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Abstract— An algorithmic method is proposed to design
stabilizing control laws for a class of nonlinear systems that
comprises single-input feedback-linearizable systems and a
particular set of single-input non feedback-linearizablesystems.
The method proceeds iteratively and consists of two stages;
it converts the system into cascade form and reduces the
dimension at every step by creating quotient manifold in the
forward stage, while it constructs the feedback law iteratively
in the backward stage. The paper shows that the construction
of these quotient manifolds is well defined for feedback-
linearizable system and, furthermore, it can also be applied
to a class of non feedback-linearizable systems.

I. I NTRODUCTION

Several elegant and powerful methods are available to han-
dle feedback-linearizable (FBL) systems and certain classes
of single-input nonlinear systems ([1], [2], [3] and [4]).
These methods proceed by either solving partial differential
equations or finding an appropriate function or surface that
guides the control design. For example, the passivity-based
approach to handle Lagrangian or Hamiltonian structures
[5] and the feedback linearization approach [2], [3] both
require solving partial differential equations. On the other
hand, in Lyapunov’s direct method [1], an appropriate control
Lyapunov function is essential to the success of the method,
while in the sliding-mode method [6], the selection of an
appropriate sliding surface is key.

In contrast, for linear systems, there are many algorithmic
methods. Linear-quadratic regulation (LQR) is one of the
most popular methods for controlling linear systems, not
only because of the intrinsic robustness of the resulting
controllers, but because of its algorithmic nature. Indeed, it
rests on solving a Riccati equation, which can be done via
successive transformations that bring the original equations
into a simpler form, from which the control gains can be
easily inferred. Other methods such as pole placement also
resort to successive transformations that bring the original
system into a more manageable form. For example, a single-
input linear system can be brought to upper Hessenberg form
[7] using the Miminis-Paige algorithm [8] or the staircase
algorithm [9], [10] before proceeding to stabilization.

The aim of this paper is to present an algorithmic method
for designing an asymptotically stabilizing controller for a
class of nonlinear system that comprises, but is not limited
to, single-input FBL systems. The present approach builds
on an algorithm designed to compute the output for static
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feedback linearization [11]. However, that algorithm shares
the limitations of feedback linearization since the control law
uses feedback linearization and linear control techniques. To
overcome these limitations, this paper proposes to embed
control design in the algorithm, which helps go around the
singularities when they would arise in feedback linearization.
Furthermore, with certain assumptions, the proposed ap-
proach can approximate non-FBL systems as FBL systems.
For example, it has been possible to achieve both swing-
up and stabilization of the acrobot [12] and the inverted
pendulum [13].

The approach has two main algorithmic parts, namely (i)
a forward stage that transforms the system into a cascade
form at each step, and (ii) a backward stage that builds
successive control laws, starting from the smallest cascade
system obtained at the end of the forward stage to the
complete system. The paper will present the following new
results:

• A control design that can exploit the degrees of freedom
available in the forward stage to avoid the singularities
that appear in feedback linearization.

• The conditions for the algorithm to be able to incorpo-
rate control design.

• Under certain conditions, backstepping can be used with
this algorithm, thus resulting in a globally asymptoti-
cally stabilizing control law.

• The present results are perfectly in line with the existing
results for feedback linearization and state linearization.

The paper is organized as follows. Section 2 presents
preliminary material, in particular the basic lemma and a
corollary that supports the method developed in this work.
Section 3 provides the algorithms for both the forward and
backward stages. The approach is illustrated via the example
of a FBL system in Section 4. Section 5 discusses the
conditions under which backstepping can be used with this
algorithm, while Section 6 presents concluding remarks.

II. PRELIMINARIES

The preliminary material required for the forward stage is
presented in [11]. In this section, results required to prove the
stability of the control law designed through the backward
stage are presented.

Lemma 1:Consider the system

ż = f(z, y),
ẏ = p(y),

(1)

and let ẏ = p(y) have an asymptotically stable equilibrium
at y = 0. If ż = f(z, 0) has an asymptotically stable equi-
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librium at z = 0, then the system (1) has an asymptotically
stable equilibrium at(z, y) = (0, 0).
This result is provided in Appendix B.2 of [2]. A corollary
of this lemma is given next.

Corollary 1: Consider the system

ẋ = fx(x, ξ), (2)

ξ̇ = fξ(x, ξ) + g(x, ξ)u, (3)

where x ∈ R
n−1, ξ ∈ R, u ∈ R, fx : R

n → R
n−1,

fξ : Rn → R and g : Rn → R with the equilibrium point
(x, ξ) = (0, 0) andg(x, ξ) 6= 0 in the domain of operation.
If there exists a functionξd(x) with ξd(0) = 0, which, when
substituted forξ in (2), asymptotically stabilizes the system
(2), then

u =
∂ξd
∂x

fx(x, ξ)− fξ(x, ξ) + k(ξd(x)− ξ)

g(x, ξ)
, (4)

wherek is any arbitrary positive constant, locally asymptot-
ically stabilizes both (2) and (3).

