MEASUREMENT OF GLUTAMINE SYNTHESIS RATE IN THE HYPERAMMONAEMIC RAT BRAIN USING IN VIVO ¹H AND ¹⁵N MRS

C Cudalbu, B Lanz, F Morgenthaler, V Mlynárik and R Gruetter

Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Objectives:

Glutamine synthetase is a critical step in the glutamate-glutamine cycle, the major mechanism of glutamate neurotransmission and is implicated in the mechanism of ammonia toxicity. ¹⁵N MRS is an alternative approach to ¹³C MRS in studying glutamate-glutamine metabolism. Moreover, the incorporation of ¹⁵N into [5-15N]Gln allows to measure glutamine synthetase activity (Vsyn) directly and can provide a more straightforward interpretation than ¹³C studies. Vsyn reflects a combination of the glutamate-glutamine cycle activity (Vnt) and net glutamine accumulation (Vsyn-Vnt). The net glutamine synthesis can be directly measured from ¹H NMR. The aim of this study was to perform in vivo localized ¹H MRS interleaved with ¹⁵N MRS to directly measure the net glutamine synthesis rate and the apparent glutamine synthesis rate under ¹⁵N labeled ammonia infusion in the rat brain, respectively.

Methods:

¹H and ¹⁵N MRS data were acquired interleaved on a 9.4T system (Varian/Magnex Scientific) using 8 rats. ¹⁵NH₄Cl solution was infused continuously into the femoral vein for up to 10h (4.5mmol/h/kg) (1). ¹H spectra were acquired and quantified as described previously (2). ¹⁵N unlocalized and localized spectra were acquired using the SIRENE sequence (3); and quantified using AMARES and an external reference method (4).

Results and Discussion:

Glutamine concentration increased from 2.5 ± 0.3 mmol/kg to 15 ± 3.3 mmol/kg (Fig. 1). The linear fit of the time-evolution of the total Gln from the ¹H spectra gave the net synthesis Vsyn-Vnt=0.023±0.006µmol/min/g (Fig. 2). The 5-¹⁵N Gln peak (-271ppm) was visible in the first and all subsequent scans, whereas the 2-¹⁵N Gln/Glu peak (-342ppm) appeared after ~1.5h (Fig. 3). From the in vivo 5-¹⁵N Gln time course, Vsyn=0.26±0.02µmol/min/g and a plasma NH₃ fractional enrichment of 71±6% were calculated. Vnt was 0.24±0.05µmol/min/g, obtained assuming a negligible Gln efflux (5). While Vsyn and Vnt were higher that previous unlocalized ¹⁵N NMR studies, they are within the range of ¹³C NMR measurements (6). The combination of 1H and 15N NMR allowed for the first time a direct and localized measurement of Vnt, net glutamine accumulation and apparent glutamine synthesis rate.

References:

[1] KanamoriK et al., NMRBiomed 1993;6:21. [2] MlynarikV et al., JMagnReson 2008;194:163. [3] ChoiIY et al., MagnResonMed 2000;44:387 [4] GruetterR, et al., MagnResonMed 1991;20:327 [5] KanamoriK et al., BiochemJ 1993;293:461. [6] SibsonNR et al., J Neurochem 2001; 76:975 This study was supported by Centre d'Imagerie BioMédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL and the Leenaards and Jeantet Foundations and EU Grant No. MRTN-CT-2006-035801