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A quotient method for designing nonlinear controllers

S. S. Willson, Philippe Mullhaupt and Dominique Bonvin

Abstract— An algorithmic method is proposed to design feedback linearization [11]. However, that algorithm gsar
stabilizing control laws for a class of nonlinear systems tat  the limitations of feedback linearization since the contia
comprises single-input feedback-linearizable systems dna ;ga5 feedback linearization and linear control technigies

particular set of single-input non feedback-linearizablesystems. th limitati thi t bed
The method proceeds iteratively and consists of two stages; overcome these limitations, this paper proposes to embe

it converts the system into cascade form and reduces the control design in the algorithm, which helps go around the
dimension at every step by creating quotient manifold in the singularities when they would arise in feedback lineararat

forward stage, while it constructs the feedback law iteratvely  Furthermore, with certain assumptions, the proposed ap-
in the backward stage. The paper shows that the construction proach can approximate non-FBL systems as FBL systems.

of these quotient manifolds is well defined for feedback- E le it has b ible t hi both ;
linearizable system and, furthermore, it can also be appli¢ or exampie, 1t has been possibie to achieve both swing-

to a class of non feedback-linearizable systemsl Up and stabilization of the acrobot [12] and the inverted
pendulum [13].
|. INTRODUCTION The approach has two main algorithmic parts, namely (i)

Several elegant and powerful methods are available to ha-forward stage that transforms the system into a cascade
dle feedback-linearizable (FBL) systems and certain efassform at each step, and (ii) a backward stage that builds
of single-input nonlinear systems ([1], [2], [3] and [4]).successive control laws, starting from the smallest cascad
These methods proceed by either solving partial diffeaéntiSystem obtained at the end of the forward stage to the
equations or finding an appropriate function or surface th&omplete system. The paper will present the following new
guides the control design. For example, the passivitybasgesults:
approach to handle Lagrangian or Hamiltonian structures« A control design that can exploit the degrees of freedom
[5] and the feedback linearization approach [2], [3] both  available in the forward stage to avoid the singularities
require solving partial differential equations. On the esth that appear in feedback linearization.
hand, in Lyapunov’s direct method [1], an appropriate aaintr  « The conditions for the algorithm to be able to incorpo-
Lyapunov function is essential to the success of the method, rate control design.
while in the sliding-mode method [6], the selection of an « Under certain conditions, backstepping can be used with
appropriate sliding surface is key. this algorithm, thus resulting in a globally asymptoti-

In contrast, for linear systems, there are many algorithmic  cally stabilizing control law.
methods. Linear-quadratic regulation (LQR) is one of the « The present results are perfectly in line with the existing
most popular methods for controlling linear systems, not results for feedback linearization and state linearizatio

only because of the intrinsic robustness of the resulting The paper is organized as follows. Section 2 presents
controllers, but because of its algorithmic nature. Indeed preliminary material, in particular the basic lemma and a
rests on solving a Riccati equation, which can be done Vigorollary that supports the method developed in this work.
successive transformations that bring the original equati section 3 provides the algorithms for both the forward and
into a simpler form, from which the control gains can beyackward stages. The approach is illustrated via the exampl
easily inferred. Other methods such as pole placement algp 5 FBL system in Section 4. Section 5 discusses the
resort to successive transformations that bring the alginconditions under which backstepping can be used with this

system into a more manageable form. For example, a singlgmorithm, while Section 6 presents concluding remarks.
input linear system can be brought to upper Hessenberg form

[7] using the Miminis-Paige algorithm [8] or the staircase [l. PRELIMINARIES

algorithm [9], [10] before proceeding to stabilization. The preliminary material required for the forward stage is

The aim of this paper is to present an algorithmic memOSresented in [11]. In this section, results required to prine

for de3|gn|ng_ an asymptotically stabll_lzmg con_trollerrfa_ stability of the control law designed through the backward
class of nonlinear system that comprises, but is not limite
age are presented.

to, smgle-mput FBL §ystems. The present approach bwltfs Lemma 1: Consider the system
on an algorithm designed to compute the output for static
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librium at z = 0, then the system (1) has an asymptoticallys straightened and aligned along the last coordinate axis

stable equilibrium atz,y) = (0,0). by suitable diffeomorphism. Then, projection is taken glon
This result is provided in Appendix B.2 of [2]. A corollary the last coordinate to generate the quotient manifold. Ehis
of this lemma is given next. visualized for a three-dimensional system in Figure 1.
Corollary 1: Consider the system
x = fao(x,), 2
6 = fg(x,&)—i-g(x,f)u, (3)

wherex € R, ¢ ¢ R,u € R, f, : R" = R}
fe :R* = Randg : R* — R with the equilibrium point i 2RERE
(x,€) = (0,0) and g(x, &) # 0 in the domain of operation.

