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Abstract—We consider the problem of neural association for
a network of non-binary neurons. Here, the task is to recall
a previously memorized pattern from its noisy version usinga
network of neurons whose states assume values from a finite
number of non-negative integer levels. Prior works in this area
consider storing a finite number of purely random patterns,
and have shown that the pattern retrieval capacities (maximum
number of patterns that can be memorized) scale only linearly
with the number of neurons in the network.

In our formulation of the problem, we consider storing
patterns from a suitably chosen set of patterns, that are obtained
by enforcing a set of simple constraints on the coordinates
(such as those enforced in graph based codes). Such patterns
may be generated from purely random information symbols by
simple neural operations. Two simple neural update algorithms
are presented, and it is shown that our proposed mechanisms
result in a pattern retrieval capacity that is exponential in terms
of the network size. Furthermore, using analytical resultsand
simulations, we show that the suggested methods can tolerate a
fair amount of errors in the input.

I. I NTRODUCTION

The mid20th century saw the publication of two pioneering
works in the fields of neural networks and coding theory,
respectively those of McCulloch and Pitts in 1943 [2] and
Shannon in 1948 [1]. In their modern avatars, graphical models
and algorithms are seen to play a major role in both areas. In
spite of a lot of common models and techniques, there is seen
to be a clear quantitative dichotomy in terms of results in
these two fields. While coding theory shows that a number of
“codewords” that are exponential in terms of their length can
be reliably stored, transmitted and decoded, the best pattern
retrieval capacities that can be obtained in a neural network
scale only linearly with the length of the patterns.

One reason for this vast difference in the achievable results
is that neurons in a neural network are restricted to employ
only simple operations such as linear combinations of inputs,
and thresholding. This rules out using a lot of techniques
that are key in terms of achieving the exponential scaling
results of coding theory. The natural question that arises
is whether one can increase the storage capacity of neural
networks beyond the current linear scaling results. We answer
this question affirmatively in this paper, by showing that in
fact, anexponentialscaling is possible.

In contrast to the traditional approach of using bipolar
signaling levels for the neurons [6], we will work with the
case of neurons that can assume a finite set of integer values

S = {0, 1, . . . , S−1} for their states. One way of interpreting
the integer states is to think of the short-term (normalized)
firing rate of a neuron as its output. We restrict the operations
at each neuron to a linear summation over the inputs, and
a possibly non-linear “thresholding” operation. In particular,
suppose that a neuronx updates its state based on the states of
its neighbors{si}n

i=1
. Neuronx first computes the weighted

sum

h =

n
∑

i=1

wisi,

wherewi denotes the weight of the input link fromsi, and
then updates its state asx = f(h), wheref : R → S is a
possibly non-linear function from the field of real numbersR

to S.
In brief, neural associative memory aims to memorizeCmax

patterns of lengthn (auto-associative memory) or associate
Cmax patterns of lengthn with Cmax patterns of lengthk
(hetero-associative memory). In both cases, we are given a
network of neurons (binary or non-binary) whose intercon-
nections can be modeled by a weighted complete graph. The
goal is to determine the weight matrix (termed thelearning
phase) such that the network is able to recall a large number
of memorized patterns (during therecall phase), while being
able to tolerate a fair amount of noise.

In what is probably the most well-known work in this area,
Hopfield [3] used the Hebbian learning rule [9] to introduce
an auto-associative neural mechanism, that is known as the
Hopfield network. In the Hopfield network, patterns are binary
vectors of lengthn, and it was shown later by Amit et al.
[5] that the network is able to memorizeCmax suchrandom
patterns with vanishing bit error probability as long asCmax ≤
0.138n. Here, random means that the patterns can be any of
the2n binary vectors of lengthn with equal probability. Later,
McEliece et al. [15] showed that if we require all patterns tobe
recalled with vanishing codeword error probability (as opposed
to bit error probability), then the capacity is only proportional
to n/ log(n). These results were extended to the case of a
sparse regular neural network in [13].

In [18], using the pseudo-inverse rule [6] to determine the
weight matrix, the authors showed that one can memorize up
to n patterns so that they are fixed points of the dynamics,
but only n/2 random patternscan be stored if one requires
at least one bit of error correction. Although this was a
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significant improvement to then/ log(n) scaling of the pattern
retrieval capacity in [15], it comes at the price of much higher
computational complexity.

It is known that as the number of active neurons decreases
(low activity neurons), the number of patterns that can be
stored increases [6]. Nevertheless, when required to correct a
fair amount of erroneous bits, the information retrieval isnot
better than that of networks with balanced activity patterns.

