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INTRODUCTION 

Let K be an algebraic number field with a non-trivial involution, and let A 
be the ring of integers of K. We shall study the classification, up to isometry, 
of unimodular e-hermitian forms L x L -+ A, where E = f 1. The A-module L 
is always supposed to be projective, of finite rank. 

In Section 1 we shall classify the A-modules which support a unimodular 
e-hermitian form. For instance we shall show that if E = + 1, the number of 
isomorphism classes of such modules of fixed rank is h,/h, or 2h,/h,, 
depending on whether K/F is ramified or not, where F is the fixed field of the 
involution, h, and h, being the class numbers of K and F. 

Then we shall show (Section 2) that the unimodular e-hermitian forms on 
a given rank one module are classified by U,/N(U), where U is the group of 
units of K and U,, is the group of units of F. Unfortunately, the cardinality of 
V,/N(v) is unknown in general. We shall compute #[U,/N(U)] in two 
particular cases: when K is totally imaginary and F totally real, and when K 
has odd class number. 

In the rest of the paper we shall assume that there exists an a E A such 
that 1 = a + d. This hypothesis is realized for the orders which arise in the 
knot-theoretical applications. In Section 4 we shall apply the strong approx- 
imation theorem for indefinite forms of G. Shimura, and results of C. T. C. 
Wall, to this situation. For instance, if E = fl, we shall prove that two 
indefinite unimodular hermitian forms are isometric if and only if they have 
the same rank, signatures and isometric determinants (cf. Corollary 4.10. 
The determinant is a unimodular hermitian form of rank one, see 
Definition 1.9). In many cases these forms can be diagonalized (see 
Proposition 4.11.2 and 4.11.3). In general if (L, h) is a unimodular, indefinite 
hermitian form then (L, h) z (L,, h,) i a.. I (L,, h,) with rank(L,) < 2. 
(Proposition 4.11.1). For E = -1 such a splitting is in general only possible 
with rank(L,) < 4 (see Proposition 4.12). 
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The classification is particularly simple if no real embedding of F extends 
to an imaginary embedding of K (i.e., there are no signatures). 

In this case, if (L, h) is a unimodular hermitian form then (Z,, h) z 
Cl)1 ... I (1) I (M, g), where (M, g) g det(L, h) is a rank one form. 

This can be proved without using the strong approximation theorem of 
G. Shimura if rank(l) > 3 (see Section 3). 

We shall apply our results to isometric structures in Section 5 and to knot 
theory in Section 6. 

1. MODULES WHICH SUPPORT UNIMODULAR HERMITIAN OR 
SKEW-HERMITIAN FORMS 

Let K be an algebraic number field with a non-trivial Q-involution x + 2. 
Let F = {x E K such that X = x} be the fixed field of this involution. Let A be 
the ring of integers of K, and let A, be the ring of integers ofF. We shall 
denote C,, C, the corresponding ideal class groups. 

Let L be a torsion-free A-module of finite rank, and let h: L x L -+ A be an 
s-hermitian form, where E = + 1 or -1. 

DEFINITION 1.1. We shall say that h: L x L -+ A is unimodular if and 
only if 

ad(h): L -+ Horn, (L, A), 

x E-+ h( , xl, 

is bijective. 
Let L = I, e, @ f. - @ Inen, where the Zi)s are A-ideals. The Steinitz class 

of L is the ideal class of Z = I, . . . Z, in C,. 

It is easy to check that h: L x L -+ A is unimodular if and only if 

aZr= A, 

where 
a = det(h(e,, ej)i,j). 

(The proof is similar to [23,82:14]). 
We shall consider the following problem: Which A-modules L support a 

unimodular s-hermitian form h: L x L -+ A? We shall see that the answer is 
different for E = + 1 and E = -1. 

The Hermitian Case 

Let N: C, + C, be the norm map (see, for instance, [ 19, Sect. 26 ] for the 
definition). 
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We shall say that K/F is unramiJied if no prime of F, finite or infinite, 
ramifies in K. We say that K/F is ramiJied otherwise. 

PROPOSITION 1.2. (1) L supports a unimodular hermitian form if and 
only if the Steinitz class of L is in Ker(N). 

(2) If K/F is ram$ed, then N is surjective. 

(3) If K/F is unramljied, then Coker(N) z 2122. 