Proof: Let the error variable be

e = ξd(x) − ξ. (5)

Substituting (4) and (5) into (2) and (3) gives the new set of
equations

ẋ = fx(x, ξd(x)− e), (6)

ė = −ke. (7)

It can be shown using Lemma 1 that the above system is
locally asymptotically stable since

• e = 0 is an asymptotically stable equilibrium of (7),
• for e = 0, by assumption,̇x = fx(x, ξd(x)) is also

asymptotically stable atx = 0.
Hence, the system (6)-(7) is locally asymptotically stable
at (x, e) = (0, 0), which implies that the system is locally
asymptotically stable at(x, ξ) = (0, 0).

III. T HE ALGORITHM

The algorithm consists of two stages. In the forward stage,
the system is systematically reduced using the algorithm
described in [11]. This paper presents additional results
required to adapt the algorithm to the present application.
The effect of the input is isolated on a single variable, and
this variable is then used to control the rest of the system.
This step is repeated as many times as possible to obtain
a smaller-dimensional cascade system. The necessary condi-
tion for building equivalence classes at each iteration is also
provided. In the stabilizing stage, a locally asymptotically
stabilizing controller is constructed iteratively by proceeding
backwards.

A. Forward stage for achieving cascade form

The effect of the input is isolated on a single state,
which is then used to control the remaining states. This is
achieved by generating a quotient manifold using the integral
manifold of the input vector field as the equivalent class. To
achieve this, the integral manifold of the input vector field

is straightened and aligned along the last coordinate axis
by suitable diffeomorphism. Then, projection is taken along
the last coordinate to generate the quotient manifold. Thisis
visualized for a three-dimensional system in Figure 1.

(a) Integral man-
ifold of g(x)

(b) The diffeomorphism
z = Φ(x) straightens
the integral manifold

(c) Projection gives the
quotient manifold

Fig. 1. Method for generating quotient manifold for a3-dimensional
system.

Let us consider ap-dimensional system of the form

ẋ = f(x) + g(x)u, (8)

wherex ∈ R
p, f : Rp → R

p andg : Rp → R
p. The generic

dimension p is chosen here since the system dimension
reduces with every iteration.
The effect of u is isolated on the last component ofx
through suitable diffeomorphism. This is possible since the
distribution ∆ = span{g(x)} is nonsingular and trivially
involutive (it has dimension1). By Frobenius theorem [2],
∆ is completely integrable. Hence, there existp− 1 smooth
functionsφ1(x), ..., φp−1(x) with linearly independent dif-
ferentials such that

Lgφi(x) = 0, 1 ≤ i ≤ p− 1.

Constructingφ1(x), ..., φp−1(x) can be achieved using the
Lagrange subsidiary system [11] or by using flowbox theo-
rem [14]. Theseφi’s are collected to define the diffeomor-
phismΦp(x),

Φp(x) =















φ1(x)
φ2(x)

...
φp−1(x)
γ(x)















, (9)

with thepth component being any functionγ(x) chosen such
that

rank

(

∂Φp(x)

∂x

)

= p. (10)



Definez , Φp(x) with z ∈ R
p so that (9) is a diffeomor-

phism with the inversex = Φ
−1
p (z):

z = Φp(x),

ż =
∂Φp(x)

∂x
ẋ

=
∂Φp(x)

∂x
(f(x) + g(x)u)

=
∂Φp(x)

∂x
f(x)|

x=Φ
−1
p (z) +

∂Φp(x)

∂x
g(x)u|x=Φ

−1
p (z)

ż = fz(z) + gz(z)u. (11)

Thisz-system is in cascade form. The construction ofΦp(x)
implies that the firstp−1 components ofgz(z) are zero, i.e.
gz(z) = (0, 0, ..., 0, α(z))T . Hence, in the new coordinate
system, the input affects only the last coordinate. Next, in
order to reduce the dimension of the system, the following
projection map is defined.

Definition 1: The projection map, Pr: R
k → R

k−1, is
defined asPr((a1, a2, ..., ak−1, ak)

T ) = (a1, a2, ..., ak−1)
T .

This projection map is applied to system (11),

Pr(ż) = Pr(fz(z) + gz(z)u), (12)

with the effect of removing thepth component of the state.
Let x̂ , Pr(z) andf̂z(x̂, zp) , Pr(fz(z)). Since Pr(gz(z)) =
0, (12) reduces to

˙̂x = f̂z(x̂, zp), (13)

wherezp is thepth component ofz. The complete step can
be summarized through the commutative diagram given in
Figure 2.

Fig. 2. Commutative diagram for a step in the forward stage.