If there exists a functiog,(x) with £;(0) = 0, which, when (a) Integral man- (b) The diffeomorphism (c) Projection gives the
substituted for¢ in (2), asymptotically stabilizes the systemifold of g(x) ~ z = &(x) straightens quotient manifold

(2), then the integral manifold
L %fm(X,f) - fg(X,f) + k(fd(x) . 5) (4) E}I/%te%n Method for generating quotient manifold for3adimensional
9(x,€) ’
wherek is any arbitrary positive constant, locally asymptot-
ically stabilizes both (2) and (3).

Proof: Let the error variable be Let us consider @-dimensional system of the form
e = &x)-& )
Substituting (4) and (5) into (2) and (3) gives the new set of x = f(x) +9(X)u, (8)
equations
x = fao(xE4(x)—e), (6) Wherex e R?, f:RP — RP andg : R” — R”. The generic
¢ — ke ) dimensionp is chosen here since the system dimension

reduces with every iteration.

It can be shown using Lemma 1 that the above system The effect ofu is isolated on the last component a&f
locally asymptotically stable since through suitable diffeomorphism. This is possible since th
« e =0 is an asymptotically stable equilibrium of (7), distribution A = spar{g(x)} is nonsingular and trivially
o for e = 0, by assumptionx = f.(x,£&4(x)) is also involutive (it has dimensior). By Frobenius theorem [2],

asymptotically stable at = 0. A is completely integrable. Hence, there exist 1 smooth

Hence, the system (6)-(7) is locally asymptotically stabl@INCtions ¢ (x), ..., ép—1(x) with linearly independent dif-

at (x,e) = (0,0), which implies that the system is locally ferentials such that

asymptotically stable atx, &) = (0,0). n

I1l. THE ALGORITHM Lygu(x) =0, tsisp-1.
The algorithm consists of two stages. In the forward stage, ) ) )

the system is systematically reduced using the algorithfnonstructinge, (x), ..., é,—1(x) can be achieved using the

described in [11]. This paper presents additional resulis@grange subsidiary system [11] or by using flowbox theo-

required to adapt the algorithm to the present applicatioh€M [14]. Thesep;'s are collected to define the diffeomor-

The effect of the input is isolated on a single variable, anBhisSmM @, (x),

this variable is then used to control the rest of the system.

This step is repeated as many times as possible to obtain b1 (x)

a smaller-dimensional cascade system. The necessary condi b2 (x)

tion for building equivalence classes at each iteratiorige a .

provided. In the stabilizing stage, a locally asymptotical Pp(x) = : ’ ©)
stabilizing controller is constructed iteratively by peecling Pp-1(x)

backwards. v(x)

A. Forward stage for achieving cascade form
The effect of the input is isolated on a single state?ith thep™ component being any functioy(x) chosen such

which is then used to control the remaining states. This fhat

achieved by generating a quotient manifold using the iategr

manifold of the input vector field as the equivalent class. To 0®,(x)

achieve this, the integral manifold of the input vector field rank< Ox ) =P

(10)



Definez £ ®,(x) with z € RP so that (9) is a diffeomor- since ®..f is only linearly dependent on,. Also, ®.g =

phism with the inversex = @, (z): (0,---,0,a(z))T. Hence P{®.g) = 0. Next, consider
z = P,(x), 0P.g 0P, f
D, f, P, = D, f— P,
. M- : gl Oz f Oz g
z = ox x _ ( 0610—(1,)13 ) P f _ 8(1’*f ( Opfl,l )
0P, (x o datz) * Oz oz
= 220 ) 1 () Z )
X o (g, ) -2
= p(x)f(x)| _e-1 + p(x)g(x)u| S ag(zz)@*f 0zp
ox x=®; " (2) ox =%, (z) 0P
z = f.z)+g.(2)u. (11) = ( ngzljl > —a(z) 5 *f,
z
This z-system is in cascade form. The constructlor@g(x) ?
implies that the firsp — 1 components of.(z) are zero, i.e. Where
g-(z) = (0,0,...,0,a(z))T. Hence, in the new coordinate B(z) 2 aa(z)q) f (16)
system, the input affects only the last coordinate. Next, in 2T "oz oF

