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Abstract

Due to the appearance of data on networks such as internet or Facebook, the number of
applications of signal on weighted graph is increasing. Unfortunately, because of the irregular
structure of this data, classical signal processing techniques are not applicable. In this paper,
we examine the windowed graph Fourier transform (WGFT) and propose ambiguity functions
Ag to analyze the spread of the window in the vertex-frequency plane. We then observe
through examples that there is a trade-off between the vertex and frequency resolution. This
matches our intuition form classical signal processing. Finally, we demonstrate an uncertainty
principle for the spread of the ambiguity function: ‖Ag‖1

‖Ag‖∞ > 1
µ2 . We verify with examples

that this principle is sharp for the extreme values of µ and emphasize the difference between
the generalized graph ambiguity function and the classical one. We finish with demonstration
of some Young and Hausdorff-Young like inequalities for graphs.

1 Introduction
Data, like images, sound or text, usually come with structure. This allows us to process the

information even if it is incomplete or there is background noise. For instance, we can understand
a text even if there are some spelling mistakes. Moreover, we are able to correct them with the help
of the structure of the sentences present in the text. Signal processing attempts to do the same
within special data thanks to the help of computers or electronics. This has inspired a large number
of solutions for filtering, compressing, and recovering signals. To process information, we usually
represent it on regular Euclidean spaces or manifolds. However, many applications involve more
topologically-complicated structures like networks. The number of such applications is growing
everyday on account of the development of the internet and, particularly, social networks.

Many applications in signal processing are based on transformation methods. The idea is to
observe the signal in a domain that provides the desired information. One famous transform
is the windowed Fourier transform, also called short time Fourier transform or Gabor transform
when used with a Gaussian window. It helps us to extract information in time/space and frequency
simultaneously and is obtained by the scalar product of the signal with atoms generated by shifting
and modulating a window. Therefore the choice of the window will greatly affect the result. For
example, the transform is a tool to examine music. In a melody, a sound is produced to be at
a precise moment with a specific spectral content. In this case, the transform provides a sort of
"mathematical score." However, there is no magic behind this process and the cost of this transform
is a trade-off between time and frequency resolution. This is explained by uncertainty principles
like the well known Heisenberg uncertainty principle. In order to measure the uncertainty, we
use an ambiguity function constructed by the scalar product of two atoms. This will measure the
difference between them in time and frequency. By doing so, the decay of the ambiguity function
becomes an indicator of the precision of the window. Lieb [1] has shown that the Lp-norm of the
ambiguity function is bounded using the Young’s inequality and the Hausdorff-Young inequality.
This means that it will always spread, whatever the chosen window. The purpose of this research
is to define and study an analogous function for graphs.

A graph is a structure made of nodes called vertices and links named edges. A weight cor-
responding to the distance between the vertices is associated with each edge. It is possible to
construct a Laplacian operator L for graphs from these weights only. In the case of a connected
undirected graph, the Laplacian’s eigenvectors form a complete orthogonal basis which is used as a
Fourier basis. As in the classical theory, the Fourier transform of a graph signal gives its frequency
content. We would like to develop a tool that allows us to simultaneously analyze the signal in the
spectral and vertex domains.

Studying signal processing on graphs is a burgeoning field. Recently, D. Hammond and P.
Vandergheynst adapted a wavelet transform to the graph setting [2]. A windowed graph Fourier
transform (WGFT) was also defined by D. Shuman et al [3], whereby, the convolution, shift, and
modulation for signals on graphs are defined in order to generate the atoms used in the transform.
They also provide examples that fit the intuition and promise the WGFT a good future. Even
more so, as all these definitions need only the weights that can be seen as the distance between
the edges, the obtained tool can be useful for analyzing a large range of data. Indeed, weighted
undirected graphs provide an extremely flexible model for approximating data domains.
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These definitions are all quite new and require further investigation. The task is difficult,
because the shift and modulation behave quite strangely and do not preserve energy. As a con-
sequence, the WGFT does not conserve energy. Even if certain frequencies are present at some
vertices, the coefficients can be insignificant. As there are no uncertainty principles for graphs, we
do not know the limit of the WGFT ability to extraction information. In addition, the choice of
the window remains a problem because there are no tools to study its spread in the spectral and
vertex domains.

This paper first focuses on the study of the WGFT and proposes a new definition, which,
we hope, will conserve energy. Secondly, and this is the main interest of the paper, it presents
some ambiguity functions for graphs which enable us to compute the resolution of a window in
time and frequency. Thirdly, studying the ambiguity function will lead us to some uncertainty
principles. Finally, the convolution product for graphs is studied. We demonstrated some Young
and Hausdorff-Young like inequalities which allow a better comprehension of the shift operator.

The paper is organized as follows. In a first section, we give a classical overview of the win-
dowed Fourier transform and the ambiguity function. We then define the convolution, shift, and
modulation of the WGFT for graphs and propose a normalized windowed graph Fourier transform
(NWGFT). Later, we define the ambiguity function and demonstrates some bounds on its norm,
in order to reach an uncertainty principle. In a second section (Chapter 5 and 6), we present
classical inequalities as follow: Hausdorff-Young, Young and Lieb. We then demonstrate some
analogous bounds on the norm of the convolution product (Young) and on the Fourier Transform
(Hausdorff-Young) in the graph setting.
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2 Classical Overview
We shall start by giving an overview of some of the classical theory for continuous and discrete

functions including the windowed Fourier transform (short time Fourier transform or Gabor when
used with a Gaussian window), which gives localization in space and in frequency simultaneously,
and the ambiguity function, which measures the spread of a given window in space and in frequency.

The following definitions for the Fourier transform f̂ of a function f ∈ L2 will be employed:

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξx dx,

so that the inverse transform is

f(x) =

∫ ∞
−∞

f̂(ξ)e−2πiξx dξ

and Parseval’s relation becomes
〈f, g〉 = 〈f̂ , ĝ〉. (1)

The direct consequence of (1) is the conservation of energy between a function f and its Fourier
transform f̂ :

‖f‖2 = ‖f̂‖2.

As functions on graphs are discrete, we also add the definition used for the Discrete Fourier
Transform (DFT) of a signal f ∈ RN :

f̂ [`] =
1√
N

N∑
n=1

f [n]e−2πi `
N n,

and the inverse transform is

f [n] =
1√
N

N−1∑
`=0

f [`]e2πi n
N `.

Parseval’s relation remains unchanged.

2.1 Classical windowed Fourier transform
The classical windowed Fourier transform (CWFT) simultaneously provides information in

time/space and frequency. Suppose we have a sound and we would like to extract the frequency
of it. One may simply compute the DFT and list the frequency. Then, the spectrum of the sound
would be known exactly at the cost of the loss of all temporal information. The CWFT does not
work so drastically. Using it, we are able to extract the frequency present at a certain time in the
signal. The price to pay is an uncertainty, which can be explained by the Heisenberg uncertainty
principle. In order to build the CWFT, we need a window g that is confined in both domains.
Furthermore, two shift operators are required: one in time or space and the other in frequency.
The shift in frequency is called modulation.

For any f ∈ L2 and u ∈ R, the translation operator Tu: L2 → L2 is defined by:

(Tuf)(t) := f(t− u)

and for any ξ ∈ R, the modulation operator Mξ: L2 → L2 is defined by:

(Mξf)(t) = f(t)eiξt.

A windowed Fourier atom gu,ξ is constructed by translating a window g(t) of unit norm ‖g‖2 = 1
centered at t = 0 in both space and frequency.

gu,ξ := (MξTug)(t) = g(t− u)eiξt. (2)
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The shift will move the window to a certain point without modifying the frequency content. Only
the phase will be affected. The modulation will shift the frequency content of the window to a
certain point without changing the localization in space or time.

Now, the CWFT projects a function f ∈ L2 on every space-frequency atom.

Sf(u, ξ) := 〈f, gu,ξ〉 =

∫ ∞
−∞

f(t)g(t− u)e−iξt dt (3)

It can be interpreted as a Fourier transform of f at the frequency ξ, localized by the window
g(t− u) in the neighborhood of u. Sf(u, ξ) is big if f contains approximately frequency ξ around
u and vice-versa.

2.2 Ambiguity function
Ideally, we would like to be precise in both domains at the same time. This can unfortunately

not be achieved. Nevertheless, the ambiguity function is a powerful tool to evaluate the uncertainty
of the CWFT. The overlap of the atoms contains the information for which we are looking.

In order to measure the space-frequency overlap of two atoms gu,ξ and gu0,ξ0 we use a kernel
K(u0, u, ξ0, ξ) = 〈gu,ξ, gu0,ξ0〉 that decays with u0−u and ξ0−ξ at a rate that depends on the energy
concentration of g and its Fourier transform ĝ. Then with the change of variable v = t− u+u0

2 the
scalar product between gu,ξ and gu0,ξ0 the kernel becomes:

K(u0, u, ξ0, ξ) = 〈gu,ξ, gu0,ξ0〉 = exp

(
− i

2
(ξ0 − ξ)(u+ u0)

)
Ag(u0 − u, ξ0 − ξ),

where
Ag(τ, γ) =

∫ ∞
−∞

g
(
t+

τ

2

)
g
(
t− τ

2

)
e−iγt dt

is called the ambiguity function of g. The decay of the ambiguity function measures the spread in
space and in frequency of the window g. This decay in space/time and in frequency respectively
characterizes the uncertainty of both domains of the window. We observe that the more precise the
transform is in frequency, the less precise it is in the other domain and vice-versa. The optimum
precision is achieved by a Gaussian window.

In fact, the ambiguity function is a particular case of the cross-ambiguity function:

Af,g(τ, γ) =

∫ ∞
−∞

f
(
t+

τ

2

)
g
(
t− τ

2

)
e−iγt dt.

For the discrete case, we define the cross ambiguity function by:

Agf(m, k) = 〈f,MkTmg〉 =

N∑
n=1

f [n]g[n−m]e−2πik n
N (4)

It measures the space frequency overlap of f and a modulated shifted window g. Note that this
definition of the cross ambiguity function is equivalent to a windowed Fourier transform!

3 Spectral Graph Definitions
In this section, we present the main definitions used in this work including the generalization

of the modulation and the translation for graphs. This will lead us to a windowed graph Fourier
transform(WGFT).

3.1 Spectral graph theory notation
We consider an undirected, connected, and weighted graph G = {V, E ,W}, where V is a finite

set of vertices (with |V| = N), E is a finite set of edges, and W the weighted adjacency matrix [4].
We define a signal f : V → RN as a function assigning one value to each vertex. It can be seen
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as a vector of size N with the nth component representing the signal value at the nth vertex. The
non-normalized graph Laplacian is defined by L = D −W where D is the diagonal degree matrix
(Dii =

∑N
j=1Wij).

As the graph is undirected, the adjacency matrix W and the Laplacian L are symmetric ma-
trices. Since the weights are all real, the graph Laplacian possesses a complete set of real and
orthonormal eigenvectors which will be denoted by {χ`}`=0,1,...,N−1 . The eigenvalues of L are
real and positive. We order them as follows: 0 = λ0 < λ1 6 λ2 6 ... 6 λN−1 := λmax. In order
to simplify the writing, we denote the square matrix composed of the N column eigenvectors:
Φ = {χ0, χ1...χN−1}.

