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Abstract—We derive the Ziv-Zakai lower bound for Impulse
Radio (IR) Ultra-WideBand (UWB) ranging error correlation
matrix under a classical IR-UWB positioning system. We present
the numerical evaluations with IEEE 802.15.4a channel model
and the geometry of indoor environments of interest. As our
derived bound depends on the geometry of the indoor environ-
ments, our bound can be used in real environments with the
channel measurements from real environments.

I. INTRODUCTION

Impulse Radio (IR) Ultra-WideBand (UWB) can be used for
precise localization applications [1]. Determination of ranging
accuracy is a fundamental problem. Several previous work
discuss the lower bound minimum Mean Square Error (MSE)
of UWB ranging system. Zhang et al. derive the Cramér-Rao
Lower Bound (CRLB) for the time-delay estimation of UWB
signals in [2]. Due to Ziv-Zakai lower bound is more accurate
than CRLB under moderate and low SNR [3], Hicham et
al. also derive a Ziv-Zakai time delay estimation bound for
UWB signals in [4]. Dardari et al. derive a Ziv-Zakai lower
bound for the IR-UWB ranging error using both the IEEE
802.15.4a channel models and experimentally measured data
in [5]. However, the above work do not consider the lower
bounds of ranging error correlations among the different base
stations of a UWB positioning system.

In contrast to the previous work, we derive the Ziv-Zakai
lower bound of the ranging error correlation matrix under a
classical IR-UWB positioning system. Through the numerical
evaluation results, we prove that the ranging errors among the
different base stations are correlated. As our derived bound
depends on the geometry of the indoor environments, our
bound can be used in real environments with the channel
measurements from real environments. Our work is funda-
mental for Time-of-Arrived (TOA) based positioning or Time-
Difference-of-Arrived based positioning.

The paper is organized as follows: We explain our problem
in Section II. In Section III, we discuss the statistical properties
of random parameters. We derive Ziv-Zakai lower bound for
IR-UWB ranging error correlation matrix in Section IV. We
present numerical evaluations in Section V. And we give
conclusions in Section VI.

II. PROBLEM STATEMENT

We consider a network with a processing center, I Base
Stations (BS) and multiple Mobile Tags (MT). The MTs

transmit one IR-UWB signal to the BSs. The processing
center uses the received signals of the BSs to estimate the
positions of MTs. All base stations are perfectly synchronized
by sharing the same local clock through a cable connection.
All base stations are positioned at known coordinates in
the area to be monitored. The channels between the base
stations and the mobile tag are assumed to be dense multipaths
propagation environments. The MTs’ positions are estimated
independently, and hence we can focus on one MT in the
network without loss of generality.

The transmitter transmits an IR-UWB transmitted signal
f(t) to the receiver. Given the sampling interval is Ts, the
transmit time of the mobile tag is Tη ' ηTs, where η ∈ Z
and η ≥ 0 (as shown in Fig.1). We define the discrete
transmit pulse as ~f = [f(0), · · · , f(u), · · · , f((U − 1)]T ,
u ∈ {0, · · · , U − 1}, Tf = UTs and U ∈ Z. The superscript
T denotes the transpose operator.

Fig. 1. The transmitted signal and received signal of the base station. Tη is the
transmit time of the mobile tag. The received signals are received during the
observational interval [Tb, Tb +(K−1)Ts]. This figure only shows Tb > Tη

case. The case of Tb ≤ Tη is also possible.

The i-th base station received K samples concatenated by
~r(i) = [r(i)(0), · · · , r(i)(k), · · · , r(i)(K − 1)]T during the
observational interval [Tb, Tb+(K−1)Ts], k ∈ {0, · · · ,K−1}
, K ∈ Z and K > U (as shown in Fig.1).

Hence, ~r(i) can be represented as following:

~r(i) = Ψ~h(i) + ~z(i) = ~ρ(i) + ~z(i), (1)

where ~ρ(i) = Ψ~h(i) and ~z(i) ∈ RK is an additive independent
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white Gaussian noise with zero mean and unknown variance
(σ(i))2. Ψ =

[
~ψ0

~ψ1 · · · ~ψ(K−M)

]
is a K×(K−U +

1) dictionary matrix, which is generated by shifting with one
sample of ~f , leading to a set of parameterized waveforms given

by ~ψj =
[

~0T
j

~fT ~0T
(K−U−j)

]T

, where ~0j = [0, · · · , 0︸ ︷︷ ︸
j

]T ,

and ~0(K−U−j) = [0, · · · , 0︸ ︷︷ ︸
K−U−j

]T , where j ∈ {0, · · · ,K−U} and

~h(i) ∈ RK−U+1 is the channel impulse response between the
mobile tag and i-th base station.