If f̂z(x̂, zp) depends linearly onzp, which is the case when
the distribution∆ = span{g, [f, g]} is involutive and a
certain condition is satisfied (see Lemma 3 below), then (13)
can be separated as follows:

˙̂x = fx̂(x̂) + gx̂(x̂)û, (14)

where û = zp and with the vector fieldsfx̂(x̂) : Rp−1 →
R

p−1 and gx̂(x̂) : R
p−1 → R

p−1. The necessary condition
for the separation given by (14) is presented through the
following lemma. For notational purpose, the operatorΦ∗ is
defined asgz(z) = Φ∗g(x) ,

∂Φ
∂x

g(x)|x=Φ−1(z).
Lemma 2: If the separation given by (14) is possible for

system (8), then the distribution∆ = span{g, [f, g]} is
involutive.

Proof: When the separation given by (14) is possible,
we can write

Pr

(

∂2
Φ∗f

∂z2p

)

= 0, (15)

sinceΦ∗f is only linearly dependent onzp. Also, Φ∗g =
(0, · · · , 0, α(z))T . Hence Pr(Φ∗g) = 0. Next, consider

[Φ∗f,Φ∗g] =
∂Φ∗g

∂z
Φ∗f −

∂Φ∗f

∂z
Φ∗g

=

(

0p−1,p
∂α(z)
∂z

)

Φ∗f −
∂Φ∗f

∂z

(

0p−1,1

α(z)

)

=

(

0p−1,1
∂α(z)
∂z

Φ∗f

)

− α(z)
∂Φ∗f

∂zp

=

(

0p−1,1

β(z)

)

− α(z)
∂Φ∗f

∂zp
,

where

β(z) ,
∂α(z)

∂z
Φ∗f. (16)

Projection gives:

Pr([Φ∗f,Φ∗g]) = Pr(

(

0p−1,1

β(z)

)

)− Pr(α(z)
∂Φ∗f

∂zp
)

= −α(z)Pr(
∂Φ∗f

∂zp
). (17)

Consider next

[Φ∗g, [Φ∗f,Φ∗g]] = [Φ∗g,

(

0p−1,1

β(z)

)

− α(z)∂Φ∗f
∂zp

]

=

∂





0p−1,1

β(z)





∂z
Φ∗g −

∂(α(z) ∂Φ∗f
∂zp

)

∂z
Φ∗g

−∂Φ∗g
∂z

[Φ∗f,Φ∗g]

=

(

0p−1,1

α(z)∂β(z)
∂zp

)

− α(z)∂α(z)
∂zp

∂Φ∗f
∂zp

−α(z)2 ∂2Φ∗f
∂z2

p
−

(

0p−1,1
∂α(z)
∂z

[Φ∗f,Φ∗g]

)

. (18)

Applying the projection map and using (15) gives:

Pr([Φ∗g, [Φ∗f,Φ∗g]]) = 0− Pr(α(z)
∂α(z)

∂zp

∂Φ∗f

∂zp
)

−Pr(α(z)2
∂2

Φ∗f

∂z2p
)− 0 (19)

= −α(z)
∂α(z)

∂zp
Pr(

∂Φ∗f

∂zp
). (20)

Using (17) and (20), we can write:

Pr[Φ∗g, [Φ∗f,Φ∗g]] = κ1(z)Pr[Φ∗f,Φ∗g], (21)

κ1(z) =
∂α(z)

∂zp
. (22)

By defining

κ2(z) :=
eTp [Φ∗g, [Φ∗f,Φ∗g]]− κ1(z)e

T
p [Φ∗f,Φ∗g]

α(z)
,

it is possible to write

[Φ∗g, [Φ∗f,Φ∗g]] = κ1(z)[Φ∗f,Φ∗g] + κ2(z)Φ∗g. (23)



Hence the distribution∆ = span{Φ∗g, [Φ∗f,Φ∗g]} is invo-
lutive. Because a diffeomorphism does not affect the involu-
tivity properties, span{g, [f, g]} is also involutive. Hence, if
the separation given by (14) is possible, then the distribution
∆ = span{g, [f, g]} has to be involutive.

The sufficient condition for the separation given by (14) is
given below.

Lemma 3: If the distribution∆ = span{g, [f, g]} is invo-
lutive and if γ(x) is chosen such thatα(z) satisfies (22),
then the separation given by (14) is possible.

Proof: If ∆ = span{g, [f, g]} is involutive, then (23)
and (21) are satisfied. Substituting (22) and (17) into (21)
gives:

Pr[Φ∗g, [Φ∗f,Φ∗g]] = −α(z)
∂α(z)

∂zp
Pr(

∂Φ∗f

∂zp
). (24)

Next, equating the RHS of (24) with RHS of (19) gives:

α(z)2Pr(
∂2

Φ∗f

∂z2p
) − α(z)

∂α(z)

∂zp
Pr(

∂Φ∗f

∂zp
)

= −α(z)
∂α(z)

∂zp
Pr(

∂Φ∗f

∂zp
),

⇒ α(z)2Pr(
∂2

Φ∗f

∂z2p
) = 0,

⇒ Pr(
∂2

Φ∗f

∂z2p
) = 0.