order to reduce the dimension of the system, the fo”OW'”grOJecuon gives:
projection map is defined.
Definition 1: The projection map, Pr R¥ — RF-1 s PH([®. f, ®.g]) — Pr(( Op—1,1 )) _ Pr(a(z)aq)*f)

defined asPr((ay, as, ..., ap—1,ax)%) = (a1, az, ..., ap_1)7. B(z) Dzp
B o, f
This projection map is applied to system (11), = —a(z)P Dz ) (17)
Pr(z) = Pr(f.(2) + g:(z)u), (12) Consider next
with the effect of removing the'” component of the state. Op—1,1 9%, f
r . *4, * )y Ex - (I’* 5 \ - =
Letx 2 Pr(z) andf.(x, z,) 2 Pr(f.(z)). Since Pfg.(z)) = (@9, [®-f, B9l = [0, { 5 o(2)5;]
0, (12) reduces to 0, 11
<= f 6( E(Z) ) d(a(z) Z5=t)
x = [.(X, 2p), 13 o(2) Fon
f2(%, 2p) (13) - .- 6Zd P
wherez, is thep! component ofz. The complete step can _ 0%, 2-9(P, f, ®.g]
be summarized through the commutative diagram given in 0
. -1,1 oz P
Figure 2. _ ( a(zp) 5(z) ) _a(z)aaép) ag;pf
0zp
X%z 25 0
ML SO Sl (U B
X
Applying the projection map and using (15) gives:
Fig. 2. Commutative diagram for a step in the forward stage.
Oa(z) 0P, f
Pr([®.g, [P.f, = 0—Prla
([@.g,[@.1. 2.g]) = 0 “()az,, o)
If fz(ﬁc,zp) depends linearly om,, which is the case when —Pr(a(z) *f) 0 (19)
the distribution A = spafgy, [f,¢]} is involutive and a P
certain condition is satisfied (see Lemma 3 below), then (13) - —al2) da(z) Pr( 5<I’*f) (20)
can be separated as follows: 0zp Dz
x = f+(X) + g2 (%), (14) Using (17) and (20), we can write:
whered = z, and with the vector fields;(x) : RP~* PI®.g, [®.f, ®.9]] = x1(2)P[®. f, ®.9], (21)
RP~1 and g; (%) : RP~! — RP~L. The necessary cond|t|on
for the separation given by (14) is presented through the
following lemma. For notational purpose, the operabqris - Oa(z) (22)
defined ay.(z) = ®.g(x) £ 52 g(x)|x=a1(x)- M@ = g
Lemma 2:If the separation given by (14) is possible forB definin
system (8), then the distributiodh = sparg,[f,g|} is y defining
involutive. el [®.g, [®.f, ®ug]] — k1(2)e] [ f, P.y]
Proof: When the separation given by (14) is possible,@(z) = a(z) J
we can write it ible 1 it
5 it is possible to write
Pr<a q);f> =0, (15)
a’Zp [ *g [ *fa ]] = K1 (Z)[@*fv @*g] + K’Q(Z)@*g' (23)



Hence the distributiod\ = spa{ ®..g, [®..f, ®.g]} is invo-
tivity properties, spafy, [f,¢]} is also involutive. Hence, if
the separation given by (14) is possible, then the disinbut
A = spard g, [f, g]} has to be involutive. m

The sufficient condition for the separation given by (14) i

where\,(z) is a scalar function and is defined as
lutive. Because a diffeomorphism does not affect the involu

o(z) f’gg:)

— k1(z)a(z)
o(z)?