The distance between the mobile tag and i-
th base station can be expressed as follows
d(i) =

√
(x− x(i))2 + (y − y(i))2. And ~g is defined to

be ~g = [g(1), · · · , g(I)]T , where g(i) = b d(i)

c·Ts
c and c is

assumed to be 3 · 108m/s. The range bias between the i-th
BS and MT is e(i) ≥ 0 induced by Non-Line of Sight (NLOS)
propagation.

As shown in Fig.1, T
(i)
q can be computed as T

(i)
q = T

(i)
d +

Tη + T
(i)
e − Tb for both Tb > Tη and Tb ≤ Tη cases, where

T
(i)
e = e(i)

c . And Tb should satisfy 0 ≤ Tb ≤ min{Tη +T
(i)
d }.

Therefore, ~h(i) =
[

~0T
q(i)

~0T

b
(i)
NL

~α(i)T
]T

, where q(i) =

bT (i)
q

Ts
c. and b

(i)
NL = bT (i)

e

Ts
c.

The estimation problem is defined as:
- Given:

• the all BSs’ received signals ~r(i) and transmitted
pulse ~f , where i ∈ {1, · · · I},

• Tb is known in practice,
• ~α(i), Tη , e(i) and g(i) are assumed to be random

parameters,
• σ(i) is assumed to be a deterministic parameter.

- Estimate:
• compute the Ziv-Zakai lower bound of the ranging

error correlation matrix.

III. THE STATISTICAL DISTRIBUTIONS OF THE RANDOM
PARAMETERS

We assume the following issues:
• The random parameters, ~g, Tη , ~α(1), · · · , ~α(I), e(1), · · · ,

e(I) are independent from each other.
• The Gaussian noise ~z(i) are independent from each other,

where i ∈ {1, · · · I}.
• The distribution of g(i) depends on the geometry of

indoor environments.
Example: There is a rectangular room with furniture (as
shown in Fig.2). As the mobile tag can’t come to the
region where the furniture is placed and is only uniformly
distributed in a non-furniture region, the position (x, y)
of the mobile tag is not uniformly distributed in the room.
We use rejection sampling method [6] to obtain the sam-
ples of (x, y) that are uniformly distributed in the non-
furniture region. Then we can obtain the corresponding
samples of g(i). Finally, we obtain the pdf function with
the histogram of g(i).

Fig. 2. A rectangular room with furniture.

• Tη is assumed to be uniformly distributed between [0, T ′η]
where T ′η ∈ R and T ′η ≥ 0.

• We can obtain the distribution of e(i) by performing rang-
ing measurements in the indoor environments of interest
[7]. As the NLOS bias are always modeled independently
(Eq.1 in [7]), we consider e(i) as a nuisance parameter in
the derivation process of the Ziv-Zakai lower bound of
ranging error correlation matrix.

• The prior distribution of ~α(i) should follow the IEEE
802.15.4a channel model.

IV. ZIV-ZAKAI LOWER BOUND FOR IR-UWB RANGING
ERROR CORRELATION MATRIX

The estimation error of ranging vector is ~ε = ~̂d −
~d, where ~̂d is the estimation of ~d. The ranging error
correlation matrix is defined as R~ε = E~r(s),Θ1,~d{~ε ·
~εT }, where ~r(s) = [~r(1)T · · ·~r(I)T

]T and Θ1 =
(~α(1), · · · , ~α(I), e(1), · · · , e(I), Tη). We are interested in
lower-bounding ζ = ~aT R~ε~a for any I-dimensional vector ~a.
We can obtain the bounds on the elements of R~ε by setting
different values of ~a.

