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Abstract

Despite of being quite similar agreement problems, consensus and general k-set agreement
require surprisingly different techniques for proving the impossibility in asynchronous systems
with crash failures: Rather than relatively simple bivalence arguments as in the impossibility
proof for consensus (= 1-set agreement) in the presence of a single crash failure, known proofs
for the impossibility of k-set agreement in systems with f > k > 1 crash failures use algebraic
topology or a variant of Sperner’s Lemma. In this paper, we present a generic theorem for
proving the impossibility of k-set agreement in various message passing settings, which is
based on a simple reduction to the consensus impossibility in a certain subsystem.

We demonstrate the broad applicability of our result by exploring the possibility/impossibility
border of k-set agreement in several message-passing system models: (i) asynchronous systems
with crash failures, (ii) partially synchronous processes with (initial) crash failures, and (iii)
asynchronous systems augmented with failure detectors. In (i) and (ii), the impossibility part is
just an instantiation of our main theorem, whereas the possibility of achieving k-set agreement
in (ii) follows by generalizing the consensus algorithm for initial crashes by Fisher, Lynch and
Patterson. In (iii), applying our technique yields the exact border for the parameter k where
k-set agreement is solvable with the failure detector class (Σk,Ωk)16k6n−1 of Bonnet and
Raynal. Considering that Σk was shown to be necessary for solving k-set agreement, this result
yields new insights on the quest for the weakest failure detector.
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I. Introduction

Agreement problems like consensus and set agreement are undoubtly the most prominent target for
exploring the solvability/impossibility border in fault-tolerant distributed computing. In such problems,
every process pi, 1 6 i 6 n, in a distributed system owns a local proposal value xi, and the problem is

to irrevocably compute local output values (also called decision values) yi that satisfy certain
properties. For consensus, no two processes may decide on different values, for set agreement, the

number of different decision values must be at most n− 1 system-wide. An obvious generalization is
k-set agreement, which requires that the number of different decision values is at most k; clearly,
consensus is just 1-set agreement, whereas set agreement is equivalent to (n−1)-set agreement.
Due to the landmark FLP impossibility result [14], which employs (now classic) combinatorial

arguments (bivalence proofs), it is well-known that consensus is impossible to solve in asynchronous
systems if a single process may crash. The corresponding result for general k-set agreement is the

impossibility of solving this problem in asynchronous systems if f > k processes may crash.
Surprisingly, establishing this result requires quite involved techniques based on algebraic topology or a

variant of Sperner’s lemma [4], [17], [23].
Another very simple and well-known technique for establishing impossibility results are partitioning

arguments, which have been used successfully for many distributed computing problems [13].
Essentially, a partioning argument exploits the fact that one cannot guarantee agreement among those

processes of a distributed system that never, neither directly nor indirectly, communicate with each
other. In this paper, we use partitioning arguments in a—to the best of our knowledge—new way: as a

means for reduction.
More specifically, we present a theorem that provides us with a surprisingly generic tool for proving

the impossibility of k-set agreement in message-passing systems. It works by reducing the impossibility
of k-set agreement to the impossibility of achieving consensus in a certain subsystem: In a nutshell,

failures and asynchrony in the models considered allow to partition the system into k parts, the
processes of which must decide on their own and hence, by choosing distinct proposal values, on

different values. Obviously, this leads to at least k different decision values system-wide. The
impossibility of k-set agreement then follows by showing that it is impossible to reach consensus in at

least one of these parts.

Related work:

Actually, we are not aware of much research that uses similar ideas: We have employed reduction
already in [2] to show that consensus is impossible in certain partially synchronous models, and to
prove the tightness of our generalized loneliness failure detector L(k) for k-set agreement. We also

learned recently that similar reduction arguments are employed in [5]. In [1], reduction to asynchronous
set agreement is used to derive a lower bound on the minimum size of a “synchronous window” that is

necessary for k-set agreement.

Detailed Contributions:

• We present a generic impossibility result for k-set agreement that can be applied to a wide variety
of message-passing system models and failure assumptions. Our result neither assumes specific
assumptions on the (a)synchrony of the model nor on the types of failures that can occur. While the
main purpose of this theorem is to derive general impossibility results that hold for all algorithms in
a specific model, it also turned out to be useful for quickly checking whether a candidate algorithm
allows runs that make k-set agreement impossible.
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• We introduce the notion of T -independence for message passing systems, which is related to the
progress condition formalism of [24].

• We revisit the impossibility of k-set agreement in asynchronous systems with crash failures (some
of which are not initial crashes), with (and without) partially synchronous processes. Applying our
generic theorem reveals the border that separates impossibility and possibility in this setting.

• Furthermore, by extending the algorithm for initial crashes of [14] to general k-set agreement, we
show that the impossibility border is tightly matched.

• Finally, we shift our focus to asynchronous systems with failure detectors. We use our theorem to
show that (Σk,Ωk) is too weak to solve k-set agreement for 1 < k < n− 1.

II. System Models and Failure Assumptions

We use the computing model of [11], extended with the possibility of querying failure detectors. In
[11], 32 different models are defined by varying 5 core system parameters (e.g., synchrony of processes
and communication, transmission mechanism, etc.), each of which can be chosen in a way that is either
favourable (F) or unfavourable (U) for the algorithm. Informally speaking, we add a 6th dimension to

the model:
6. Failure Dectectors

U. Processes do not have access to failure detectors.
F. Processes can query a failure detector at the beginning of each step.

