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Abstract—We consider the problem of neural association for S = {0,1,...,S—1} for their states. One way of interpreting
a network of non-binary neurons. Here, the task is to recall the integer states is to think of the short-term (normalized
a previously memorized pattern from its noisy version usinga firing rate of a neuron as its output. We restrict the openatio

network of neurons whose states assume values from a finite t h t i ti the i ¢ d
number of non-negative integer levels. Prior works in this aea &t €aCh Neuron 1o a finéar summation over the inputs, an

consider storing a finite number of purely random patterns, @& Possibly non-linear “thresholding” operation. In pautar,
and have shown that the pattern retrieval capacities (maximmm suppose that a neuranupdates its state based on the states of
number of patterns that can be memorized) scale only lineayl jtg neighbors{s; }”_,. Neuronz first computes the weighted
with the number of neurons in the network. sum

In our formulation of the problem, we consider storing n
patterns from a suitably chosen set of patterns, that are olstined h = Z w;is;,
by enforcing a set of simple constraints on the coordinates =
(such as those enforced in graph based codes). Such patterns
may be generated from purely random information symbols by wherew; denotes the weight of the input link from}, and
simple neural operations. Two simple neural update algortms  then updates its state as= f(h), wheref : R — Sis a

are presented, and it is shown that our proposed mechanisms ,,qqiplv non-linear function from the field of real numbrs
result in a pattern retrieval capacity that is exponential in terms

of the network size. Furthermore, using analytical resultsand toS. ) o )
simulations, we show that the suggested methods can toleeat In brief, neural associative memory aims to memofizg,
fair amount of errors in the input. patterns of lengthm (auto-associative memory) or associate

Cmaz patterns of lengtm with C,,.. patterns of lengtht
(hetero-associative memory). In both cases, we are given a
The mid20" century saw the publication of two pioneeringnetwork of neurons (binary or non-binary) whose intercon-
works in the fields of neural networks and coding theorpections can be modeled by a weighted complete graph. The

respectively those of McCulloch and Pitts in 1943 [2] andoal is to determine the weight matrix (termed tflearning
Shannon in 1948 [1]. In their modern avatars, graphical fisodg@hasé such that the network is able to recall a large number
and algorithms are seen to play a major role in both areas.dhmemorized patterns (during thecall phaség, while being
spite of a lot of common models and techniques, there is sesrle to tolerate a fair amount of noise.
to be a clear quantitative dichotomy in terms of results in In what is probably the most well-known work in this area,
these two fields. While coding theory shows that a nhumber Bbpfield [3] used the Hebbian learning rule [9] to introduce
“codewords” that are exponential in terms of their length caan auto-associative neural mechanism, that is known as the
be reliably stored, transmitted and decoded, the bestrpattelopfield network. In the Hopfield network, patterns are bjnar
retrieval capacities that can be obtained in a neural n&tworectors of lengthn, and it was shown later by Amit et al.
scale only linearly with the length of the patterns. [5] that the network is able to memorizg,,,, suchrandom
One reason for this vast difference in the achievable esuttatterns with vanishing bit error probability as long@s.. <
is that neurons in a neural network are restricted to empl6yl38n. Here, random means that the patterns can be any of
only simple operations such as linear combinations of imputhe 2™ binary vectors of length with equal probability. Later,
and thresholding. This rules out using a lot of techniquédcEliece et al. [15] showed that if we require all patterngéo
that are key in terms of achieving the exponential scalirrgcalled with vanishing codeword error probability (as opgd
results of coding theory. The natural question that aristsbit error probability), then the capacity is only proponal
is whether one can increase the storage capacity of neumlb:/log(n). These results were extended to the case of a
networks beyond the current linear scaling results. We ansveparse regular neural network in [13].
this question affirmatively in this paper, by showing that in In [18], using the pseudo-inverse rule [6] to determine the
fact, anexponentialscaling is possible. weight matrix, the authors showed that one can memorize up
In contrast to the traditional approach of using bipolao n patterns so that they are fixed points of the dynamics,
signaling levels for the neurons [6], we will work with thebut only n/2 random patternsan be stored if one requires
case of neurons that can assume a finite set of integer valaedeast one bit of error correction. Although this was a
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significant improvement to the/ log(n) scaling of the pattern binary neurons and low correlation sequences as in [16], we
retrieval capacity in [15], it comes at the price of much lgh employ neurons with non-binary integer valued states ackl pi
computational complexity. our patterns to be those that satisfy some simple consraint
It is known that as the number of active neurons decreaddsre precisely, if each neuron can have a state from the set
(low activity neurons), the number of patterns that can e integersS = {0,1,...,5 — 1}, instead of considering
stored increases [6]. Nevertheless, when required to coare all possibleS™ such patterns, we pick a subset of them by
fair amount of erroneous bits, the information retrievah@ forcing the patterns to satisfy. constraints. We suitably pick
better than that of networks with balanced activity pasern the constraints such that the number of patterns in the given
While most previous works focus on improving the pattersubset is exponential in termswfi.e., is equal t&"™, for some
retrieval capacity of neural associative memories wherirggjo ¢ > 1). As long as the corresponding constraint matrix satisfies
random patterns, there has recently been some effortsstme expansion properties, we show that our proposed neural
employstructured (non-random) patterns order to increase network can memorize these exponential number of patterns,
the pattern retrieval capacity. Berrou and Gripon [7] hawshile being able to correct a reasonable number of input
demonstrated considerable improvements in the pattern eerors. Furthermore, the error correction procedure is/ ver
trieval capacity of Hopfield networks, by utilizing Walsh-simple and has low complexity, which makes it an appropriate
Hadamard sequences used in CDMA systems to combat thmice for being implemented in real neural networks.
noise in the network. However, a drawback in their work is
that a separate soft Maximum Likelihood (ML) decoder is Il. THE STORAGE AND RECALL PROCESS