ProoJ (1) (Note that (1) is also proved in [ 19, Sect. 261.) Assume that 
L supports a unimodular hermitian form h: L x L -+A. Let I and a be as in 
Definition 1.1. Then aIi= A, so aN(I) = A,,. Therefore the Steinitz class of 
L is in Ker(N). Conversely, suppose that aN(Z) = A,, for some a E F. The A- 
module L is isomorphic to M = IfI 0 Afi @ a-S @ Af,. It suffices to show 
that M supports a unimodular hermitian form. Let 

h(fo fj> = 0 if i#j, 

= 1 if i=j#l, 

=a if i=j=l. 

Then det(h(fi, f;.)ij) = a. We have A = aN( = aI& therefore h: M x M -+ A 
is unimodular. 

(2) Let HO be the Hilbert class field of F. We are assuming that K/F is 
ramified, so H, n K = F. Now [ 17, Lemma, p. 831 gives the desired result. 
By Galois theory we have the exact sequence 

Gal(H/K) f, Gal(H,/F) - Gal(K/F) ---+ 1. 

The Artin symbols induce isomorphisms 

8: C, --f Gal(H/K), 

0,: C, -+ Gal(H,/F), 

(cf. [ 161) and it is straightforward to check that the diagram 

c, --% c, 
8 
I I 80 

Gal(H/K) f. Gal(y,/F) 

commutes. Gal(K/F) E 2122, therefore we get the exact sequence 

c,rc,32/22-+ 1. 
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COROLLARY 1.3. Let h, = #C,, h, = #C,. 
The number of isomorphism classes of torsion free A-modules of rank n 

which support a unimodular hermitian form is 

h, 
IF 

2 . h, 

h, 

if K/F is ramified, 

ifK/F is unramtjied. 

The Skew-Hermitian Case 

Over the number field K, there is a bijection between nonsingular 
hermitian and non-singular skew-hermitian forms. Indeed, there exists a non- 
zero element ,U of K such that ,~7 = -,u, and multiplication by ,U gives the 
desired bijection. 

Similarly, if there exists a rank one unimodular skew-hermitian form, then 
tensorisation with this form gives a bijection between unimodular hermitian 
and unimodular skew-hermitian forms of given rank. Therefore we shall 
begin by investigation the existence of such a rank one form. N. Stoltzfus has 
solved a similar problem in [27]. We shall use some of the techniques he 
developed. (C. Bushnell has also results for a similar problem, see [ 71). 

DEFINITION 1.4. Assume that K/F is unramified. Let U be the group of 
units of A. Let u E U such that uk= 1. By Hilbert’s Theorem 90 there exists 
an x in K such that u =x(Z)-‘. Set 

SC(U) = 11 (-l)“@)# 
P inert 

This gives a well-defined homomorphism 

SC: H’(Z/2L, U) -+ L/22 

(cf. [ 27, p. 481). 
Let A be the dtflerent of K/F. 

LEMMA 1.5 [27,p. 52-533. Suppose that either K/F is ramified, or K/F 
is unramtfted and Sc(-1) = 1. Then there exists a y E K’, yL= -y, and an A- 
ideal M such that 

yMfi=A. 

PROPOSITION 1.6. There exists a rank one skew-hermitian form $ and 
only tf K/F verifies one of the following: 

(a) K/F is ramified and A = J2 for some A-ideal J. 

(b) K/F is unramtj?ed and Sc(-1 ) = 1. 
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Proof: Suppose that there exists a rank one skew-hermitian form; i.e., 
there exists an element a E K’ with ti= -u, and an A-ideal I such that 

aIf= A. 

(a) Suppose that K/F is ramified. Let y, M as in Lemma 1.5: 
yMa = A. Therefore we have 

A = (ya)(ZM)(E) 

and @ = yu. If P is a prime ideal such that v,(A) # 0, then P is ramified (cf. 
[ 16, III, Sect. 2, Proposition 81). In particular, P= P. Therefore if P divides 
Z/r, then P also divides ?%?. On the other hand, ya E F, so v&a) must be 
even as P is ramified. Therefore A = J* for an A-ideal J. 