While most previous works focus on improving the pattern
retrieval capacity of neural associative memories when storing
random patterns, there has recently been some efforts to
employstructured (non-random) patternsin order to increase
the pattern retrieval capacity. Berrou and Gripon [7] have
demonstrated considerable improvements in the pattern re-
trieval capacity of Hopfield networks, by utilizing Walsh-
Hadamard sequences used in CDMA systems to combat the
noise in the network. However, a drawback in their work is
that a separate soft Maximum Likelihood (ML) decoder is
used for noise removal in the input, which is undesirable in
the interest of minimizing complexity.

Following the same approach of using structured patterns,
in [16] we introduced two novel mechanisms of neural asso-
ciation that employ binary neurons to memorize patterns with
low correlation properties. The network itself is very similar to
that of Hopfield, with a slightly modified weighting rule. The
proposed methods employ low-complexity learning rules and
do not need any extra decoding stage during the recall phase.
Using computer simulations, it was shown that the pattern
retrieval capacity of the proposed model isCmax = n, while
being able to correct a fair number of erroneous input bits.

Extensions to non-binary associative memories have also
been considered previously. Hopfield himself showed in [4]
that similar to the binary case, neurons with continuous states
(any value between−1 and 1) can also perform collective
behaviors, such as memorizing a set ofrandom patterns.
However, in the context of auto-associative networks with a
response between−1 and1, the pattern retrieval capacity will
be less than that of a network of binary neurons [4].

Jankowski et al. have considered multi-state complex-valued
neurons as a means of implementing associative memory [20].
The authors use the traditional Hopfield network structure
and weight determination mechanism with complex-valued
neurons. They approximate the pattern retrieval capacity as
Cmax = αn with α being a constant less than0.15. Further-
more, they show thatα decreases as the number of complex
levels increases. In [14], the authors use the same neural model
as that of [20] but show using simulations that up toCmax = n
patterns may be stored using a different method to determine
the neural weights. However the complexity of the weight
computation mechanism is quite high. Another extension of
the Jankowski’s model to admitCmax = n pattern retrieval
capacity in [21] uses a Modified Gradient Descent learning
Rule (MGDR) to determine the weights.

In this paper, we follow the same approach as in our
previous paper [16], and aim to memorizestructured patterns
as opposed to purely random ones. However, instead of using

binary neurons and low correlation sequences as in [16], we
employ neurons with non-binary integer valued states and pick
our patterns to be those that satisfy some simple constraints.
More precisely, if each neuron can have a state from the set
of integersS = {0, 1, . . . , S − 1}, instead of considering
all possibleSn such patterns, we pick a subset of them by
forcing the patterns to satisfym constraints. We suitably pick
the constraints such that the number of patterns in the given
subset is exponential in terms ofn (i.e., is equal toℓn, for some
ℓ > 1). As long as the corresponding constraint matrix satisfies
some expansion properties, we show that our proposed neural
network can memorize these exponential number of patterns,
while being able to correct a reasonable number of input
errors. Furthermore, the error correction procedure is very
simple and has low complexity, which makes it an appropriate
choice for being implemented in real neural networks.

II. T HE STORAGE AND RECALL PROCESS

We consider the case of storingCmax random patternsX =
{x1, x2, . . . , xCmax} in a neural network. Let each pattern be
denoted byxi = (xi

1
, · · · , xi

n), where the valuesxi
j belong to

the alphabetS. As mentioned previously, we will intelligently
choose the particular patternsX that we wish to store, as
opposed to a random subset of all possibleSn patterns. In the
parlance of error correcting codes, this amounts to introducing
“redundancy” among the patternsX to facilitate the detection
and correction of errors (noise) in the patterns. In order to
pick a “good” set of patterns, we follow the approach of low
density parity check (LDPC) codes , and defineX to comprise
the set of all vectorsx ∈ Sn that satisfy the system of linear
equations

Hx = b, (1)

whereH is anm× n integer matrix with each entry either0
or 1, andb is anm× 1 integer vector. We will further choose
H to be a sparse matrix, i.e.,H has a small fixed number of
ones, saydc anddp in each row and each column, respectively.
The problem of determining the set of integer solutions to such
systems of linear equations has been studied previously, see for
example [8]. In particular, it is known that the set of solutions
forms a lattice translate, and can hence be generated from
purely random sequences through simple neural processing.
Details regarding this mapping are the subject of future work,
and are beyond the scope of this paper. We will focus solely on
the problem of storingX in the neural network in the sequel.