A Fourier transform of a graph signal f is defined by

f̂(`) = 〈f, χ`〉 =

N∑
n=1

χ∗` (n)f(n) = (Φtf)(`), (5)

where we use x∗ to denote the transpose complex conjugate of the vector x. We write f the
complex conjugate of the signal f . An inverse Fourier transform is given by

f(n) =

N−1∑
`=0

f̂(`)χ`(n) = (Φf̂)(n).

One very interesting property is:

F{Lkf}(`) =

N−1∑
`=0

λk` f̂(`). (6)

3.2 Relation between graph and classical theory
The definition (5) is analogous to the classical Fourier transform: f̂(w) = 〈f, eiwx〉. In fact,

it has been shown that the eigenvectors of the Laplacian are discrete cosines for special edge
configurations. Strang [5] has demonstrated the following relations.

The Discrete Fourier Transform (DFT) eigenvectors are the eigenfunctions for the Laplacian
or a ring graph. In addition, the eigenvectors of the path graph can be chosen to be the same
as column of the DCT-2 transform. Table 1 presents the eigenvectors and the eigenvalues for the
DFT, real DFT (RDFT) and the DCT-2. In this paper, DFT will be used for the case of a ring
graph with classical eigenvectors and RDFT for the same graph, but with real eigenvectors. When
DCT-2 is used, we suppose a path graph with real eigenvectors.

Remark: In the classical case, presented by Strang [5], the order of the eigenvalues is not crescent:
λ` = 2− 2 cos( 2π`

N ), for ` ∈ {0, 1, ..., N − 1}. The consequence of this order will be presented later.
For a connected graph, there is only one complete orthonormal base of real eigenvector. This

solution is often used because algorithms that compute the eigenvectors usually return real eigen-
vector. As a consequence, it is relevant to also observe the real DFT (RDFT). This is characterized
by another choice of eigenvectors for the ring graph. Observing differences between the DFT and
the RDFT will explain some differences between the classical theory and its generalization.

3.3 A generalized convolution product for signals on graphs
For two signals f, g ∈ L2, the classical convolution is defined as h(t) = (f ∗ g)(t) =

∫
R f(x)g(t−

x)dx. One nice property of the convolution is its correspondence with a product in the Fourier
domain:

(f ∗ g)(t) = F−1

{∫
R
f̂(w)ĝ(w)dw

}
(t) =

∫
R
f̂(w)ĝ(w)ψw(t)dw,

with ψw(k) = e2πikt. The definition of the convolution product for signals on a graph is based on
that property. This choice is not arbitrary. Indeed, this property is fundamental for signal filtering.
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Classical name Equivalent graph Eigenvalues Eigenvectors
DFT Ring λ` = 2− 2 cos(π`N )

when ` is even and
λ` = 2− 2 cos(π(`+1)

N )
when ` is odd.

χ`(n) = 1√
N

exp
(
πi `nN

)
when ` is even and
χ`(n) = 1√

N
exp

(
πi (N−`)n

N

)
when ` is odd.

RDFT Ring λ` = 2− 2 cos(π`N )
when ` is even and
λ` = 2− 2 cos(π(`+1)

N )
when ` is odd.

χ`(n) =
√

2
N cos(π`nN )

when ` is even,
χ`(n) =

√
2
N sin(π(`+1)n

N )

when ` is odd
and χN−1(n) = 1√

N
(−1)n.

DCT-2 Path λ` = 2− 2 cos(π`N ) χ`(n) =
√

2
N cos

(
π `(n−0.5)

N

)
Table 1: Eigenvalues and eigenvector for classical configuration. n ∈ {1, 2, ..., N} and ` ∈
{1, 2, ..., N − 1}. Note that χ0(n) = 1√

N
.

We define a generalized convolution product of signal f, g ∈ R on a graph by

(f ∗ g)(n) :=

N−1∑
`=0

f̂(`)ĝ(`)χ`(n).

3.3.1 Properties

For f, g, h ∈ R and α, β ∈ R, the generalized convolution product satisfies the following prop-
erties:

1. Convolution in the vertex domain is equivalent to the multiplication in the spec-
tral domain:

f̂ ∗ g = f̂ · ĝ.

2. Comutativity:
(f ∗ g) = (g ∗ f).

3. Linearity:
f ∗ (αg + βh) = α(f ∗ g) + β(f ∗ h).

4. Associativity:
f ∗ (g ∗ h) = (f ∗ g) ∗ h.

5. Invariance to the graph Laplacian operator: The Laplacian is the difference operator.

L(f ∗ g)(n) =

N−1∑
`=0

λ
`
f̂(`)ĝ(`)χ`(n) = (Lf ∗ g)(n) = (f ∗ Lg)(n).

6. Multiplicative identity: for the signal g0 ∈ RN defined by g0(n) =
∑N−1
`=0 χ`(n), we have:

f ∗ g0 = f.

We observe that ĝ(`) = 1, for all ` = 0, 1, ..., N − 1 and ‖g0‖2 =
√
N .

7. Inverse element If ĝ(`) 6= 0, ∀` ∈ {0, 1, ..., N − 1}, then the convolution product has an
inverse element g−1(n) =

∑N−1
`=0

1
ĝ(`)χ`(n) so that

g ∗ g−1 = g0.
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8. Sum of the generalized convolution product:

N∑
n=1

(f ∗ g)(n) =
1√
N

[
N∑
n=1

f(n)

][
N∑
n=1

g(n)

]
=
√
Nf̂(0)ĝ(0).

3.4 A generalized translation
The intuition of translation is obvious for functions in L2. It is simply a shift. For graphs,

there aren’t such comparisons. In the classical case, the translation can be expressed with the
convolution. By analogy, we define a generalized translation operator Ti : RN → RN defined on a
graph G and any i ∈ {1, 2, ..., N}, using the convolution with a delta δi centered at vertex i:

(Tif)(n) :=
√
N(f ∗ δi)(n) =

√
N

N−1∑
`=0

f̂(`)χ∗` (i)χ`(n)

Because of the factor
√
N , we do have the nice property:

N∑
n=1

Tif(n) =
√
N

N∑
n=1

N−1∑
`=0

f̂(`)χ∗` (i)χ`(n)

=
√
N

N−1∑
`=0

f̂(`)χ∗` (i)

N∑
n=1

χ`(n)

=
√
N

N−1∑
`=0

f̂(`)χ∗` (i)
√
Nδ0(`)

= Nf̂(0)χ∗0(i)

= N

N∑
n=1

f(n)χ∗0(n)
1√
N

=
√
N

N∑
n=1

f(n)
1√
N

=

N∑
n=1

f(n)

Remark: In general, graphs are not shift-invariant. The shape of a signal is transformed by the
shift. Even on a ring, depending on the choice of the eigenvectors, the translated signal does not
look like the original one.

There is no easy intuitive way of understanding the generalized translation. It depends highly
on the graph and of the choice on the eigenvectors. Nevertheless, we observe a nice property for
the heat-kernel window ĝ(`) = Ce−λ`τ . The shift Ti localizes the window around the vertex i
(Figure 1).

Question: Are there other kernels that have the same localization property?

3.5 A generalized modulation
The classical modulation is a multiplication by an eigenvector. By analogy, we define, for

k ∈ {0, 1, ..., N − 1}, a generalized modulation operator Mk : RN → RN by

(Mkf)(n) :=
√
Nf(n)χk(n).

We remark that M0 is the identity operator. Indeed, χ0(n) = 1√
N

for a connected graph. The
classical modulation is equivalent to a shift in frequency:

M̂k(f)(ω) = f̂(ω − ξ),∀ω ∈ R.
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Figure 1: Localization property of the heat kernel on the Minnesota road graph. Top left: Spectral
distribution of the kernel ĝ(`) = Ce−λ`τ . τ is chosen equal to 1 and C is designed so that ‖g‖2 = 1.
Top right: kernel in the vertex domain. Bottom left: kernel shifted on vertex 1024. Bottom right:
kernel shifted on vertex 2024.

This property is not preserved for the generalized modulation. However, we do have the nice
property that if ĝ(l) = δ0(l), then

M̂kg(`) = δ0(`− k).

This means that the DC component of any signal f ∈ RN is mapped by the modulation Mk

to f̂(0)χk. As shown on the Figure 2, the non DC component will spread around λk. This
phenomenon is quantified in [3].

3.6 A windowed graph Fourier transform
As well as the generalized shift and modulation, the WGFT is presented by D. Shuman et al.

in [3]. Similarly to the classical cases (2) and (3), we define for a window g ∈ R, a windowed graph
Fourier atom by:

gi,k(n) := (MkTig)(n) =
√
Nχk(n)

N−1∑
`=0

ĝ(`)χ∗` (i)χ`(n).

In addition, the WGFT of a signal f ∈ RN is:

Sf(i, k)=〈f, gi,k〉 = N
N∑
n=1

f(n)χ∗k(n)

N−1∑
`=0

ĝ(`)χ`(i)χ
∗
` (n). (7)

This way of defining the ambiguity function is simple and logical but it will not preserve
the energy since the modulation and the translation are not energy invariant operators. This is
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Figure 2: Spectral localization property of the heat kernel on the Minnesota road graph. Left:
Spectral distribution of the kernel ĝ(`) = Ce−λ`τ . τ is chosen equal to 10 and C is designed
such that ‖g‖2 = 1. Right: Spectral distribution of the modulated kernel: M1000g. Note that
λ1000 = 1.53.

presented in Figure 3. In the ring case, there are border effects, but the norm seems quite well
preserved by the modulation and the shift. However, in a random graph like the sensor network,
this is not true anymore.

Figure 3: Norm of the shifted modulated windows ĝ(`) = exp(−λ`τ). The fact that from frequency
20 to 160, the shifted modulated window has an unitary norm is not true for any kernel with the
ring graph. Left: Ring with RDFT eigenvectors, τ50. Right: Sensor network (see Figure 5),
τ = 0.4.

One may be tempted to solve this problem by normalizing the atoms. In that case, they are
defined by:

gi,k(n) :=
(MkTig)(n)

‖MkTig‖2
.

We have to be careful with this normalization. Indeed, the modulation and the translation of a
signal can both make it vanish. In that case, the energy of the signal becomes 0 and the definition
lacks sense. However if all the eigenvectors have no 0 values (|χ`(n)| > 0,∀n ∈ {1, 2, ..., N}, ` ∈
{0, 1, ..., N − 1}) , then the normalized atoms are always well defined. The demonstration for
the modulation is trivial and for the translation operator, it is a consequence of Theorem 21. In
order to have no hypothesis on the graph or for numerical application, we can satisfy ourself with
‖MkTig‖2 > 0, ∀k, i. We are now able to define a normalized windowed graph Fourier transform
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(NWGFT) of a signal f ∈ RN :

Sf(i, k)=〈f, gi,k〉 =
〈f,MkTig〉
‖MkTig‖2

.

Figure 4: WGFT "spectrogram" example on the ring and path graphs. Top left: the analyzed
signal is a cubic chirp: f(n) = sin(0.6πn3). Top right: windows used for the different WGFTs.
The shape of the heat-kernel in the vertex domain depends highly on the graph and on the choice
of the eigenvectors. Middle left: classical windowed Fourier transform of f with classic eigenvalues
order. Middle right: classical windowed Fourier transform of f with crescent eigenvalues order.
Bottom left: WGFT of f using RDFT and the heat kernel. Bottom right: WGFT of f on a path
graph using the heat kernel.

