
Implementing a type debugger for Scala

Hubert Plociniczak Martin Odersky
École Polytechnique Fédérale de Lausanne

{first.last}@epfl.ch

Abstract
Statically-typed languages offer type systems that are less
and less comprehensible for programmers as the language
grows in complexity. In this paper, we present a type debug-
ger, a tool that enables analysis of type-related problems as
well as exploration of the typechecking process in general.
We explain our findings on implementing a lightweight in-
strumentation mechanism for SCALA, as well as guide the
reader through some typical debugging scenarios in which
one can use our tool. The type debugger visualizes the in-
ternals of the typechecker which we believe increases its
chances of being a successful educational tool, and which
simplifies understanding of statically-typed languages in
general.

Keywords type system visualization, debugger, compiler
instrumentation

1. Introduction
Type systems offer a means to the programmers to abstract
from concrete values and verify the high-level description of
their program, with the aim of increasing their assurance that
their code will do what it was designed to do. From the users’
point of view, the typechecking process is a black box that
they just have to trust. This state of matters is acceptable by
the users as long as the decisions of the typechecker follow
the intuition and knowledge of types of the programmer, and
not reject programs that she considered type safe. When a
program is rejected, the only feedback from the type system
is given in the form of simple type error messages that do
not reflect the complexity of the problem.

The dynamically-typed languages are better positioned
than statically-typed ones to deal with this matter even
though the error feedback is similarly uninformative as in
the case of static typechecking. This is because they offer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
APPLC ’12 June 14, Beijing.
Copyright c© 2012 ACM [to be supplied]. . . $10.00

a large set of debugging tools ranging from primitive print
statements via profilers to powerful debuggers. This way de-
velopers can analyze step-by-step the nature of any problem,
understand the context in which their implementations took
incorrect action and seek for potential solutions.

The approach towards improving error diagnosis had so
far largely been focused on providing an automatic aid to the
programmer [7, 9, 12]. This included heuristics for better er-
ror templates, suggestions for repairing mistakes by generat-
ing counter-examples or program slicing for better error iso-
lation. However, as programming languages strive towards
greater expressivity, making type systems more advanced,
there is an increasing implicit discrepancy between the pro-
vided short error messages and the complex high-level con-
cepts they refer to.

In order to eliminate that gap we present a type debugger,
a tool used for the exploration of the typechecking process.
When using our tool, each compiler decision is recorded,
in order to be later presented in a form of an interactive
proof, thus providing a better understanding of the context in
which it was made. The current version of the tool does not
attempt to provide immediate solutions to typing problems.
Instead we promote the understanding of the type system in
the incremental fashion typical for debuggers.

We based our implementation on SCALA that supports
advanced type system features such as higher-kinded types [13],
implicits [20], type members and path-dependent types [17]
or type inference, which enable greater freedom during pro-
gramming [18]. As a mature language, it exhibits the type
system complexity issues shared with other popular lan-
guages like JAVA, C# or HASKELL.

In Section 2 we give a brief overview of SCALA, explain
some aspects of its typechecking process and give an exam-
ple of its visualization. Section 3 describes our mechanism
for instrumenting the compiler, and techniques for analyzing
and presenting the collected information in a simple user in-
terface. Section 4 describes in detail three scenarios of deal-
ing with non-trivial SCALA programming mistakes using the
type debugger and evaluates the current implementation of
our tool. In Section 5 we give an overview of related work
and present our conclusions and future work in Section 6.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147988313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Typechecking in SCALA: overview
Before we dive into the details of the SCALA compiler, we
will give a very brief overview of the language. SCALA
was born as a project that combines features of the object-
oriented and functional programming world into one coher-
ent language. SCALA shares some of its features with JAVA,
like similar syntax and running on the JVM, and it provides
interoperability with JAVA. It offers classes, objects (single-
ton pattern) and traits and shares common types with JAVA
like Boolean or Integer but also provides higher-kinded
types [13]. For a more comprehensive description we direct
the reader to the literature [18, 19] but we will focus on two
language features that will be often mentioned in the rest of
our work - implicits and type inference.