Note thatα(z) 6= 0 is a requirement for choosingγ(x). Since
all the higher order derivatives of Pr(Φ∗f) with respect tozp
are zero, it can be concluded that Pr(Φ∗f) is only linearly
dependent onzp. Hence, the linear separation given by (14)
is possible.

It has also been shown in Corollary 1 in [11] that, if the
distribution ∆ = span{g, [f, g]} is involutive, then it is
always possible to construct(p−2) 1-forms, independent of
zp, that span the null space of Pr(Φ∗[f, g]). The following
lemma show the way to construct such 1-forms even if the
separation given by (14) is not possible.

Lemma 4: If ∆ = span{g, [f, g]} is involutive, then it is
always possible to construct(p−2) 1-forms, independent of
zp, that span the kernel of Pr(Φ∗[f, g]). The same 1-forms
also span the kernel of

gx̂(x̂, zp) := Pr(Φ∗f)− Pr(Φ∗f)|zp=0, (25)

wherex̂ := Pr(z) = (z1, . . . , zp−1).
Proof: If ∆ = span{g, [f, g]} is involutive, then

(23) and (21) are satisfied. Substituting (17) into (21) and
comparing with (19) gives:

α(z)2Pr(
∂2

Φ∗f

∂z2p
) − α(z)

∂α(z)

∂zp
Pr(

∂Φ∗f

∂zp
)

= −κ1(z)α(z)Pr(
∂Φ∗f

∂zp
).

Re-arranging the above equation gives:

Pr(
∂2

Φ∗f

∂z2p
) = λ2(z)Pr(

∂Φ∗f

∂zp
), (26)

whereλ2(z) is a scalar function and is defined as

λ2(z) :=
α(z)∂α(z)

∂zp
− κ1(z)α(z)

α(z)2
.

It is easy to see, from the relation (26), that all the higher
derivatives will also be proportional to the first-order deriva-
tive, that is,

Pr(
∂3

Φ∗f

∂z3p
) = λ3(z)Pr(

∂Φ∗f

∂zp
),

Pr(
∂4

Φ∗f

∂z4p
) = λ4(z)Pr(

∂Φ∗f

∂zp
),

...

and so on. Since all these equations are true for allz, they
are also true forzp = 0, and thus:

Pr(
∂2

Φ∗f

∂z2p
)|zp=0 = λ2(z)Pr(

∂Φ∗f

∂zp
)|zp=0,

Pr(
∂3

Φ∗f

∂z3p
)|zp=0 = λ3(z)Pr(

∂Φ∗f

∂zp
)|zp=0, (27)

...

Let us define the(p− 1)-dimensional vector field̃gx̂(x̂) as

g̃x̂(x̂) :=
∂Pr(Φ∗f)

∂zp

∣

∣

∣

∣

zp=0

. (28)

It is always possible (guaranteed by Frobenious theorem) to
construct(p−2) linearly independent1-forms,ω1, . . . , ωp−2,
such that they span the kernel ofg̃x̂(x̂), i.e. ωi.g̃x̂(x̂) =
0, ∀i = 1, . . . , p − 2. Since g̃x̂(x̂) does not containzp,
ω1, . . . , ωp−2 are independent ofzp. Using the definition (28)
along with the relation (27) gives:

ωi.Pr(
∂Φ∗f

∂zp
)|zp=0 = 0,

ωi.Pr(
∂2

Φ∗f

∂z2p
)|zp=0 = λ2(z)ωi.Pr(

∂Φ∗f

∂zp
)|zp=0 = 0,

ωi.Pr(
∂3

Φ∗f

∂z3p
)|zp=0 = λ3(z)ωi.Pr(

∂Φ∗f

∂zp
)|zp=0 = 0,

... (29)

∀i = 1, . . . , p− 2. From (17),

Pr(Φ∗[f, g]) = Pr([Φ∗f,Φ∗g])

= −α(z)
∂Pr(Φ∗f)

∂zp
. (30)

Next, consider the Taylor expansion of∂Pr(Φ∗f)
∂zp

around
zp = 0:

∂Pr(Φ∗f)

∂zp
= Pr

(

∂Φ∗f

∂zp

)∣

∣

∣

∣

zp=0

+ Pr

(

∂2
Φ∗f

∂z2p

)∣

∣

∣

∣

zp=0

zp

+
1

2!
.Pr

(

∂3
Φ∗f

∂z3p

)∣

∣

∣

∣

zp=0

z2p + . . . (31)



Using the relations (30) and (31) and results from (29) gives
ωi.Pr(Φ∗[f, g]) = 0, ∀i = 1, . . . , p−2. Hence,ω1, . . . , ωp−2,
which are independent ofzp, span the kernel of Pr(Φ∗[f, g]).