As ~d = ~g · c · Ts, ζ = ζg · c2 · T 2
s , where ζg = ~aT R~εg

~a,
R~εg

= E~r(s),Θ1,~g{~εg~ε
T
g } and ~εg = ~̂g − ~g. ~̂g is the estimation

of ~g. To find the lower bound of ζ, we can compute the lower
bound of ζg first. ζg can be computed as follows

ζg = E~r(s),Θ1,~g{|~aT~εg|2} =
∫

ζ1p(Θ1)dΘ1, (2)

where ζ1 =
∫∫ |~aT~εg|2p(~r(s), ~g|Θ1,Θ2)dgd~r. and Θ2 =

(σ(1), · · · , σ(I)).
To find the lower bound of ζg, we need to find the lower

bound of ζ1 first. Then, we average the lower bound of ζ1

over Θ1.
The derivation starts from the identity (in the page 34 of

[8]) as follows

ζ1 =
1
2

∫ ∞

0

p(|~aT~εg| ≥ h

2
|Θ1,Θ2)hdh. (3)

The lower bound of ζ1 can be obtained by lower-bounding
p(|~aT~εg| ≥ h

2 |Θ1,Θ2) since h and p(|~aT~εg| ≥ h
2 |Θ1,Θ2)
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are nonnegative.

p(|~aT~εg| ≥ h
2 |Θ1,Θ2) = p(~aT (~̂g − ~g) > h

2 |Θ1,Θ2)
+p(~aT (~̂g − ~g) ≤ −h

2 |Θ1,Θ2)
=

∑
~ϕ0∈G p(~aT (~̂g − ~g) > h

2 |Θ1,Θ2, ~g = ~ϕ0)p(~g = ~ϕ0)d~ϕ0

+
∑

~ϕ1∈G p(~aT (~̂g − ~g) ≤ −h
2 |Θ1,Θ2, ~g = ~ϕ1)p(~g = ~ϕ1)d~ϕ1,

where G is the set that contains all possible values of ~g.
We assume ~ϕ0 = ~ϕ and ~ϕ1 = ~ϕ + ~δ, then multiplying and

dividing p(~g = ~ϕ) + p(~g = ~ϕ + ~δ) gives

p(|~aT~εg| ≥ h
2 |Θ1,Θ2) =

∑
~ϕ∈G(p(~g = ~ϕ) + p(~g = ~ϕ + ~δ))

·[ p(~g=~ϕ)

p(~g=~ϕ)+p(~g=~ϕ+~δ)
p(~aT ~̂g > ~aT ~ϕ + h

2 |Θ1,Θ2, ~g = ~ϕ)

+ p(~g=~ϕ+~δ)

p(~g=~ϕ)+p(~g=~ϕ+~δ)
p(~aT ~̂g ≤ ~aT ~ϕ + ~aT~δ − h

2 |Θ1,Θ2, ~g = ~ϕ + ~δ)]d~ϕ.

(4)
For a given h, if ~δ is chosen to satisfy

~aT~δ = h and ~ϕ + δ ∈ G

then Eq.(4) becomes

p(|~aT~εg| ≥ h
2 |Θ1,Θ2) =

∑
~ϕ∈G(p(~g = ~ϕ) + p(~g = ~ϕ + ~δ))

·[ p(~g=~ϕ)

p(~g=~ϕ)+p(~g=~ϕ+~δ)
p(~aT ~̂g > ~aT ~ϕ + h

2 |Θ1,Θ2, ~g = ~ϕ)

+ p(~g=~ϕ+~δ)

p(~g=~ϕ)+p(~g=~ϕ+~δ)
p(~aT ~̂g ≤ ~aT ~ϕ + h

2 |Θ1,Θ2, ~g = ~ϕ + ~δ)]d~ϕ.

(5)
Now consider the detection problem defined by

H0 : ~g = ~ϕ; ~r ∼ p(~r|Θ1,Θ2, ~ϕ),
H1 : ~g = ~ϕ + ~δ; ~r ∼ p(~r|Θ1,Θ2, ~ϕ + ~δ),

with
p(H0) = p(~g=~ϕ)

p(~g=~ϕ)+p(~g=~ϕ+~δ)
,

p(H1) = 1− p(H0).
where we can find that

the values of p(~g = ~ϕ) and p(~g = ~ϕ+~δ) through the histogram
of ~g when the distribution of ~g depend on the geometry of the
indoor environments.

The suboptimal decision rule in which the parameter is
first estimated and a decision is made in favor of its ”nearest
neighbor”

Decide H0 : ~g = ~ϕ, if ~aT ~̂g ≤ ~aT ~ϕ + h
2 ,

Decide H1 : ~g = ~ϕ + ~δ, if ~aT ~̂g > ~aT ~ϕ + h
2 .