Figure 4 presents an example of the spectrogram of WGFT: |Sf(i, k)|2. We analyze a cubic
chirp f(n) = sin(0.6πn3) using different normalized windows for the ring and the path graphs.
The eigenvectors are given in table 1. The heat kernel window is: ĝ(`) = Ce−λ`τ . τ is equal to 50
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and C is designed such that ‖g‖2 = 1. The Gaussian window is a discrete normalized Gaussian of
variance: σ = 10. We first observe that the choice of the eigenvector has an influence on the shape
of the window in the vertex domain: there is a difference between the RDFT and the DFT. We
also observe, that in the ring-DFT case, the heat kernel is equivalent to a Gaussian window. The
effect of the order of the eigenvalues is also observed. With the classical order, we have the classical
windowed Fourier transform with a symmetry in the middle of the spectrum because the signal
f is real. Reordering the eigenvalues sort all frequencies in a crescent manner. We then use the
RDFT-eigenvectors, and this affect the window and the result. However, despite the appearance
of gaps in the WGFT, we are still able to recognize the chirp in frequency.

As a second example, we are going to consider a sensor network with the heat kernel. We
separate the graph in two parts as show n Figure 5, and we create a signal f with the composition
of two eigenvectors. On the blue bar vertices (1-15), we put the signal χ50 and on the other (16-64)
the signal χ10. The WGFT and the NWGFT are presented in Figure 6. We observe the trade-offs
between the resolution in the frequency and vertex domains. When τ gets bigger, the window
becomes sharper in frequency and the precision of the spectrogram increases in frequency and
decreases in space.

Figure 5: Sensor network separated in two parts by the blue bars: 64 vertices including only 15
bars.

4 The Ambiguity Function
With the windowed graph Fourier transform, we are able to define an ambiguity function by

taking the scalar product between an original window and its shifted modulated transform.
The non-normalized ambiguity function for a window g is defined as

Ag(i, k) := 〈g, gi,k〉 = N

N∑
n=1

g(n)χ∗k(n)

N−1∑
`=0

ĝ(`)χ`(i)χ
∗
` (n). (8)

We notice that this definition is equivalent to the WGFT of the window g given in (7). In this sec-
tion, we demonstrate some theorems for the WGFT and others specific to the ambiguity function.

One may be tempted to normalize the ambiguity function. The definition (8) becomes:

A′g(i, k) := 〈g, MkTig

‖MkTig‖2
〉 (9)

Spring 2011 11/40



LTS2 - EPFL 4 THE AMBIGUITY FUNCTION

Figure 6: Spectrograms |Sf |2. Top left: WGFT of f with τ = 0.4. Top right: NWGFT of f with
τ = 0.4. Bottom left: WGFT of f with τ = 4. Bottom right: NWGFT of f with τ = 4.

We need to be careful with this definition. Like for the WGFT, the generalized modulation and
translation can in special cases make the signal disappear (all coefficients equal to zero). We require
that |χ`(n)| > 0,∀n ∈ {1, 2, ..., N}, ` ∈ {0, 1, ..., N − 1} to assure the existence of the normalized
ambiguity function. This hypothesis can be exchanged with ‖MkTig‖2 > 0, ∀i, k.

Definitions (8) and (9) are well suited for a kernel g that is localized in both vertex and spectral
domains. If it is not, one may also define the ambiguity function in a different way:

Ag(i, i0, k, k0) := 〈gi,k, gi0,k0〉 (10)

In that case, the cross-ambiguity function would be:

Ag,f (i, i0, k, k0) := 〈gi,k, fi0,k0〉.

Again, we define a second normalized ambiguity function as:

A′g(i, i0, k, k0) := 〈 Mk0Ti0g

‖Mk0Ti0g‖2
,
MkTig

‖MkTig‖2
〉. (11)

In order to evaluate the spread of the ambiguity function A(i, k) with i ∈ {1, 2, ..., N} and
k ∈ {0, 1, ..., N − 1}, we will use the "entrywise" p-norm (p > 0) defined by:

‖A‖p :=

(∑
i

∑
k

|A(i, k)|p
) 1

p

.

If we use the definitions with four parameters ((10),(11)), we fix i0 and k0.
Demonstrations will be done mostly for (8) and (10) because the norm of the shifted modulated

window is still hard to handle.
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As expected, we observe that the spreading of the ambiguity function in space and in frequency
characterizes the spread of the window. In our first example (Figure 7) we observe the ambiguity
functions (8) and (10) for a ring graph with RDFT eigenvectors. We notice that using (8) the
biggest coefficients are localized around node 1 and frequency χ0. Moreover, the trade-off between
frequency and vertex resolution seems to be observed with the variation of τ . Increasing τ allows
the resolution in the vertex domain to grow, but diminishes the resolution in frequency.

Figure 7: Square norm of ambiguity function for the ring graph with RDFT eigenvectors (Table
1). The heat kernel is chosen (ĝ(`) = Ce−λ`τ , C is such that ‖g‖2 = 1 ). Top left: definition (8)
with τ = 4. Top right: definition (10) with τ = 4, i0 = 90 and k0 = 90. Middle left: definition
(8) with τ = 40. Middle right: definition (10) with τ = 40, i0 = 90 and k0 = 90. Bottom left:
definition (8) with τ = 400. Bottom right: definition (10) with τ = 400, i0 = 90 and k0 = 90.

In the second example we first observe the differences between the four different definitions in a
sensor graph (Figure 8). We can see that definitions (10) and (11) localize the ambiguity function
"around" i0 and k0. The closer the vertices are to vertex i0 (on the graph, not in the figure) the
bigger the coefficients are. This localization property is due to the heat kernel. With it, the shift
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Ti will move the window around the vertex i. However, definitions (8) and (9) lack localization in
the vertex domain. In this example, the kernel g seems to be placed around vertex 25, but this
is only by chance. There is no localization guarantee for the unshifted heat kernel. One may be
tempted to choose a kernel that is localized in both domains. In that case, it is uncertain that the
shift Ti will move the window around vertex i.

Figure 8: Square norm of ambiguity function for the sensor graph presented in Figure 5. The
heat kernel (ĝ(`) = Ce−λ`τ is analyzed, C is chosen such that ‖g‖2 = 1 with τ = 0.4. Top left:
definition (8). Top right: definition (10), i0 = 32 and k0 = 32. Bottom left: definition (9). Bottom
right: definition (11), i0 = 32 and k0 = 32.

Computing the norm of the ambiguity function is a way of evaluating the spread of a window.
Values for the four different definitions are given in Table 2. Note that ‖Ag‖2 6 ‖Ag‖1 6 N‖Ag‖2
and ‖Ag‖∞ 6 ‖Ag‖2 6 N‖Ag‖∞. The case that is most sparse is ‖Ag‖1 = ‖Ag‖2 = ‖Ag‖∞,
which means that all the energy is concentrated into one single value. The least sparse case is
‖Ag‖1 = N‖Ag‖2 = N2‖Ag‖∞, which means that the energy is equally distributed along all
values. As a consequence, we want those norms to be close to each other in order to have a sparse
ambiguity function. If the ambiguity function is sparse then the window is confined in both vertex
and spectral domains. Computing the value ‖Ag‖1

‖Ag‖∞ gives an idea of the sparsity. Numerically, the
normalized definitions give less sparse ambiguity functions than unormalized definitions. This can
be checked in Figure 8.

In Figure 9, we observe the effect of τ on the ambiguity function. This parameter allows us to
control the tradeoff between the spread in the vertex and spectral domains.

The spread of the ambiguity function has been observed experimentally. It seems, there is a
trade-off between the frequency and the vertex resolution. Now, we will try to express this trade-off
as an uncertainty principle as follows: ‖Ag‖1 > a and ‖Ag‖∞ 6 b which implies that:

‖Ag‖1
‖Ag‖∞

>
a

b
> 1.
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Definition ‖Ag‖1 ‖Ag‖2 ‖Ag‖∞ ‖Ag‖1
‖Ag‖∞ 6 N2 = 4096

Ag(i, k) = 〈g,MkTig〉 211.6573 6.8311 1.0635 199.0196
A′g(i, i0, k, k0) = 〈MkTig,Mk0Ti0g〉 78.4283 5.0307 1.2737 61.5727
Ag(i, k) = 〈g, MkTig

‖MkTig‖2 〉 341.4633 9.3751 0.8450 404.0986

A′g(i, i0, k, k0) = 〈 Mk0
Ti0

g

‖Mk0
Ti0g‖2

, MkTig
‖MkTig‖2 〉 224.7007 9.6587 1 224.7007

Table 2: "Entrywise" norms of the different definitions of the ambiguity function presented in
Figure 8. N = 64.

Figure 9: Square norm of ambiguity function (11) for the sensor graph presented in Figure 5. The
heat kernel (ĝ(`) = Ce−λ`τ , C is chosen such that ‖g‖2 = 1) is analyzed with respect to τ . We set
i0 = 32 and k0 = 32. Top left: τ = 0. Top right: τ = 0.1. Middle left: τ = 0.4. Middle right:
τ = 1. Bottom left: τ = 4. Bottom right: τ =∞.
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4.1 A bound for the 1-norm of the ambiguity function
By analogy to the classical case, the 1-norm of the ambiguity function cannot take arbitrarily

small values for a normalized window g. In this section, we demonstrate the lower bound N for
the 1-norm of the ambiguity function under some conditions linked to the kernel. The heat kernel,
which is often used with graphs because of its good localization and computation properties, will
satisfy the required hypotheses.

Question: Is the ambiguity function’s lower 1-norm bound N true for every graph and every
kernel?

Lemma 1. If |ĝ(0)| > |ĝ(l)| > 0 for l = 1, 2, ...N − 1, then

|ĝ(0)|‖ĝ‖1 > ‖g‖22.

Proof.

|ĝ(0)|
N−1∑
k=0

|ĝ(k)| >
N−1∑
k=0

|ĝ|2(k) = ‖ĝ‖22 = ‖g‖22.

Theorem 1. For g ∈ RN , satisfying ‖g‖2 = 1 and |ĝ(0)| > |ĝ(l)| > 0 for l = 1, 2, ...N −1, we have

‖Ag‖1 =

N∑
i=1

N−1∑
k=0

|Ag(i, k)| > N,

with an equality if g(n) = 1√
N
.

Proof.

