IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS (JETCAS), VOL. 1, ISSUE 2, JUNE 2011 1

Benchmarking of Standard-Cell Based Memories 1n
the Sub-Vr Domain in 65-nm CMOS Technology

Pascal Meinerzhagen, Student Member, IEEE, S.M. Yasser Sherazi, Student Member, IEEE,
Andreas Burg, Member, IEEE, and Joachim Neves Rodrigues, Senior Member, IEEE

Abstract—In this paper, standard-cell based memories (SCMs)
are proposed as an alternative to full-custom sub-V;r SRAM
macros for ultra-low-power systems requiring small memory
blocks. The energy per memory access as well as the maximum
achievable throughput in the sub-V; domain of various SCM
architectures are evaluated by means of a gate-level sub-V char-
acterization model, building on data extracted from fully placed,
routed, and back-annotated netlists. The reliable operation at
the energy-minimum voltage of the various SCM architectures
in a 65-nm CMOS technology considering within-die process
parameter variations is demonstrated by means of Monte Carlo
circuit simulation. Finally, the energy per memory access, the
achievable throughput, and the area of the best SCM architecture
are compared to recent sub-Vr SRAM designs.

Index Terms—Embedded memory, flip-flop array, latch array,
low-power, sub-VT operation, reliability, process parameter vari-
ations.

I. INTRODUCTION

EVICES such as hearing aids, medical implants [1],

and remote sensors impose severe constraints on size
and energy dissipation. Supply voltage scaling reduces both
active energy dissipation and leakage power. When applied
aggressively, voltage scaling leads to sub-threshold (sub-V7)
operation [2]. In this regime, severely degraded on/off current
ratios Ion/loff and increased sensitivity to process variations
are the main challenges for sub-Vr circuit design [3] in 65-nm
technologies and below.

As an alternative to variation-tolerant full-custom circuit
design, [4]-[6] promote the design of sub-Vr circuits based
on conventional standard-cell libraries. In such conventional
standard-cell based designs, embedded memory macros may
limit the scalability of the supply voltage, and thus the min-
imum achievable energy per operation, as the noise margins
gradually decrease with the supply voltage, which leads to
write and read failures in the sub-Vt regime [7].
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The main options for embedded memories which may
be operated reliably in the sub-Vt domain are: 1) specially
designed SRAM macros, and 2) storage arrays built from flip-
flops or latches. Standard SRAM designs require non-trivial
modifications to function reliably in the sub-Vr regime [3],
[8]-[13]. However, flip-flop and latch arrays, commonly re-
ferred to as standard-cell based memories (SCMs), originally
intended for super-Vr operation [14], and easily synthesized
with standard digital design tools may directly be adopted in
the sub-Vr domain, where they are still fully functional.

Beside being immediately compatible with voltage scaling
until deep into the sub-V1 domain, SCMs bring other ad-
vantages over SRAM macros. The use of SCMs described
in a hardware description language eases the portability of a
design to other technologies and modifications in the memory
configuration at design time. Furthermore, designs comprising
SCMs can be placed automatically using the standard place-
and-route tools. Consequently, SCMs may be merged with
logic blocks, which may improve data locality [15] and reduce
routing. Also, for reconfigurable designs targeting low power
consumption, memories are preferably organized in many
small blocks which can be turned on and off separately. In
the context of such fine-granular memory organizations, SCMs
provide more flexibility, which may result in smaller overall
area, and are more adequate to reduce the overall power
consumption.

Contribution: In this paper, the SCM architectures reported
in [14] are reconsidered in the sub-Vr regime. The analysis
is extended to account for the energy per memory access
and the maximum achievable frequency with sub-Vt voltage
scaling. By means of Monte Carlo circuit simulation, it is
shown that SCM architectures operate reliably in the sub-Vr
domain even in the presence of within-die process parameter
variations. Finally, the best SCM architecture is compared to
full-custom sub-Vt SRAM designs regarding the energy per
memory access, the maximum achievable throughput, and the
silicon area.

Outline: Sections II and III introduce the investigated SCM
architectures and explain the sub-Vr characterization model,
respectively, before the different architectures are character-
ized and compared by means of this model in Section IV.
Section V verifies the reliability of SCMs in the sub-Vr
domain, while Section VI compares SCMs to full-custom
SRAM macros. Section VII concludes the paper.
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Building blocks of a generic standard-cell based memory architecture (a). Write logic relying on enable flip-flops (b) and basic flip-flops in conjunction

with clock-gates (c). Achieving typical one-cycle read latency (d). Read logic relying on tri-state buffers (e) and multiplexers (f).

II. STANDARD-CELL BASED MEMORY ARCHITECTURES

The remainder of this paper assumes SCMs with a separate
read and write port, a word access scheme, and a read and
write latency of one cycle, which are typical requirements for
memories distributed within dedicated datapaths. As shown in
Fig. 1(a), any such SCM accomodates the following building
blocks: 1) a write logic, 2) a read logic, and 3) an array of
storage cells. Different ways to implement the write and read
logic are presented in Sections II-A and II-B, respectively,
assuming flip-flops as storage cells. The use of latches instead
of flip-flops as storage cells is discussed in Section II-C.

A. Write Logic

Consider an array of R x C flip-flops, where R and C denote
the number of rows (words) and the number of columns (bits
per word), respectively. Assuming a word-access scheme and
a write latency of one cycle, the write logic needs to select
one out of R words, according to the given write address,
and update the content of the corresponding flip-flops on the
next active clock edge. Accordingly, the write address decoder
(WAD) produces one-hot encoded row select signals, which
select one row of the flip-flop array. Next, the flip-flops in
the selected row need to update their state according to the
data to be written. One option is to use flip-flops with enable
feature or with a corresponding logic, as shown in Fig. 1(b).
A second option is to use basic flip-flops in conjunction with
clock-gates, as shown in Fig. 1(c), which generate a separate
clock signal for each row so that only the currently selected
row receives a clock pulse to sample the provided data, while
all other rows receive a silenced clock, thereby keeping their
current state.