Implicits is a type-driven mechanism for passing argu-
ments, and it exists in two categories. The first category are
implicit parameters that are just function or class parame-
ters, whose arguments do not have to be applied explicitly
by the programmer. Whenever such an argument is missing,
the compiler searches for an implicit value in the scope that
matches the type. The second category are implicit conver-
sions (also known as views), in other words an implicit value
of a function type. Whenever the term’s type, say A, does not
match the expected type, say B, it is still possible to succeed
in typechecking. SCALA will search for an implicit function
whose parameter type and the return type agrees with A and
B, respectively. This allows for creating interesting language
constructs [20].

SCALA’s type inference mainly follows the design of GJ
presented in [2, 14]. Its local type inference is a mixture of
type propagation and solving local constraints, in contrast to
the global constraints approach used in HINDLEY/MILNER
type inference. The latter was hardly a feasible solution
when dealing with subtyping constraints (size and principal
types problems) and error localization issues [15, 16]. The
end result of local type inference includes the reduction of
the number of explicit type instantiations for polymorphic
functions.

2.1 Compilation overview
The SCALA compiler runs multiple phases including a
parser, name and type analysis, erasure, optimizations and
bytecode generation. The parser provides initial abstract
syntax trees (ASTs) that are successively transformed dur-
ing each of the phases. As expected, the nodes of the SCALA
trees mostly refer to their syntactic forms, such as values,
methods or blocks of statements, and each of them has an
associated offset position referring to its ‘starting point‘ in
the code.

For the purpose of type debugging we are only interested
in the name and type analysis phases. The former associates
symbols with ASTs, representing for example methods or
classes, and enters each of them into enclosing scopes. The
latter is responsible for type inference, implicits search and

typechecking of the trees which results in assigning types to
trees and symbols.

2.2 Typechecking = typing + adapting
SCALA’s typechecking process for a given AST can be per-
ceived as a two stage process. First, it attempts to assign a
type to a currently considered tree depending on its kind
and context. The expected type may have a considerable
effect on inferring a more precise type but for brevity we
omit the details. During the adaptation stage we adapt an
already typed expression to the expected type. The latter in-
volves, among other things verifying subtyping constraints,
searching for an implicit conversion on failure, performing
eta-expansions for partially applied functions or simply in-
ferring any undetermined type parameters of the type. It is
important to note that the typechecker will not always stop
on the first failure. Instead, during both stages it can per-
form multiple fallbacks, for example by modifying expected
type or performing implicit search in order to satisfy existing
constraints.

Listing 1. Application of implicit conversion
class Foo(val x: Int)
def withoutImplicit {

val a = new Foo(1)
val b: Int = a / / Error : Found Foo, expected Int .

}
def withImplicit {

implicit def fromFooToInt(f : Foo) : Int =f . x
val a = new Foo(1)
val b: Int = a

}
To briefly show the motivation for a visualization of

the typechecking process, we give an informal explana-
tion of typechecking the fragments of Listing 1. There,
class Foo takes a single parameter of type Int. The type-
checker traverses the body of withoutImplicit and first
typechecks a by inferring its type to be Foo and continues
with the declaration of b. The latter will first typecheck an
explicit type annotation Int, type the body of the assignment
and fail to satisfy the subtyping constraint Foo <: Int

enforced by the context at the adaptation stage. On the
other hand, typechecking withImplicit succeeds thanks
to the valid implicit in scope i.e., fromFooToInt. The com-
piler will type the application involving the view, namely
fromFooToInt(a) and will succeed during the adaption as
Int <: Int.

Although some of the above information can be inferred
directly from the language specification, it is not very ap-
proachable for users. Consider a snapshot of SCALA’s type
debugger in Figure 1 representing the compiler’s attempt at
verifying withImplicit. It consists of the typechecking
visualization in a form of a proof tree on the left and the
source code on the right. Each node is a goal that the type-
checker needs to satisfy, which it in turn divides into mul-
tiple subgoals that can be revealed interactively. Goals store
internally more descriptive information available to the user

Figure 1. Typechecking definition of value b in method withImplicit

through UI. Having a closer look at how the proof is resolved
for the value b in withImplicit, one can find direct corre-
spondence to our informal explanation before: the checking
of the explicit type annotation of the value (1), the type-
checking of the body of the value (2), the failed subtyping
constraint (3), the search for implicits (4) and the verification
of fromFooToInt as a potential solution (5). Dashed boxes
on the figure are used only for the presentation purposes of
this paper, they do not appear in our tool.