Suppose that we have fixed a particular choice ofH and
b, that in turn fixes a particularX . We now focus on the
recall process of our neural network, when fed with a noisy
input. The recall process can be described using the graph in
Fig. 1. A possibly noisy version of an input patternxi (some
i = 1, . . . , Cmax) is initialized as the states of thepattern
neuronsx1, . . . , xk in Fig. 1. We assume that the noise is
integer valued and additive, and that the value of the noise
added to the pattern is clipped to either0 or S − 1, when
the sum of the noise and input is less than0 or greater than
S − 1, respectively. With a slight abuse of notation, this is



dp

x2 xn−1 xn

. . .

. . .

x1

y1 ym

dc

Hij ∈ {0, 1}

Fig. 1. Storage and recall in the neural network

represented asxj = xm
j + zj, for some integer noisezj . Our

task in the sequel will be to “remove” this noisezj to obtain
the desired patternxm as the states of the pattern neurons.
This task will be accomplished by exploiting the fact that we
have chosen the patternsX to satisfy the set of constraints
in (1). We adopt an iterative algorithm, implemented using
the graphical structure of Fig. 1. Them constraint neurons
{yi}

m
i=1

are connected to the pattern neurons{xj}
n
j=1

, with
Hij representing the weight of the link betweenxj and yi.
Hencedc anddp, as previously defined, denote the number of
edges (degree) connected to the constraint and pattern neurons
respectively. The algorithm comprises a series of forward and
backward iterations, described below:

• Forward iteration:Each constraint neuronyi computes a
weighted sum of its inputshi =

∑n

j=1
Hijxj , and sets

its value according to

yi =







1, hi < bi

0, hi = bi

−1, otherwise
.

It is clear that if the states of the pattern neuronsxi

correspond to a pattern fromX (i.e., the noise-free case),
then for all i = 1, . . . , m we haveyi = 0 1.

• Backward iteration:Each neuronxj computes

gj =

∑m

i=1
Hijyi

dp

.

Roughly speaking, the quantitygj can be interpreted
as feedback to pattern neuronxj from the constraint
neurons, where the sign ofgj provides an indication of
the sign of the noise that affectsxj , and|gj | indicates the
confidence level in the decision regarding the sign of the
noise. Once the pattern neurons compute thegj , one can
come up with many strategies regarding how they update
their values. We consider the following two strategies in
this paper:

1) The pattern neurons implement awinner-take-all
strategy, which is well known and studied among

1Note that although we do not allow neurons to have negative outputs, the
set of outputs{−1, 0, 1} can be easily implemented by sending{0, 1, 2}
as the neural output and shift the response in the pattern neurons during the
neural update. The whole shifting process can be translatedinto a modified
firing threshold for each neuron which depends on its incoming degree.

the neuroscience community [6]. Define

j∗ = arg max
j

|gj |.

If gj∗ 6= 0, then setxj∗ = xj∗ + sign(gj∗). Notice
that although collaboration is needed among the
{xj} neurons to implement this decision, simple
neural circuits to implement this strategy are well
known [6].

2) The pattern neurons make local decisions regarding
updating their values, similar to thebit-flipping al-
gorithm of [11]. We fix a threshold valueγ > 0. For
eachj = 1, . . . , n, xj = xj + sign(gj), if |gj | > γ.

III. A NALYSIS OF THE PROPOSEDALGORITHM

In this section we focus on the winner-take-all version of
our algorithm, and prove that it is guaranteed to correct a
certain number of errors. Before turning to an analysis of the
algorithm, we first show that the number of patterns that satisfy
(1) and are hence stored by the suggested neural network is
exponential in the lengthn, which is a significant improvement
over the best current associative memories that only allow a
linear number (inn) of patterns to be stored.

A. Number of Patterns and Distance Properties

In order to prove the subsequent results, we will need to
employ bipartite expander graphs(as in [11], [12], [19]),
which we now define.

Definition 1: A regular (dp, dc, n, m) bipartite graphH is
a bipartite graph betweenn pattern nodes of degreedp andm
constraint nodes of degreedc.

Definition 2: An (αn, βdp)-expander is a(dp, dc, n, m) bi-
partite graph such that for any subsetP of pattern nodes with
|P| < αn we have|N (P)| > βdp|P| whereN (P) is the set
of neighbors ofP among the constraint nodes.

The following result from [19] shows the existence of
families of expander graphs with parameter values that are
relevant to us.