B. Read Logic

As shown in Fig. 1(d), the read logic may be purely
combinational or contain sequential elements, which leads to
a read latency. Assuming a word access scheme, one out of
R words needs to be routed to the data output, according to
the read address. The typical one-cycle latency is obtained by
inserting flip-flops either at the read address input, see case (1)
in Fig. 1(d), or at the data output, see case (2) in Fig. 1(d). The
former and latter case require ceil(logy(R)) and C additional
flip-flops, impose gentle and hard read address setup-time
requirements, and cause considerable and negligible output
delays, respectively. The task of routing one out of R words
to the output is accomplished using either tri-state buffers or
multiplexers.

1) Tri-state buffer based read logic: This approach asks for
a read address decoder (RAD) to produce one-hot encoded
row select signals, and R-C tri-state buffers, i.e., exactly
one per storage cell, as shown in Fig. 1(e). Notice that it is
generally difficult to buffer tri-state buses [16], which might
be necessary to maintain reasonable slew rates if these buses
are routed over long distances.

2) Multiplexer based read logic: C parallel R-to-1 multi-
plexers are required to route an entire word to the output,
as shown in Fig. 1(f). The R-to-1 multiplexer may be im-
plemented in many ways. Binary selection tree multiplexers
do not require one-hot encoded row select signals and can
therefore save the RAD. However, some glitches or activity on
unselected data inputs can propagate all the way to the input of
the last stage, giving rise to unnecessary power consumption.
A better approach is to use a glitch-free RAD to mask (AND
operation) unselected data at the leaf-level of an OR-tree to
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realize the multiplexer functionality.

C. Array of Storage Cells

Instead of flip-flops, latches can be used as storage cells,
while the previous discussions on the write and read logic
remain valid. However, setup-time requirements on the write
port become considerably more stringent when using latches.
The reason for this is that when sticking to a single-edge-
triggered one-phase clocking discipline and a duty cycle of
50%, the WAD together with the clock-gates in the latch-based
design can use only the first half of a clock period to generate
one clock pulse and R — 1 silenced clocks, which will make the
latches in one out of R rows transparent and keep the latches
in all other rows non-transparent, during the second half of the
clock period. The latches, which receive a clock pulse, store
the applied input data on the next active clock edge.

Furthermore, if the currently transparent latches are also
selected by the output multiplexers, the SCM becomes trans-
parent from its data input to its data output, and combinational
loops through external logic can arise. To avoid this problem,
a restriction on the choice of read and write addresses needs to
be imposed. If such a restriction is not desired, latches which
are non-transparent during the second half of the clock period
needs to be inferred at either the SCM’s data input or output,
or alternatively, registers needs to be inserted into any path
feeding the SCM’s data output back to the data input.

III. SUB-Vr MODELING

To exhaustively compare energy dissipation and critical path
delay of the various SCM architectures, a gate-level sub-Vt
characterization flow is applied. The sub-Vr characterization
model is briefly described in Section III-A, and its accuracy
is discussed in Section III-B.

A. Sub-Vr Characterization Model

The total energy dissipation Et of static CMOS circuits
operated in the sub-Vt regime is modelled as

2
Er = 0CiotVDD” + heak VDD Teik + Ipeaktsc Vbp, (D
—_—— — 7 —
Edyn Ejeak Esc

where Egyy, Ejeak, and Egc are the average energy dissipation
due to switching activity, the energy dissipation resulting form
integrating the leakage power over one clock cycle T, and the
energy dissipation due to short circuit currents, respectively.
The energy dissipation Eg. has been shown to be negligible
in the sub-Vt regime [17]. The switching current causing the
energy dissipation Egy, results from sub-threshold currents
[18], i.e., from the drain currents of MOS transistors whose
gate-to-source voltage Vgs is equal to or lower than the
threshold voltage Vr (Vgs < V1). Whenever the sub-threshold
current is not used to switch a circuit node, it contributes to
Ejcak together with all other types of leakage currents.
For a given clock period Tgk, (1) may be rewritten as

Et = teCinvkeapVoD? + KicakloVop Teik, 2

where [y and Cj,, are the average leakage current and the input
capacitance of a single inverter, respectively. Furthermore,
kieak and keqp are the average leakage and the capacitance of
the circuit, respectively, both normalized to a single inverter.
Moreover, . is the circuit’s average switching activity.

In the sub-Vr domain, it is beneficial to operate at the
maximum achievable frequency to reach minimum energy
dissipation per operation. In the following, (2) is therefore
rewritten for the case where the clock period Ty is equal to
the critical path delay (7¢x denotes the critical path delay in
the remainder of this section). The critical path delay itself
may be written as

Tk = kcrithw_inV; (3)

where ki is the critical path delay of the circuit normalized
to the inverter delay Ty inv. In [17], the delay Tgy iny of an
inverter operating in the sub-Vr regime is given by

CinvVDD
IpeVoo/(nly)’

Tsw_inv = (4)
where n and U; denote the slope factor and the thermal voltage,
respectively. By introducing (4) into (3), the the critical path
delay is now given by

CinvVDD

Tclk = kcrit ]OeVDD/(”Ul) ’

&)
and the reciprocal of (5) defines the maximum frequency at
which the circuit may be operated for a given supply voltage
Vbb.