3. Implementation
This section details vital changes to the compiler that al-
lowed us to implement the type debugger efficiently. Ini-
tial attempts at storing all the typing information within the
ASTs proved to be infeasible due to the large amount of re-
dundant data and the memory burden. Instead, we developed
a lightweight event system that allows us to instrument type-
checker, hook up directly into the running instance of the
compiler, processes the data and feed it into an UI.

3.1 Lightweight event mechanism
The eventmechanism can be considered as an internal com-
piler plugin mechanism that allows the language architects to
take a snapshot of pre-determined data at a specific execution
point in the compiler. In fact its initial aim was to enable con-
venient extraction of information based on hard-coded filters
i.e., it was useful for finding bugs in its original version but
not for understanding the bigger picture. The system comes
with a simple DSL used to emit instances of Event classes.

Listing 2 represents a typical situation where a program-
mer wants to be informed about a tree being typed. The
method typed can be considered as the main entry point to

the typechecking process, whereas the EV object represents a
reference to our event plugin mechanism. The << member
of EV takes an argument of type Event (here used in infix no-
tation) and pushes it further to any registered listeners. Class
TypedNode stores references to the current typing context,
the initial and the typed tree. The instance of TypedNode is a
case class that allows for convenient filtering and further
extraction of data.

Listing 2. Issuing events within the compiler
def typed (tree : Tree , expected : Type) : Tree = {

. . . / / perform typechecking
EV<< TypedNode(context , tree , typedTree)
typedTree

}

case class TypedNode(ctx : Context , tree0 : Tree , t ree : Tree)
extends TreeEvent { . . . }

3.2 Instrumenting the compiler
Compiler instrumentation, necessary to visualize the prob-
lem presented in the overview, can require relatively tedious
work as we have to handle at least all the functions that type-
check different kinds of trees in order to present the general
picture of the process.

The DSL also has <<< and >>> operators to deal
with explicit opening and closing blocks of subgoals, re-
spectively. In a sense, those operations emit the events as
before except that they carry an additional goal-subgoal re-
lationship information. Our first text-based prototype used
that information to indent the events properly. In the end it
allowed us to simplify the front-end that was processing the
instrumented data so that it does not have to reverse engineer
the whole logic behind the compiler. The additional advan-
tage of generating such information on a compiler level is

that any future UI that can hook up into the compiler can
immediately generate a graphical representation of the data.

The event mechanism allows us to emit classes rep-
resenting the state of the execution of the compiler, but
they typically do not carry exact context information. Con-
sider function def run(v: String): String when used
in an application run("foo"): Int. As we have learned
already, the typechecker will attempt to type the application
run("foo") as well as toInt(run("foo")) (in the adap-
tation stage, assuming an existence of a matching implicit
toInt). From the typecheckers point of view, both involve
value application and internally are represented through sim-
ilarly shaped ASTs. Instead of providing even more instru-
mentation, which is a possible solution, we decided to add
an additional implicit parameter to the main typechecker
functions in order to carry high-level context information.
A modified signature of the method typed from Listing 2
would now become:

def typed (tree : Tree , exp : Type) (implicit val expl: CInfo) : Tree

and can be used to carry more information while typing the
members of the Definition AST (like its type parameters,
parameters and body):

def typedDef (ddef : DefTree , expected : Type) : Tree = {
val tps = ddef . tparams .map(tp => typed (tp , ?) (DefTParam))

val ps = ddef . params .map(p => typed (p , ?) (DefParam))

val body = typed (ddef . body , ddef . pt) (DefBody) . . . }

3.3 Errors as exceptions
Type errors do not always get reported to the user, back-
tracking being one of the reasons for that. In such a situa-
tion instead of being reported, the typechecker throws an ex-
ception internally. The compiler catches the error and runs
a different typechecking scenario. Throwing exceptions had
an unfortunate consequence of ruining our logical blocks of
instrumented data. A temporary solution was to wrap any of
the block operations in a standard try/catch or analyze the
stacktrace, ensure that blocks are properly closed and propa-
gate the exception. Neither of them was elegant nor efficient
not to mention the fact that exceptions started to influence
the control flow of the compiler which by principle is a bad
design. Instead we decided to store errors within the typing
context and make explicit decisions within the compiler de-
pending on the state of the context.

3.4 Visualization
Our initial basic Swing interface lacked interactivity and
we decided on using a successful work on PREFUSE [6], a
toolkit for creating rich interactive visualizations.