Theorem 1:Let dc, dp, m, n be integers, and letβ <
1 − 1/dp. There exists a smallα > 0 such that if H is
a (dp, dc, n, m) bipartite graph chosen uniformly at random
from the ensemble of such bipartite graphs, thenH is an
(αn, βdp)-expander with probability1 − o(1), whereo(1) is
a term going to zero asn goes to infinity.

We now show that there exist an exponential number of
patterns satisfying (1), whenH is randomly chosen from the
(dp, dc, n, m)−regular bipartite ensemble.

Theorem 2:Let neurons have integer-valued states between
0 and S − 1, and each row of them × n matrix H contain
exactlydc ones (with the remaining entries being zero). Then,
there exists a column vectorb such that the system of linear
equationsHx = b has an exponential number of solutions.

Proof: Since each component of the vectorx can take
any integer value from0 to S − 1, we have a total number
of Sn such vectors. Supposey = Hx. Then each component
of y is between0 and dc(S − 1). Hence, there are at most
[dc(S − 1) + 1]m of such vectorsy. Now if each component



of the vectorb can take any integer value from0 to S′ − 1,
then forS′ ≥ dcS there exists a vectorb such that the system
of equationsHx = b has an integer solution andSn/[dc(S −
1) + 1]m ≥ Sn/(dcS)m vectors of lengthn satisfy the set of
equations. Therefore, form = n/2 if S > dc we will have an
exponential number of solutions for the system of equations.
More generally, iflog(S) > m

n−m
log(dc) we can find ab such

that we have an exponential number of solutions.
Next, we present a sufficient condition such that the mini-

mum Hamming distance2 between these exponential number
of patterns is not too small.

Theorem 3:Let H be a (dp, dc, n, m)−regular bipartite
graph, that is an(αn, βdp) expander. LetX be the set of
patterns obtained as a solution to (1), as before. Ifβ > 1

2
+ 1

4dp
,

then the minumum distance between the patterns is at least
⌊αn⌋ + 1.

Proof: The proof of the above theorem is based on
expansion properties ofH and is omitted due to lack of space.

B. Error-Correction Capability

We prove the error correction capability of the winner-take-
all algorithm in two steps: first we show that in each iteration,
only code neurons that are corrupted by noise will be chosen
by the winner-take-all strategy to update their state. Then,
we prove that the update is in the right direction, i.e. toward
removing noise from the neurons.

Lemma 1: If the constraint matrixH is an (αn, βdp) ex-
pander and the original number of erroneous neurons are less
thanemin = ⌊ β

1−β
⌋, then in each iteration of the winner-take-

all algorithm only the corrupted pattern nodes update their
value and the other nodes remain intact. Forβ = 3/4, the
algorithm will always pick the correct node if we have two or
fewer erroneous nodes.

Proof: For simplicity, we restrict our attention to the
caseβ = 3/4. If we have only one nodexi in error, it is
obvious that the corresponding node will always be the winner
of the winner-take-all algorithm unless there exists another
node that has the same set of neighbors asxi. However,
this is impossible as because of the expansion properties, the
neighborhood of these two nodes must have at least2βdp

members which forβ = 3/4 is equal to3dp/2. As a result,
no two nodes can have the same neighborhood and the winner
will always be the correct node.

In the case where there are two erroneous nodes, say
xi and xj , let Q be the set{xi, xj} and N(Q) be the
corresponding neighborhood on the constraint nodes side.
Furthermore, assumexi and xj sharedp′ of their neighbors
so that|N(Q)| = 2dp − dp′ . First of all note that because of
the expansion properties and forβ = 3/4:

|N(Q)| = 2dp − dp′ > 2βdp ⇒ dp′ < dp/2.

2Two (possibly non-binary)n−length vectorsx and y are said to be at
a Hamming distanced from each other if they are coordinate-wise equal to
each other on all butd coordinates.

Now we have to show that there are no nodes other thanxi

andxj that can be the winner of the winner-take-all algorithm.
To this end, note that only those nodes that are connected to
N(Q) will receive some feedback and can hope to be the
winner of the process. So let’s consider such a nodexℓ that is
connected todpℓ

of the nodes inN(Q). Let Q′ be Q ∪ {xℓ}
andN(Q′) be the corresponding neighborhood. Because of the
expansion properties we have|N(Q′)| = dp−dpℓ

+ |N(Q)| >
3βdp. Thus:

dpℓ
< dp + |N(Q)| − 3βdp = 3dp(1 − β) − dp′ .