Finally, the total energy dissipation ET assuming operation
at the maximum frequency is found by introducing (5) into
(2), which yields

Er = CianDD2 ,uekcap + kcritkleake_VDD/(nUt) . (6)

The key parameters which this sub-Vt characterization
model relies on are extracted from fully placed, routed, and
back-annotated netlists and gate-level power simulations. For
the architectural analysis presented in the following section,
(6) has been used. For more details, the reader is referred
to [19].

B. Accuracy of Sub-Vr Model

In [19], the accuracy of the sub-Vt characterization model
is verified by comparison with HSPICE transient simulations.
It is found that the sub-Vr model predicts the energy dissi-
pation with less than 3.8 % error for all considered ISCAS85
benchmark circuits.

Furthermore, accuracy of the model is validated by measure-
ments in [6] and [20]. It is shown that the measured energy
is in the near vicinity of the simulated energy dissipation.
The mean of the absolute modelling error is calculated as
5.2 %, with a standard deviation of 6.6 %. Moreover, it is also
shown that the predicted maximum frequency at a given Vpp
matches well with the measured maximum frequency of the
implemented ASIC.
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Fig. 2. Energy versus Vpp for different write logic implementations, namely enable flip-flops and basic flip-flops in conjunction with clock-gates, assuming
a multiplexer based read logic, for (a) R=8 and C =8 as well as for (b) R = 128 and C = 128. Energy versus maximum achievable frequency for the same

memory architectures and sizes is shown in (c) and (d).

IV. SCM ARCHITECTURE EVALUATION

After the presentation of different architectural choices for
SCMs and the sub-Vt characterization model, we now aim at
identifying the SCM architecture that performs best in terms
of energy, but also in terms of throughput, and silicon area.
All SCMs are mapped to a 65-nm CMOS technology with
low-power (LP) high threshold-voltage (HVT) transistors (V
is above 450mV) and the results are based on fully synthe-
sized, placed, and routed netlists with back-annotated layout
parasitics. The average switching activity . is obtained using
voltage change dumps (VCDs) for 1000 write and read cycles.
All inputs of the SCMs are driven by buffers of standard
driving strength; highly capacitive nets such as the bit lines are
buffered inside the SCMs. For the comparisons between SCMs
of different sizes R x C, energy figures are reported as energy
per written bit and energy per read bit, commonly referred
to as energy per accessed bit. In Sections IV-A and IV-B
the different implementations of the write and read ports are

compared and in Section IV-C flip-flop arrays are compared
with latch arrays.

A. Comparison of Write Logic Implementations

In order to compare different write logic implementations,
we choose a multiplexer-based read logic and flip-flops as
storage cells. We consider two memory configurations (R = 8,
C =8 and R = 128, C = 128) which are expected to have a
smaller and to full-custom sub-Vt SRAM designs comparable
area cost, respectively.

Fig. 2(a) and Fig. 2(b) show the energy per written bit as
a function of the supply voltage Vpp for the small and the
larger memory configuration, respectively. In both cases, the
write logic relying on clock-gates in addition to basic flip-
flops exhibits lower energy per written bit than the architecture
that employs flip-flops with enable, for the range around the
energy-minimum supply voltage. In the sub-Vr regime, there
are two main reason for this behavior: First, the architecture
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Energy versus Vpp for different read logic implementations, namely tri-state buffers and multiplexers, assuming a clock-gate based write logic and

latches as storage cells, for (a) R =28 and C = 8 as well as for (b) R =128 and C = 128. Energy versus maximum achievable frequency for the same memory

architectures and sizes is shown in (c) and (d).

based on clock-gates dissipates less active energy than the
architecture based on enable flip-flops, as the latter distributes
the clock signal to each storage cell, while the former silences
the clock signal of all, but the selected row. The second reason
is more visible for the larger storage array whose energy
dissipation is dominated by leakage. This leakage is larger
for the case of the more complex storage cells that require
additional circuitry to realize the enable for each cell in a
standard-cell based implementation.

For systems that require a constrained memory bandwidth,
the energy dissipation at a given frequency may also be of
interest. Fig. 2(c) and Fig. 2(d) show the energy per written bit
as a function of the maximum achievable operating frequency
of the corresponding SCM. The frequency range on the x-axis
is obtained by sweeping Vpp from 0.1V to 0.4 V. It can be
seen that both architectures have the same maximum operating
frequencies, as the critical path is in the read logic through the
output multiplexers.

With respect to area, the results in [14] show that the
clock-gate architecture yields smaller SCMs than the enable
architecture if only C > 4. This statement is true for many
different CMOS technologies and standard-cell libraries.

In summary, the clock-gate architecture exhibits lower en-
ergy, equal throughput, and smaller area compared to the
enable architecture and is therefore generally preferred.

B. Comparison of Read Logic Implementations

In order to compare different read logic implementations,
we choose the clock-gate based write logic and a latch-based
storage array for again a small and a larger SCM configuration.
Fig. 3(a) and Fig. 3(b) show that the multiplexer based read
logic with RAD has a small advantage over the tri-state buffer
based read logic in terms of energy per read bit, at least around
the energy-minimum supply voltage. Fig. 3(c) and Fig. 3(d)
show that there is no significant difference between the two
read logic implementations as far as the maximum achievable
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Fig. 4. Energy versus Vpp for different storage cell implementations, namely latches and flip-flops, assuming a clock-gate based write logic and a multiplexer
based read logic, for (a) R =28 and C =8 as well as for (b) R = 128 and C = 128. Energy versus maximum achievable frequency for the same memory

architectures and sizes is shown in (c) and (d).

operating frequency is concerned. Indeed, the delay of the tri-
state buffer is quite long and comparable to the delay through
the entire multiplexer as all R tri-state buffers in one column
are connected to the same net, which consequently has a high
capacitance.