Apart from the obvious display of the nodes correspond-
ing to the instrumented data, the type debugger UI includes
the following features:

• Convenient mouse and/or keyboard navigation.

• Shortcuts that allow for automatic localization of the
typechecking proof responsible for assigning a given type
to the value.

• The initial typechecking tree expands only the type error
and the closest goals leading to it since exploring the
full tree is often infeasible due to a large number of
nodes. Whenever more errors are reported, we expand the
least spanning tree that covers them in order to speed up
debugging (errors have a tendency to be correlated).

• Interacting with any nodes highlight their corresponding
source code. This is possible due to the trees having range
positions that record the beginning and the end point in
the code. Due to the format of this paper we can only
show one highlighting per figure.

• We can display full ASTs corresponding to the nodes,
which is useful for more advanced SCALA programmers.

• The tool offers an advanced mode which visualizes
among other things detailed information about implic-
its applicability, calculating least upper or greatest lower
bound among types, as well as detailed subtyping check-
ing and synthetic trees.

• Since node names hardly convey enough information for
users not familiar with the typechecker, each of them
has an associated tooltip description that shows detailed
representation of types, symbols or ASTs or aims of the
typechecking goals.

The type debugger can also work with error-free code.
In that case users start their exploration on the top package
level and can freely direct the expansion of the goals.

4. Evaluation
The next three examples present typical kinds of problems
SCALA programmers have to deal with. In order to demon-
strate and evaluate the type debugger’s usefulness we will go
through each of them in a form of a brief tutorial.

4.1 Inferring Nothing

SCALA’s type inference allows for writing clear and com-
pact code. But omitting type annotations sometimes leads
to surprising types that get inferred. Consider the code pre-
sented in Listing 3.

Listing 3. Nothing inference
class A {

def foo [T](a : Int) (b : T) : T = b

def bar {
val par = foo(10)
par (2) / / found : Int (2)

} / / required : Nothing
}

Here, foo defines a method having two parameters (think
currying functions), a and b, and a type parameter T. bar

Figure 2. Nothing inference

method partially applies foo using the underscore _ key-
word. Later we want to finish the application to par using 2

as an argument. A typical SCALA user would assume that a
method bar should compile without any problems. Instead
she will get a mysterious type error saying Found Int, Ex-
pected Nothing when applying 2 to par (Any and Nothing

are at the top and bottom of the SCALA’s type hierarchy, re-
spectively). This can be frustrating since Nothing is hardly
ever the type expected by the users.

Consider now a fragment of a type debugger’s session in
Figure 2 which focuses on the process of typechecking the
par definition (box 1). After typechecking the partial appli-
cation of 10 to foo (box 2), the compiler still needs to in-
stantiate the type parameter T (box 3) because SCALA does
not support higher-ranked types. Since neither the function
parameter b nor the return type is known, it infers the ex-
pected type to be ? => ?, where ? refers to a wildcard. This
is compared with the current method type (b: ?T)?T where
?T underlines the usage of a fresh type variable instead of
just T (box 4). Since that is valid, one can proceed with solv-
ing any remaining type variables i.e., ?T (box 5). Later we
are calculating the least upper bound of all the constraints
collected while solving the type variable due to the con-
travariant position of the type parameter T (box 6). Since the
list of constraints is empty, the inferencer will maximize the
solution and pick the most suitable type, namely Nothing.
The problem can be fixed by explicitly providing the par’s
type. A possibly more elegant and valid solution would be
to reuse our findings from the type debugger and change the
signature of foo to foo[T >: Int](a: Int)(b: T): T

to guide the inference of a least upper bound solution for the
type parameter T. Although the current implementation does
not support such suggestions, we believe it will be feasible to

implement a mechanism where user can interactively request
inference of some more precise type, and the type debugger
will subsequently suggest code location(s) and/or manipula-
tion(s) that could possibly satisfy it (based on the location of
the original type constraint).

4.2 Implicits and ambiguity
Function overloading is a popular paradigm available in
many programming languages. Yet, when excessively used
by programmers, it can lead to code that is hard to under-
stand and maintain. Such situations may also come up when
dealing with certain SCALA features like implicit resolution
or type inference.