Next, considering the Taylor expansion of Pr(Φ∗f) and
using the definition (25) yields:

gx̂(x̂, zp) = Pr

(

∂Φ∗f

∂zp

)∣

∣

∣

∣

zp=0

.zp

+
1

2!
.Pr

(

∂2
Φ∗f

∂z2p

)∣

∣

∣

∣

zp=0

z2p

+
1

3!
.Pr

(

∂3
Φ∗f

∂z3p

)∣

∣

∣

∣

zp=0

z3p + . . . (32)

Consideringωi.gx̂(x̂, zp), when substituted with (32) and
using the relations (29), givesωi.gx̂(x̂, zp) = 0, ∀i =
1, . . . , p − 2. Sinceω1, . . . , ωp−2 are linearly independent
1-forms, they span the kernel ofgx̂(x̂, zp).

These lemmas provide an alternative explanation for the
termination condition of the state and feedback linearizing
algorithms provided in [15]. For the feedback linearizing
algorithm, the termination condition is the same as (26).
Hence, at any stage, if the distribution∆ = span{g, [f, g]} is
not involutive, then the system is not feedback linearizable.
A stronger condition is required for state linearization since,
at every step,α(z) has to be constant (in case of [15],
α(z) = 1). This results in the termination condition (15),
which is the same as Pr(Φ∗[g, [f, g]]) = 0. The following
corollary deals with the termination condition of the state
linearizing algorithm in [15] and presents an alternative
explanation for it.

Corollary 2: If ∆ = span{g, [f, g]} is involutive, γ(x)
can be chosen such thatα(z) is constant if and only if
Pr(Φ∗[g, [f, g]]) = 0.

Proof: If ∆ = span{g, [f, g]} is involutive, then (23)
and (21) are satisfied.

Necessary condition: If Pr(Φ∗[g, [f, g]]) = 0, then from
(21), κ1(z) = 0 since the controllability condition stipulates
Pr(Φ∗[f, g]) 6= 0. This in turn, using (22), implies∂α(z)

∂zp
= 0,

which is true ifα(z) is constant. Henceγ(x) can be chosen
such thatα(z) is constant.

Sufficiency condition: Ifγ(x) is chosen such thatα(z) is
constant. From (22),κ1 = ∂α(z)

∂zp
= 0. This implies, using

(21), Pr(Φ∗[g, [f, g]]) = 0.

Additionally, it is essential for state linearization thatthe last
function of (Φ∗f) be a linear function ofzp. This results
from the fact that the last line ofΦ∗f is not transformed
since the Pr function removes it. Hence, if a linear system
is sought,eTp (Φ∗f) should be a linear function ofzp, where
ep = (0, . . . , 0, 1) is the standard unit vector. Ifα(z) is
constant, using (16) impliesβ(z) = 0, which using (18)
and the fact that∂α(z)

∂zp
= 0, further implies:

eTp [Φ∗g, [Φ∗f,Φ∗g]] = α(z)
∂2eTp Φ∗f

∂z2p
= 0. (33)

Hence, using the result of Corollary 2 and (33), state lin-
earization requires[Φ∗g, [Φ∗f,Φ∗g]] = 0, which implies
[g, [f, g]] = 0. In this case, the condition (15) becomes

∂2
Φ∗f

∂z2p
= 0,

as stated in [15]. Note that this analysis only applies to one
step in the algorithm and thus fails to show the sufficiency
condition for state linearization.

Next, if the distribution∆ = span{g, [f, g]} is not involu-
tive, then some approximation has to be introduced to make
it linearly dependent and thus obtain the separation given
by (14). This is required for the decomposition process to
proceed according to the following algorithm.

Algorithm to achieve a cascade form
• Initialization: The system is initially in the form (8)

with p = n.
• Induction: At the kth iteration, ap = (n + 1 − k)-

dimensional system of the form (8) is available.
– Construct the diffeomorphismΦp(x) given in (9)

and chooseγ(x). Φp(x) must satisfy the condition
(10).

– Definez , Φp(x) and obtain the system dynamics
in the z coordinates as given in (11).

– Use the projection map to definêx , Pr(z) and
obtain ˙̂x as shown in (12) and (13).

– Keep the diffeomorphismΦp(x) and the resulting
z-system for the backward process. Thez-system
is of the form:

˙̂x = f̂z(x̂, zp), (34)

żp = fzp(x̂, zp) + α(x̂, zp)u, (35)

wherefzp(x̂, zp) andα(x̂, zp) are thepth compo-
nent offz(z) andgz(z) given in (11), respectively.