In summary, multiplexer based SCMs have a small energy
and an area advantage [14], compared to the tri-state buffer
approach and are therefore preferred.

C. Comparison of Storage Cell Implementations

In order to compare different storage cell implementations,
the best write and read logic implementations and again a
small and a larger SCM block are considered. Fig. 4(a) and
Fig. 4(b) show that latch arrays have less energy per accessed
bit than flip-flop arrays, due to smaller leakage currents
drained in each storage cell and due to lower active energy
of the latch implementation. However, the energy savings
of using latches instead of flip-flops are only small: a latch

has around 2/3 the leakage of a flip-flop in the considered
standard-cell library, but only around 2/3 of all cells in an
SCM are storage cells, which accounts for the approximately
22 % energy reduction visible from Fig. 4(d).

Fig. 4(c) and Fig. 4(d) show that there is no significant
difference in terms of maximum frequency. In fact, the storage
cells are not in the critical path, since the critical path of
any SCM is through the RAD and the tri-state buffers or
the multiplexers. However, flip-flops as sotrage cells allow for
shorter write address setup-times than latches, as described in
Sec. II-C.

Latch arrays have only slightly smaller area than flip-flop
arrays [14]. Table I shows the standard-cell area Asc and the
area Apgr of fully placed and routed latch and flip-flop arrays
for different configurations R x C, the clock-gate based write
logic, and the multiplexer based read logic. Notice that Apgr =
Agsc/0.75, as the SCMs have been successfully placed and
routed with a typical initial floorplan utilization of 75 %. An
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TABLE I
STANDARD-CELL AREA Agc AND AREA ApgRr OF FULLY PLACED AND
ROUTED LATCH AND FLIP-FLOP ARRAYS FOR DIFFERENT
CONFIGURATIONS R X C, CLOCK-GATE BASED WRITE LOGIC, AND
MULTIPLEXER BASED READ LOGIC.

Latch array Flip-flop array
R | C [ Asc [um?] | Apgr [um?’] | Asc [um?] [ Apgr [um?]
8 8 738 984 811 1.1k
8 32 2.5k 3.3k 2.8k 3.7k
8 128 9.5k 12.7k 10.6k 14.1k
32 8 2.9k 3.8k 3.1k 4.2k
32 32 9.9k 13.2k 10.9k 14.6k
32 128 37.9k 50.6k 42.1k 56.2k
128 8 11.2k 15.0k 12.3k 16.4k
128 32 39.4k 52.5k 43.7k 58.3k
128 128 152.2k 202.9k 169.0k 225.4k
Dataln(0)
0

C bits per word

Clk(R-1)

Addr(r-1:0)
Clk(0)

Addr(r-1)

DataOut(C-1)

Addr(0) D— DataOut(0)

Det.: r=ceil(log2(R))

Clk D—

Fig. 5. Schematic of latch based SCM with clock-gates for the write logic
and multiplexers for the read logic.

approximation of the area A(R,C) for an arbitrary memory
configuration R x C can be found according to

A(R,C) = PB1+B2R+P3CH+PaRCH

Bsceil(loga(R)) + Beceil(loga(C)).  (7)

The coefficients B ...Ps are obtained through a least squares
fit to a set of reference configurations in the technology under
consideration such as the ones provided in Table 1.

To summarize, latch arrays have slightly less energy per
accessed bit, achieve the same frequency, and are smaller
compared to flip-flop arrays.

D. Best Practice Implementation

Fig. 5 shows the schematic of the best SCM architecture.
This architecture uses latches without enable feature as storage
cells, clock-gates for the write logic, and multiplexers for the
read logic.

With respect to the energy efficiency, we note that a signifi-
cant switching activity is required to find an energy-minimum,
which occurs only for the smallest memory configurations.
However, for the large memory configurations, the overall
switching activity is very low and the energy dissipation is
clearly dominated by the integration of the leakage power
over the access time, which decreases with increasing Vpp
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Fig. 6. Energy versus Vpp (a) and energy versus frequency (b) for the latch
multiplexer clock-gate architecture for different memory configurations.

if always operating at maximum speed. Consequently, the
energy-minimum supply voltage within the sub-Vr domain
approaches the threshold voltage Vr when increasing the
memory size.

For different memory configurations with the same storage
capacity (R-C = const.), we observe from Fig. 6(a) and
Fig. 6(b) that the energy-efficiency improves for a larger
number of columns C and a smaller number of rows R.
The reason for this behavior is that the maximum operating
frequency increases as R decreases which again reduces the
contribution of the energy consumed due to leakage power in
each access cycle.

V. RELIABILITY ANALYSIS

Besides the desire to operate at the energy-minimum, one
of the limiting factors with respect to voltage scaling in the
sub-Vr domain is the reliability of the circuit. Reliability
issues arise mainly from within-die process variations and
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are aggravated in deep submicron technologies. Consequently,
ensuring robust operation in the sub-Vr regime has been one
of the most important concerns in the design of full-custom
sub-Vr storage arrays.

Compared to full-custom designs, SCMs are compiled
from conventional combinational CMOS logic gates, such as
NAND, NOR, or AOI gates, and from sequential elements,
i.e., latches and/or flip-flops. The reliability issue therefore
corresponds to the discussion down to which supply voltage
a given standard-cell library can operate reliably. This point
limits in the same way the operation of the combinational
and sequential logic and of the embedded SCMs for a given
process corner.