Listing 4. Ambiguity for overloaded methods
class Base[T]
class NatA[T] extends Base[T]
class NatB[T] extends Base[T]
class AA[A]

object Ambiguity {
implicit def conv1(i : Int) = new NatA[Int]
implicit def conv2(i : Int) = new NatB[Int]
implicit def conv3(op: AA[String]) = new Base[String]
implicit def conv4(op: AA[Int]) = new Base[Int]

def aFunc[A](a : NatA[A]) = new AA[String] / / (1)
def aFunc[A](a : NatB[A]) = new AA[Int] / / (2)

def bFunc[T](e1 : Base[T]) : Base[T] = e1

def convertToBase1(p : Int) : Base[Int] = {
val x = aFunc(p) / / Fails
bFunc(x)

}
def convertToBase2(p : Int) : Base[Int] =

bFunc(aFunc(p)) / / OK
}

Consider the program presented in Listing 4. The code it-
self is a simplified version of a real DSL library and a bug
report within SCALA itself. We define a simple class hier-
archy involving Base[T] as a supertype for NatA[T] and
NatB[T]. Class AA is not a subtype of Base but there is an
implicit conversion from AA to Base (see conv3 and conv4).
The Ambiguity test is self-contained and we encourage the
reader to try to perform manually an ambiguity resolution
and explain the type error for convertToBase1:

both method aFunc of type [A](a : NatB[A])AA[Int]
and method aFunc of type [A](a : NatA[A])AA[String]
match argument types (Int)

val x = aFunc(p) / / Fails
ˆ

In fact a difference between the two methods can be a result
of a simple refactoring gone wrong.

Figure 3 represents a snapshot of the type debugger pre-
senting a path to the error (box 8) in more detail. The ambi-
guity occurs while we are trying to typecheck the right-hand
side of the value assignment in convertToBase1, which in
turn is necessary for inferring the type of x (box 1). Type-
checking aFunc in the application returns an overloaded
type involving two alternatives (box 2). Since argument p
is of type Int (box 3) and there is a mismatch between the
type of the argument and the parameter, inference of a cor-
rect alternative fails without implicits (box 4). With implicits
turned on (box 5), the alternative (1) will succeed because
of a successful implicit search involving the expected type
Int => NatA[Nothing], namely conv1 (box 6). Similarly
the alternative (2) of type [A](a: NatB[A]): AA[Int]

will succeed on the implicit search with expected type
Int => NatB[?] due to conv2 (box 7). In this particu-
lar case the comparison of the two alternatives does not lead
to any clear winner and we are forced to report an ambiguity
type error for the overloaded method aFunc (box 8).

The typechecking of method convertToBase2 leads to
a type debugger visualization presented in Figure 4. One
can immediately see that the argument of bFunc is now
typed with an expected type of Base[Int] (box 2) due to
the constraints coming from bFunc’s parameter type and
convertToBase2’s return type (box 1). Due to the expected
type imposed on the overloaded type involving the two alter-
natives (box 3), the typechecker is able to successfully filter
out the alternative (1) (boxes 4 and 5). After dealing with the
invalid alternative, typechecking resolves to a normal type-
checking of the application of argument p to aFunc (box
6) where adaptation needs to satisfy the Int <: NatB[?]

subtyping constraint (not shown on the figure).
We believe that exposing the internal workings of the

compiler is essential, especially to library architects. Mix-
ing advanced features leads usually to non-trivial problems
but programmers should not be discouraged by that since

it allows for a creation of interesting designs like human-
readable DSL libraries1.

4.3 Invariance and refined type
TYPE CLASSES [24] is a widely accepted type system con-
struct to support ad-hoc polymorphism. It was first intro-
duced by HASKELL but SCALA has been shown [20] to of-
fer similar capabilities through implicit parameters. The ex-
ample from Listing 5 discusses usage of a generic ordering
function inspired by the TYPE CLASSES pattern in SCALA.
Consider function universalComp that does generic com-
parison between the two values of the same type. Since there
is no way to compare generic types without any additional
information or constraint, we require an implicit value of
type Ordering[T] that bounds the type of T (more com-
monly known as a context bound in SCALA). Ordering is
a trait in the standard SCALA library that defines abstract
member compare which communicates how the two val-
ues of type T should compare. We also provide an implicit
value AOrdering in the scope that gives an implementation
of Ordering for values of type A.