‖Ag‖1 =

N∑
i=1

N−1∑
k=0

|Ag(i, k)|

>
N−1∑
k=0

∣∣∣∣∣
N∑
i=1

Ag(i, k)

∣∣∣∣∣
= N

N−1∑
k=0

∣∣∣∣∣
N∑
n=1

N−1∑
`=0

g(n)χ∗k(n)ĝ(`)χ∗` (n)
N∑
i=1

χ`(i)

∣∣∣∣∣
= N

N−1∑
k=0

∣∣∣∣∣
N∑
n=1

N−1∑
`=0

g(n)χ∗k(n)ĝ(`)χ∗` (n)δ0(`)
√
N

∣∣∣∣∣
= N

3
2

N−1∑
k=0

∣∣∣∣∣
N∑
n=1

g(n)χk(n)ĝ(0)χ∗0(n)

∣∣∣∣∣
= N

3
2 |ĝ(0)|

N−1∑
k=0

∣∣∣∣ĝ(k)
1√
N

∣∣∣∣
= N |ĝ(0)|‖ĝ‖1
> N, (12)

where (12) comes from Lemma 1. This proves the first statement of the theorem.
To prove the equality for g(n) = 1√

N
, we simply compute the L1 norm of Ag with this special

window. Note that the Fourier transform of g is ĝ(`) = δ0(`).
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‖Ag‖1 =

N∑
i=1

N−1∑
k=0

|Ag(i, k)|

=

N∑
i=1

N−1∑
k=0

∣∣∣∣∣N
N∑
n=1

1√
N
χ∗k(n)

N−1∑
`=0

δ0(`)χ`(i)χ
∗
` (n)

∣∣∣∣∣
=
√
N

N∑
i=1

N−1∑
k=0

∣∣∣∣∣
N∑
n=1

χ∗k(n)χ0(i)χ∗0(n)

∣∣∣∣∣
=

1√
N

N∑
i=1

N−1∑
k=0

∣∣∣∣∣
N∑
n=1

χ∗k(n)

∣∣∣∣∣
=
√
N

N−1∑
k=0

∣∣∣√Nδ0(k)
∣∣∣

= N.

This last theorem gives us a sharp inequality for decreasing Fourier kernels. Consequently, it
is true for the heat-kernel.

Corollary 1. For f, g ∈ RN , we have

‖Agf‖1 =

N∑
i=1

N−1∑
k=0

|Agf(i, k)| > N |ĝ(0)|‖f̂‖1.

The proof is not given because it is very similar to the previous theorem.

Theorem 2. For f, a, b ∈ RN such that ‖f‖2 = 1 and f = Φa = Ψb, with Φ,Ψ two N × N
matrices made of N orthonormal vectors φi, ψj (i, j = 1, ..., N), we have:

‖a‖1‖b‖1 >
1

µ
.

Proof.

1 = |f tf |
= |ΦtatΨb|

=

∣∣∣∣∣∣
N∑
i=1

N∑
j=1

ai〈φi, ψj〉bj

∣∣∣∣∣∣
6

N∑
i=1

N∑
j=1

|ai〈φi, ψj〉bj |

6 µ

N∑
i=1

|ai|
N∑
j=1

|bj |

= µ‖a‖1‖b‖1

Dividing the previous inequality by µ leads to the desired result.

This proof can be found in [6]. Applying Theorem 2 to the Dirac and the Fourier basis gives
for f ∈ RN :

‖f‖1‖f̂‖1 >
‖f‖22
µ

(13)
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This last equation is an uncertainty principles for the Fourier bases. For the classical case
(the ring graph), we obtain a minimum coherence of 1√

N
. The uncertainty becomes weaker as the

coherence increases.
Using Corollary 1 and (13) leads to

‖Agf‖1 =

N∑
i=1

N−1∑
k=0

|Agf(i, k)| > N |ĝ(0)| ‖f‖
2
2

µ‖f‖1
=
√
N |

N∑
n=1

g(n)| ‖f‖
2
2

µ‖f‖1
,

which is another inequality for the ambiguity function. This bound has the advantage to be defined
with f and g in the vertex domain. We observe that the greater the 1-norm of f is, the weaker the
smaller the bound is.

The choice of the eigenvectors influences the coherence µ and has an impact on the ambiguity
function. However, if the kernel is purely defined in the Fourier domain, then the choice of the
eigenvector does not influence the bound given in Corollary 1 . Figure 10 illustrates the difference
between the DFT and RDFT [5], which is due to the DFT having a lower coherence than the
RDFT.

Figure 10: Ambiguity function value and bound for the ring case. The chosen window is ĝ(`) =

f̂(`) = Ce−λ`τ where C is chosen such that ‖f‖2 = 1. The bound
√
N |ĝ(0)|‖ĝ‖1 for DFT and

RDFT are the same. This is because the way we construct the Fourier transform of the window is
independent from the choice eigenvectors.

4.2 A bound for the sup-norm of the ambiguity function
Theorem 3. For a window g ∈ RN , we have

‖Ag‖∞ 6 µ2N‖g‖22
Proof.

‖Ag‖∞ = max
i,k
|〈g,MkTig〉|

6 max
i,k
‖g‖2‖MkTig‖2 (14)

6 max
i,k
‖g‖22‖Ti‖2‖Mk‖2 (15)

6 µ2N‖g‖22, (16)
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where (14) follows from the Cauchy-Schwarz inequality and, (15) and (16)follows from (51) and
(50).

4.3 An uncertainty principle
Using Theorems 1 and 3 for a normalized heat kernel leads to an uncertainty principle theorem.

Theorem 4. For a window g ∈ RN , satisfying ‖g‖2 = 1 and |ĝ(0)| > |ĝ(l)| > 0 for l = 1, 2, ...N−1,
we have

‖Ag‖1
‖Ag‖∞

>
1

µ2
> 1. (17)

We notice that if we choose classical eigenvectors(DFT), then µ = 1√
N
, and we obtain the same

result as in the classical case (26). However Theorem 1 requires a hypothesis on the kernel. In our
simulation, this theorem was always true even when the hypothesis was not satisfied. Demonstrat-
ing this relation without any hypotheses would lead to a more general uncertainty principle. The
uncertainty given by Theorem 4 depends highly on µ. If the coherence is low, the uncertainty is
strong. On the other hand, if it increases, the uncertainty diminishes. This is logical because the
bases get closer and we can be precise in both domains simultaneously.

This suggests a new problem: finding the basis with the smallest coherence possible for a general
graph.

Question: How can we found the Fourier basis with the smallest possible coherence for a general
graph?

Extreme example: Let us suppose that we have a coherence equal to one. (It will be shown
later that this case is not possible for a connected graph, for which the coherence is always strictly
smaller than one. However, it can be arbitrary close to one.) There are i0, `0 such that χ`0(n0) = 1;
χ`(n0) = 0,∀` 6= `0 and χ`0(n) = 0,∀n 6= n0. Suppose that we chose g(n) = δn0

(n) as window.
The ambiguity function becomes:

Af (i, k) =

{
N if i = n0 and k = `0,
0 otherwise.

This means that ‖Af‖∞ = ‖Af‖1 = N , which implies no uncertainty any more. It’s logical because
we can be precise in both domains at the same time. This example shows that Theorem 4 is sharp
for the extreme case µ = 1.

Theorem 5. For a connected graph, the coherence is always strictly smaller than one: µ < 1.

Proof. Suppose µ = 1. There are i0, `0 such that χ`0(n0) = 1; χ`(n0) = 0,∀` 6= `0 and χ`0(n) =
0,∀n 6= n0. The eigenvectors equation is

Lχ`0 = λ`0

and implies

L(i, `0) =

{
1 if i = `0,
0 otherwise.

This is in contradiction with the definition of the Laplacian of a connected graph. This implies
that µ 6= 1.

The sensor graph has a coherence close to one, as µ = 0.9186. In Figure 11, we show that
the ambiguity function can become really sparse with certain windows. However this sparsity is
mostly due to the norm of the shifted modulated windows and not to the orthogonality of the
atoms! Even if the uncertainty is minimized in this example, we observe that the spectrogram
is not what we are expecting. The component χ10 is completely lost, and more importantly, we
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Figure 11: Top left: Ambiguity function for the sensor graph using the window g(n) = δ32(n). We
observe that ‖Af‖1 = 402.8812 and ‖Af‖∞ = 45.0407. Note that the maximum eigenvector value
is given by µ = |χ63(32)| = 0.9186. Top right: Norm of the shifted modulated window g. Bottom
left: Spectrogram of f . The construction of f is presented in Section 3.6. Spectrogram with a
suitable window are shown in Figure 6. Bottom right: Normalized ambiguity function of g.

.

observe coefficients at χ63 that were not in the signal. Finally, the normalized ambiguity function
shows that this window is not a good choice for the NWGFT.

In the classical case, we usually want the window to be well localized in both domains. Gaussians
are well suited for this the requirement and they optimize the uncertainty. However, for graphs,
a window minimizing the uncertainty is not necessarily a good window because the shift and the
modulation are not energy-invariant. As a consequence, the norm of a certain atom can be very
small and some component of the WGFT cannot be detected.

Question: Does the NWGFT solve this problem?
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5 Classical inequalities
At this point we start a new section that is almost independent of the work discussed so far.

We describe the usual Fourier inequalities (Hausdorf-Young, Young, and Lieb) and explain their
main applications. These expressions will provide an analog that will later inspire the general-
ization of these inequalities to the graph setting. There are two main interest in studying these
inequalities. First they allow a better understanding of the Fourier transform and the convolution
product. Second, they are used to demonstrate an uncertainty principle on the ambiguity func-
tion. Unfortunately, the proof of this uncertainty principle, first published by Lieb [1], is easily not
generalizable to signals on graphs.

First we define some general constants that will be used for sharp inequalities. Let 0 < p 6∞
and define q by 1

q + 1
p = 1, then Dp is defined to be

Dp =

(
p

1
p

q
1
q

) 1
2

for p 6= 1 or ∞, while D1 = D∞ = 1.
For 1 < p <∞ and 1 6 a, b 6∞ with 1

a + 1
b = 1, we define H(p, a, b) > 0 by:

H(p, a, b)2 = abp−2|p− 2|2−p|p− a|−1+ p
a |p− b|−1+ p

b ,

with the convention that 00 ≡ 1 and H(1, 1,∞) = H(1,∞, 1) = 1.
We also define K(p, a, b) > 0 by:

K(p, a, b)2 = p−222−pa
p
a b

p
b

and K(1, 1,∞) =
√

2. More details about those constants can be found in [1]
The classical p-norm of a function f ∈ Lp is defined

‖f‖p :=

(∫
R
|f(x)|p dx

) 1
p

.

Similarly, for a signal f ∈ RN , we define:

‖f‖p :=

(
N∑
n=1

|f(n)|p
) 1

p

.

5.1 Hausdorff-Young inequality
The Haudorff-Young inequality bound sthe norm of the Fourier transform of a function. This

inequality uses the spread of a function in one domain(spectral or spacial) to bound the concen-
tration in the other. The main application is to demonstrate lower and upper bounds for the
ambiguity function.

Theorem 6. Let p′ > 2 and 1
p′ = 1− 1

p . If f ∈ Lp′ , then f̂ ∈ Lp and

‖f̂‖p 6 Dp′‖f‖p′ .

Conversely, let 1 6 p′ 6 2 and assume f̂ ∈ Lp, then f ∈ Lp′ with 1
q = 1− 1

p and

‖f̂‖p > Dp′‖f‖p′ .

Proofs can be found in [7] and [8]. It is also demonstrated that the constants are sharp since
equalizing are achieved by Gaussians.

We can build analogous inequalities for discrete signals. The proof is more straightforward, but
the constants obtained do not give sharp inequalities.
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Theorem 7. Let p′ > 2 and 1
p′ = 1− 1

p . If f ∈ RN , then

‖f̂‖p 6 N
1
p−

1
2 ‖f‖p′ .

Conversely, let 1 6 p′ 6 2, and assume f ∈ RN , then

‖f̂‖p > N
1
2−

1
p ‖f‖p′ ,

with 1
p′ = 1− 1

p .

The proof is not given here. Indeed, it is a particular case of the Hausdorff-Young inequality
for graphs given in Theorem 13.