To determine the range of reliable operation of the SCMs,
we distinguish between the combinational and the sequential
cells in the library, used to construct the storage array. Previous
work shows that when gradually scaling down the supply
voltage, the sequential cells fail earlier then the combinational
CMOS logic gates [5], provided that the combinational logic
is built without transmission gates. Therefore, the focus is on
the analysis of the sequential elements in the following.

The peripherals of SCM storage arrays, i.e., the read and
write logic, are built from combinational CMOS gates and are
thus less sensitive to process variation than the array of storage
cells itself. Also, delay variations in SCM peripherals induced
by process variation are unproblematic due to the used single-
edge-triggered one-phase clocking discipline where path de-
lays do not necessarily need to be matched. Compared to SCM
peripherals, the peripherals of SRAM arrays are more sensitive
to process variation: delay variations may cause the sense
amplifiers to be triggered at the wrong time, and mismatch
in the sense amplifiers can further compromise reliability,
especially at very low supply voltages.

A. Sensitivity of SCMs to Variations

Reliability issues in both sequential standard-cells and in
dedicated SRAM storage cells essentially arise from mis-
match between carefully sized transistors due to within-die
process variations [21]. In a conventional 6T-SRAM cell,
such mismatch manifests itself in three types of failures:
a) read failures, b) write failures, and c¢) hold failures. The
read failures result from the direct access of the read bit line
to the storage node which is not present in a standard latch
design such as the one shown in Fig. 7, where the output
is isolated from the internal node with a separate driver. The
write failures in a 6T-SRAM cell are caused by the inability to
flip storage nodes that suffer from an unusually strong keeper.
The standard-cell latch avoids this issue by turning off the
feedback path during write operation. The only remaining
issue are hold failures which occurr in the non-transparent
phase of a latch during which the circuit behavior essentially
resembles that of a basic 6T-SRAM cell. Hence, a conventional
standard-cell latch may be viewed as a very conservative
SRAM cell design [8] where the reliability is determined by
the risk of experiencing hold failures.

Fig. 7. Simplified schematic of the latch used in the best SCM architecture.

B. Hold Failure Analysis

Fig. 7 shows a simplified schematic of the latch which was
chosen by the logic synthesizer from a commercial standard-
cell library in order to minimize leakage and area of the
latch arrays described in this paper. The development of new
libraries with special latch topologies is beyond the scope of
this paper.

A latch needs to be able to hold data in the non-transparent
phase. In this phase, INV2 and INV3 in Fig. 7 act as a cross-
coupled inverter pair. The stability of the state of this pair
is usually defined by the static noise margin (SNM) that is
required to hold data in the presence of voltage noise on the
storage nodes [22]. This SNM is extracted as the side of the
largest embedded square for the butterfly curves shown in
Fig. 8 for different supply voltages in the sub-Vr domain.
For each butterfly curve, there is an SNM associated with
the top-left and the bottom-right eye, referred to as SNM
high and SNM low. The probability distribution functions on
the right-hand side of Fig. 8 are always for the minimum
of SNM high and SNM low. The butterfly curves and the
corresponding minimum SNM distributions are obtained from
1000-point Monte Carlo circuit simulation assuming within-
die process parameter variations for the typical process corner
at a temperature of 25°C. All common parameters of the
BSIM4 transistor simulation models are subject to variation
according to statistical distributions provided by the foundry.

The distributions in Fig. 8 show that the SNM values
decrease with the supply voltage. As can be seen in Fig. 8(a),
there is a clear separation between the voltage transfer char-
acteristic (VTC) of inverter INV2 and the inverse VTC of
inverter INV3 corresponding to a comfortable SNM for a
supply voltage of 400 mV, which also corresponds to the
energy optimum supply voltage for most SCM architectures
and sizes. Fig. 8(b) and Fig. 8(c) show that there is still a
separation between the VTCs even at lower supply voltages,
indicating that operation is still possible, but the SNMs are
small and reliability clearly starts to become critical at 250 mV,
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Fig. 8. Butterfly curves (left) and distribution of minimum hold SNM (right)
of the latch used in the best SCM architecture for (a) Vpp = 400mV, (b)
Vpbp = 325mV, and (c) Vpp = 250mV.

limiting the range of operation.

VI. COMPARISON WITH SUB-V1 SRAM DESIGNS

In this section, the performance and cost of sub-Vp SCMs is
compared to a selection of sub-Vt SRAM designs in literature
[8]-[11], [13]. Section VI-A gives an overview of recent sub-
V1 memory implementations including this work. Section VI-B
compares the energy and throughput of the smallest SCM
architecture with a prominent sub-Vr SRAM design, while
Section VI-C compares their area.

A. Overview

Table II presents a selection of recently published sub-Vr
memories. Vppmin 1S defined as the minimum supply voltage,
which guarantees reliable write, hold, and read operations.
Unless otherwise stated, the maximum operating frequency
Jfmax 18 given for Vpp = Vppmin. The reported energy includes
both active energy for a read operation and the leakage energy

TABLE 1I
COMPARISON OF SUB-V MEMORIES.

[ Publication [ B o1 [ 001 [i1] [ 3] [ This |
Capacity [kbit] || 256 256 64 3 480 | 32
Tech. [nm] 65 65 65 90 130 65
Basis of results ASIC measurements FOS[_

ayout
Vbbmin (MV] 380° | 350° | 300 160 | 200 | 300
475 20 1000
Jmax [kHz] 04v)| 2 ©25vy | 200 | 1201 g4v)
. 65.6 86.07 . 32.7
Energy [fl/bit] 0.4V) 884.4 0.4V) 750 4.2 0.4V)
Area [pm?/bit] || 2.9° 4.0P 7.0° 195 | 128 | 125

20ne redundant row and column per 32-kbit block are assumed to guarantee
reliable operation at this supply voltage.