used for noise removal in the input, which is undesirable in We consider the case of Storiﬁgnaz random patterng' —
the interest of minimizing complexity. {x',22,..., 2% ==} in a neural network. Let each pattern be
Following the same approach of using structured patter@snoted by:' = (2%, - - - , %), where the valuesg. belong to
in [16] we introduced two novel mechanisms of neural assgye alphabes. As mentioned previously, we will intelligently
ciation that employ binary neurons to memorize patterns wighoose the particular patterd® that we wish to store, as
low correlation properties. The network itself is very damito Opposed to a random subset of all possj_ﬁ%patterns_ In the
that of Hopfield, with a slightly modified weighting rule. Theparlance of error correcting codes, this amounts to introy
proposed methods employ low-complexity learning rules angbdundancy” among the patteris to facilitate the detection
do not need any extra decoding stage during the recall phaggd correction of errors (noise) in the patterns. In order to
Using computer simulations, it was shown that the pattepick a “good” set of patterns, we follow the approach of low
retrieval capacity of the proposed model(,.. = n, while  density parity check (LDPC) codes , and defitido comprise

being able to correct a fair number of erroneous input bits.the set of all vectors: € S” that satisfy the system of linear
Extensions to non-binary associative memories have alsguations

been considered previously. Hopfield himself showed in [4] Hz=b, 1)
that similar to the binary case, neurons with continuoutesta
(any value between-1 and 1) can also perform collective where H is anm x n integer matrix with each entry eithér
behaviors, such as memorizing a set mhdom patterns. or 1, andb is anm x 1 integer vector. We will further choose
However, in the context of auto-associative networks with & to be a sparse matrix, i.e{ has a small fixed number of
response betweenl and1, the pattern retrieval capacity will ones, sayl. andd,, in each row and each column, respectively.
be less than that of a network of binary neurons [4]. The problem of determining the set of integer solutions thsu
Jankowski et al. have considered multi-state complexeglusystems of linear equations has been studied previouslypse
neurons as a means of implementing associative memory [28{ample [8]. In particular, it is known that the set of sabis
The authors use the traditional Hopfield network structuferms a lattice translate, and can hence be generated from
and weight determination mechanism with complex-valugrlirely random sequences through simple neural processing.
neurons. They approximate the pattern retrieval capadty @etails regarding this mapping are the subject of futurekywor
Cmae = an With o being a constant less thanl5. Further- and are beyond the scope of this paper. We will focus solely on
more, they show that decreases as the number of complethe problem of storing¥’ in the neural network in the sequel.
levels increases. In [14], the authors use the same neud#lmo Suppose that we have fixed a particular choiceHofand
as that of [20] but show using simulations that ugte., =n b, that in turn fixes a particulaf’. We now focus on the
patterns may be stored using a different method to determieall process of our neural network, when fed with a noisy
the neural weights. However the complexity of the weighhput. The recall process can be described using the graph in
computation mechanism is quite high. Another extension Bfg. 1. A possibly noisy version of an input patteth (some
the Jankowski’'s model to admd’,,., = n pattern retrieval ¢ = 1,...,C..) IS initialized as the states of thgattern
capacity in [21] uses a Modified Gradient Descent learningeuronszy,...,x; in Fig. 1. We assume that the noise is
Rule (MGDR) to determine the weights. integer valued and additive, and that the value of the noise
In this paper, we follow the same approach as in oadded to the pattern is clipped to eith@ror S — 1, when
previous paper [16], and aim to memorigeuctured patterns the sum of the noise and input is less thiaor greater than
as opposed to purely random ones. However, instead of usig- 1, respectively. With a slight abuse of notation, this is