5.2 Young inequality
The next inequality is a sharp Young Inequality. It bounds the convolution product of two

functions. For continuous signals f, g, the convolution product is defined as

(f ∗ g)(t) =

∫
f(t− s)g(s) ds,

and for two discrete signals f, g ∈ RN , it is defined as

(f ∗ g)[n] =

N∑
k=1

f(n− k)g(k).

We use the definition of the circular convolution, which implies that signals are assumed to be
periodic.

This product is important in Fourier analysis because convolution in the spatial domain corre-
sponds to the multiplication in the spectral domain and vice-versa:

(f ∗ g)(t) = F−1{f̂ · ĝ}(t),

(f̂ ∗ ĝ)(ξ) = F{f · g}(ξ).
This property is fundamental in signal processing as it allows us to filter a signal using the convo-
lution product.

Theorem 8. Let 1
p + 1

q = 1 + 1
r with 1 6 p 6∞, 1 6 q 6∞ and 1 6 r 6∞. Then, when f ∈ Lp

and g ∈ Lq, f ∗ g ∈ Lr and

‖f ∗ g‖r 6
DpDq

Dr
‖f‖p‖g‖q

Conversely, let 0 < p 6 1, 0 < q 6 1 and 0 < r 6 1 and assume f̂ ∈ Lp, then f ∈ Lq with
1
q = 1− 1

p and

‖f ∗ g‖r >
DpDq

Dr
‖f‖p‖g‖q

Proofs were published by Beckner, Brascamp and Lieb [8] [7]. They also prove that equality
are achieved when f and g were Gaussian.

The demonstrations for the strict inequality are not trivial. Thus, we take inspiration from a
different demonstration that leads to a less strict inequality:

‖f ∗ g‖r 6 ‖f‖p‖g‖q.

The demonstration uses the Riez-Thorin interpolation theorem and the following inequalities:

‖f ∗ g‖1 6 ‖f‖1‖g‖1 (18)

‖f ∗ g‖∞ 6 ‖f‖∞‖g‖1 (19)

‖f ∗ g‖∞ 6 ‖f‖p‖g‖p′ (20)

where 1
p + 1

p′ = 1.
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Theorem 9. Riesz–Thorin interpolation theorem (p. 169 [9]) : Assume T is a bounded linear
operator from Lp1 to Lp2

‖Tf‖p2 6Mp‖f‖p1
and at the same time from Lq1 to Lq2

‖Tf‖q2 6Mq‖f‖q1 .

Then it is also a bounded operator from Lr1 to Lr2

‖Tf‖r2 6Mr‖f‖r1 .

with
1

r1
=

t

p1
+

1− t
q1

,
1

r2
=

t

p2
+

1− t
q2

,

Mr = M t
pM

1−t
q

and t is any number between 0 and 1.

A proof of the interpolation theorem can be found in (p. 169 [9]).

Theorem 10. For f ∈ Lp, f ∈ Lq two functions and 1 6 p, q, r 6 ∞ so that 1 + 1
r = 1

p + 1
q , we

have
‖f ∗ g‖r 6 ‖f‖p‖g‖q. (21)

Proof. For a function f ∈ Lp, we define an operator Tg by (Tgf)(n) = (f ∗ g)(n). Using (18) and
(19), we observe that this operator is bounded from L1 to L1 by ‖g‖1 and from L∞ to L∞ by
‖g‖1. Thus, we can apply the Riez-Thorin theorem to this operator to get

‖f ∗ g‖p 6 ‖f‖p‖g‖1.

Then, for a function g ∈ Lq, we define another operator Tf by (Tfg)(n) = (f ∗ g)(n). With the
previous inequality and (20), we observe that this new operator is bounded from L1 to Lp by ‖f‖p
and from Lp

′
to L∞ by ‖f‖p, where 1

p + 1
p′ = 1. Again the Riez-Thorin theorem is applied and

leads to the desired result.
‖f ∗ g‖r 6 ‖f‖p‖g‖q,

where 1 + 1
r = 1

p + 1
q .

For the graph generalization we will try to follow the idea of Theorem 10. To do so, we need
to find the inequalities analogous to (18), (19), and (20).

5.3 Lieb inequality
The Lieb inequality provides a lower bound on the ambiguity function.

Theorem 11. Let p > 2 and assume that f ∈ La, g ∈ Lb with 1
a + 1

b = 1 and with p
p−1 6 a, b 6 p.

Then

‖Af,g‖pp =

∫
R

∫
R
|Af,g(τ, γ)|p dτ dγ 6 H(p, a, b)‖f‖pa‖g‖

p
b . (22)

Conversely, let 1 6 p < 2 and assume that f ∈ La, g ∈ Lb with 1
a + 1

b = 1 and with p 6 a, b 6
p
p−1 . Then

‖Af,g‖pp =

∫
R

∫
R
|Af,g(τ, γ)|p dτ dγ > K(p, a, b)‖f‖pa‖g‖

p
b . (23)

The demonstration can be found in [1]. This last theorem gives fundamental information about
the ambiguity function. For instance, if we take f = g a real window and a = b = 2, (23) and
(22) tell us that the L1-norm of the ambiguity function cannot be arbitrarily small and the and
the L∞-norm cannot be arbitrarily large. As a result, the spread in space and in frequency of a
window can not be arbitrarily small.

Inspired by Lieb [1], Feichtinger sketches a proof of a bound on the discrete ambiguity function
[10].
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Theorem 12. For two signals f, g ∈ RN , if 2 < p <∞, 1
a + 1

b = 1, p
p−1 6 a, b 6 p and 1

p + 1
p′ = 1

then

‖Agf‖pp =

N∑
u=1

N−1∑
k=0

|Agf(u, k)|p 6 N
p− p

p′ ‖f‖pa‖g‖
p
b .

Conversely, for two signals f, g ∈ RN , if 1 6 p 6 2, 1
a + 1

b = 1, p 6 a, b 6 p
p−1 and 1

p + 1
p′ = 1,

then

‖Agf‖pp =

N∑
u=1

N−1∑
k=0

|Agf(u, k)|p > N
p− p

p′ ‖f‖pa‖g‖
p
b .

Proof. Suppose p > 2, then p
q > 1 and we have

‖Agf‖pp =

N∑
u=1

N−1∑
k=0

|Agf(u, k)|p

=

N∑
u=1

N−1∑
k=0

∣∣∣∣∣
N∑
n=1

f [n]g[u− n]e−2πik n
N

∣∣∣∣∣
p

= N
p
2

N∑
u=1

N−1∑
k=0

|F{f [·]g[u− ·]}(k)|p

= N
p
2

N∑
u=1

‖F{f [·]g[u− ·]}‖pp

6 N
p
2

N∑
u=1

N
p
p′−

p
2 ‖f [·]g[u− ·]‖pp′ (24)

= N
p− p

p′

N∑
u=1

(
N∑
n=1

|f [n]g[u− n]|p
′

) p
p′

= N
p− p

p′

N∑
u=1

(
N∑
n=1

|fp
′
[n]||gp

′
[u− n]|

) p
p′

= N
p− p

p′

N∑
u=1

(
(|fp

′
| ∗ |gp

′
|)(u)

) p
p′

= N
p− p

p′
∥∥∥|fp′ | ∗ |gp′ |∥∥∥ p

p′

p
p′

6 N
p− p

p′ ‖fp
′
‖

p
p′
α ‖gp

′
‖

p
p′

β (25)

= N
p− p

p′ ‖f‖pa‖g‖
p
b ,

where (24) comes from the Hausdorff-Young inequality given in Theorem 7 and (25) results from
the Young inequality given in Theorem 10.

We use the L1-norm as an indicator for sparsity. The smaller it is, the more sparse is the
signal. Let’s compare two different normalized signals in RN : f1[n] = δ1[n] and f2[n] = 1√

N
,∀n ∈

{1, 2, ..., N}. These two signals have the same energy, but a very different L1-norm: ‖f1‖1 = 1 and
‖f2‖1 =

√
N . We observe that f1, which is a sparse signal, has a lower L1-norm than f2, which is

not sparse at all. In fact, this is the consequence of a more general concept. The lower the order
of a norm is, the more its minimization will increase the sparsity.

Let’s apply Theorem 12 with p = 1. We obtain:

‖Agf‖1 > N‖f‖2‖g‖2.

Moreover, it is trivial to get:

‖Agf‖∞ = max
u,k
|〈g,MkTuf〉| 6 ‖g‖2‖MkTuf‖2 = ‖f‖2‖g‖2.

Spring 2011 24/40



LTS2 - EPFL 6 GRAPH INEQUALITIES

We can express the ratio of the two last expression to get an uncertainty principle:

‖Agf‖1
‖Agf‖∞

> N. (26)

6 Graph Inequalities
Next to the classical study, in this section, we shall demonstrate analogous inequalities for

graphs. Those inequalities allow a better understanding of the Fourier transform. They also
permit us to bound some operators like the shift.

We first need to define some constants. We will use the mixed norm of a matrix, which is
defined as:

‖H‖p,q =

∑
i

∑
j

|hi,j |p
q/p


1/q

= max
f∈RN

‖Hf‖q
‖f‖p

The coherence between the Dirac and the Fourier bases is:

µ := ‖Φ‖∞∞ = max
`∈{0,1,...N−1},
n∈{1,2,...N}

|χ`(n)|.

We also define:
µk = max

n∈{1,2,...N}
|χ`(n)|

and
µ̃i = max

`∈{0,1,...N−1}
|χ`(n)|.

6.1 The Hausdorff-Young inequality

As signals on graphs are vectors, the definition of the p-norm of f is ‖f‖p = (
∑N
n=1 |f(n)|p)

1
p .

The following proof is an extension of the classical proof using the Riez-Thorin interpolation
theorem (p. 174 [9]).

Theorem 13. For f ∈ RN a graph signal, 1 6 p 6 2 and µ the coherence of the Fourier and the
Dirac bases, we have

‖f̂‖q 6 µ1− 2
q ‖f‖p,

for
1

p
+

1

q
= 1.

Proof. First, using the Parseval identity (true for signals on graphs [2]), we have

‖f‖22 = ‖f̂‖22.

which implies
‖f̂‖2 6 ‖f‖2. (27)

Secondly, as all eigenvectors are normalized, |χ`(n)| 6 µ for all n, ` and thus

‖f̂‖∞ = max
`
|f̂(`)| = max

`

∣∣∣∣∣
N∑
n=1

χ∗` (n)f(n)

∣∣∣∣∣ 6 µ

N∑
n=1

|f(n)| = µ‖f‖1 (28)

Thirdly, the graph Fourier transform f̂ = Φf , is a linear operator. Moreover, it is bounded from
L2 to L2 (27) and from L1 to L∞ (28). Applying the Riez-Thorin theorem with p1 = 2, p2 = 2,
q1 = 1, q2 =∞, Mp = 1, Mq = µ leads to the desired result:

‖f̂‖q 6 µ1− 2
q ‖f‖p,

for 1
p + 1

q = 1.
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Theorem 14. For f ∈ RN a graph signal, 2 6 p 6∞, we have

‖f̂‖q > µ
2
q−1‖f‖p,

for
1

p
+

1

q
= 1.