Listing 5. Implicit values and variance
class A { def f : Any }
class B extends A { def f : Int = 5 }
class C extends A { def f : Long = 5L }

def universalComp[T](t1 : T, t2 : T)
(implicit evidence : Ordering [T]) = 1

implicit val AOrdering : Ordering [A] = . . .

universalComp(new B, new C)
/ / error : No impl ic i t Ordering defined for A{def f : AnyVal}.
/ / universalComp(new B, new C)
/ / ˆ
universalComp[A](new B, new C) / / works

Therefore it may seem surprising that an application involv-
ing two values of type B and C, where both are subtypes of A,
fails when trusting the type inference in inferring an implicit
value (box 1 in Figure 5) but typechecks when we explicitly
apply the type. Figure 5 shows that the typechecker verifies
default implicit values defined in the standard SCALA li-
brary (box 3) that could potentially satisfy the implicit ev-
idence. None of it provide an ordering or comparator that
matches our newly defined class A due to the expected
type (box 4). A more surprising fact is that it did not even
try to typecheck our AOrdering implicit value as a poten-
tial argument for universalComp (box 2). A further explo-
ration of the type debugger shown in Figure 6 reveals that
the (correctly) inferred refined type A{def f: AnyVal}

(least upper bound of B and C) is simply too precise.
This is because applying value AOrdering as an argu-
ment for parameter evidence (box 1) requires constraint
Ordering[A] <: Ordering[A{def f: AnyVal}] (box
2). Since the documentation for Ordering clearly states

1 SCALA’s testing frameworks, like Specs, ScalaCheck or ScalaTest, are a
prime example of intuitive libraries

Figure 3. Typechecking convertToBase1

Figure 4. Typechecking convertToBase2

Figure 5. Failed implicit search for universalComp application (source code panel omitted)

Figure 6. Testing eligibility of an implicit value for Ordering type parameter at an invariant position

that its only type parameter is at an invariant position (box
3), it implies that A{def f: AnyVal} <: A (box 4) and
A <: A{def f: AnyVal} (box 5) has to hold. It is clear
that the latter condition will always be false (box 6). In the
future when the user will want to understand the applicabil-
ity of a specific value as an argument to the implicit param-
eter, the tool will offer quick navigation to a corresponding
proof tree in the visualization, rather than requiring a manual
search from the user.

Bugs involving variance in type parameters belong to
some of the most common problems encountered by SCALA
programmers and which lead to long hours of debugging on
examples similar to the one just presented.

4.4 Performance and usability
The type debugger was designed for a mature language, so
it was obvious from the beginning that the tool will have to
be tightly integrated with its compiler implementation. At
the same time it should only have a minimal effect during
normal runs as we do not intend to maintain two separate
typechecker implementations. Instrumenting involves sim-
ple method calls that are ignored during non-debugging runs.

Although a large part of SCALA’s typechecker is written
with immutability in mind in a functional way, some parts
critical to performance are not. Since instructions store ref-
erences to trees, types or symbols we cannot rely on the fact
that their state taken during the instantiation of the Event

is the same as during the visualization of the node in type
debugger. To avoid such a discrepancy we clone trees, types
and symbols when necessary which is obviously expensive.

Listing 6. Optimizing event emission
@inline f inal def <<(ev : => Event) : EventResponse = {

i f (eventsOn) eventHooks foreach (applyIfDefined ev)
NoResponse

}

In order to still keep our lightweight instrumenting, all
the methods involved in the emission of events (Listing 6
presents one example from our DSL) needed to be inlined
as well as hidden behind the flag that enables our debugging
mode. Finally, in order for the optimizer to do its job, all the
events’ DSL methods needed to have by-name parameters
(by-name arguments are internally transformed as expensive
closures). Otherwise they would deteriorate the performance
by being instantiated outside of the if (eventsOn) condi-
tion.

Compiling the SCALA compiler itself (133k LOC) gave
us 41% and 37% slowdown for the non-optimized and opti-
mized instrumented compiler, respectively 2. The results are
not satisfying mostly due to the failure of the inliner to op-
timize some of the most critical parts, caused by an internal
compiler bug, and as a result some of the costs mentioned
above could not be mitigated. However for small to medium
sized applications the performance degradation was not no-
ticeable.