the neuroscience community [6]. Define

Jj* = argmax|g;|.
J

If g;« # 0, then setz;« = z;- + sign(g,-). Notice
that although collaboration is needed among the
{z;} neurons to implement this decision, simple
neural circuits to implement this strategy are well
known [6].

2) The pattern neurons make local decisions regarding
updating their values, similar to tHat-flipping al-
gorithm of [11]. We fix a threshold valug > 0. For
eachj = 1,...,n, z; = z; +sign(g;), if |g;| > 7.

Fig. 1. Storage and recall in the neural network

represented as; = z!" + z;, for some integer noise;. Our I1l. ANALYSIS OF THE PROPOSEDALGORITHM

task in the sequel will be to “remove” this noisg to obtain | this section we focus on the winner-take-all version of
the desired pattern™ as the states of the pattern neurong,,r gigorithm, and prove that it is guaranteed to correct a
This task will be accomplished by exploiting the fact that Weertain number of errors. Before turning to an analysis ef th
have chosen the patterds to satisfy the set of constraintsg|gorithm, we first show that the number of patterns thasati

in (1). We adopt an iterative algorithm, implemented using) and are hence stored by the suggested neural network is
the graphical structure of Fig. 1. The constraint neurons eyponential in the length, which is a significant improvement

{v:}7~, are connected to the pattern neurdng}j_;, With  oyer the best current associative memories that only allow a
H;; representing the weight of the link between and y;.  |inear number (in?) of patterns to be stored.
Henced,. andd,, as previously defined, denote the number of

edges (degree) connected to the constraint and patteranseu®. Number of Patterns and Distance Properties
respectively. The algorithm comprises a series of forwadl a In order to prove the subsequent results, we will need to
backward iterations, described below: employ bipartite expander graphgas in [11], [12], [19]),
« Forward iteration: Each constraint neurog computes a Which we now define.
weighted sum of its inputé; = Z;?:l H,jz;, and sets  Definition 1: A regular (d, d.,n, m) bipartite graphH is
its value according to ' a bipartite graph between pattern nodes of degreg, andm
constraint nodes of degrek.
Lo i <bi Definition 2: An (an, 8d,)-expander is &d,, d., n, m) bi-
vi=q 0 hi=b partite graph such that for any subgeof pattern nodes with
1, otherwise |P| < an we have|N (P)| > 3d,|P| where N'(P) is the set
It is clear that if the states of the pattern neurans of neighbors ofP among the constraint nodes.
correspond to a pattern frodi (i.e., the noise-free case), The following result from [19] shows the existence of

then for alli = 1,...,m we havey; = 0 1. families of expander graphs with parameter values that are
« Backward iteration:Each neuronc; computes relevant to us.
ST Ho Theorem 1:Let d., d,, m, n be integers, and le <
g; = Li=1 2 Yi 1 —1/d,. There exists a smaklk > 0 such that if 4 is
dp a (dp,d.,n,m) bipartite graph chosen uniformly at random

Roughly speaking, the quantity; can be interpreted from the ensemble of such bipartite graphs, thénis an
as feedback to pattern neurary from the constraint (an, 3d,)-expander with probability — o(1), whereo(1) is
neurons, where the sign gf; provides an indication of a term going to zero as goes to infinity.
the sign of the noise that affects, and|g;| indicates the ~ We now show that there exist an exponential number of
confidence level in the decision regarding the sign of thgatterns satisfying (1), whef is randomly chosen from the
noise. Once the pattern neurons computegtheone can (dp, dc, n, m)—regular bipartite ensemble.
come up with many strategies regarding how they updateTheorem 2:Let neurons have integer-valued states between
their values. We consider the following two strategies ifi and .S — 1, and each row of then x n matrix H contain
this paper: exactlyd. ones (with the remaining entries being zero). Then,
1) The pattern neurons implementvénner-take-all there _exists a column vectérsuch j[hat the system ofllinear
strategy, which is well known and studied amon§auationsHz = b has an exponential number of solutions.
Proof: Since each component of the vectorcan take
INote that although we do not allow neurons to have negatitputss the any integer value front) to S — 1, we have a total number