For the sake of brevity, we will not repeat the whole formal model of [11] here. Instead, we just
introduce the necessary notations and explain the changes necessary for dealing with k-set agreement.

The details of the case where failure detectors are available will be filled in in Section II-C.
We consider a system Π = {p1, . . . , pn} of n processes with unique id’s {1, . . . , n} that communicate

via message-passing, using messages taken from some (possibly infinite) universe M .
The communication subsystem is modeled by one buffer per process, which contains messages that

have been sent to that process but not yet received. Every process p ∈ Π is modeled as a deterministic
state machine, which has a local state (program counter, local variables) that incorporates an input value
xp initialized to some value from a finite set of values V , and a write-once output value yp ∈ V ∪ {⊥}

initialized to ⊥ 6∈ V . All other components of the local state are initialized to some fixed value.
State transitions are guided by a transition relation, which atomically takes the current local state of p,

a (possibly empty) subset of messages L from p’s current message buffer, and, in case of failure
detectors, a value from the failure detector’s domain, and provides a new local state. Sending of

messages is guided by a deterministic message sending function, which determines a possibly empty
set of messages that are to be sent to the processes in the system, i.e., maps the current state and the

subset of messages L to a subset of Π×M . Every message (q,m) in this subset is sent by just putting
m into q’s buffer.

A configuration of the system consists of the vector of local states and the message buffers of all the
processes; in the initial configuration, all processes are in an initial state and the message buffers are

empty.
A run ρ = (C0, C1, . . . ) is an infinite sequence of configurations that starts from an initial configuration

C0, and Ci+1 results from a legitimate (according to the transition relation and message sending
function) step of a single process p in configuration Ci.

The above basic model is strengthened by restricting the set of runs by some admissibility conditions
that depend on the particular system model M used. For example, the FLP model [14], denoted as

MASYNC, requires that (1) every correct process takes an infinite number of steps, (2) faulty processes
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execute only finitely many steps and may omit sending messages to a subset of receivers in the very
last step, and (3) every message sent by a process to a correct receiver process is eventually received.

With the exception of Section III, we will assume systems adhering to the asynchronous model
MASYNC, sometimes augmented with a failure detector (Section II-C) or with the assumption of

partially synchronous processes (Section V).

A. k-Set Agreement

We study distributed algorithms that solve agreement problems, namely, k-set agreement. Their purpose
is to compute and irrevocably set the output yp of process p to some decision value, based on the
proposal values xq ∈ V , for 1 6 q 6 n and |V | > n,1 which must satisfy the following properties:

k-Agreement: Processes must decide on at most k different values.
Validity: If a process decides on v, then v was proposed by some process.
Termination: Every correct process must eventually decide.
Note that the agreement property binds together the decision values of all (correct or faulty) processes.

For k = 1, k-set agreement is hence equivalent to uniform consensus [7]. It follows from [14] that
non-uniform and hence also uniform consensus cannot be solved in asynchronous systems if just one

process may crash.

B. Restrictions of Algorithms and Indistinguishability of Runs

We will occasionally use a subsystem M′ that is a restriction of M, in the sense that it consists of a
subset of processes in Π, while using the same mode of computation (atomicity of computing steps,

time-driven vs. message-driven, etc.) as M. We make this explicit by using the notation

M = 〈Π〉 and M′ = 〈D〉,

for some set of processes D ⊆ Π. Note that this definition does not imply anything about the synchrony
assumptions which hold in M′. All that is required is that M′ is computationally compatible with M:

Any algorithm designed for M can also be run in M′, albeit on a smaller set of processes.

Definition 1 (Restriction of an Algorithm). Let A be an algorithm that works in system M = 〈Π〉 and let
D ⊆ Π be a nonempty set of processes. Consider a restricted system M′ = 〈D〉. The restricted algorithm
A|D for system M′ is constructed by dropping all messages sent to processes outside D in the message
sending function of A, obtaining the message sending function of A|D.

Note that we do not change the actual code of algorithm A in any way. In particular, the restricted
algorithm still uses the value of |Π| for the size of the system, even though the real size of D might be

much smaller.
Whereas this is sufficient for running an algorithm designed for M in the restricted system M′, in

practice, one would also remove any dead code (resulting from state transitions triggered by message
arrivals from processes in Π \D, from the transition relation of A to obtain the actual transition

relation of A|D. Note that we use MA to denote the set of runs of algorithm A in model M.
We will use a concept of similarity/indistinguishability of runs that is slightly weaker than the usual

notion [20, Page 21], as we require the same states only until a decision state is reached. This makes a
difference for algorithms where p can help others in reaching their decision after p has decided, for

example, by forwarding messages.

1The assumption |V | > n allows runs where all processes start with different propose values.
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Definition 2 (Indistinguishability of Runs). Two runs α and β are indistinguishable (until decision) for
a process p, if p has the same sequence of states in α and β until p decides. By α D∼ β we denote the
fact that α and β are indistinguishable (until decision) for every p ∈ D.

Definition 3 (Compatibility of Runs). Let R and R′ be sets of runs. We say that runs R′ are compatible
with runs R for processes in D, denoted by R′ 4D R, if ∀α ∈ R′ ∃β ∈ R : α

D∼ β.