Y Area estimated from die photograph.

“Plus 50mV for boosting of word line drivers.

dEstimation extracted from a graph.

®Includes the energy dissipation of the package.

of the memory array during the access time. Furthermore, the
total energy value is normalized by the width of the data 10
bus, thereby reporting the total energy per read bit. Unless
otherwise stated, the energy is given for fiax at Vppmin-

All sub-Vt SRAM designs [8]-[10] realized in a 65-nm
CMOS technology have Vppmin > 300mV. Monte Carlo sim-
ulations indicate that SCMs mapped to the same technology
should operate reliably at least down to the same minimum
supply voltage. Two SRAM designs [11], [13] fabricated in
older technologies are less sensitive to process parameter
variations and are reported to have an even lower Vppmin, i-€.,
160 mV and 200 mV, respectively.

At the same technology node and supply voltage Vpp, SCMs
are faster than SRAM designs, which bares the potential to
lower energy dissipation per memory access if 1) speed is
traded against energy, or 2) early task completion is honored
by power gating. Obviously, older technologies exhibit lower
leakage currents which may lead to lower energy per memory
access.

With respect to area, the use of robust latches, available
from conventional standard-cell libraries, instead of 8T or 10T
SRAM cells, is clearly paid for by a larger area per bit for
SCMs, in the same technology.

B. Energy and Throughput

A well-cited 256-kbit 10T sub-Vr SRAM [8] in 65-nm
CMOS has 8 32-kbit blocks (R =256, C = 128), which are
served by a single 128-bit data IO bus. The leakage energy
of this SRAM macro is divided by 8 to compare one block
with the proposed 32-kbit SCM block, while the active energy
is taken as is, since only one block is accessed at a time. At
400mV, the SRAM macro is reported to be operational at
fmax = 475kHz, and a single 32-kbit block dissipates 19 fJ
per accessed bit, as indicated by the triangle in Fig. 9.

For comparison, Fig. 9(a), and Fig. 9(b), show the energy
per accessed bit of the smallest SCM architecture as a function
of Vpp and fax, respectively. Considering an SCM block with
R =256 and C = 128, fnax = 475kHz is already achieved
at Vpp = 370mV and the energy per accessed bit for this
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Fig. 9. Energy versus Vpp (a) and energy versus frequency (b) for the latch
multiplexer clock-gate architecture for R = 256, C = 128 and for R = 128,
C = 256. The red triangle corresponds to [8].

operating point is 59fJ, which is more than for the full-
custom SRAM macro. However, when operated at the same
supply voltage (Vpp =400mV), the SCM is able to operate at
Jfmax = 1 MHz, with an energy dissipation of 33 fJ per accessed
bit, which is only 1.7x higher compared to the full-custom
design. The energy savnings compared to the initial operating
point are achieved due to a higher possible clock frequency
combined with power gating after earlier completion of a task.

Changing the SCM configuration to R = 128 and C = 256
while keeping a constant storage capacity R-C, the energy per
accessed bit of the SCM is further reduced. As shown by the
square marker in Fig. 9, this new SCM configuration is able to
run at 747 kHz for Vpp =400mV, and dissipates 27 fJ per read
bit in this operating point, which is only 1.4 higher than for
the full-custom design. This change in the SCM configuration
results in lower energy and doubled memory bandwidth at the
price of a higher routing congestion during system integration.

C. Area

The bitcell of SCMs (flip-flop or latch) is clearly larger
than the SRAM bitcell. However, SRAM macrocells have
an overhead to accommodate the peripheral circuitry, i.e.,
precharge circuitry and sense amplifiers [23]. For SRAM
macrocells with small storage capacity, this area overhead
may be significant. Hence, SCMs may outperform SRAM
macrocells in terms of area for small storage capacities, but
become bigger for large storage capacities. In [14], it is shown
that the border up to which SCMs are still smaller than SRAM
macrocells depends on the number of words and the number
of bits per word, and may be as large as 1kbit. However, [14]
considers only circuit implementations for super-Vt operation,
i.e., SRAM macros based on the 6T bitcell and SCMs synthe-
sized with a given timing constraint. When considering circuit
implementations specifically optimized for sub-Vt operation,
SRAM macrocells become significantly larger due to the need
for 8 T [9] or 10T [8] bitcells and the additional assist circuits
required for reliable sub-Vt operation. As opposed to this,
SCMs may be synthesized with relaxed timing constraints
(and still reach 1 MHz in the current study) as speed is not
of major concern for typical ultra-low-power applications and
may therefore have a reduced area cost compared to super-Vr
implementations.

In the present case, considering a storage capacity of 32
kbit, the SCM is 4.3 times larger than a corresponding SRAM
block [8]. For some applications, this area increase may be
acceptable for the benefit of lower energy per memory access
and higher throughput.

VII. CONCLUSIONS

For standard-cell based ultra-low-power designs which need
to operate in the sub-Vr regime, standard-cell based memories
(SCMs) are an interesting alternative to full-custom SRAM
macros which must be specifically optimized to guarantee
reliable operation. The main advantages of SCMs are the
reduced design effort, reliable operation for the same voltage
range as the associated logic, high speed (when compared
to corresponding full-custom macros), and reasonably good
energy efficiency for maximum-speed operation. The draw-
backs are the area penalty (for storage arrays larger than a few
kbit) and a loss in energy efficiency compared to full-custom
designs when operating at the same clock frequency.