The current implementation has already proved to be
helpful in an investigation of real bugs within the compiler
itself. We realized that problem location is much quicker
(given the proper instrumentation already in place) than de-
bugging using existing manual techniques. That is a signif-
icant progress given that typechecker bugs are usually cate-
gorized as hard to fix. Admittedly, the type debugger is not
yet feasible to be used on large applications due to the size of
the typechecking proof graph generated during a single run
(when shown in full). It is also not yet designed for beginner
programmers since it requires some prior knowledge about
type systems and programming languages concepts and lack
of more fine grained mechanism for filtering and managing
the typechecking proof.

The process of instrumenting the compiler is rather
mechanical thanks to the lightweight event system and
rewritten error reporting mechanism. Nevertheless identify-
ing important spots and providing meaningful descriptions
does require a good knowledge of SCALA’s typechecker.
During the course of developing the tool we instrumented
the most critical parts of the typechecker to get a general
overview of the process, as well as focused on parts just pre-
sented. This process is by no means exhausted and will be
continued as the tool gets used for solving different prob-
lems.
2 tests performed on a load-free Intel Core 2 Duo machine with 3.2 GHz
processor and 4GB of RAM

5. Related work
CHAMELEON [21, 23], a HASKELL-like language, was one
of the few promising attempts aimed at solving the debug-
ging problem. Instead of having plain type error messages it
was offering means to explore them in detail. Unlike our at-
tempt it relied on a system based on solving constraints using
Constrained Handling Rules [22](CHR). Therefore rather
than dealing with an existing language they focused on ex-
plaining an admittedly large subset of HASKELL. Whenever
a type error was encountered the tool enabled the user to see
what constraints were in conflict or could not be satisfied.
Users could also explore the process of building the con-
straints using CHR from a source code in a real-time man-
ner for both type correct and erroneous programs. In com-
parison to our work CHAMELEON was a text-based debug-
ger and offered help for possible error localization. Also at
the moment we only describe the reasons for the type con-
straints existence at the point when they are generated but
we will work towards better navigation between them. Apart
from the above HASKELL has seen several attempts [3, 7] at
improving lack of debugging tools however most of them re-
solved around improving type error messages by giving only
slightly better context or using heuristics that were supposed
to better locate the real source of the problem.

Work by McAdam [11] describes techniques for present-
ing type information in the form of a graph. The author’s re-
search is based on a variation of a simply-typed λ-calculus.
One can assume that in a sense our tool exercises the au-
thor’s initial idea when dealing with a mature programming
language. Unlike our visualization, the graphs do not offer
any incremental exploration, making it impractical for even
medium sized terms. Similar scalability issues have been ex-
perienced when recording directly the decisions made during
the type inference process [1, 5].

PLT REDEX [10] is an embedded domain-specific lan-
guage developed for designing term-rewriting systems. What
clearly distinguishes it from the similar solutions in that do-
main is the existence of the visualizing environment where
users can create and debug their models in an interactive
manner. What is more important is that the tool has proven
useful in preparing its host language, RACKET, for a wider
adoption. Further work on REDEX [8] presents a possibility
for defining and debugging formalizations of proofs. One
can immediately see that that there is a close similarity be-
tween visualizing operational semantics and typechecking.
Although formalization of SCALA’s type system could pos-
sibly be done using REDEX, visualization of the actual im-
plementation has to deal with a different set of problems.

Recent work on the JAVA compiler [4] has revealed plans
on including support for debugging overload resolution.
Similarly as with SCALA’s type debugger, the JAVA com-
piler is being instrumented and each step of the decision
process can be shown to the user. In contrast to our work
javac will hardly put a structure to the instrumented data.

6. Conclusions and future work
The initial implementation of the type debugger has met our
requirements of being able to assist the programmers in un-
derstanding the typecheckers logic and finding non-trivial
bugs. Although not yet feature complete, the interactive as-
pect of the visualization is an appealing way of exploring
the internals of the compiler. We presented three scenarios
where the type debugger offers clear advantage for finding
sources of type errors. We are confident that the reader will
experience positively the more interactive side of the evalu-
ation of the tool by simply running it on their own.