C. Failure Detectors and Failure Patterns

A failure detector [6] D is an oracle that can be queried by processes in any step, before making a
state transition. The definition of failure detectors is based on the notion of a global time, which we did
not introduce yet. Recall that a run is a sequence of configurations, where Ci results from a single step
of a single process p in configuration Ci−1. We call this step the ith step of the run, and consider it to

occur at time i. Note that processes do not have access to time.
The failure pattern F (.) of a run α is a function that outputs the set of crashed processes for a given

time t; that is, p ∈ F (t), if there is no i > t, such that the ith step of the run is a step of p. Moreover,
we denote the set of faulty processes in the run as F =

⋃
t>0 F (t).

The behaviour of D in a run α depends on the failure pattern F (.), which defines the set of admissible
failure detector histories. The value of a query of a process p in a step at time t is defined by the

history function H(p, t), which maps process identifiers and time to the range of output symbols of D.
Clearly, a run in a system augmented with failure detectors is admissible, if all state transitions occur

according to a legal history H of D, given the failure pattern of the run.
We denote the augmented asynchronous model, where runs are admissible in MASYNC and processes

can query failure detector D in any step, as 〈MASYNC,D〉. If there is an algorithm A that solves
problem P in 〈MASYNC,D〉, we say that D solves P . We say that algorithm AD→D′ transforms D to
D′, if processes maintain output variables outputD′ that emulate failure detector histories of D′, which

are admissible for F (.).
Based on this notion of transforming oracles, [6] introduces a comparison relation on failure detectors:
We say that D′ is weaker than D and call D stronger than D′, if such an algorithm AD→D′ exist. If

there is also an algorithm AD′→D, we say that D and D′ are equivalent. If no such algorithm AD′→D
exists, we say that D is strictly stronger than D′; strictly weaker is defined analogously. If neither
AD→D′ nor AD′→D exists then we say that D and D′ are incomparable. A failure detector D′ is the

weakest for problem P if D is weaker than any failure detector D that solves P .
While the weakest failure detector for message passing k-set agreement is still unknown, the quorum

family Σk was shown in [3] to be necessary for solving k-set agreement with any failure detector X , in
the sense that there is a transformation that implements Σk in the system 〈MASYNC,X〉.

We will now restate the failure detector classes Σk and Ωk; see [22] for a recent overview of failure
detectors for k-set agreement.

Definition 4 (cf. [3]). The generalized quorum failure detector Σk, with Σ = Σ1, outputs a set of trusted
process ids, such that for all environments E and for all failure patterns F (.) ∈ E the following holds:
Intersection: For every set of k+ 1 processes {p1, . . . , pk+1} and for all k+ 1 time instants t1, . . . , tk+1,

there exist indices i and j with 1 6 i 6= j 6 k + 1, such that H(pi, ti) ∩H(pj , tj) 6= ∅.
Liveness: ∃t ∀t′ > t ∀pi /∈ F : H(pi, t

′) ∩ F = ∅.
If a process p crashes at time t, i.e., p ∈ F (t), we define ∀t′ > t : H(p, t′) = Π.

Definition 5 (cf. [21]). The output of the generalized leader oracle Ωk, for 1 6 k 6 n− 1, satisfies the
following properties:
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Validity: For all processes p and all times t, history H(p, t) is a set of k process identifiers.
Eventual Leadership: There exists a time tGST and a set LD, such that

(LD ∩ (Π \ F ) 6= ∅) ∧ (∀t > tGST ∀p : H(p, t) = LD).

III. The Impossibility Theorem

In this section, we will present our general k-set agreement impossibility theorem. Due to its very
broad applicability, the theorem itself is stated in a highly generic and somewhat abstract way. It

captures a reasonably simple idea, however, which boils down to extracting a consensus algorithm for a
certain subsystem where consensus is unsolvable: Suppose that a given k-set agreement algorithm A

for some system model M has runs, where processes start with distinct values and k partitions
D1, . . . , Dk−1 and D can be formed: Processes in the k − 1 partitions Di decide on (at least) k − 1
different values, and no process in partition D ever hears from any process in Di before it decides.
Note carefully that processes in D can communicate arbitrarily within D. Then, the ability of A to

solve k-set agreement would imply that the restricted algorithm A|D can solve consensus in the
restricted model M′ = 〈D〉. However, if the synchrony and failure assumptions of M are such that

consensus cannot be solved in M′, this is a contradiction. This intuition will become completely clear
when we apply Theorem 1 in Sections V and VII.

Theorem 1 (k-Set Agreement Impossibility). Let M = 〈Π〉 be a system model and consider the runs
MA that are generated by some fixed k-set agreement algorithm A in M, where every process starts with
a distinct input value. Fix some nonempty disjoint sets of processes D1, . . . , Dk−1, and a set of distinct
decision values {v1, . . . , vk−1}. Moreover, let D =

⋃
16i<kDi and D = Π \D. Consider the following

two properties:
(dec-D) For every set Di, value vi was proposed by some process in D, and there is some process in

Di that decides on vi.
(dec-D) If pj ∈ D then pj receives no messages from any process in D until after every process in D

has decided.
Let R(D) ⊆MA and R(D,D) ⊆MA be the sets of runs of A where (dec-D) respectively both, (dec-D)
and (dec-D), hold.2 Suppose that the following conditions are satisfied:

(A) R(D) is nonempty.
(B) R(D) 4D R(D,D).