It is easy to see, from the relation (26), that all the higher

)\Q(Z) =

é:lerlvatlves will also be proportional to the first-order ida¥r

given below. tive, that is, )
Lemma 3:If the distributionA = spar{g, [f, ¢} is invo- r(a ‘I’*f) — (2)Pr (3@*f)
lutive and if v(x) is chosen such that(z) satisfies (22), 0z} 0zp
then the separation given by (14) is possible. 0, f 0. f
Proof: If A = spar{y, [f,g]} is involutive, then (23) Pl—a") = M@)Pr——),
and (21) are satisfied. Substituting (22) and (17) into (21) P b
gives:
Oa 0P i i
P®, g, [®. f, ®.g]] = —alz) (z ) Pr( f). (24) and so on. Since all these equa‘mons are true fog,athey
Ozp Ozp are also true for, = 0, and thus:
Next, equating the RHS of (24) with RHS of (19) gives: Pr(aQ(P*fﬂ Aol )Pr(aq’*f)|
T a9 Jlzp= = z . Jlzp=0,
o 02, f da(z) , 0. f 922 10 ? 9z, 70
a(z)’Pl——5") — alz)—5 —Pl(—"=) P, b, |
? Y . Pr(——5")lz,—0 A3 (2)Pi(——=)|z,—0,  (27)
da(z) 0P, f 9zp Ozp "7
= —ale) 5 2P,
Zp Zp
%%, f
2 *
= a(2)"Pr( 922 ) =0 Let us define thép — 1)-dimensional vector field;(z) as
P*®, f =y OPH(®.f)
) = 0. g (2) == (28)
= Pr(——5") 0 () 82 .

Note that(z) # 0 is a requirement for choosingx). Since
all the higher order derivatives of (. f) with respect to,,
are zero, it can be concluded that®r. f) is only linearly

dependent orz,,. Hence, the linear separation given by (14); Vi = 1,.

is possible. m

It has also been shown in Corollary 1 in [11] that, if the

distribution A spafg, [f,g]} is involutive, then it is
always possible to construgt — 2) 1-forms, independent of

zp, that span the null space of (|@r.[f, g]). The following

lemma show the way to construct such 1-forms even if the

separation given by (14) is not possible.

Lemma 4:If A = spardg, [/, ]} is involutive, then it is
always possible to construgt — 2) 1-forms, independent of
zp, that span the kernel of B, [f, g]). The same 1-forms
also span the kernel of

gi(i’vzp) = Pr((I’*f) - Pr(q)*f)|zp:07

wherez = Pr(z) = (z1,..., 2p—1).
Proof: If A = sparg,[f,g]} is involutive, then

(25)

(23) and (21) are satisfied. Substituting (17) into (21) and

comparing with (19) gives:

0’®, f da(z) 0P, f
2 —
0@ P(30) — alm) 7 P

B 0P, f

= —ki1(z)a(z)Pr( 92 ).
Re-arranging the above equation gives:

*®.f. 0P, f
P( 622 ) AQ(Z)Pr( 82’;0 )7 (26)

It is always possible (guaranteed by Frobenious theorem) to
constructp—2) linearly independeritt-forms,ws, . . ., wp—2,

such that they span the kernel 9f(%), i.e. w;.gz(&)
,p — 2. Since g;(Z) does not contairg,,
Wi, Wp— 2are independent af,. Using the definition (28)
along with the relation (27) gives:

o0®, f B
wi.Pr( B )]z,=0 0,
0*®, 0P,
w;.Pr( pR 2f)|zp:0 = A2(z)w;.Pr( azpf”%—o =0,
3
wi.Pl’(aatgf)lzp_o = )\3(Z)UJ¢.PI’(8(;I:;JC)|ZP—Q = 0,
(29)
Vi=1,...,p— 2. From (17),
aF’f( *f)
= o= @0

(QM around
Zp

Next, consider the Taylor expansion

zp = 0:
OPI(®. f) _ pr 0d. f
0zp 9zp /1, o

2

+ Pr <8 @;f> Zp
0z, 2y =0

1 PP, f 9
+ 5.Pr< 923 > Z :Ozp+... (31)




Using the relations (30) and (31) and results from (29) giveldence, using the result of Corollary 2 and (33), state lin-
w;.Pr(®.[f,g]) =0,¥i=1,...,p—2. Hencew,...,wp_2, earization requireg®..g, [®.f, ®.g]] = 0, which implies
which are independent af,, span the kernel of P®.[f,g]). [g,[f,g]] = 0. In this case, the condition (15) becomes

Next, considering the Taylor expansion of(®t. f) and 02, f
using the definition (25) yields: 92
p
gs(iszy) = Pr (8@]‘) 2 as stgted in [15]._ Note that this a_nalysis only applies_ tp one
0z 2p=0 step in the algorithm and thus fails to show the sufficiency
1 2, f ) condition for state linearization.