We plan to equip the type debugger with more back-
ground information related to the programming languages
concepts, like references to the language specification or rel-
evant documentation. The type debugger is already appreci-
ated by compiler hackers in the localization of bugs (three
fixed already, more identified) but we plan to implement in-
teractive filters for presenting instrumented information that
would make it more customizable and as a result useful with
larger programs that generate even more data. Apart from
planning to integrate the type debugger with the existing
SCALA plugin for Eclipse3 we want to allow for selective
instrumenting of trees and as a result targeted debugging.
Large typechecking proofs create a lot of noise but they also
provide a good basis for further specialization of the views.
Therefore we plan to explore the idea of building a set of
templates associated with type error messages and their con-
texts in order to guide the user in the debugging exploration.
For error-free scenarios we want to generalize visualizations
that filter out detailed internals of the compiler or synthetic
constructs, possibly creating another layer of building blocks
to reduce the number of typechecking goals that users have
to comprehend at a specific point. With this infrastructure in
place we will be able to perform extensive user studies.

The source code of the type debugger, along with pre-
sented examples, is available online:

https://github.com/hubertp/prefuse-type-debugger

Acknowledgments
We would like to thank Paul Phillips for his initial work on
the event system as well as anonymous reviewers for their
detailed and helpful comments.

References
[1] M. Beaven and R. Stansifer. Explaining type errors in poly-

morphic languages. ACM Lett. Program. Lang. Syst., 2:17–30,
March 1993.

[2] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making
the future safe for the past: adding genericity to the java
programming language. In OOPSLA, pages 183–200, 1998.

[3] O. Chitil. Compositional explanation of types and algorithmic
debugging of type errors. In ICFP, pages 193–204, 2001.

3 http://scala-ide.org/

[4] M. Cimadamore. Testing overload resolution, 2011. URL
https://blogs.oracle.com/mcimadamore/entry/

testing overload resolution.

[5] D. Duggan and F. Bent. Explaining type inference. Sci.
Comput. Program., 27:37–83, July 1996.

[6] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for
interactive information visualization. In CHI, pages 421–430,
2005.

[7] B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for
learning haskell. In Haskell, pages 62–71, 2003.

[8] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen,
M. Flatt, J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and
R. B. Findler. Run your research: on the effectiveness of
lightweight mechanization. In POPL, pages 285–296, 2012.

[9] B. Lerner, D. Grossman, and C. Chambers. Seminal: search-
ing for ml type-error messages. In ML, pages 63–73, 2006.

[10] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A vi-
sual environment for developing context-sensitive term rewrit-
ing systems. In RTA, pages 301–311, 2004.

[11] B. McAdam. Generalising techniques for type debugging. In
TFP, pages 49–57, 2000.

[12] B. McAdam. How to repair type errors automatically. In TFP,
pages 87–98, 2002.

[13] A. Moors, F. Piessens, and M. Odersky. Generics of a higher
kind. In OOPSLA, pages 423–438, 2008.

[14] M. Odersky. Inferred type instantiation for gj,
2002. URL http://lampwww.epfl.ch/∼odersky/

papers/localti02.html.

[15] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with
constrained types. Theory and Practice of Object Systems, 5
(1):35–55, 1999.

[16] M. Odersky, C. Zenger, and M. Zenger. Colored local type
inference. In POPL, pages 41–53, 2001.

[17] M. Odersky, V. Cremet, C. Rckl, and M. Zenger. A nominal
theory of objects with dependent types. In ECOOP, pages
201–224, 2003.

[18] M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubo-
chet, B. Emir, S. McDirmid, S. Micheloud, N. Mihaylov,
M. Schinz, L. Spoon, E. Stenman, and M. Zenger. An
Overview of the Scala Programming Language (2. edition).
Technical report, EPFL, 2006.

[19] M. Odersky, L. Spoon, and B. Venners. Programming in
Scala. Artima Inc, 2nd edition, 2011.

[20] B. C. Oliveira, A. Moors, and M. Odersky. Type classes as
objects and implicits. In OOPSLA, pages 341–360, 2010.

[21] P. J. Stuckey and M. Sulzmann. A theory of overloading. ACM
Trans. Program. Lang. Syst., 27:1216–1269, November 2005.

[22] P. J. Stuckey, M. Sulzmann, and J. Wazny. Type processing by
constraint reasoning. In APLAS, pages 1–25, 2006.

[23] M. Sulzmann. An overview of the chameleon system. In
APLAS, pages 16–30, 2002.

[24] P. Wadler and S. Blott. How to make ad-hoc polymorphism
less ad hoc. In POPL, pages 60–76, 1989.