In addition, consider a restricted model M′ = 〈D〉 such that the following hold:
(C) There is no algorithm that solves consensus in M′.
(D) M′A|D

4DMA.

Then, A does not solve k-set agreement in M.

Proof: For the sake of a contradiction, assume that there is a k-set agreement algorithm A for
model M, sets of runs R(D) and R(D,D) and some sets of processes D1, . . . , Dk−1 such that conditions
(A)–(D) hold. Due to (A) we have R(D) 6= ∅; then, (B) implies that R(D,D) is nonempty too. Observe

that (dec-D) ensures that there are > k − 1 distinct decision values among the processes in D, in every
run in R(D,D). Since algorithm A satisfies k-agreement, the compatibility requirement (B) between

runs R(D) and R(D,D) for processes in D implies the following constraint:
(Fact 1) In each run inR(D), all processes in D must decide on a common value.

2Note that R(D) is by definition compatible with the runs of the restricted algorithm A|D .
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We will now show that this fact yields a contradiction. Starting from M′A|D
, i.e., the set of runs of the

restricted algorithm in model M′, we know by (D) that for each ρ′ ∈M′A|D
, there exists a run ρ ∈MA

such that ρ′ D∼ ρ. Obviously, no process p ∈ D receives messages from a process q ∈ D in ρ′ before p’s
decision, as such a process q does not exist in the restricted model M′. Clearly, the same is true for the
indistinguishable run ρ (even though such a process q does exist in model M). Therefore, we have that,
in fact, ρ ∈ R(D), and due to (Fact 1), we know that in each run ρ′ ∈M′A|D

all processes decide on the
same value. This, however, means that we could employ A|D to solve consensus in M′, which is a

contradiction to (C).

Remarks

There are several noteworthy points about Theorem 1:
• The proof neither restricts the types of failures that can occur in M nor the underlying synchrony

assumptions of M in any way.
• Our impossibility argument uses a 2-partitioning argument but does not require the system to

(temporarily or permanently) decompose into k + 1 partitions. In particular, there is no further
restriction on the communication among processes within D and within D.

• Despite its main purpose of showing impossibilities, our theorem is also useful when developing new
algorithms for achieving k-set agreement. For example, suppose that we are given some unproven but
seemingly promising new algorithm A for a model close to asynchrony. Then, checking whether the
runs of A are such that the conditions of Theorem 1 are satisfied will allow us to determine already
at an early stage (i.e., before developing a detailed correctness analysis) whether it is worthwhile
to explore A further. In particular, if (dec-D) can be satisfied in some runs, i.e., (A) holds, the
algorithms is very likely flawed, as the remaining conditions are typically easy to construct in
sufficiently asynchronous systems.

• At a first glance, requirement (B) might appear to be redundant. After all, it should always be
possible to find a run in R(D,D) that is indistinguishable for the processes in D, given some run in
R(D). We will now try to give an intuition for its necessity; in the proof of Theorem 10, we will
see that (B) is non-trivial in realistic settings.
To see why (B) is necessary, first consider some run γ (of some algorithm in some model M)
that satisfies property (dec-D). This stipulates k − 1 distinct decision values among the processes
in D, which essentially means that γ was a quite “asynchronous” run for the processes in D. It
could therefore be the case that the synchrony assumptions of M require γ to be “synchronous”
for the processes in D. Now suppose that we are given a run α ∈ R(D) and we need to find a
run β ∈ R(D,D) that is indistinguishable for processes in D, in order to make (B) hold. If α is an
“asynchronous” run for the processes in D, we might not be able to find a matching run β ∈ R(D,D),
as the above setting requires such runs to be “synchronous” for the processes in D. Consider, for
example, the (highly artificial) model where computing speed and communication among processes
in D is synchronous in a run if and only if the processes in D decide on at least k − 1 distinct
values. Clearly it does not hold that R(D) 4D R(D,D) in this scenario.

IV. T -Independence

We proceed with introducing a convenient notion for message passing systems, which is similar to the
progress conditions of concurrent objects [18], [24] in shared memory models. Bear in mind that we
only consider algorithms for decision tasks, like k-set agreement; that is, every correct process must
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eventually decide.

Definition 6 (T -independence). Consider a model M = 〈Π〉 and let T ⊆ 2Π be a family of sets of
processes. We say that A satisfies T -independence in M, if for all sets S ∈ T it holds that the subset
of runs of A in M where processes in S only receive messages from other processes in S until every
process in S either decides or crashes, is nonempty.
If, in addition, the subset of runs of A in M, where processes in S eventually only receive messages
from other processes in S until every process in S either decides or crashes, is nonempty, we say that
A satisfies strong T -independence in M.

Observation 1. The following properties obviously hold:
(a) If algorithm A satisfies strong T -independence in M, then A also satisfies T -independence in M.
(b) If algorithm A satisfies T -independence in M and T ′ ⊆ T , then A satisfies T ′-independence in M.

We can express the following classic progress conditions in terms of T -independence:
Wait-freedom [16] provides strong 2Π-independence. Moreover, obstruction-freedom implies

{{p1} , . . . , {pn}}-independence. The classic assumption of an f -resilient algorithm guarantees strong
{S | (S ⊆ Π) ∧ (|S| > |Π| − f)}-independence, whereas using

(non-strong) {S | (S ⊆ Π) ∧ (|S| > |Π| − f)}-independence holds when up to f initial crash failures
can be tolerated. Analogously to [18], T -independence also enables us to specify asymmetric progress

conditions, e.g., strong {S | {p1} ⊆ S ⊆ Π}-independence is guaranteed by wait-freedom of process p1.