– Compute the separation given by (14). The
dynamical system (14) has the same structure as
the system (8), but it is of reduced orderp − 1.
This becomes the input to the next iteration.

• Termination: The aforementioned steps are repeated
until a single-dimensional system is obtained or further
separation according to (14) is no longer possible.

Several remarks are in order.
Remark 1: If f̂z(x̂, zp) is linearly dependent onzp, then

gx̂(x̂) = Pr(
∂Φ∗f)

∂zp
)

= −
1

α(z)
Pr([Φ∗f,Φ∗g]) from (17)

= −
1

α(z)
Pr(Φ∗[f, g]).

This defines a direct relationship between thegx̂(x̂) and
[f, g]. By using the Lie-bracket-like operation given in
Definition 3 of [11], all the higher-order Lie brackets can
be obtained for the reduced system. This is where the



distinction between FBL systems and non-FBL systems is
visible. Clearly, in case of non-FBL systems,f̂z(x̂, zp) is
not linearly dependent onzp for all iterations. That is, non-
FBL systems will necessarily have an iteration where a linear
relationship cannot be established. Hence, in this case, the
algorithm needs to be modified as illustrated in [12] and [13].

Remark 2:This algorithm can transform the system into
a chain of integrators by choosingγ(x) = Lfφi such that
LgLfφi 6= 0 at every iteration. The existence of such aφi

for FBL systems can be proved using the following lemma.
Lemma 5: If the vector fieldsg and [f, g] are linearly

independent in the neighborhood ofx0 ∈ D, then we can
find φi(x), i = 1, . . . , n− 1, such that (i)

1) φi 6= 0 and ∂φi

∂x
are linearly independent rows that span

the null space ofg(x), i.e. Lgφi = 0, and
2) there exists at least oneφi such thatLgLfφi 6= 0.

Proof: Since span{g} is nonsingular and is an in-
volutive distribution of dimension1 in the neighborhood
of x

0 ∈ D, then, by Frobenius theorem, there exist
φ1(·), . . . , φn−1(·) such thatφi(·) : R

n → R and the
following properties hold∀x ∈ D and for i = 1, . . . , n− 1:

• φi(x) 6= 0,

• Rank







∂φ1(x)
∂x
...

∂φn−1(x)
∂x






= n− 1,

• Lgφi(x) = 0 .

The proof proceeds by contradiction. Let us assume that the
second part of the lemma is not true, that is,LgLfφi = 0
for all i = 1, . . . , n− 1. It is known that

L[f,g]φi = LfLgφi − LgLfφi = 0, ∀ 1 ≤ i ≤ n− 1. (36)

It follows from Lgφi = 0 that LfLgφi = 0. Since, by
assumption,LgLfφi = 0, it follows from (36) that ∂φi

∂x

aren − 1 linearly independent rows that also span the null
space of[f, g]. Since the vector fieldsg and[f, g] are linearly
independent, which means that there are at mostn− 2 row
vectors that span the null space of span{g, [f, g]}. However
∂φi

∂x
, i = 1, . . . n− 1, beingn− 1 linearly independent rows

that span the null space of span{g, [f, g]} contradicts the
assumption thatLgLfφi = 0 for all i = 1, . . . , n−1. Hence,
there must exist at least oneφi such thatLgLfφi 6= 0.

However, transforming a system to a chain of integrators
may introduce undesirable singularities. In such a situation,
the liberty to choseγ(x) must be exploited in order to avoid
these singularities.

B. Backward stage for controller design

In this section, the cascade form obtained at every step
during the forward stage will be exploited to design an
asymptotically stabilizing controller. Corollary 1 is applied
iteratively at every step of the backward process. To illustrate
the steps of the algorithm, consider a system obtained during
the pth step of the forward process given by (34) and (35)
The algorithm proceeds as follows.

Algorithm for controller design

• Initialization : The algorithm starts by designing an
asymptotically stabilizing controller for the smallest
cascade system obtained during the last iteration of the
forward process. For example, if the forward process
successfully proceeds until a single-dimensional system
is derived, a system of the form

ẋ1 = f1(x1, x2) (37)

is obtained. Then, takingx2 as the input and solving

−kx1 = f1(x1, x2) (38)

for x2 gives an asymptotically stabilizing controller
for (37). This value ofx2 becomes the desired value
x2,d(x1).