+ E.Pr ( 9.2 ) Zp Next, if the distributionA = sparg, [f, g]} is not involu-
' P zp=0 tive, then some approximation has to be introduced to make
N L. (83‘1’*f) S (32 it linearly dependent and thus obtain the separation given
3! 0z} =0 P by (14). This is required for the decomposition process to

proceed according to the following algorithm.
Consideringw;.gs (&, zp), when substituted with (32) and Algorithm to achieve a cascade form

using the relations (29), gives;.g:(&,2p) = 0,¥i =
1,...,p — 2. Sincews,...,w,—2 are linearly independent
1-forms, they span the kernel 9f(z, z,). m

These lemmas provide an alternative explanation for the
termination condition of the state and feedback lineagzin
algorithms provided in [15]. For the feedback linearizing
algorithm, the termination condition is the same as (26).
Hence, at any stage, if the distributidn= sparf g, [f, g} is
not involutive, then the system is not feedback linearigabl
A stronger condition is required for state linearizationcs,
at every stepa(z) has to be constant (in case of [15],
a(z) = 1). This results in the termination condition (15),
which is the same as @.[g, [f,9]]) = 0. The following
corollary deals with the termination condition of the state
linearizing algorithm in [15] and presents an alternative
explanation for it.

Corollary 2: If A = spardg,[f,g]} is involutive, v(x)
can be chosen such that(z) is constant if and only if
Pr(®.[g,[f. g]]) = 0.

Proof: If A = spadgy,|[f,g]} is involutive, then (23)
and (21) are satisfied.

Necessary condition: If RP#®.[g, [f,g]]) = 0, then from
(21), k1(z) = 0 since the controllability condition stipulates

« Initialization: The system is initially in the form (8)
with p = n.
« Induction: At the k" iteration, ap = (n + 1 — k)-
dimensional system of the form (8) is available.
— Construct the diffeomorphisr®,(x) given in (9)

and choose/(x). ®,(x) must satisfy the condition
(10).

Definez £ ®,(x) and obtain the system dynamics
in the z coordinates as given in (11).

Use the projection map to defire= Pr(z) and
obtainx as shown in (12) and (13).

Keep the diffeomorphisnd®,(x) and the resulting
z-system for the backward process. Thaystem
is of the form:

X = f.A%,2) (34)
2y = [o, (X, 2p) + X, zp)u, (35)

where f. (%,z,) anda(z, z,) are thep'™ compo-
nent of f.(z) andg.(z) given in (11), respectively.
Compute the separation given by (14). The
dynamical system (14) has the same structure as
the system (8), but it is of reduced order— 1.
This becomes the input to the next iteration.

Pr(®.[f, g]) # 0. This in turn, using (22), impliegy =0,
which is true ifa(z) is constant. Hence(x) can be chosen
such thatw(z) is constant.

Sufficiency condition: |f7(X2 is chosen such that(z) is
constant. From (22)s; = Bgzz) = 0. This implies, using .
(21), P(®. g, [f. g]]) = 0. ? Several remarks are in order.

Remark 1:If f.(x,zp) is linearly dependent on,, then
Additionally, it is essential for state linearization thhe last 0%, f)

function of (®. f) be a linear function ok,. This results 9:(%) = Pr(a—*)

from the fact that the last line ob. f is not transformed “p

since the Pr function removes it. Hence, if a linear system - Lpr([q)*f, ®.g]) from (17)

« Termination: The aforementioned steps are repeated
until a single-dimensional system is obtained or further
separation according to (14) is no longer possible.

is soughte? (. f) should be a linear function of,, where o(z)
ep = (0,...,0,1) is the standard unit vector. l&(z) is _ Pr(®.[f, ).
constant, using (16) implies(z) = 0, which using (18) o(z) ’

and the fact thafgl2 = 0, further implies: This defines a direct relationship between #he#) and

[f,g]. By using the Lie-bracket-like operation given in
(33) Definition 3 of [11], all the higher-order Lie brackets can
be obtained for the reduced system. This is where the