V. Impossibility in the Partially Synchronous and Asynchronous Case

It is easy to show that k-set agreement is impossible in the purely asynchronous model, if we assume a
wait-free environment: It suffices to simply delay all communication until every process has decided on
its own propose value. When the number of failures is somewhat restricted and/or the model is partially

synchronous, however, a more involved argument is necessary. In this section, we will show how to
avoid proving the impossibility “from scratch” by instantiating Theorem 1.

Theorem 2. There is no algorithm that solves k-set agreement in a system M of n processes where
• processes are synchronous,
• communication is asynchronous,
• a process can broadcast a message in an atomic step, and
• receiving and sending are part of the same atomic step,

for any

k 6
n− 1

n− f
, (1)

even if, of the f possibly faulty processes, f − 1 can fail by crashing initially and only one process can
crash during the execution.

Proof: Assume in contradiction that some f -resilient algorithm A solves k-set agreement. We will
show that conditions (A)–(D) of Theorem 1 are satisfied, thus yielding a contradiction.

As a first step, we will identify suitable sets Di such that (A)–(B) hold for the runs in R(D) and
R(D,D), respectively. Let ` = n− f ; for 1 6 i < k, define Di =

{
p(i−1)`+1, . . . , pi`

}
and let

D =
⋃

16i6k−1

Di.

Note that the failure assumption (1) guarantees that these sets Di exist.
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Lemma 3. The set D contains at least n− f + 1 processes, and every Di, 1 6 i < k, contains exactly
` = n− f processes.

Proof: Since obviously |Di| = `, we are done if we can show that |D|+ n− f + 1 6 n, i.e.,

(k − 1)(n− f) + (n− f + 1) = k(n− f) + 1 = k`+ 1 6 n,

which matches exactly (1).
Moreover, the failure bound (1) together with the fact that communication is asynchronous,

immediately implies the following lemma:

Lemma 4. Algorithm A is
{
D1, . . . , Dk−1, D

}
-independent.

We now show the conditions of Theorem 1:
(A) By Observation 1.(b) and Lemma 4 it follows immediately that R(D) 6= ∅.
(B) Consider the set of runs H where all communication between the sets of processes D1, . . . , Dk−1, D

is delayed until every correct process has decided; Lemma 4 implies that H 6= ∅. For any ρ ∈ R(D)
it is easy to find one ρ′ ∈ H, where all processes in D go through the same states until deciding.
Moreover, clearly H ⊆ R(D,D), thus establishing (B).

(C) Now consider a system M′ = 〈D〉 that has the same system assumptions as M, with the restriction
that at most one process can crash in M′ at any time. Condition (C) follows immediately from the
result of [11, Table I], since we have already shown in Lemma 3 that

|D| > n− f + 1 > 2

and one process can crash in the runs of M′.

(D) We will show that for every run ρ′ ∈M′A|D
, there is a corresponding run ρ ∈MA such that ρ′ D∼ ρ.

Fix any ρ′ ∈ M′A|D
and consider the run ρ ∈ MA where every correct process in D has the same

sequence of states in ρ as in ρ′, and all remaining processes—of which there are 6 f − 1—are
initially dead in ρ. Such a run ρ exists, since A|D is the restriction of A (see Definition 1).

We can therefore apply Theorem 1 and conclude that A does not solve k-set agreement.
Since an impossibility under stronger assumptions implies impossibility under weaker ones, we have

the following corollary:

Corollary 5. The impossibility of k-set agreement from Theorem 2 continues to hold under weaker
assumptions, in particular, if processes are asynchronous, broadcasts are not possible in one step, sending
and receiving within one atomic step is not possible, and all f processes may fail by crashing.

VI. Possibility of k-Set Agreement with Initially Dead Processes

In this section, we will show that Theorem 2 tightly captures the impossibility of k-set agreement, by
presenting a matching bound for the solvability of k-set agreement in asynchronous systems with f

initial crashes.
For the consensus case k = 1, we know from [14] that it is sufficient for a majority of processes to be

correct. The protocol of [14] operates in two stages: In the first stage, each process broadcasts a
message (containing its process id). Every process then waits until it has received L− 1 (where L is

d(n+ 1)/2e) messages.
In the second stage, every process broadcasts a message containing its initial value and the list of L− 1
processes it has received messages from in the first stage. Then it waits for messages from those L− 1
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processes it has received messages from in the first stage, and for a message from every remote process
mentioned in one of the lists it receives.

Now consider a directed simple graph, in which each node corresponds to a process and there is an
edge from u to w iff the process corresponding to w has received a message from the process

corresponding to u in the first stage. Let us call this graph G. Clearly, every node in G has in-degree
L− 1. Processes only know some part of G after the first stage, but have got complete and consistent
knowledge of G after the second stage. At this point, every process can thus consistently determine an
initial clique C in G, i.e., a fully connected maximal subgraph with no incoming edges. Since n > 2f ,

exactly one such C must exist. A deterministic rule for choosing one of the proposal values of the
processes in C (e.g., the value proposed by the process whose identifier is minimal in the clique) is

used as the decision value of every process.
For the general case k > 1, we can use the same algorithm if we can make sure that each process can
determine one of at most k initial cliques. We will now determine a value for L, which guarantees this

for some given k. Note that the ability to select a value for L is also restricted by f . Thus, by
combining the relations between L and k and f , respectively, we will be able to determine the range of

f for which k-set agreement is solvable.
We call a strongly connected component C of a directed graph a source component, if, in the directed
acyclic graph (DAG) generated by contracting all vertices of the strongly connected components of G

into single vertices, the vertex corresponding to C is a source, i.e., has in-degree 0.