Energy-efficient SCM design is driven by the fact that most
of the energy is consumed due to leakage while active energy
plays only a minor role, especially for large configurations. A
design based on latches using clock-gates for the write logic
and glitch-free multiplexers for the read logic achieves the best
energy efficiency and has the smallest silicon area. For the
same maximum throughput but smaller write address setup-
times, the latches may be replaced by flip-flops.

REFERENCES

[1] R. Sarpeshkar, “Ultra low power electronics for medicine,” in Proc.
International Workshop on Wearable and Implantable Body Sensor
Networks, April 2006, pp. 1 pp.—37.

[2] J.-J. Kim and K. Roy, “Double gate-MOSFET subthreshold circuit for
ultra low power applications,” in IEEE Trans. on Electron Devices,
vol. 51, no. 9, pp. 1468-1474, Sept. 2004.



MEINERZHAGEN et al.: BENCHMARKING OF STANDARD-CELL BASED MEMORIES IN THE SUB-Vy DOMAIN IN 65-NM CMOS TECHNOLOGY 11

[3] M. Sinangil, N. Verma, and A. Chandrakasan, “A reconfigurable 65nm
SRAM achieving voltage scalability from 0.25-1.2V and performance
scalability from 20kHz-200MHz,” in Proc. IEEE ESSCIRC, sept. 2008,
pp. 282-285.

[4] B. Calhoun, A. Wang, and A. Chandrakasan, “Device sizing for mini-
mum energy operation in subthreshold circuits,” in Proc. IEEE Custom
Integrated Circuits Conference, oct. 2004, pp. 95-98.

[5] B. H. Calhoun, A. Wang, and A. Chandrakasan, “Modeling and sizing

for minimum energy operation in subthreshold circuits,” in IEEE J. of

Solid-State Circuits, vol. 40, no. 9, pp. 1778-1786, sept. 2005.

[6] J. Rodrigues, O. C. Akgun, and V. Owall, “A <1 pJ Sub-VT cardiac
event detector in 65 nm LL-HVT CMOS,” Proc. VLSI-SoC, June. 2010.

[7] J. Chen, L. Clark, and T.-H. Chen, “An ultra-low-power memory with a
subthreshold power supply voltage,” in IEEE J. of Solid-State Circuits,
vol. 41, no. 10, pp. 2344-2353, oct. 2006.

[8] B. H. Calhoun and A. P. Chandrakasan, “A 256-kb 65-nm sub-threshold
SRAM design for ultra-low-voltage operation,” in IEEE J. of Solid-State
Circuits, vol. 42, no. 3, pp. 680-688, march 2007.

[9] N. Verma and A. Chandrakasan, “A 65nm 8T sub-Vt SRAM employing

sense-amplifier redundancy,” in Proc. IEEE ISSCC, feb. 2007, pp. 328-

606.

M. E. Sinangil, N. Verma, and A. P. Chandrakasan, “A reconfigurable

8T ultra-dynamic voltage scalable (U-DVS) SRAM in 65 nm CMOS,”

in IEEE J. of Solid-State Circuits, vol. 44, no. 11, pp. 3163-3173, nov.

2009.

S.-C. Luo and L.-Y. Chiou, “A sub-200-mV voltage-scalable SRAM

with tolerance of access failure by self-activated bitline sensing,” IEEE

Trans. on Circuits and Systems II: Express Briefs, vol. 57, no. 6, pp.

440-445, june 2010.

M.-F. Chang, J.-J. Wu, K.-T. Chen, Y.-C. Chen, Y.-H. Chen, R. Lee,

H.-J. Liao, and H. Yamauchi, “A differential data-aware power-supplied

(D2AP) 8T SRAM cell with expanded write/read stabilities for lower

VDDmin applications,” IEEE J. of Solid-State Circuits, vol. 45, no. 6,

pp. 1234-1245, june 2010.

T.-H. Kim, J. Liu, J. Keane, and C. Kim, “A high-density subthreshold

SRAM with data-independent bitline leakage and virtual ground replica

scheme,” in Proc. IEEE ISSCC, feb. 2007, pp. 330-606.

P. Meinerzhagen, C. Roth, and A. Burg, “Towards generic low-power

area-efficient standard cell based memory architectures,” in Proc. [EEE

International Midwest Symposium on Circuits and Systems, aug. 2010,

pp. 129-132.

C. Roth, P. Meinerzhagen, C. Studer, and A. Burg, “A 15.8 pJ/bit/iter

quasi-cyclic LDPC decoder for IEEE 802.11n in 90 nm CMOS,” in Proc.

IEEE Asian Solid-State Circuits Conf., Nov. 2010.

J. Lillis and C.-K. Cheng, “Timing optimization for multisource nets:

characterization and optimal repeater insertion,” in IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems, vol. 18,

no. 3, pp. 322-331, Mar 1999.

E. Vittoz, Low-Power Electronics Design. CRC Press, 2004, ch. 16.

H. Soeleman, K. Roy, and B. Paul, “Robust subthreshold logic for ultra-

low power operation,” in IEEE Trans. VLSI Systems, vol. 9, no. 1, pp.

90-99, Feb 2001.

0. C. Akgun and Y. Leblebici, “Energy efficiency comparison of

asynchronous and synchronous circuits operating in the sub-threshold

regime,” in J. of Low Power Electronics, vol. 4, OCT 2008.

O. Akgun, J. Rodrigues, Y. Leblebici, and V. Owall, “High-level energy

estimation in the sub-VT domain: Simulation and measurement of a

cardiac event detector,” in IEEE Trans. on Biomedical Circuits and

Systems, Accepted.

A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy, “Process variation

in embedded memories: failure analysis and variation aware architec-

ture,” IEEE J. of Solid-State Circuits, vol. 40, no. 9, pp. 1804-1814,

sept. 2005.