The term in square bracket in Eq.(5) is the probability of
error for this suboptimal decision scheme. It can be lower-
bounded by the minimum probability of error obtained from
the likelihood ratio test Pmin(~g = ~ϕ,~g = ~ϕ + ~δ|Θ1,Θ2).
Therefore,

p(|~aT~εg| ≥ h
2 |Θ1,Θ2) ≥

∑
~ϕ∈G(p(~g = ~ϕ) + p(~g = ~ϕ + ~δ))

·Pmin(~g = ~ϕ,~g = ~ϕ + ~δ|Θ1,Θ2).
(6)

The decision based on the likelihood ratio test is made
according to the following rule:

Decide H0 : ~g = ~ϕ, if Λ(~r(s)) > ∆~ϕ,~δ

Decide H1 : ~g = ~ϕ + ~δ, if Λ(~r(s)) ≤ ∆~ϕ,~δ.

where Λ(~r(s)) = p(~r(s)|~g=~ϕ,Θ1,Θ2)

p(~r(s)|~g=~ϕ+~δ,Θ1,Θ2)
, and ∆~ϕ,~δ = p(H1)

p(H0) =
p(~g=ϕ+~δ)

p(~g=~ϕ) .

The log-likelihood log{Λ(~r(s))} can be computed as fol-
lows

log{Λ(~r(s))} = log{
QI

i=1 p(~r(i)|~g=~ϕ,~α(i),η,σ(i))QI
i=1 p(~r(i)|~g=~ϕ+~δ,~α(i),η,σ(i))

}
=

∑I
i=1{− 1

2(σ(i))2
·∑K−1

k=0 [B(i)(k) + 2A(i)(k)r(i)(k)]}.

Given ~g = ~ϕ and Θ1, ρ
(i)
n,~ϕ(k) can be computed according to

Eq.(1). Given ~g = ~ϕ+~δ and Θ1, ρ
(i)

n,~ϕ+~δ
(k) can be computed

according to Eq.(1). And also, A(i)(k) = ρ
(i)

n,~ϕ+~δ
(k)−ρ

(i)
n,~ϕ(k),

and B(i)(k) = (ρ(i)
n,~ϕ(k))2 − (ρ(i)

n,~ϕ+~δ
(k))2.

If log{Λ(~r(s))} > log ∆~ϕ,~δ , we can decide H0 and obtain

χ < C,

where χ =
∑I

i=1{ 1
(σ(i))2

∑K−1
k=0 A(i)(k)r(i)(k)}, and C =

−∑I
i=1{ 1

2(σ(i))2

∑K−1
k=0 B(i)(k)} − log ∆~ϕ,~δ.

We note that

r(i)(k) ∼ N (ρ(i)
~ϕ (k), (σ(i))2); conditioned on H0,

r(i)(k) ∼ N (ρ(i)

~ϕ+~δ
(k), (σ(i))2); conditioned on H1,

where ρ
(i)
~ϕ (k) = ρ

(i)
n,~ϕ(k) and ρ

(i)

~ϕ+~δ
(k) = ρ

(i)

n,~ϕ+~δ
(k).

Therefore, the distribution of χ is given as follows

χ ∼ N (µ~ϕ, σ2
χ); conditioned on H0,

χ ∼ N (µ~ϕ+~δ, σ
2
χ); conditioned on H1,

where

µ~ϕ =
I∑

i=1

K−1∑

k=0

A(i)(k)ρ(i)
~ϕ (k)

E(i)
· SNR(i),

µ~ϕ+~δ =
I∑

i=1

K−1∑

k=0

A(i)(k)ρ(i)

~ϕ+~δ
(k)

E(i)
· SNR(i),

σ2
χ =

I∑

i=1

K−1∑

k=0

(A(i)(k))2

E(i)
SNR(i)

and the Signal to Noise Ratio (SNR) of the i-th base station is
defined as SNR(i) = E(i)

(σ(i))2
, where E(i) is the received energy

per pulse (after the convolution of the pulse with the impulse
response of the channel).