Lemma 6. Every finite directed simple graph G = (V,E), where each vertex v has at least in-degree
δ > 0, has a source component C of size at least δ + 1.

Proof: Obviously, the graph G′ obtained from G by contracting all vertices in each strongly
connected component is a directed acyclic graph. Like every DAG, G′ has at least one vertex c′ with
in-degree 0. Let C be the set of processes in G that were contracted to c′. By definition, C must be a

source component, so it remains to show that |C| > δ + 1. Take any vertex v ∈ C. Clearly, all
in-neighbours of v must also be in C, since C is a source component. Thus, C must contain at least δ
vertices besides v.

Lemma 7. Consider a finite directed simple graph G, where each process has at least in-degree δ > 0.
In each weakly connected component of G, there exists at least one source component C of size at least
δ + 1.

Proof: Follows by using the previous theorem for each sub-graph corresponding to a weakly
connected component.

From this lemma, it follows that every process has (at least) one directed incoming path from all the
processes in (at least) one source component. Moreover, it is easy to see that, when 2δ > n, then there

can be only one source component, i.e., no more than bn/(δ + 1)c.
Returning to the algorithm from [14], we find that detecting locally which processes belong to the

initial clique C in G is equivalent to locally detecting which processes belong to the source component
a process is connected to. Moreover, as mentioned earlier, waiting for L− 1 messages in the first stage

clearly induces a graph G with δ = L− 1, and thus at most bn/Lc source components. From this it
follows that processes will decide on at most bn/Lc values, so k-set agreement with k > bn/Lc is

indeed solvable.
As our last step, we have to relate L to the bound on the number of initially crashed processes f . On

one hand, we want L to be as large as possible in order to decrease the number of source components.
On the other hand, since processes wait until they have received a message from L− 1 remote

9



processes in the first stage, it is clearly not advisable to choose L− 1 > n− f . Therefore, we now fix
L = n− f , which leads to k-set agreement being solvable when k > bn/(n− f)c. Since n, f , and k
are all integers, we get that k + 1 > n/(n− f) and hence kn > (k + 1)f . Note that, for k = 1, this

matches the requirement of a majority of correct processes.
Considering the border case kn = (k + 1)f , we get n− f = n/(k + 1). A standard partitioning

argument reveals that k-set agreement is impossible in this case: Assume that there is an algorithm A
that solves k-set agreement in such a system. The above condition on n and f implies that we can

partition the system into k + 1 disjoint groups of processes Π0, . . . ,Πk. From the set of possible input
values V , choose any v0, . . . , vk, s.t., vi = vj ⇔ i = j. Clearly, for each i, there is an execution εi of A
where all processes in Πi have initial value vi and all processes in Π \Πi are initially dead. Since A

solves k-set agreement, all processes in Πi have to eventually decide on vi in εi. Therefore, by
delaying messages between the partitions Πi sufficiently long, it is easy to construct an execution ε

without any initial crashes, which is indistinguishable (until decision) for all p ∈ Πi from εi, 0 6 i 6 k.
But now we have k + 1 different decision values (i.e., v0, . . . , vk) in ε, which contradicts the
assumption that A solves k-set agreement. Therefore, we have obtained the following result:

Theorem 8. In an asynchronous system with n processes up to f of which may be initially dead, k-set
agreement is solvable if and only if kn > (k + 1)f or, equivalently,

k >
f

n− f
.

VII. Impossibility with Failure Detector (Σk,Ωk)

In this section, we will demonstrate the full power of Theorem 1 by deriving a new result: We prove
the impossibility of achieving k-set agreement with failure detector (Σk,Ωk), for all 1 < k < n− 1. In
[5, Theorem 2], it was shown that k-set agreement is impossible with (Σk,Ωk) if 1 < 2k2 6 n, which

is a much more restrictive bound than the one given by Theorem 10 below.
For our impossibility proof, we will make use of a certain stronger failure detector that nevertheless

allows up to k partitions. Note that this actually strengthens our impossibility result.

Definition 7. Let {D1, . . . , Dk−1, Dk} be a partitioning of the processes in Π, and let D = Dk. The
partition failure detector (Σ′k,Ω

′
k) provides failure detector histories with the following properties:

1) For 1 6 i 6 k, the output of Σ′k at every process in Di is a valid history for Σ (= Σ1) in the
restricted model Mi = 〈Di〉 (where only processes from Di are ever output by Σ), with an additional
condition: Let tj be the earliest point in time when pj ∈ F (tj), for any pj ∈ Di. If tj is finite, then
∀t > tj it holds that the output of Σ′k at pj is defined to be the whole set Π.