B. Calhoun and A. Chandrakasan, “Static noise margin variation for sub-

threshold SRAM in 65-nm CMOS,” in IEEE J. of Solid-State Circuits,

vol. 41, no. 7, pp. 1673-1679, july 2006.

K.-S. Yeo and K. Roy, Low-Voltage, Low-Power VLSI Subsystems.

McGraw-Hill, 2005.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

Pascal Meinerzhagen (S’10) was born in Bern,
Switzerland, in 1984. He received his B.Sc. and
M.Sc. degrees in Electrical and Electronics Engi-
neering from the Swiss Federal Institute of Tech-
nology in Lausanne (EPFL) in 2006 and 2008,
respectively. In 2008, he also received a joint cer-
tificate in Micro- and Nanotechnologies for Inte-
grated Systems from the Swiss Federal Institute of
Technology in Lausanne (EPFL), Switzerland, the
Grenoble Institute of Technology (INPG), France,
and the Politecnico di Torino, Italy.

In 2008, Mr. Meinerzhagen was a visiting researcher in Chancellor Steve
Kang’s group at the University of California, Merced, USA, where he
worked on the development of a 12-bit low-power SAR A/D Converter for
a Neurochip. From 2009 to 2010, Mr. Meinerzhagen was a PhD student
in the Integrated Systems Laboratory (IIS) at the Swiss Federal Institute of
Technology in Zurich (ETHZ), Switzerland. Currently, he is finishing his PhD
dissertation in the Telecommunications Circuits Laboratory (TCL) at EPFL.

Mr. Meinerzhagen’s current research interests include the design of high-
density memory structures for fault-tolerant VLSI systems in deep-submicron
CMOS technologies and memory arrays assembled from standard-cells for
ultra-low-power sub-VT VLSI systems. Mr. Meinerzhagen received a nomi-
nation for the "2010 IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS) student paper contest".

S.M. Yasser Sherazi (S’09) received the Bachelors
degree in computer engineering from COMSATS
Institute of Information Technology, Islamabad, Pak-
istan, in 2005, and the Masters degree in system-on-
chip from Link6ping University, Linkoping, Sweden,
in 2008.

He is currently perusing the Ph.D. degree in digi-
tal ASIC from the EIT Department, Lund University,
Lund, Sweden. After his B.Sc. he worked as a
Research Associate in CIIT, Islamabad, Pakistan for
two years. He then received a HEC scholarship for
his Masters Studies in Sweden. After completing his M.Sc. from Sweden,
he returned to Pakistan and worked as a Lecturer with CIIT Islamabad for a
semester. He is funded by Swedish Foundation for Strategic Research (SSF)
as a PhD student in Lund University, Sweden.

He is currently working on ultra-low power wireless devices project with
the EIT Department, Lund University. His main responsibility in the project
is to design ultra-low power base band digital circuits. Mr. Sherazi was a
recipient of a bronze medal for his performance during his Bachelors studies.

Andreas Burg (5’97-M’05) was born in Munich,
Germany, in 1975. He received his Dipl.-Ing. de-
gree in 2000 from the Swiss Federal Institute of
Technology (ETH) Zurich, Zurich, Switzerland. He
then joined the Integrated Systems Laboratory of
ETH Zurich, from where he graduated with the
Dr. sc. techn. degree in 2006.

In 1998, he worked at Siemens Semiconductors,
San Jose, CA. During his doctoral studies, he was an
intern with Bell Labs Wireless Research for a total
of one year. From 2006 to 2007, he held positions
as postdoctoral researcher at the Integrated Systems Laboratory and at the
Communication Theory Group of the ETH Zurich. In 2007 he co-founded
Celestrius, an ETH-spinoff in the field of MIMO wireless communication,
where he was responsible for the ASIC development as Director for VLSI. In
January 2009, he joined ETH Zurich as SNF Assistant Professor and as head
of the Signal Processing Circuits and Systems group at the Integrated Systems
Laboratory. Since January 2011, he is a Tenure Track Assistant Professor at
the Ecole Polytechnique Federale de Lausanne (EPFL) where he is leading
the Telecommunications Circuits Laboratory in the School of Engineering.

In 2000, Mr. Burg received the “Willi Studer Award” and the ETH Medal
for his diploma and his diploma thesis, respectively. Mr. Burg was also
awarded an ETH Medal for his Ph.D. dissertation in 2006. In 2008, he received
a 4-years grant from the Swiss National Science Foundation (SNF) for an SNF
Assistant Professorship. In his professional career, Mr. Burg was involved in
the development of more than 25 ASICs. He is a member of the IEEE and
of the European Association for Signal Processing (EURASIP).




12 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS (JETCAS), VOL. 1, ISSUE 2, JUNE 2011

Joachim Neves Rodrigues (S’00-M’05-SM’11)
holds currently an assistant professorship at the De-
partment of Electrical and Information Technology
at Lund University, Lund, Sweden. He received
his degree in electrical engineering and computer
science from the University of Applied Sciences,
Kaiserslautern, Germany, and the Ph.D. degree from
the Department of Electroscience, Lund University,
in 2000 and 2005, respectively.

From 2005 to 2008 he acted as ASIC process lead
in the digital ASIC department at Ericsson Mobile
Platforms, Lund, Sweden, and he re-joined his current department in 2008.
He has contributed to 20 ASICs both in industry and academia.

His main research interest is modelling and implementation of digital and
mixed-mode microelectronics, architectures for high performance ultra-low
power design which may be operated with an aggressively scaled supply
voltage, with a focus on biomedical circuits and systems. He is a TC member
of the biomedical circuits and systems society since 2010, and board member
of the Swedish SSC chapter.