82617;@*]" _



distinction between FBL systems and non-FBL systems is « Initialization : The algorithm starts by designing an

visible. Clearly, in case of non-FBL systemﬁ;,(fc,zp) is
not linearly dependent om, for all iterations. That is, non-
FBL systems will necessarily have an iteration where a linea
relationship cannot be established. Hence, in this case, th
algorithm needs to be modified as illustrated in [12] and [13]
Remark 2: This algorithm can transform the system into
a chain of integrators by choosingx) = L;¢; such that
L,L:¢; # 0 at every iteration. The existence of suchpa
for FBL systems can be proved using the following lemma.
Lemma 5:If the vector fieldsg and [f,g] are linearly
independent in the neighborhood =f € D, then we can
find ¢;(x), : =1,...,n — 1, such that (i)
1) ¢; # 0and %‘fj are linearly independent rows that span
the null space of(x), i.e. Ly¢; =0, and
2) there exists at least onfg such thatL L ;¢; # 0.
Proof: Since span{g} is nonsingular and is an in-
volutive distribution of dimensionl in the neighborhood

of x € D, then, by Frobenius theorem, there exist
&1(:), ..., dn-1(-) such thate;(-) : R®* — R and the
following properties holdvx € D and fori =1,...,n — 1:
o ¢i(x)#£0,
991 (x)
ox
e Rank : =n-—1,
Opn—1(x)

. Lydi(x) =0
The proof proceeds by contradiction. Let us assume that the
second part of the lemma is not true, thatis,L¢¢; = 0
foralli=1,...,n — 1. It is known that

Lifg¢i = LiLgpi — LyLsi =0,

It follows from L,¢; = 0 that LyL,¢; = 0. Since, by
assumption,L,Ls¢; = 0, it follows from (36) that 22
aren — 1 linearly independent rows that also span the null
space of f, g]. Since the vector fieldg and|f, ¢] are linearly
independent, which means that there are at most2 row
vectors that span the null space of sparf, g]}. However
9: j=1,...n—1, beingn — 1 linearly independent rows
that span the null space of sdan|f,g]} contradicts the
assumption that,L¢p; = 0foralli=1,...,n—1. Hence,

there must exist at least orfg such thatL,L;¢p; #0. m

V 1<i<n-—1.(36)

asymptotically stabilizing controller for the smallest
cascade system obtained during the last iteration of the
forward process. For example, if the forward process
successfully proceeds until a single-dimensional system
is derived, a system of the form
&1 = fi(x1,2) (37)
is obtained. Then, taking, as the input and solving
—kz1 = fi(z1,72) (38)

for zo gives an asymptotically stabilizing controller
for (37). This value ofz, becomes the desired value
2,d(71)-

« Induction: At the start of thgp—1)*! iteration (p varies

from 2 to n), the desired valuey, q(z1, ..., zp—1) that
asymptotically stabilizes the (- 1)-dimensional system
whose state i$ = (z1,...,zp—1) iS known. Also, from
the forward iteration, g-dimensional system of the
form (34) and (35) and the diffeomorphisin= ®,(x)

is known. Corollary 1 is then used to desigp,1),q-
The following relationships exist between the equations
available in Corollary 1 and those available at the
current iteration:

— The system statg in (2) corresponds tc,

— fz in (2) corresponds t(fz(fc,zp) in (34),

— £ corresponds ta,,

&4(x) corresponds ta:, q(z1, ..., Tp—1),

fe(x,€) in (3) corresponds tg. (%, z,) from (35),

— g(x,€) in (3) corresponds tex(Z, z,) from (35),
and

— u corresponds ta, .

Finally, (4) is used to obtainr(,,) 4. The change
of coordinatesz = ®,(x) is used to change the
coordinates ofr(,41) 4 from z to x. Then,z(, 1) can
be used as the input in the next iteration.

o Last iteration: In the last iteration (iteration number

n—1), z,11 becomes the sought inputfor the system

©)

IV. EXAMPLE OF A DC MOTOR

The example illustrates how the possibility of choosing

However, transforming a system to a chain of integrators(x) helps avoid the singularity that arises due to the
may introduce undesirable singularities. In such a sitmati particular choice ofy(x) required for feedback linearization.
the liberty to chosey(x) must be exploited in order to avoid This section presents an application of the algorithm to a

these singularities.