2) Let LDt
j denote the set of k leader candidates that is the output of Ω′k at process pj at some point

in time t. We just assume3 Ω′k = Ωk, i.e., LDt
j must satisfy Definition 5 for some stablilization time

tGST: There exists a set LD of k processes and an index 1 6 j 6 k with LD ∩Dj ∩ (Π \ F ) 6= ∅,
such that the output LDt

j of every correct process pj ∈ Π is LD for all t > tGST.
We call a history of (Σ′k,Ω

′
k) a partitioning history.

Lemma 9. Failure detector (Σk,Ωk) is weaker than (Σ′k,Ω
′
k).

Proof: Consider an arbitrary finite stabilization time tGST. Since Ω′k = Ωk, every history of
(Σ′k,Ω

′
k) obviously satisfies the (Eventual Leadership) property of Ωk.

3Actually, it would be possible to also strengthen Ω′
k. As this somewhat obfuscates key ideas of the proof, however, we

dropped this generalization in this paper.
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To show that every history of (Σ′k,Ω
′
k) also satisfies the properties of Σk, choose any set P of k + 1

processes in Π. First, observe that the combined liveness conditions of the local Σ histories immediately
imply that liveness holds for Σk (see Definition 4). By the pigeon hole principle, at least two processes

of P must be in in the same set Di, for some 1 6 i 6 k, where Dk = D. Hence, the intersection
property of Σ in 〈Di〉 implies that the history is valid for Σk, which completes the proof.

We are now ready for stating our major theorem:

Theorem 10. There is no (n − 1)-resilient algorithm that solves k-set agreement in an asynchronous
system with failure detector (Σk,Ωk), for all 2 6 k 6 n− 2.

Proof: We assume by contradiction that there is such an algorithm A. Note that there are exactly
n = k − 1 + j processes in the system, for some j > 3. Consider the following partitioning of Π: Let

D = {p1, . . . , pj} and choose D1, . . . , Dk−1 such that they partition the set Π \D; since

D =
⋃

16i<k

Di, i.e., |D| = n− j = k − 1,

such a partitioning exists.
We will actually prove the impossibility for A provided with the stronger failure detector (Σ′k,Ω

′
k).

This impossibility can be carried over to A provided with (Σk,Ωk) by using Lemma 9.
We start with two technical lemmas, which justify why we call histories of (Σ′k,Ω

′
k) “partitioning

histories”: Intuitively speaking, it is straightforward to combine histories at different processes. The first
lemma proves that we can “paste together” different executions at partition boundaries. Let
R ⊆ R(D,D) be the set of runs where all communication between the sets of processes

D1, . . . , Dk−1, D is delayed until every correct process has decided, and assume that R 6= ∅ (which
will be proved in Lemma 12 below).

Lemma 11. Let β ∈ R (and hence β ∈ R(D,D) and β ∈ R(D)) and α ∈ R(D) be given, where tαdec resp.
tβdec denotes the time when the last process in D has crashed or decided in α resp. β. Then, the run β′

obtained from β by
1) replacing Hβ(p, t) by Hα(p, t) at all processes p ∈ D at all times t > 0,
2) setting Fβ′(t) = (Fβ(t) ∩ (Π \D)) ∪ (Fα(t) ∩D) at all times t > 0, and hence Fβ′ = (Fβ ∩ (Π \

D)) ∪ (Fα ∩D),
3) letting the processes in D receive messages and perform their steps exactly as in α,
4) delivering messages between D1, . . . , Dk only after all correct processes have decided in β′,
5) choosing some (arbitratily large) tGST > max{tαdec, t

β
dec} and some set LD that satisfies LD ∩ (Π \

Fβ′) 6= ∅, and setting LDt
j = LD in Hβ′ for all processes pj ∈ Π \ Fβ′ and all t > tGST

satisfies β′ ∈ R.

Proof: We must show that (i) the processes in D1, . . . , Dk−1 see the same history in β′ and β
until tGST, (ii) that the processes in D see the same history in β′ and α until tGST, and (iii) that the

history of β′ is a valid partitioning history: Then, correct processes can indeed take the same steps in
β′ as in β resp. α, and hence decide the same. Since β ∈ R and α ∈ R(D), this implies β′ ∈ R.
Consider any pj ∈ Di, for some 1 6 i 6 k. The Σ′k output of processes in Di is not affected by

changing the histories in D, as the failure pattern for the processes in Di remains the same w.r.t. β (for
1 6 i 6 k − 1) resp. α (for i = k) and quorums in different partitions are disjoint according to

Definition 7. The same holds true for the Ω′k part, since the leader output of pj is independent of the
leader output at any other process before stabilization time tGST, after which it satisfies (Eventual

Leadership) by construction.
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The next lemma shows that there are indeed “partitioned” executions, where all processes decide:

Lemma 12. R(D,D) 6= ∅, in particular, R ⊂ R(D,D) is nonempty.