• Induction : At the start of the(p−1)st iteration (p varies
from 2 to n), the desired valuexp,d(x1, ..., xp−1) that
asymptotically stabilizes the (p−1)-dimensional system
whose state iŝx = (x1, . . . , xp−1) is known. Also, from
the forward iteration, ap-dimensional system of the
form (34) and (35) and the diffeomorphismz = Φp(x)
is known. Corollary 1 is then used to designx(p+1),d.
The following relationships exist between the equations
available in Corollary 1 and those available at the
current iteration:

– The system statex in (2) corresponds tôx,
– fx in (2) corresponds tôfz(x̂, zp) in (34),
– ξ corresponds tozp,
– ξd(x) corresponds toxp,d(x1, ..., xp−1),
– fξ(x, ξ) in (3) corresponds tofzp(x̂, zp) from (35),
– g(x, ξ) in (3) corresponds toα(x̂, zp) from (35),

and
– u corresponds toxp+1.

Finally, (4) is used to obtainx(p+1),d. The change
of coordinatesz = Φp(x) is used to change the
coordinates ofx(p+1),d from z to x. Then,x(p+1)d can
be used as the input in the next iteration.

• Last iteration : In the last iteration (iteration number
n−1), xn+1 becomes the sought inputu for the system
(8).

IV. EXAMPLE OF A DC MOTOR

The example illustrates how the possibility of choosing
γ(x) helps avoid the singularity that arises due to the
particular choice ofγ(x) required for feedback linearization.
This section presents an application of the algorithm to a
FBL system. However, the algorithm is not restricted to FBL
systems, and application of the quotient method to non-FBL
system are illustrated in [12] and [13].

A field-controlled DC motor with negligible shaft damping
is considered in [1]. The system can be described by

vf = Rf if + Lf

dif
dt

,

va = c1ifω + La

dia
dt

+Raia,

J
dω

dt
= c2if ia.



The first equation represents the field circuit, withvf , if , Rf ,
andLf being the voltage, current, resistance and inductance,
respectively. The variablesva, ia, Ra, andLa are the corre-
sponding variables for the armature circuit described by the
second equation. The termc1ifω is the back e.m.f. induced
in the armature circuit. The third equation is the equation of
motion for the shaft, with the rotor inertiaJ and the torque
c2if ia produced by the interaction of the armature current
with the field circuit flux. The voltageva is held constant, and
control is achieved by varyingvf . The system is represented
by the third-order model

ẋ = f(x) + gu,

with statesx1 = if , x2 = ia, x3 = ω, the inputu =
vf
Lf

,

f(x) =





−ax1

−bx2 + ρ− cx1x3

θx1x2



 , g =





1
0
0



 ,

and positive constantsa = Rf , b = Ra/La, c = c1/La, θ =
c2/J, ρ = Va/La. The open-loop system has its equilibrium
atx1 = 0 andx2 = ρ/b. The aim is to design a controller that
drives the system from any initial condition to the desired
operating pointx∗ = (0, ρ/b, ω0), whereω0 is the desired
set point for the angular velocityx3.
The forward stage gives the simple cascade structure,

ẏ1 = −y2θ(by2 + ρ),

ẏ2 = −by2 + g1(y1, y2)z3, (39)

ż3 = −az3 + u,

where

g1(y1, y2) = −(c2ω2
0 + 2cy1 − 2θcρy2 − bcθy22)

1
2

with the diffeomorphism

Φ =





−θρ2
−b2cω2

0+b2θx2
2+b2cx2

3

2b2

x2 − ρ/b
x1



 . (40)

The first function in this diffeomorphism is always the static
feedback linearizing output function (Propositions 3 and 4
of [11]). The second stage computes an asymptotic control
for (39) given by

u = −k3(y3 − y3,d) +
∂y3,d
∂y1

(−y2θ(by2 + ρ))

+
∂y3,d
∂y2

(−by2 + g1(y1, y2)z3) + az3, (41)

where

y3,d =
−k2(y2 − y2,d) + by2 +

∂y2,d

∂y1
(−y2θ(by2 + ρ))

g1(y1, y2)
,

y2,d =
−θρ+

√

θ2ρ2 + 4θbk1y1
2θb

.

It is possible to obtain a chain of integrators by choosing
γ(x) = Lfφi such thatLgLfφi 6= 0 at every iteration. The
existence of such aφi is guaranteed through Lemma 5, which
results in the unique diffeomorphism [1]:
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Fig. 3. DC motor controlled with the quotient method. The state behavior
is depicted for three different initial conditions. The thin line represents
a general case. The dashed line corresponds to a point of singularity for
feedback linearization. The thick line represents an initial condition that is
impossible to control using feedback linearization.

ΦFBL =





θx2
2 + cx2

3 − θ(ρ/b)2 − cω2
0

2θx2(ρ− bx2)
−2θ(ρ− 2bx2)(−bx2 + ρ− cx1x3)



 .