FBL system. However, the algorithm is not restricted to FBL

systems, and application of the quotient method to non-FBL

B. Backward stage for controller design

system are illustrated in [12] and [13].

In this section, the cascade form obtained at every stepA field-controlled DC motor with negligible shaft damping
during the forward stage will be exploited to design ans considered in [1]. The system can be described by

asymptotically stabilizing controller. Corollary 1 is dizul
iteratively at every step of the backward process. To iatst
the steps of the algorithm, consider a system obtained glurin
the p!" step of the forward process given by (34) and (35)
The algorithm proceeds as follows.

Algorithm for controller design

. dif
vp = Ryig+ Ly,
dig
Vg = clifw+Laé+Raia,
dw

J— =
dt

Cgifia.



The first equation represents the field circuit, withi ¢, Ry,
andL; being the voltage, current, resistance and inductancg
respectively. The variables,, i,, R,, and L, are the corre-
sponding variables for the armature circuit described ley th
second equation. The termiyw is the back e.m.f. induced
in the armature circuit. The third equation is the equatibn o
motion for the shaft, with the rotor inertid and the torque Fig. 3. DC motor controlled with the quotient method. Thetestaehavior
caiyi, produced by the interaction of the armature currerit depicted for three different initial conditions. Therthine represents
. . . . . a general case. The dashed line corresponds to a point oflaiitg for
with the. field (?II’CUIt flux. Th_e voltage, is held gonstant, and feedback linearization. The thick line represents anahitbndition that is
control is achieved by varying;. The system is representedimpossible to control using feedback linearization.
by the third-order model

(@) z1 (b) =2 (c) z3

x = f(x) + gu,
with statesz; = iy, zo = i, 23 = w, the inputu = Z—f; 022 + ca? — 0(p/b)? — cw?
ax 1 CrpL = 20z2(p — bx2)
- —20(p — 2bxo)(—bao + p —
fx)=| —baa+p—cmas |, g=101, (p T2)(—bra + p — cr173)
Oz 0 However, this transformation introduces a singularityat=

. B B B _ p/2b in addition to the system singularity a3 = 0. In
andeoin‘\;e zons_l'famﬁ N R{’ b= R"t/La’hC R '(tjl/La,'?'t;' contrast, the quotient approach provides a degree of freedo
CQt/ ’ﬁg “é o ebO_IF_fn' °op stysdem asits ?qu”“ :'huTthrough the choice of(x) at every iteration. This degree of
atz; = 0 andw, = p/b. The aimis to design a controller that ¢o.o 4o aliows circumventing this singularity by using the
drives _the system from any initial condmo.n to the d_eS'reqiiffeomorphism given in (40). This fact is clearly seen ie th
Opterat.m?fpol[?]m = (?, P/b,lwo_), wherew is the desired - i\ 1ation results presented in Figure 3. The simulatioes a
'Sr?] pfom 0(; te angurar ;’ﬁ OC_'WE"‘I de struct carried out using the parameters of a DC motor [16] with
€ forward stage gives the simple cascade STUCHIE, — hree different initial condition$0, p/(2b), 0.01; FBL singu-
1 = —y20(by2 + p), larity), (0,0,0.1; FBL impossiblg and (0,2, 20; genera).
The first (FBL singularity) and second (FBL impossible)

y,z = et (39) initial conditions are outside the domain of attraction nya
Z3 = Tamtu, controller designed using feedback linearization [1] doe t
where the presence of singularity at; = p/2b. The controller
5 o g1 designed using feedback linearization works only fgr>
91(y1,92) = —(c"wy + 2cy1 — 20cpy> — bebys)* p/2b, whereas the controller designed using the quotient
with the diffeomorphism method does not have any such restriction. Hence, upon using