Proof. Firstly, using the Parseval identity (true for signals on graphs [2]), we have

‖f‖22 = ‖f̂‖22.

which implies
‖f̂‖2 > ‖f‖2. (29)

Secondly, as all eigenvectors are normalized, |χ`(n)| 6 µ for all n, ` and thus

1

µ
‖f‖∞ =

1

µ
max
n
|f(n)| = 1

µ
max
n

∣∣∣∣∣
N−1∑
`=0

χ`(n)f̂(`)

∣∣∣∣∣ 6
N−1∑
`=0

|f̂(`)| = ‖f̂‖1 (30)

Thirdly, the inverse graph Fourier transform f = Φtf̂ , is a linear operator. Moreover, it is bounded
from L2 to L2 (29) and from L1 to L∞ (30). Applying the Riez-Thorin theorem with p1 = 2, p2 = 2,
q1 = 1, q2 =∞, Mp = 1, Mq = µ leads to the desired result:

‖f̂‖q > µ
2
q−1‖f‖p,

for 1
p + 1

q = 1.

For the DFT, the coherence between the Dirac and Fourier bases is minimal and equal to 1√
N
.

Hence, the classical discrete Hausdorff-Young inequality given in Theorem 7 becomes a particular
case of Theorems 13 and 14.

6.2 Graph Fourier bound
As the Fourier transform of a signal is a projection, we are able to bound it. For p > 1, we

define the constant Cp as:
Cp := N |

1
2−

1
p |.

Remark: Cp ∈ [1,
√
N ], C1 = C∞ =

√
N and C2 = 1.

Lemma 2. For f ∈ RN and 2 6 p 6∞, we have

‖f‖2 6 Cp‖f‖p

Proof. The sup-norm satisfies ‖p‖∞ 6 N
1
2 ‖p‖2. We can apply the Riez-Thorin theorem to the

identity operator. It is bounded from L2 to L2 by 1 and from L2 to L∞ by N
1
2 . Doing so leads to

the desired result.

Lemma 3. Conversely, for f ∈ RN and 1 6 p 6 2, we have

‖f‖2 > Cp‖f‖p

Proof. The 1-norm satisfies ‖p‖1 > N
1
2 ‖p‖2. We can apply the Riez-Thorin theorem to the identity

operator. It is bounded from L2 to L2 by 1, and from L2 to L1 by N
1
2 . Doing so leads to the

desired result.
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Theorem 15. For f ∈ R, Cp = N |
1
2−

1
p | and p > 1,

‖f‖p 6 Cp‖f̂‖p

and conversely
‖f̂‖p 6 Cp‖f‖p.

Proof. Suppose p > 2, then

‖f‖p 6 ‖f‖2
= ‖f̂‖2 (31)

6 Cp‖f̂‖p, (32)

where (31) follows from the Parseval identity and (32) from Lemma 2. Similarly, for 1 6 p 6 2, we
have

‖f‖p 6 Cp‖f‖2
= Cp‖f̂‖2
6 Cp‖f̂‖p.

The converse follows from a similar proof.

Theorem 15 yields:
1

Cp
‖f‖p 6 ‖f̂‖p 6 Cp‖f‖p.

Remark: This theorem gives us a first loose bound on the 1-norm of the convolution product.

Corollary 2. For two signals f, g ∈ RN , we have:

‖f ∗ g‖1 6 C1CpCq‖f‖p‖g‖q

where 1
p + 1

q = 1.

Proof.

‖f ∗ g‖1 6 C1‖f̂ · ĝ‖1 (33)

6 C1‖f̂‖p‖ĝ‖q (34)
6 C1CpCq‖f‖p‖g‖q (35)

where 1
p + 1

q = 1. Equation (34) is obtained by applying Hölder’s inequality; (33) and (35) are the
results of Theorem 15.

Using the same proof with a generalized version of Holder’s Inequality, we obtain a loose bound
on the r-norm of the convolution product.

Corollary 3. For two signals f, g ∈ RN , we have:

‖f ∗ g‖r 6 CrCpCq‖f‖p‖g‖q

where 1
p + 1

q = 1
r .
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6.3 Young’s Fourier inequality
We already found a Young’s like inequality in the previous section. However, the bound seems

to be quite loose. In order to find a sharper inequality, we will now bound the convolution product
with the norm in the Fourier domain.

The structure is, once again, similar to the traditional Young inequality.

Lemma 4. The convolution product satisfies ‖f ∗ g‖1 6
√
N‖f̂‖p‖ĝ‖q where 1

p + 1
q = 1

Proof.

‖f ∗ g‖1 =

N∑
n=1

∣∣∣∣∣
N−1∑
`=0

f̂(`)ĝ(`)χ`(n)

∣∣∣∣∣
6

N−1∑
`=0

|f̂(`)ĝ(`)|
N∑
n=1

|χ`(n)|

6
√
N

N−1∑
`=0

|f̂(`)ĝ(`)|

6
√
N‖f̂‖p‖ĝ‖q (36)

Equation (36) follows from Hölder’s inequality.

Even if this inequality seems to be loose, it is not. Experimentally, we have checked that in a
particular case ‖f ∗ g‖1 grows in the same way as the bound (See Figure 12). This means, we will
not be able to do much better.

Figure 12: On the left the 1-norm of the convolution product ‖f ∗ g‖1 is shown with is computed
bound

√
N‖f̂‖1‖ĝ‖∞. The two signals f, g are discrete normalised Gaussians with σf = 5, σg =

3, µf = 4, µg = 10. The x-axis is composed of N linearly spaced values between −50 and 50. The
graph is a ring of N points. On the right, we observe the ratio between the convolution product
and the bound. It seems to be independent from N .

Remark: In particular, we have

‖f ∗ g‖1 6
√
N‖f̂‖∞‖ĝ‖1 6

√
N‖f̂‖1‖ĝ‖1. (37)

Lemma 5. The convolution product satisfies ‖f ∗ g‖∞ 6 µ‖f̂‖p‖ĝ‖q where 1
p + 1

q = 1.
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Proof.

‖f ∗ g‖∞ = max
n

∣∣∣∣∣
N−1∑
`=0

f̂(`)ĝ(`)χ`(n)

∣∣∣∣∣
6 µ

N−1∑
`=0

∣∣∣f̂(`)ĝ(`)
∣∣∣

6 µ‖f̂‖p‖ĝ‖q (38)

Equation (38) follows from Hölder’s inequality.

Remark: In particular, we have:

‖f ∗ g‖∞ 6 µ‖f̂‖∞‖ĝ‖1. (39)

Remark: If we choose p = q = 2, we get the following results:

‖f ∗ g‖∞ 6 µ‖f̂‖2‖ĝ‖2 = µ‖f‖2‖g‖2. (40)

Note that in the classical case, it is not possible to obtain such small bounds. The classical Young’s
inequality leads to:

‖f ∗ g‖∞ 6 ‖f‖2‖g‖2. (41)

For special graphs, µ is proportional to 1√
N
. For instance, ring graphs have a coherence of

√
1
N

(DFT) or
√

2
N (RDFT) depending the choice of the eigenvectors. This means that the convolution

on graphs can act quite differently than traditional convolution. Moreover, for the ring configura-
tion, where the eigenvectors are discrete cosines [5] and which seems to be the closer to the classical
case, the convolution acts differently for the graphs than for the classical case. An illustration is
given in Figure 13. In fact, this due to the definition of the convolution. To be consistent with the
definition of the discrete circular convolution, we need to multiply the graph convolution product
by
√
N .

Figure 13: This figure shows the sup-norm of the convolution product (traditional on the left and
graph(RDFT) on the right) of two discrete normalized Gaussians (σf = 5, σg = 3, µf = 4, µg = 10).
The x-axis is composed of N linearly spaced values between −50 and 50 included. The graph is a
ring of N points. The ploted bounds are given in equation (40) and (41).
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Theorem 16. For f, g ∈ RN two graph signals and p, q, r ∈ R such that 1 + 1
r = 1

p + 1
q , we have

‖f ∗ g‖r 6 N
1
2r µp−

1
r ‖f̂‖p‖ĝ‖q. (42)

Proof. For a graph signal f ∈ RN , we define an operator Tg : RN → RN by (Tg f̂)(n) = (f ∗ g)(n).
Using Lemma 37 and (39), we observe that this operator is bounded from L1 to L1 by ‖ĝ‖1

√
N

and from L∞ to L∞ by ‖ĝ‖1µ. Thus, we can apply the Riez-Thorin theorem to this operator and
we get:

‖f ∗ g‖p 6 µ
1
p′N

1
2p ‖f̂‖p‖ĝ‖1.

Then, for a graph signal g ∈ RN , we define another operator Tf : RN → RN by (Tf ĝ)(n) =
(f ∗ g)(n). With the previous inequality and Lemma 5, we observe that this new operator is
bounded from L1 to Lp by µ

1
p′N

1
2p ‖f̂‖p and from Lp

′
to L∞ by µ‖f̂‖p, where 1

p + 1
p′ = 1. Again

the Riez-Thorin theorem leads to the desired result.

‖f ∗ g‖r 6 N
1
2r µp−

1
r ‖f̂‖p‖ĝ‖q,

where 1 + 1
r = 1

p + 1
q .

This previous theorem yields an inequality similar to Young’s; however, we can obtain a sharper
inequality using Lemma 4 instead of (37).

Theorem 17. For f, g ∈ RN two graph signals and p, q, r, r′ ∈ R such that 1 = 1
p + 1

q and
1 = 1

r + 1
r′ , we have

‖f ∗ g‖r 6 N
1
2r µ

1
r′ ‖f̂‖p‖ĝ‖q. (43)

Proof. The inequality follows directly from the application of the Riez-Thorin theorem to Lemmas
4 and 5.

6.4 The new inequality
The previous Young inequality was in the Fourier domain. In order to get a bound in the vertex

domain, we will use the Parseval equality.
Using Lemma 4, we find:

‖f ∗ g‖1 6
√
N‖f̂‖2‖ĝ‖2 =

√
N‖f‖2‖g‖2. (44)

Using Lemma 5, we have:

‖f ∗ g‖∞ 6 µ‖f̂‖2‖ĝ‖2 = µ‖f‖2‖g‖2 (45)

Lemma 6. The convolution product satisfies ‖f ∗ g‖2 6 ‖f‖2‖g‖2.

Proof.

‖f ∗ g‖2 = ‖f̂ ∗ g‖2
= ‖f̂ · ĝ‖2
6 ‖f̂‖2‖ĝ‖2 (46)
= ‖f‖2‖g‖2,

where (46) follows from the Cauchy-Schwartz inequality.

Lemma 7. The convolution product satisfies ‖f ∗ g‖2 6 µ‖f‖2‖g‖1.

Proof.

‖f ∗ g‖2 = ‖f̂ ∗ g‖2
= ‖f̂ · ĝ‖2
6 ‖f̂‖2‖ĝ‖∞
6 µ‖f‖2‖g‖1, (47)

where (47) follows from Theorem 13 (Hausdorff-Young).
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Theorem 18. For f, g ∈ RN two graph signals and r ∈ R, we have

‖f ∗ g‖r 6 N
1
r−

1
2 ‖f‖2‖g‖2 (48)

for r ∈ [1, 2], and

‖f ∗ g‖r 6 µ1− 2
r ‖f‖2‖g‖2 (49)

for r ∈ [2,∞].