However, this transformation introduces a singularity atx2 =
ρ/2b in addition to the system singularity atx3 = 0. In
contrast, the quotient approach provides a degree of freedom
through the choice ofγ(x) at every iteration. This degree of
freedom allows circumventing this singularity by using the
diffeomorphism given in (40). This fact is clearly seen in the
simulation results presented in Figure 3. The simulations are
carried out using the parameters of a DC motor [16] with
three different initial conditions(0, ρ/(2b), 0.01; FBL singu-
larity), (0, 0, 0.1; FBL impossible) and (0, 2, 20; general).
The first (FBL singularity) and second (FBL impossible)
initial conditions are outside the domain of attraction of any
controller designed using feedback linearization [1] due to
the presence of singularity atx2 = ρ/2b. The controller
designed using feedback linearization works only forx2 >
ρ/2b, whereas the controller designed using the quotient
method does not have any such restriction. Hence, upon using
the quotient method, a larger domain of attraction can be
achieved.

V. POSSIBILITY OF USINGBACKSTEPPING

Backstepping requires the system to be in strict-feedback
form. Strict-feedback form can be obtained from the forward
stage of the algorithm by constructing the diffeomorphism

Φ(x) = Φ2(x)⊥Φ3(x)⊥ . . .⊥Φn−1(x)⊥Φn(x), (42)

where⊥ is an operation defined as







φL1(x)
...

φLp
(x)






⊥





















φR1(x)
...

φRp
(x)

φR(p+1)
(x)

...
φRk

(x)





















=





















φL1(z)
...

φL(p)
(z)

φR(p+1)(x)

...
φRk

(x)





















,

and

z =







φR1(x)
...

φRp
(x)






.



However, in order to apply backstepping to a strict-feedback
form and achieve global stability, it is essential thatΦ(x)
in (42) be a global diffeomorphism. Moreover, in order to
avoid singularity, it is necessary that, in (35),α(x̂, zp) 6=
0 globally. If both conditions are satisfied, a guaranteed
globally stabilizing controller can be obtained by replacing
the controller design stage by backstepping.

The difference in the two approaches is illustrated by
straightforward application of both methods on the following
system:

ẋ = f(x) + g(x)ξ, (43)

ξ̇ = u. (44)

Let us assume that there exists aξd(x) that stabilizes (43).
This means that there exists a corresponding Lyapunov
functionV (x) such that

V̇ (x) =
∂V (x)

∂x
(f(x) + g(x)ξd(x)) = −W (x),

whereW (x) is a positive definite function. Now, by creating
a new Lyapunov functionVξ = V (x) + 1

2 (ξ − ξd(x))
2 and

assigning

V̇ξ = −W (x)− k(ξ − ξd(x))
2,

a backstepping control law can be computed [4]:

u = −k(ξ − ξd(x)) +
∂ξd(x)

∂x
(f(x) + g(x)ξ)

−
∂V (x)

∂x
g(x). (45)

On the other hand, by defininge = ξ − ξd(x) and assigning
ė = −ke, yields the control law as:

u = −k(ξ − ξd(x)) +
∂ξd(x)

∂x
(f(x) + g(x)ξ). (46)

Upon comparing the two control laws, one notices the ab-
sence of the term−∂V

∂x
(x)g(x) in (46). When larger systems

are dealt with, this term would get accumulated at every stage
and might turn out to be very complex. However, depending
on the system, there might exist Lyapunov functions for
which either the use of this term can be avoided or the
term can be used so as to cancel other larger ones. In the
case of non-FBL systems, since a strict feedback form could
be obtained only through approximation, using backstepping
does not result in a globally stabilizing controller. Hence,
when the backstepping method fails to achieve global sta-
bility, the method proposed in this paper might be more
appropriate because of the reduced complexity implied by
(46) as compared with (45).

VI. CONCLUSIONS

A method for constructing stabilizing controllers for
single-input FBL systems has been proposed. The algorithm
is based on an iterative decomposition of the original system
into cascade form. The idea is to isolate the effect of
the control input on one state and then use that state as
the control input for the remaining states. This paper has

provided additional results required to incorporate the control
design in the algorithm presented in [11].

The control law is designed iteratively based on the cas-
cade forms obtained at every iteration of the forward process.
The control law given in Corollary 1 is used iteratively to
construct the controller. The structure needed for Corollary
1 can only be guaranteed for feedback-linearizable systems.
This is a consequence of Lemma 2 and Lemma 3. However,
even if the distribution generated by the original system is
not involutive, the approach can still be applied, as illustrated
in [12] and [13].

The backward stage could be replaced by backstepping,
which is the method of choice whenΦ(x) in (42) is a
global diffeomorphism andα(x̂, zp) 6= 0 globally at each
stage. In all other cases, the backward stage is advantageous
over backstepping. The main advantage stems from the
absence of the term−∂V

∂x
(x)g(x), which simplifies things

considerably, especially for large systems. It has also been
shown through the example of a field-controlled DC motor (a
FBL system) that the quotient approach intelligently avoids
the singularity introduced during feedback linearizationby
properly choosingγ(x) at every stage.
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