0?1 e b2 00 b e the _quotient method, a larger domain of attraction can be
S 2 achieved.
® = T2 — p/b : (40)
T V. POSSIBILITY OF USING BACKSTEPPING
The first function in this diffeomorphism is always the stati Backstepping requires the system to be in strict-feedback
feedback linearizing output function (Propositions 3 and #orm. Strict-feedback form can be obtained from the forward
of [11]). The second stage computes an asymptotic contréfiage of the algorithm by constructing the diffeomorphism

for (39) given by B(x) = Bo(x) LB3(x)L... LB, 1 (x)LBn(x), (42)
0
u=—k3(ys — ys3,a) + g;’d(—yﬁ(byg +9)) where L is an operation defined as
1
0
F byt gr ) oz, (4D o ) o1 2)
2 : :
¢L1 (X) ’ ’
where : | ¢m®) _| ¢, (2)
—k2(y2 — Y2,4) + by2 + ag;id (—y20(by2 + p)) ' PRy (X) PRp41) (%)
Ys,d = , b1, (x) . ,
91(y1,y2) : :
—9p + 4/ 092p2 + 409bk/’1y1 ¢Rk (X) ¢Rk (X)
Y2,d = .
20b and
It is possible to obtain a chain of integrators by choosing b, (x)
v(x) = Ly¢; such thatL,L;¢p; # 0 at every iteration. The fu
existence of such @; is guaranteed through Lemma 5, which zZ= :

results in the unique diffeomorphism [1]: bR, (%)



However, in order to apply backstepping to a strict-feettbagrovided additional results required to incorporate theticd
form and achieve global stability, it is essential thfx) design in the algorithm presented in [11].
in (42) be a global diffeomorphism. Moreover, in order to The control law is designed iteratively based on the cas-
avoid singularity, it is necessary that, in (3%)(z,2,) # cade forms obtained at every iteration of the forward preces
0 globally. If both conditions are satisfied, a guarantee@he control law given in Corollary 1 is used iteratively to
globally stabilizing controller can be obtained by reptari construct the controller. The structure needed for Coarplla
the controller design stage by backstepping. 1 can only be guaranteed for feedback-linearizable systems
The difference in the two approaches is illustrated byhis is a consequence of Lemma 2 and Lemma 3. However,
straightforward application of both methods on the follogi even if the distribution generated by the original system is

system:

not involutive, the approach can still be applied, as itaistd

in [12] and [13].

(43)
(44)

x f(x) +9(x)¢,
& =

Let us assume that there existgdx) that stabilizes (43).

This means that there exists a corresponding Lyapungv

function V' (x) such that

_ 0V (x)

V(x) o

(f(x) + 9(x)&a(x)) = =W (%),

The backward stage could be replaced by backstepping,
which is the method of choice wheft(x) in (42) is a
global diffeomorphism andy(z, z,) # 0 globally at each
stage. In all other cases, the backward stage is advantageou
over backstepping. The main advantage stems from the
absence of the term-2X (x)g(x), which simplifies things
considerably, especially for large systems. It has alsam bee
shown through the example of a field-controlled DC motor (a

wherelV (x) is a positive definite function. Now, by creating FBL System) that the quotient approach intelligently asoid

a new Lyapunov functio = V(x) + (¢ — £4(x))? and
assigning

the singularity introduced during feedback linearizatlon
properly choosingy(x) at every stage.

Acknowledgments: Support by the Swiss National Sci-

Ve = —W(x) — k(€ — &a(x))?,

a backstepping control law can be computed [4]:

o= b))+ 20 g0
_axgix) 9(x). 45) 12

(3]
(4

On the other hand, by defining= ¢ — £4(x) and assigning
é = —ke, yields the control law as:

0¢4(x)

U= —k(f—gd(x))+W(f(x)+g(x)§). [5]

Upon comparing the two control laws, one notices the ab-

sence of the term-3¥ (x)g(x) in (46). When larger systems (6]
are dealt with, this term would get accumulated at everyestag,
and might turn out to be very complex. However, depending

on the system, there might exist Lyapunov functions forf8l
which either the use of this term can be avoided or the[9
term can be used so as to cancel other larger ones. In the
case of non-FBL systems, since a strict feedback form could
be obtained only through approximation, using backsteppi

does not result in a globally stabilizing controller. Hence

when the backstepping method fails to achieve global sté-1]
bility, the method proposed in this paper might be more;
appropriate because of the reduced complexity implied by
(46) as compared with (45).

(46)

[13]
VI. CONCLUSIONS

A method for constructing stabilizing controllers for([14]
single-input FBL systems has been proposed. The algorithﬁg]
is based on an iterative decomposition of the original syste
into cascade form. The idea is to isolate the effect dfi6l
the control input on one state and then use that state as
the control input for the remaining states. This paper has

] S. S. Willson, P. Mullhaupt, and D. Bonvin.
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