Wadler. Blame for all. In Proceedings
for the 1st workshop on Script to Program Evolution, STOP ’09, pages 1–13, New
York, NY, USA, 2009. ACM.

3. G. Bierman, E. Meijer, and M. Torgersen. Adding dynamic types to c. In Proceed-
ings of the 24th European conference on Object-oriented programming, ECOOP’10,
pages 76–100, Berlin, Heidelberg, 2010. Springer-Verlag.

4. K. Brown, A. Sujeeth, H. Lee, T. Rompf, H. Chafi, and K. Olukotun. A hetero-
geneous parallel framework for domain-specific languages. In 20th International
Conference on Parallel Architectures and Compilation Techniques (PACT), 2011.

5. J. Carette, O. Kiselyov, and C.-c. Shan. Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages. J. Funct. Program., 19:509–543,
September 2009.

6. H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan, M. Odersky,
and K. Olukotun. Language Virtualization for Heterogeneous Parallel Computing.
Onward!, 2010.

7. H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun.
A domain-specific approach to heterogeneous parallelism. In Proceedings of the
16th ACM symposium on Principles and practice of parallel programming, PPoPP,
2011.

8. https://github.com/clojure/clojurescript/wiki.
9. http://jashkenas.github.com/coffee-script/.

10. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: web programming with-
out tiers. In Proceedings of the 5th international conference on Formal methods
for components and objects, FMCO’06, pages 266–296, Berlin, Heidelberg, 2007.
Springer-Verlag.

11. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. The essence of form abstraction. In
Proceedings of the 6th Asian Symposium on Programming Languages and Systems,
APLAS ’08, pages 205–220, Berlin, Heidelberg, 2008. Springer-Verlag.

12. O. Danvy and A. Filinski. Abstracting control. In Proceedings of the 1990 ACM
conference on LISP and functional programming, LFP ’90, pages 151–160, New
York, NY, USA, 1990. ACM.

13. O. Danvy and A. Filinski. Representing control: A study of the cps transformation.
Mathematical Structures in Computer Science, 2(4):361–391, 1992.

14. http://http://www.dartlang.org/.
15. D. Flanagan. https://github.com/davidflanagan/javascript6_examples/

blob/master/examples/21.06.koch.js, 2011.
16. D. Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, Inc., 6th edition,

2011.
17. http://code.google.com/webtoolkit/.
18. C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic embedding of dsls.

In Proceedings of the 7th international conference on Generative programming and
component engineering, GPCE ’08, pages 137–148, New York, NY, USA, 2008.
ACM.

19. L. C. L. Kats and E. Visser. The Spoofax language workbench. Rules for declarative
specification of languages and IDEs. In M. Rinard, editor, Proceedings of the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

https://github.com/clojure/clojurescript/wiki
http://jashkenas.github.com/coffee-script/
http://http://www.dartlang.org/
https://github.com/davidflanagan/javascript6_examples/blob/master/examples/21.06.koch.js
https://github.com/davidflanagan/javascript6_examples/blob/master/examples/21.06.koch.js
http://code.google.com/webtoolkit/


JavaScript as an Embedded DSL 25

Languages, and Applications, OOPSLA 2010, October 17-21, 2010, Reno, NV,
USA, pages 444–463, 2010.

20. Y. P. Khoo, M. Hicks, J. S. Foster, and V. Sazawal. Directing javascript with
arrows. SIGPLAN Not., 44:49–58, October 2009.

21. H. Lee, K. Brown, A. Sujeeth, H. Chafi, T. Rompf, M. Odersky, and K. Oluko-
tun. Implementing domain-specific languages for heterogeneous parallel comput-
ing. IEEE Micro, 31:42–53, Sept. 2011.

22. L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A. Bromfield,
and S. Krishnamurthi. Flapjax: a programming language for ajax applications. In
Proceedings of the 24th ACM SIGPLAN conference on Object oriented program-
ming systems languages and applications, OOPSLA ’09, pages 1–20, New York,
NY, USA, 2009. ACM.

23. A. Moors, F. Piessens, and M. Odersky. Generics of a Higher Kind. Acm Sigplan
Notices, 43:423–438, 2008.

24. A. Moors, T. Rompf, P. Haller, and M. Odersky. Scala-virtualized. In PEPM12,
2012.

25. M. Odersky and M. Zenger. Scalable Component Abstractions. In Proceedings of
OOPSLA 2005, 2005.

26. T. Petříček and D. Syme. F# web tools: Rich client/server web applications in
f#.

27. T. Rompf, I. Maier, and M. Odersky. Implementing First-Class Polymorphic De-
limited Continuations by a Type-Directed Selective CPS-Transform. In Proceedings
of the 14th ACM SIGPLAN international conference on Functional programming,
New York, NY, USA, 2009. ACM.

28. T. Rompf and M. Odersky. Lightweight Modular Staging: A Pragmatic Approach
to Runtime Code Generation and Compiled DSLs. In GPCE, 2010.

29. T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Oderksy, and K. Oluko-
tun. Building-blocks for performance oriented DSLs. Electronic Proceedings in
Theoretical Computer Science, 2011.

30. http://scalagwt.github.com/.
31. J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme and

Functional Programming Workshop, September 2006.
32. J. G. Siek and W. Taha. Gradual typing for objects. In ECOOP’07: 21st European

Conference on Object-Oriented Programming, 2007.
33. A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, M. Wu, A. R. Atreya, M. Odersky,

and K. Olukotun. OptiML: an implicitly parallel domain-specific language for
machine learning. In Proceedings of the 28th International Conference on Machine
Learning, ICML, 2011.

34. W. Taha and T. Sheard. Metaml and multi-stage programming with explicit an-
notations. Theor. Comput. Sci., 248:211–242, October 2000.

35. V. Ureche, T. Rompf, A. Sujeeth, H. Chafi, and M. Odersky. Stagedsac: A case
study in performance-oriented dsl development. In PEPM, 2012.

36. E. Visser. Webdsl: A case study in domain-specific language engineering. In
R. Lämmel, J. Visser, and J. Saraiva, editors, Generative and Transformational
Techniques in Software Engineering II, volume 5235 of Lecture Notes in Computer
Science, pages 291–373. Springer Berlin / Heidelberg, 2008.

37. J. C. Vogt. Type Safe Integration of Query Languages into Scala. Diplomarbeit,
RWTH Aachen, Germany, 2011.

38. P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In Proceedings
of the 18th European Symposium on Programming Languages and Systems: Held

http://scalagwt.github.com/


26 JavaScript as an Embedded DSL

as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, ESOP ’09, pages 1–16, Berlin, Heidelberg, 2009. Springer-Verlag.


	JavaScript as an Embedded DSL
	Introduction
	Introduction to LMS
	Example: a DSL program and its generated JavaScript code
	Walkthrough: defining a DSL component

	Gradual Typing for Interfacing with Existing APIs
	Typed APIs
	Casting and Optional Runtime Type Checks
	Scala Dynamic
	From Dynamic to Static

	Sharing Code between Client and Server
	Modularity Interlude
	Reification of Objects
	Functions
	Typed Object Literals
	Classes

	CPS Transformation for Asynchronous Code Patterns
	CPS in Scala
	CPS and Staging
	CPS for Suspendable Traversals
	Defining the Ajax API
	CPS for Parallelism

	Evaluation
	Conclusion
	Acknowledgments