set of outputs{—1,0,1} can be easily implemented by sendifg, 1,2}  of 9” sych vectors. Suppose= Hz. Then each component
as the neural output and shift the response in the patterromewauring the ‘

neural update. The whole shifting process can be transiateda modified of Y is between0 and dC(S - 1)' Hence_' there are at most
firing threshold for each neuron which depends on its incgniegree. [d.(S — 1) 4+ 1]™ of such vectors;. Now if each component



of the vectorb can take any integer value frothto S’ — 1, Now we have to show that there are no nodes other than
then forS” > d.S there exists a vectdr such that the system andz; that can be the winner of the winner-take-all algorithm.
of equationsHx = b has an integer solution am#l’/[d.(S — To this end, note that only those nodes that are connected to
1)+ 1™ > S™/(d.S)™ vectors of lengthn satisfy the set of N(Q) will receive some feedback and can hope to be the
equations. Therefore, fon = n/2 if S > d. we will have an winner of the process. So let's consider such a nodthat is
exponential number of solutions for the system of equatiornnected tai,, of the nodes InNV(Q). Let Q' be Q U {z}
More generally, iflog(S) > —-log(d.) we can find & such andN(Q’) be the corresponding neighborhood. Because of the
that we have an exponential number of solutions. B expansion properties we ha\® (Q')| = d, —dp, +|N(Q)| >

Next, we present a sufficient condition such that the min33d,. Thus:
(r;up:r;tg?rr]r;r?;ngottjks;snsérﬁt;ﬁfween these exponential number d,, < d,+|NQ)| -36d, = 3d,(1 - B) — dy.

Theorem 3:Let H be a (dy,d.,n,m)—regular bipartite Now, note that the nodes andz; will receive some feedback
graph, that is an(an, 3d,) expander. Lett be the set of from atleastl,—d, edges because those are the edges that are

patterns obtained as a solution to (1), as beforg. ¥ £ +,1—,  uniquely connected to them and noise from the other erraneou

then the minumum distance between the patterns is at leagdes cannot cancel them out. Sinke-dy > 3d,(1—5) —
lan] + 1. d, for g = 3/4, we conclude thai,—d, > d,, which proves
Proof: The proof of the above theorem is based ofhat no node outsid€ can be picked during the winner-take-
expansion properties df and is omitted due to lack of spaceall algorithm as long agQ| < 2 for § = 3/4. u
m In the next lemma, we show that the state of erroneous
neurons is updated in the direction of reducing the noise.
B. Error-Correction Capability Lemma 2:1If the constraint matrixd is an (an, 8d,) ex-

. . ) ander and the original number of erroneous neurons is less
We prove the error correction capability of the winner-tak hane, ., — L%J, then in each iteration of the winner-take-

all algorithm in two steps: first we show that n eaph emfio 5y algorithm the winner is updated toward reducing the @ois
only code_ neurons that are corrupted by n0|se_W|II be chosen Proof: As before, we only focus on the cage= 3/4.

by the winner-take-all strategy to update their state. TheRa, there is only one erroneous node, it is obvious that all
we prove that the update is in the right direction, i.e. t@Wagg heighnors agree on the direction of update and the node
removing noise from the neurons. reduces the amount of noise by one unit.

Lemma 1:1f the constraint matrixif is an (an, d,) €X- |t there are two nodes; andz; in error, since the number
pander and the original pumber pf erroneous neurons are I88$heir shared neighbors is less thdgy2 (as we proved in
thanein = L%J’ then in each iteration of the winner-takeye |55t lemma), more than half of their neighbors agree on
all algorithm only the corrupted pattern nodes update thgife girection of update. Therefore, whoever the winner i wi
value and the other nodes remain intact. Bor= 3/4, the e ypdated to reduce the amount of noise by one unitm
algorithm will always pick the correct node if we have two or From Lemmas 1 and 2, it is clear thatff is an (an, 3d,,)
fewer erroneous nodes. _ _ expander, then the winner-take-all algorithm is guarahtee