Finally, Pmin(~g = ~ϕ,~g = ~ϕ + ~δ|Θ1,Θ2) can be evaluated
as follows

Pmin(~g = ~ϕ,~g = ~ϕ + ~δ|Θ1,Θ2) = p(H0|H1)p(H1)
+p(H1|H0)p(H0)

= p(χ < C|H1) · p(H1) + p(χ ≥ C|H0) · p(H0)
= (1−Q(

C−µ
~ϕ+~δ√

σ2
χ

)) · p(H1) +Q(C−µ~ϕ√
σ2

χ

) · p(H0),

(7)
where Q(·) is the complementary cumulative distribution
function.

Given Θ1 and Θ2, the lower bound of ζ1 can be computed
according to Eq.(3), Eq.(6) and Eq.(7):

ζ1 ≥ ζ2 = 1
2

∫∞
0

∑
~ϕ∈G(p(~g = ~ϕ) + p(~g = ~ϕ + ~δ))

·Pmin(~g = ~ϕ,~g = ~ϕ + ~δ|Θ1,Θ2)hdh.
(8)
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Fig. 3. (a) The Ziv-Zakai lower bound of diagonal elements of R~ε. (b) The Ziv-Zakai lower bound of the non-diagonal elements of R~ε.

According to Eq.(2), the Ziv-Zakai lower bound of ζg

and ζcan be evaluated by using Monte Carlo simulations.
We can draw N5 samples of Θ1 from their corresponding
distributions. For each sample of Θ1,n5 , we can compute one
value of ζ2 according to Eq.(8) (where n5 ∈ {0, · · · , N5−1}).
Therefore, the Ziv-Zakai lower bound of ζ can be computed
as follows

ζ ≥ { 1
N5

N5−1∑
n5=0

ζ2,n5} · c2 · T 2
s .

V. NUMERICAL EVALUATIONS

The transmitted pulse f(t) is selected as the second deriva-
tive of the Gaussian function with duration Tf = 1ns that
is a typical duration of an IR-UWB pulse. The bandwidth
of the band-pass filter in the receiver is 500 MHz. The
sampling frequency is 2GHz. We use 100 channel realizations
to compute the Ziv-Zakai lower bound for IR-UWB ranging
error correlation matrix. We use IEEE 802.15.4a CM1 channel
model as the LOS channel. We use IEEE 802.15.4a CM2
channel model as the NLOS channel. The TOA of the first
path of IEEE 802.15.4a CM2 channel model is set to zero. We
use the samples of e(i) as the NLOS delay. The probability
of 0.5m ≤ e(i) ≤ 1.2m is equal to 0.7. The probability of
1.5m ≤ e(i) ≤ 2.1m is equal to 0.3. The values of all base
stations’ SNR are the same. The mobile tag is in a rectangular
room with furniture (as shown in Fig.2.)

We assume the number of the base stations is 3. Therefore,
R~ε is a 3 × 3 matrix. We denote R~ε(i, j) as the element in
i-th row and j-th column. The position of the base stations
are (x(1) = −3, y(1) = 0), (x(2) = 3, y(2) = 0) and (x(3) =
0, y(1) = 3). We assume that the channel between the 1-th
base station and the mobile tag is a NLOS channel, the other
two channels between the mobile tag and the base stations are
LOS channels.

In Fig.3(a), we show the Ziv-Zakai lower bound of the
diagonal elements of R~ε. R~ε(i, i) is the Ziv-Zakai lower bound
of the ranging error between the mobile tag and i-th base
station. We find that the Ziv-Zakai lower bound of ranging
error decreases as the SNR increases. We also find that the
Ziv-Zakai lower bounds of the ranging errors with different

base stations are different. This is due to the prior distributions
of the ranging with different base stations are different.

In Fig.3(b), we show the Ziv-Zakai lower bound of the
non-diagonal elements of R~ε. R~ε(i, j) shows the Ziv-Zakai
lower bound of the ranging error correlation between i-th base
station and j-th base station. We find that the ranging error
between the different base stations are correlated. We find that
the Ziv-Zakai lower bound of the ranging errors correlation
approximate to 0 when SNR increases.

VI. CONCLUSIONS

We have derived the Ziv-Zakai lower bound for IR-UWB
ranging error correlation matrix under a classical IR-UWB
positioning system. We present the numerical evaluations with
IEEE 802.15.4a channel model and the geometry of indoor
environments of interest. As our derived bound depends on
the geometry of the indoor environments, our bound can be
used in real environments with the channel measurements from
real environments.
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