Now, note that the nodesxi andxj will receive some feedback
from at leastdp−dp′ edges because those are the edges that are
uniquely connected to them and noise from the other erroneous
nodes cannot cancel them out. Sincedp −dp′ > 3dp(1−β)−
dp′ for β = 3/4, we conclude thatdp−dp′ > dpℓ

which proves
that no node outsideQ can be picked during the winner-take-
all algorithm as long as|Q| ≤ 2 for β = 3/4.

In the next lemma, we show that the state of erroneous
neurons is updated in the direction of reducing the noise.

Lemma 2: If the constraint matrixH is an (αn, βdp) ex-
pander and the original number of erroneous neurons is less
thanemin = ⌊ β

1−β
⌋, then in each iteration of the winner-take-

all algorithm the winner is updated toward reducing the noise.
Proof: As before, we only focus on the caseβ = 3/4.

When there is only one erroneous node, it is obvious that all
its neighbors agree on the direction of update and the node
reduces the amount of noise by one unit.

If there are two nodesxi andxj in error, since the number
of their shared neighbors is less thandp/2 (as we proved in
the last lemma), more than half of their neighbors agree on
the direction of update. Therefore, whoever the winner is will
be updated to reduce the amount of noise by one unit.

From Lemmas 1 and 2, it is clear that ifH is an(αn, βdp)
expander, then the winner-take-all algorithm is guaranteed to
correct at leastemin = ⌊ β

1−β
⌋ positions in error, irrespective

of the magnitudes of the errors. Similar statements can be
made for the bit-flipping algorithm as well. However, in that
case there will be a small probability of error if the number
of erroneous nodes is larger than1 because of the chance
that noise terms cancel each other out. We have omitted the
proof due to lack of space. Compared to the winner-take-all
algorithm, the bit-flipping method has less complexity but a
worser performance as well.

C. Choice of Parameters

In order to put together the results of the previous two
subsections and obtain a neural associative scheme that stores
an exponential number of patterns and is capable of error
correction, we need to carefully choose the various relevant
parameters. We summarize some design principles below.

• From Theorems 1 and 3, the choice ofβ depends ondp,
according to1

2
+ 1

4dp
< β < 1 − 1

dp
.

• Choosedc, S, S′, r , m/n such thatSn > (dcS)rn

andS′ > dcS, so that Theorem 2 yields an exponential
number of patterns.



• For a fixedα, n has to be chosen large enough so that an
(αn, βdp) expander exists according to Theorem 1, and
so thatαn/2 > emin = ⌊ β

1−β
⌋.

Once we choose a judicious set of parameters according to
the above requirements, we have a neural associative memory
that is guaranteed to recall an exponential number of patterns
even if the input is corrupted by errors in two coordinates. Our
simulation results will reveal that a greater number of errors
can be corrected in practice.

IV. SIMULATION RESULTS

We have assessed the performance of the proposed methods
via simulations. Notice that when the network in Fig. 1 is
initialized with a noisy version of theith patternx = xi + z,
the check neurons computeHx − b = Hz. Hence the states
of the check neurons depend only on the noise, or to be more
precise, on sign(Hz). Therefore, instead of first solving the
systems of linear equationsHx = b, corrupting the solution
with noise and then get rid ofHx − b in the first round
of error correction, we can evaluate the performance of the
error correction method by picking an expander matrixH ,
initializing the code neurons with just noise and settingb to
be the all zero vector. We check whether the algorithm will
be able to get rid of noise in a few iterations. Otherwise, an
error is declared.

Fig. 2 illustrates the performance of the winner-take-all
and bit flipping algorithm as a function of initial number of
erroneous bits. Simulation parameters arem = 300, n = 600,
dp = 5, dc = 10, β = 3/4 andγ = 0.8 (the update threshold
for the bit-flipping algorithm). To add noise, an initial number
of neurons were picked uniformly at random and a random
integer noise within the interval[−zmax, zmax] (excluding
0) was added to each node. In Fig. 2,zmax = 5. For the
simulated setting withS = 15, evaluating the lower bound
in the proof of Theorem 2 yields that one is able to store
Cmax = 1.5300 ≈ 6.72 × 1052 patterns of lengthn = 600!

Note that in order to do simulations, we simply generated a
number ofm×n random binary graphsH and did not check
the expansion property. Hence, the performance illustrated in
Fig. 2 is an upper bound on the actual probability of error. One
might obtain better results by generating expander matrices or
optimizing row and column degrees (dc anddp). Furthermore,
increasingm and n will lead to better results even in the
random case.
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