Proof. For a graph signal f ∈ RN , we define an operator Tg : RN → RN by (Tgf)(n) = (f ∗ g)(n).
Using (44) and Lemma 6, we observe that this operator is bounded from L2 to L1 by ‖g‖2

√
N and

from L2 to L2 by ‖g‖2. Thus, we can apply the Riez-Thorin theorem to this operator and we get
(48).

Then, for a graph signal g ∈ RN , we define another operator Tf : RN → RN by (Tfg)(n) =
(f ∗ g)(n). With Lemma 6 and (45), we observe that this new operator is bounded from L2 to L2

by ‖g‖2 and from L2 to L∞ by µ‖f‖2. Again the Riez-Thorin theorem leads to the desired result
(49).

Remark: If µ < N−
1
4 (ring graph for instance), the following inequality is sharper than Theorem

18.
‖f ∗ g‖r 6 N

1
2r µ

1
r′ ‖f‖2‖g‖2.

It is the result of the application of the Parseval equality to Theorem 17. In order to get a bound
on the p-norm, we can apply the following Lemma. Using Lemma 2 and Theorem 18, we have the
following results:

1 6 p 6 2 p > 2

1 6 r 6 2 ‖f ∗ g‖r 6 N
1
r−

1
2 ‖f‖p‖g‖2 ‖f ∗ g‖r 6 N

1
r−

1
p ‖f‖p‖g‖2

r > 2 ‖f ∗ g‖r 6 µ1− 2
r ‖f‖p‖g‖2 ‖f ∗ g‖r 6 N

1
2−

1
pµ1− 2

r ‖f‖p‖g‖2

6.5 Consequences of the inequalities
Those inequalities can be used to bound the translation operator for instance. Applying Lemma

7 leads to:

‖Ti‖2 = sup
g∈RN

‖Tig‖2
‖g‖2

= sup
g∈RN

√
N‖g ∗ δi‖2
‖g‖2

6
√
Nµ

Furthermore translating the neutral element g0(n) =
∑N−1
`=0 χ`(n) gives a lower bound:

‖Ti‖2 = sup
g∈RN

‖Tig‖2
‖g‖2

= sup
g∈RN

√
N‖g ∗ δi‖2
‖g‖2

>

√
N‖g0 ∗ δi‖2
‖g0‖2

=

√
N‖δi‖2√
N

= 1.

Thus we have:
1 6 ‖Ti‖2 6

√
Nµ (50)

Similarly, for the modulation, we have:

‖Mk‖2 = sup
g∈RN

‖Mkg‖2
‖g‖2

= sup
g∈RN

√
N‖g · χk‖2
‖g‖2

6
√
Nµ.

For a special gs(n) = 1, the bound becomes

‖Mk‖2 = sup
g∈RN

‖Mkg‖2
‖g‖2

= sup
g∈RN

√
N‖g · χk‖2
‖g‖2

>

√
N‖gs · χk‖2
‖gs‖2

=

√
N‖χk‖2√
N

= 1

and
1 6 ‖Mk‖2 6

√
Nµ. (51)

We observe that (50) and (51) become tight, when µ = 1√
N

which is the case of the DFT.
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6.6 Summary Tables
6.6.1 Inequalities

Name Classical Graph

Parseval equality 〈f, g〉 = 〈f̂ , ĝ〉 〈f, g〉 = 〈f̂ , ĝ〉
Hausdorff-Young inequality ‖f̂‖p′ 6 Dp‖f‖p, 1 6 p 6 2 ‖f̂‖p′ 6 µ

1− 2
p′ ‖f‖p, 1 6 p 6 2

Hausdorff-Young discrete ‖f̂‖p′ 6 N
1
p′−

1
2 ‖f‖p, 1 6 p 6 2

Hausdorff-Young converse ‖f̂‖p′ > Dp‖f‖p, p > 2 ‖f̂‖q > µ
2
p′−1‖f‖p, p > 2

Hausdorff-Young discrete 2 ‖f̂‖p′ > N
1
2−

1
p′ ‖f‖p, p > 2

Young’s inequality ‖f ∗ g‖r 6 (DpDqDr′)‖f‖p‖g‖q ‖f ∗ g‖r 6 µN‖f‖p‖g‖q
‖f ∗ g‖r 6 N

1
2r µp−

1
r ‖f̂‖p‖ĝ‖q

Fourier bound ‖f̂‖p 6 Cp‖f‖p
Lemma 4 ‖f ∗ g‖1 6 ‖f‖1‖g‖1 ‖f ∗ g‖1 6

√
N‖f̂‖p‖ĝ‖p′

Lemma 5 ‖f ∗ g‖∞ 6 ‖f‖p‖g‖p′ ‖f ∗ g‖∞ 6 µ‖f̂‖p‖ĝ‖p′

In the table, p, p′, q, r > 0 satisfy 1
p + 1

p′ = 1 and 1 + 1
r = 1

p + 1
q . All of the classical inequalities

are sharp.

Constant name Value Range

Dp

(
p

1
p

p′
1
p′

) 1
2

[0, 1]

H(p, a, b)2 abp−2|p− 2|2−p|p− a|−1+ p
a |p− b|−1+ p

b [0, 1]

K(p, a, b)2 p−222−pa
p
a b

p
b [0, 1]

µ maxn,`{|χ`(n)|} [ 1√
N
, 1]

Cp N |
1
2−

1
p | [1,

√
N ]

Here are some graph inequalities without classical analogy:

Inequality Remark

‖f‖p 6 Cp‖f̂‖p p > 1

‖f̂‖p 6 Cp‖f‖p p > 1
‖f ∗ g‖r 6 CrCpCq‖f‖p‖g‖q 1

p + 1
q = 1

r

‖f ∗ g‖2 6 ‖f‖2‖g‖2
‖f ∗ g‖1 6

√
N‖f‖2‖g‖2

‖f ∗ g‖∞ 6 µ‖f‖2‖g‖2
‖f ∗ g‖r 6 N

1
2r µ

1
r′ ‖f‖2‖g‖2 1

r + 1
r′ = 1

1 6 p 6 2 p > 2

1 6 r 6 2 ‖f ∗ g‖r 6 N
1
r−

1
2 ‖f‖2‖g‖2 ‖f ∗ g‖r 6 N

1
r−

1
2 ‖f‖p‖g‖2 ‖f ∗ g‖r 6 N

1
r−

1
p ‖f‖p‖g‖2

r > 2 ‖f ∗ g‖r 6 µ1− 2
r ‖f‖2‖g‖2 ‖f ∗ g‖r 6 µ1− 2

r ‖f‖p‖g‖2 ‖f ∗ g‖r 6 N
1
2−

1
pµ1− 2

r ‖f‖p‖g‖2

And bound on operators:
1 6 ‖Ti‖2 6

√
Nµ

1 6 ‖Mk‖2 6
√
Nµ

6.6.2 Uncertainty principles
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Name Classical Graph

Lieb theorem 1 6 p 6 2 ‖Agf‖p > H(p, a, a′)
1
p ‖g‖a‖f‖a′ ‖Agf‖p > Nµ1− 2

q (mins ‖Tsg‖q)‖f‖q
Lieb discrete 1 6 p 6 2 ‖Agf‖p > N

1− 1
p′ ‖f‖a‖g‖a′

Lieb theorem p > 2 ‖Agf‖p > K(p, a, a′)
1
p ‖g‖a‖f‖a′

Lieb discrete p > 2 ‖Agf‖p 6 N
1− 1

p′ ‖f‖a‖g‖a′
One norm bound ‖Agf‖1 > N‖f‖2|‖g‖2 ‖Agf‖1 > N |ĝ(0)|‖f̂‖1
Sup-norm bound ‖Agf‖∞ 6 ‖f‖2|‖g‖2 ‖Agf‖∞ 6 µ2N‖f‖2|‖g‖2
Uncetainty principle ‖Agf‖1

‖Agf‖∞ > N
‖Agf‖1
‖Agf‖∞ > 1

µ2 , for decreasing kernel.

A decreasing kernel satisfies |ĝ(0)| > |ĝ(l)| > 0 for l = 1, 2, ...N − 1.
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7 Conclusion
This work first focused on a generalized convolution product for graphs. After a general ex-

ploration of its principal properties, we demonstrated some Young-like theorems. A Hausdorff-
Young’s like inequality was also demonstrated. We then defined a modulation (multiplication with
an eigenvector) and a translation (convolution with a Dirac) operator. With these, we were able
to construct a windowed graph Fourier transform (WGFT) which allows simultaneous analysis of
a signal on graphs in the vertex and spectral domains. This construction was already made [3],
but we suggested normalizing the atoms in order to obtain energy consistency in the transform.
This led to the normalized windowed graph Fourier transform (NWGFT). Afterwards, to better
understand the WGFT and the NWGFT, we defined several ambiguity functions. Of these we
observed that the way in which they spread in the spectral/vertex domains was correlated with
the localization of the window in those same domains. Finally, we demonstrated some inequalities
on the ambiguity function leading to an uncertainty principle useful for the WGFT:

‖Ag‖1
‖Ag‖∞

>
1

µ2
.

Unfortunately, even if this seems true for all kernels, it has only been demonstrated for those
satisfying some conditions. However, the heat kernel, one natural choice for the window, satisfies
these conditions. The most important consideration is that the smaller the coherence, the bigger
the uncertainty. This is the logical consequence of the bases being closer if the coherence is bigger.
In this case, we can be precise in both domains at the same time.

Much more work needs to be done on this topic. Theoretically, the uncertainty principle is true
only for specific kernels (including the heat kernel). We observed that the 1-norm of the ambiguity
function was always greater than N , but were able to demonstrate this only when the Fourier
transform of the kernel was decreasing. Furthermore, the bound of the ambiguity function sup-
norm becomes loose when the coherence increases. This phenomenon was observed but is still not
well understood. Studying it could lead to a sharper bound and thus a better uncertainty principle.
Finally, the work has been carried out only for the non-normalized definitions. Doing the same
for the normalized ambiguity function would give an uncertainty principle for the NWGFT. This
research should be undertaken carefully since the NWGFT requires a hypothesis on eigenvectors
to exist. On the practical side, finding kernels with suitable properties linked to the translation
and modulation is still an open question. The heat kernel behaves well with translation as it is
located after the application of the operator. Questions remain as to the existence of other windows
with the same properties and kernels with similar behavior for the modulation. Fast algorithms
that do not require an explicit calculation of the eigenvalues and of the eigenvectors exist for the
translation operator [2]. Finding a similar technique for the modulation could lead to an efficient
implementation of the WGFT.

The uncertainty principle obtained leads to a new question which is: How can we find the
Fourier basis with the minimum coherence?
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9 Appendix

9.1 The heat kernel
The shifted heat kernel is well localized in the vertex domain. Moreover, the unshifted kernel

is well localized in the spectral domain. As a consequence, it seems to be a good kernel for the
WGFT or the NWFT. We will demonstrate here some of its properties.

The heat kernel is defined in the vertex domain by:

ĝ(`) = Ce−λ`τ

where C is a normalization constant. In vertex domain, it is not necessary localized (when not
shifted). We will first prove that the shifted kernel is always positive in the vertex domain.