Proof: For simplicity, we restrict our attention Fo_thecorrect at least,,;, — L%J positions in error, irrespective
casef = 3/4. If we have only one node; in error, it is of the magnitudes of the errors. Similar statements can be
obvious that the corresponding node will always be the winngage for the bit-flipping algorithm as well. However, in that
of the winner-take-all algorithm unless there exists aepthcase there will be a small probability of error if the number
node that has the same set of neighborszasHowever, of erroneous nodes is larger thanbecause of the chance
this is impossible as because of the expansion properties, fhat noise terms cancel each other out. We have omitted the
neighborhood of these two nodes must have at le@st, proof due to lack of space. Compared to the winner-take-all

members which for3 = 3/4 is equal to3d,/2. As a result, gigorithm, the bit-flipping method has less complexity but a
no two nodes can have the same neighborhood and the Wingggser performance as well.

will always be the correct node. )

In the case where there are two erroneous nodes, SayChoice of Parameters
z; and z;, let Q be the set{z;,z;} and N(Q) be the In order to put together the results of the previous two
corresponding neighborhood on the constraint nodes sigebsections and obtain a neural associative scheme thes sto
Furthermore, assume; and z; shared,  of their neighbors an exponential number of patterns and is capable of error
so that| N(Q)| = 2d, — d,. First of all note that because ofcorrection, we need to carefully choose the various rekevan

the expansion properties and for= 3/4: parameters. We summarize some design principles below.
» From Theorems 1 and 3, the choice®flepends o,
IN(Q)| = 2dp — dy > 20d), = dpy < dp/2. according tol + - < 8 <1— 2+.
3 P

Choosed,, S, S',7 £ m/n such thatsS” d.S)™
2Two (possibly non-binary)»—length vectorsz and y are said to be at * et / > (deS)

, . .
a Hamming distance from each other if they are coordinate-wise equal to andsS’ > d.S, so that Theorem 2 y|eIds an eXponem'al
each other on all bui coordinates. number of patterns.
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« For a fixeda, n has to be chosen large enough so that an 10" - -
(an, Bd,) expander exists according to Theorem 1, angd ,, 1| ——er el |«

so thatan/2 > e = |25 . ol
Once we choose a judicious set of parameters accordinggow,é ]
the above requirements, we have a neural associative memery T
that is guaranteed to recall an exponential number of petter= 10
even if the input is corrupted by errors in two coordinategt O & 10°°
simulation results will reveal that a greater number of &10  19-¢|.

can be corrected in practice. 0 2 1 6 s 10 12 14 16 18 2

Initial number of erroneous nodes

IV. SIMULATION RESULTS

We have assessed the performance of the proposed met'fﬁ_lﬂjsz Pattern retrieval error probability against theti@hi number of
ia simulations. Notice that when the network in Fig. 1 i§roneous nodes fon = 600, m = 300, de = 10, dp = 5 and a
via simu : g. Thaximum noise magnitude &f Since bit-flip and winner-take-all algorithms

initialized with a noisy version of thé" patternz = x* + z,  are guaranteed to corretiand? initial errors, respectively, the corresponding
the check neurons compuféx — b = Hz. Hence the states block error probabilities are not illustrated in the figurgedo the logarithmic
of the check neurons depend only on the noise, or to be m&f&°s:

precise, on sigfH z). Therefore, instead of first solving the

SYStemS_ of linear equatloﬂjS:c =b, Com_"ptmg the solution [3] J. J. Hopfield, Neural networks and physical systems with emergent
with noise and then get rid oHHx — b in the first round collective computational abilitiesProc. Natl. Acad. Sci., Vol. 79, 1982,

of error correction, we can evaluate the performance of tF? pp. 2554-2558. _ .
. hod b icki d ] 4] J. J. Hopfield,Neurons with graded response have collective computa-
error correction metho Yy picking an expander maiix tional properties like those of two-state neurp®soc. Natl. Acad. Sci.,

initializing the code neurons with just noise and settintp Vol. 81, No. 10, 1984, pp. 3088 - 3092.

be the all zero vector. We check whether the algorithm wilpl D. Amit, H. Gutfreund, H. SompolinskyStoring infinite numbers of

. . . . . . patterns in a spin-glass model of neural networlysic. Rev. Lett.,
be able to get rid of noise in a few iterations. Otherwise, an \y 55 1985, pp. 1530-1533.
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