Proof: Fix any Di, for 1 6 i 6 k and Dk = D. Consider a run αi where all processes not in Di

are initially dead; let Hi denote the history of αi. Due to (Eventual Leadership) of Ω′k, there exists a
time tiGST and a set LDi with LDi ∩Di ∩ (Π \ F ) 6= ∅ such that LDt

j = LDi for all pj ∈ Di and
t > tiGST. Since A is correct, all correct processes in Di eventually decide in αi; let ti be the point in

time when all processes in Di have either crashed or decided.
Using exactly the same arguments as in the proof of Lemma 11, we can construct a run α by “pasting”
the executions αi, 1 6 i 6 k, one after the other: In the resulting α, all processes in Π fail exactly as in

their respective αi, all communication between the sets D1, . . . , Dk is delayed until time
τ = max(t1, . . . , tk), and all processes in Di, for every 1 6 i 6 k, take exactly the same steps as in αi.
The history H of α is equal to the union of the histories Hi for all t > 0, except that we choose some
(arbitratily large) tGST > τ and any set LD (which obviously satisfies LD ∩Dj ∩ (Π \F ) 6= ∅ for some

j) and require LDt
j = LD for all processes pj ∈ Π \ F and all t > tGST. Obviously, H satisfies

Definition 7, so α is admissible and all processes decide in α, i.e., α ∈ R.
Equipped with these results, we can now establish the conditions required for applying Theorem 2:

(A) Consider the run αk where all processes outside D are initially dead, then clearly processes in D
decide before receiving a message from a processes outside D. Since αk ∈ R(D), we obviously have
R(D) 6= ∅.

(B) Consider any run α ∈ R(D) with a (partitioning) failure detector history Hα and failure pattern Fα,
and let R ⊆ R(D,D) be the set of runs where all communication between the sets of processes
D1, . . . , Dk−1, D is delayed until every correct process has decided. Now choose a run β ∈ R that
satisfies the conditions of Lemma 11; Lemma 12 guarantees that it exists. Lemma 11 provides us
with an execution β′ ∈ R that is indistinguishable from α for all processes in D until decision, i.e.,

α
D∼ β′; recalling that β′ ∈ R ⊆ R(D,D), we have thus shown that R(D) 4D R(D,D).

(C) We will first choose an appropriately restricted model M′: Since |D| = j > 3, let M′ = 〈D〉 be an
asynchronous system where up to j−1 processes may fail by crashing. Moreover, M′ is augmented
with a failure detector that is compatible to (Σ′k,Ω

′
k), in the sense that its failure detector histories

can be extended to match an admissible history of (Σ′k,Ω
′
k) in M, without changing the output at

processes in D: Considering Definition 7, we just assume that processes in M′ effectively access a
failure detector (Σ,Γ), where Γ satisfies the part of Definition 7 that concerns Ωk in the following
constrained way, for all processes in D: Γ outputs a possibly changing set of k process ids in the
range of Π, which eventually stabilizes on some set LD that intersects D in exactly two processes
ps and pt. Obviously, this restriction is compatible with Ω′k. Note that one of ps and pt (but not
necessarily both) may be faulty. Using Γ we can easily implement Ω2 for M′ (the transformation
uses Γ to eventually choose two fixed processes from D), thus (Σ,Γ) is weaker than (Σ,Ω2).
Moreover, (Σ,Ω2) is strictly weaker than (Σ,Ω), as there is no transformation T providing the
properties of (Σ,Ω) from those of (Σ,Ω2). If T existed, we could use it to obtain a wait-free
transformation T ′ for shared memory to obtain Ω from Ω2 (by simulating an asynchronous message
passing system equipped with Σ, cf. [9]) which contradicts the results of [21]. Since (Σ,Ω) is the
weakest failure detector for solving consensus, we can therefore conclude that (Σ,Γ) is too weak
for solving consensus in M′.

(D) Finally, for any run inM′A|D
, there is obviously a run in R(D) where all processes in D are initially

dead, the processes in D take identical steps, fail at the same time, and receive the same failure
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detector output and the same messages. Hence,M′A|D
4D R(D) and, by transitivity,M′A|D

4DMA.
Applying Theorem 1 thus yields the required contradiction.

From [3], we know that Σn−1 is sufficient for solving (n−1)-set agreement, Obviously, this implies
that (Σn−1,Ωn−1) is also sufficient for (n−1)-set agreement. Together with the fact that (Σ1,Ω1) is

sufficient for solving consensus [10], we have the following result:

Corollary 13. There is an (n − 1)-resilient algorithm that solves k-set agreement with failure detector
class (Σk,Ωk)16k6n−1 in an asynchronous system, if and only if k = 1 or k = n− 1.

VIII. Discussion

In this paper, we introduced a reduction to consensus for generically characterizing the impossibility of
k-set agreement in message passing systems. The main advantage of our approach is that we are

independent of a specific system model, since Theorem 1 neither makes assumptions on the available
amount of synchrony, nor on the power of computing steps and communication primitives available to
the processes. This genericity allows to apply our theorem in very different contexts. In this paper, we
have used our result to derive impossibility results both for partially synchronous systems [12] and for
asynchronous systems augmented with failure detectors [3], [6]. However, we are confident that it can

also be used to establish impossibility results in round models like [8], [15], [19].
A particularly promising application of our theorem is as both a guidance and quick verification tool
for finding new models and algorithms for k-set agreement. This is particularly true for the quest for
the (still unknown) weakest failure detector for solving message-passing k-set agreement: As we have

shown, Σk, which is known to be necessary for k-set agreement in [3], is not powerful enough for
overcoming the fatal partitioning into k subsystems. So what can be learned from our result is that,

whatever one adds to Σk, it has to allow solving consensus in each partition.
Our future work on this topic will involve (i) identifying other settings where Theorem 1 can be

applied, (ii) developing a general theory of T -independence for failure detectors and other message
passing systems, and (iii) finding weak system models that provide just enough synchrony to

circumvent the impossibility condition.
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