Theorem 19. For a window ĝ(`) = Ce−λ`τ with τ > 0 and C > 0,

(Tig)(n) > 0,∀n ∈ {1, 2, ..., N}, i ∈ {1, 2, ..., N}

Proof. First, we notice that:

(Tig) =

N−1∑
`=0

e−λ`τx∗` (i)χ`

=

N−1∑
`=0

∞∑
k=0

(−λ`τ)k

k!
x∗` (i)χ`

=

∞∑
k=0

N−1∑
`=0

(−λ`τ)k

k!
x∗` (i)χ`

=

∞∑
k=0

(−Lτ)k

k!
δi (52)

= e−Lτδi,

where (52) follows from (6). Yet as L = D −W and DW = WD, we have

e−Lτ = e−(D−W )τ = e−DτeWτ

All elements in e−Dτ are positive because −Dτ is a diagonal matrix. All element in eWτ are
positive because Wτ has only positive or null entry. As a consequence e−Lτ has only positive
element and (Tig)(n) > 0.

9.2 A bound for the p-norm of the ambiguity function
Theorem 20. For g, f ∈ RN and 1 6 p 6 2 we have

‖Agf‖p =

N∑
i=1

(
N−1∑
k=0

|Ag(i, k)|p
) 1

p

>
√
Nµ

2
q−1(min

s
‖Tsg‖q)‖f‖q,

where 1
p + 1

q = 1.
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Proof.

‖Agf‖pp =

N∑
i=1

N−1∑
k=0

|Ag(i, k)|p

=

N∑
i=1

N−1∑
k=0

|〈f,MkTig〉|p

=
√
Np

N∑
i=1

N−1∑
k=0

|F(f · T ∗i g)(k)|p

=
√
Np

N∑
i=1

‖F(f · T ∗i g)‖pp

>
√
Npµ

2p
q −p

N∑
i=1

‖f · T ∗i g‖pq (53)

=
√
Npµ

2p
q −p

N∑
i=1

(
N∑
n=1

|f(n)T ∗i g(n)|q
) p

q

>
√
Npµ

2p
q −p

(
N∑
i=1

N∑
n=1

|f(n)T ∗i g(n)|q
) p

q

(54)

=
√
Npµ

2p
q −p

(
N∑
i=1

N∑
n=1

|f(n)|q |T ∗ng(i)|q
) p

q

=
√
Npµ

2p
q −p

(
N∑
n=1

|f(n)|q ‖Tng‖qq

) p
q

>
√
Npµ

2p
q −p

(
min
s
‖Tsg‖qq

) p
q

(
N∑
n=1

|f(n)|q
) p

q

=
√
Npµ

2p
q −p(min

s
‖Tsg‖q)p‖f‖pq . (55)

Equation (54) follows from p
q 6 1, and (53) is the application of the converse of the Hausdorff-Young

Inequality given by Corollary 14. Taking the p-root of (55) leads to the desired result.

This last theorem suggests an uncertainty principle. Indeed, if the q-norm of f is fixed, the
p-norm of the ambiguity function Agf cannot be arbitrarily small. However, to be sure of that,
we have to show that (mins ‖Tsg‖p) is always above zero.

Theorem 21. For g ∈ RN , such that ∃ ` | ĝ(`)χ`(s) 6= 0 and 0 < p <∞, we have ‖Tsg‖p > 0 .

Proof. As the Fourier transform is an orthonormal projection, ‖g‖p > 0 implies ‖ĝ‖p > 0.
Let’s suppose that ‖Tsg‖p = 0. We then have

‖Tsg‖pp =
√
N

N∑
n=1

∣∣∣∣∣
N−1∑
`=0

ĝ(`)χ∗` (s)χ`(n)

∣∣∣∣∣
p

=
√
N

N∑
n=1

∣∣∣〈ĝ(·)χ∗(·)(s), χ
∗
(·)(n)〉

∣∣∣p = 0.

This implies that n = 1, 2, ..., N , ĝ(·)χ∗(·)(s) ⊥ χ∗(·)(n). As χ∗(·)(n) forms a complete orthonor-
mal basis, this is true only if ĝ(·)χ∗(·)(s) = 0 which is in contradiction with the hypothesis
∃ ` | ĝ(`)χ`(s) 6= 0.
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This last theorem gives us a condition on the window g in order to have a lower bound greater
than zero on the ambiguity function. To satisfy this condition we can choose a window where
ĝ(0) 6= 0.

9.3 Estimate of |ĝ(0)|
Let’s suppose that we use a special kernel k̂(λl) (defined in the graph Fourier domain) for the

ambiguity function. The window is defined as ĝ(λl) = Ck̂(λl) with C ∈ RN such that ‖ĝ‖2 = 1.
Knowing the eigenvalues of the graph, ĝ(0) becomes computable with:

ĝ(λ0) = Ck̂(λ0) =
k̂(λ0)

‖k̂‖2
=

k̂(λ0)(∑N−1
`=0 |k(λ`)|2

) 1
2

.

For instance, the heat-kernel (k̂(λ`) = e−λ`τ ) produces a ĝ(0) ∈ [ 1√
(N)

, 1] depending on the

graph eigenvalues and on τ .
Unfortunately, the computation cost of the eigenvalue is large for large graphs. For special

types of graphs, we know the probability density function of the non-zero eigenvalues: p(λl). In
that case, we can compute an estimation of ĝ(0) without needing all of the eigenvalues.

To make writing easier, we will note Λ = [λ0, λ1, λ2, ..., λN−1]. As the graph is connected, the
vector Λ has N − 1 degrees of freedom (λ0 = 0). The expected norm of a kernel is defined as:

E‖k‖2 =

∫
Λ∈RN

p(Λ)‖k(Λ)‖2dΛ = C−1 (56)

Example: Suppose we are working on a random d-regular graph (d=degree). McKay [11] has
proved that the spectral distribution of the adjacency matrix converges when N → ∞ (In our
example, we assume that this hypothesis is satisfied if N >> d) to:

fd(x) =

{
d
√

4(d−1)−x2

2π(d2−x2) if− 2
√
d− 1 6 x 6 2

√
(d− 1),

0 otherwise.

An illustration of this distribution is given in Figure 14.
As the graph is regular, the Laplacian and the weight matrix have the same eigenvectors.

λiχi = Lχi
= (D −W )χi

= Dχi −Wχi

= dχi −Wχi

⇔
(d− λi)χi = Wχi

If all weights are the same and equal to one, then the adjacency matrix is the same as the weight
matrix. In that case, we know the probability density function of the Laplacian eigenvalues. We
are able to evaluate (56) numerically. The distribution does not include the 0 eigenvalue. This is
to be taken into account in the numerical calculation. The results are summarized in Table 3.

d\N 10 100 1000
3 0.8994 0.8007 0.3552 0.3465 0.1169 0.1161
5 0.9966 0.9694 0.8002 0.7712 0.3601 0.3566
9 1 0.9998 0.9990 0.9984 0.9849 0.9840

Table 3: Value of ĝ(0) for the heat kernel with τ = 1. The value in italic is the estimation. We
observe that the estimation is always lower than real value.
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Figure 14: Left: McKay spectral distribution of the adjacency matrix for a 10-regular random
graph. Right: spectral distribution of the Laplacian matrix. The experimental result is the
histogram of the normalized eigenvalues in 100 bins for a graph with 1000 vertices.

9.4 Young’s inequality
In order to prove Young’s inequality for signals on graphs, we first need some lemmas.

Lemma 8. The magnitude of the convolution product of two diracs is bounded by µ.

|(δm ∗ δu)(n)| =

∣∣∣∣∣
N−1∑
`=0

χ∗l (m)χ∗l (u)χl(n)

∣∣∣∣∣ 6 µn 6 µ

for m,n, u ∈ [1, ..., N ].

Proof.

|(δm ∗ δu)(n)| =

∣∣∣∣∣
N−1∑
`=0

χ∗l (m)χ∗l (u)χl(n)

∣∣∣∣∣
6

N−1∑
`=0

|χ∗l (m)χ∗l (u)| |χl(n)|

6 µn

N−1∑
`=0

|χ∗l (m)χ∗l (u)|

6 µn‖χ∗l ‖2‖χ∗l ‖2 (57)
6 µn

6 µ

where (57) follows from Hölder inequality.

Corollary 4. Similarly, we obtain:∣∣∣∣∣
N∑
m

χl(m)χ`′(m)χ∗`′′(m)

∣∣∣∣∣ 6 µ̃`′′ 6 µ

for l, l′, l′′ ∈ [0, ..., N − 1].

Lemma 9. For f, g ∈ RN two signals on graphs, the

‖f ∗ g‖1 6 Nµ‖f‖1‖g‖1
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Proof.

‖f ∗ g‖1 =

N∑
n=1

∣∣∣∣∣
N−1∑
`=0

f̂(`)ĝ(`)χ`(n)

∣∣∣∣∣
=

N∑
n=1

∣∣∣∣∣
N−1∑
`=0

N∑
n′=1

N∑
n′′=1

f(n′)g(n′′)χ∗` (n
′)χ∗` (n

′′)χ`(n)

∣∣∣∣∣
6

N∑
n=1

N∑
n′=1

|f(n′)|
N∑

n′′=1

|g(n′′)|

∣∣∣∣∣
N−1∑
`=0

χ∗` (n
′)||χ∗` (n′′)||χ`(n)

∣∣∣∣∣
6 Nµ‖f‖1‖g‖1 (58)

(59)

Lemma 10. For f, g ∈ RN two signals on graphs, the convolution product satisfies

‖f ∗ g‖∞ 6 µCpCq‖f‖p‖g‖q,

where 1
p + 1

q = 1.

Proof.

‖f ∗ g‖∞ = max
n

∣∣∣∣∣
N−1∑
`=0

f̂(`)ĝ(`)χ`(n)

∣∣∣∣∣
6 µ

N−1∑
`=0

∣∣∣f̂(`)ĝ(`)
∣∣∣

6 µ‖f̂‖p‖ĝ‖q (60)
6 µCpCq‖f‖p‖g‖q (61)

Equation (61) follows from theorem 15 and (60) from Hölder’s inequality.

Remark: In particular, we have

‖f ∗ g‖∞ 6 µN‖f‖∞‖g‖1. (62)

Theorem 22. For f, g ∈ RN two graph signals and p, q, r ∈ R such that 1 + 1
r = 1

p + 1
q , we have

‖f ∗ g‖r 6 Nµ‖f‖p‖g‖q. (63)

Proof. For a graph signal f ∈ RN , we define an operator Tg : RN → RN by (Tgf)(n) = (f ∗ g)(n).
Using Lemma 9 and (62), we observe that this operator is bounded from L1 to L1 by Nµ‖g‖1 and
from L∞ to L∞ by Nµ‖g‖1. Thus, we can apply the Riez-Thorin theorem to this operator and we
get

‖f ∗ g‖p 6 Nµ‖f‖p‖g‖1.

Then, for a graph signal g ∈ RN , we define another operator operator Tf : RN → RN by (Tfg)(n) =
(f ∗ g)(n). With the previous inequality and Lemma 10, we observe that this new operator is
bounded from L1 to Lp by Nµ‖f‖p and from Lp

′
to L∞ by Nµ‖f‖p, where 1

p + 1
p′ = 1. Again the

Riez-Thorin Theorem leads to the desired result:

‖f ∗ g‖r 6 Nµ‖f‖p‖g‖q,

where 1 + 1
r = 1

p + 1
q .
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