(b) Suppose that K/F is unramified. Notice that U,,(U) is even for 
every inert prime P, because aZr= A. Therefore 

sc(-+ 11 (-I)+(~) = I. 
P inert 

Conversely, if either (a) or (b) is satisfied, then A = J’ (with J = A in the 
unramified case), and by Lemma 1.5, A = yMi%? with jr= -7. Therefore 
y(MJ-‘)(MJ-‘) = A, and 

B: (MJ-‘) x (MJ-‘) + A 

(x9 Y> -+ YXY 

is a unimodular skew-hermitian form of rank one. 
Suppose that either (a) or (b) of Proposition 1.6 is satisfied. 
Then there exists a rank one unimodular skew-hermitian form B. The 

tensor product of a unimodular c-hermitian form of rank n with B is a 
unimodular (-e)-hermitian form of rank n. Therefore we have: 

COROLLARY 1.7. For every positive integer n there exists a bijection 
between hermitian unimodular forms of rank n and skew-hermitian 
unimodular forms of rank n. 

This bijection can be given by the form B: (MJ-‘) x (MJ- ‘) 4 A which is 
described at the end of the proof of Proposition 1.6. 

Let L be an A-module of rank n and let I be a representant of the Steinitz 
class 0fL. 

Set f= Z(MJ-I)“. 

COROLLARY 1.8. L supports a unimodular skew-hermitian form if and 
only if the ideal class of? is in Ker(N). 
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Note that the number of isomorphism classes of such modules is given by 
Corollary 1.3. 

DEFINITION 1.9 (cf. [ 14, p. 6671). Let h: L x L -+A be an s-hermitian 
form of rank n. The determinant of (L, h) is the rank one (.s)“-hermitian 
form 

det(L,h):A”L xA”L+A 

det(L, h)(x,A . . . Ax,, y,A ... Ay,) 

= det(h(xi, Yj)i,j) 

(where A “L is the nth exterior power of L). 
Note that if (L, h) is unimodular, then so is det(L, h). Isometric forms 

have isometric determinants. The determinant of an orthogonal sum is the 
tensor product of the determinants: 

det { (L, h) 1 (L’, h’)} = det(L, h) @ det(L’, h’). 

Suppose that neither (a) or (b) of Proposition 1.6 is satisfied: 
Then all unimodular skew-hermitian forms have even rank: indeed, the 

determinant of a unimodular skew-hermitian form of odd rank is a rank one 
unimodular skew-hermitian form, and such a form does not exist in this case. 

Let p E K’ such that p = -p. Then K = F(p). Let B = p*. Let P be a prime 
ideal of F. We shall denote ( , lP the Hilbert symbol. 

Let F = {x E F’ such that (x, Q, = 1 if P is unramitied, and if P is finite 
non-dyadic ramified} (a prime P is dyadic if N,,,(P) is even). 

PROPOSITION 1.10 (Levine, [ 19, Lemma 24.3 and Theorem 25.11). Let L 
be an A-module of even rank. There exists a unimodular skew-hermitian 
form h: L x L + A if and only if there exists an a E F” such that all= A, 
where I is a representant of the Steinitz class ofL. 

Let us consider 

where aIi= A. 
It is easy to check that 4 is well defined. 
Let 7~: F’ -+ F’/U,N,,,(K’) be the projection. 
Let k = ##), m = #(C,/Cg), where 

Cg = {c E C, such that F= c). 
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COROLLARY 1.11. The number of isomorphism classes of A-modules of 
given even rank which supports a unimodular skew-hermitian form is k . m. 

ProoJ: Let X be the set of Steinitz classes of A-modules L of rank 2n 
such that L supports a unimodular skew-hermitian form. Proposition 1.10 
implies that 

X = {c E C, such that there exists I E c with aIF= A 

for some a E P}. 

We have Xc Ker(N). 4: X+ rr(F”) is onto by [ 19, Lemma 24.31. 
We have the exact sequence: 

Therefore it suffices to prove that #Ker($) = m. 
An ideal class which is in Ker(4) can be represented by an ideal Z such 

that Zf = A. Then I = Jj- ’ for some A-ideal J. We have the exact sequence: 

1 -+ Cz + C, -+ Ker($) + 1 

[J] H [J.?]. 

2. CLASSIFICATION OF RANK ONE UNIMODULAR E-HERMITIAN FORMS 

In the preceding section we have seen which A-ideals support a 
unimodular s-hermitian form. Now we want to classify the unimodular E- 
hermitian forms on a given ideal. 

Let Z be an A-ideal and let hi: I X Z + A, hi(x, y) = a,xy; i = 1,2 be two 
unimodular s-hermitian forms. Then a1 Zf= a, I?= A, therefore u = 
a, a; ’ E U,, where U, is the group of units of A, (we have U = u because 
a, = &a,, a, = &a*). Let U be the group of units ofA. An isomorphism 
f: I-+ Z is given by multiplication with an element v E U, and f is an 
isometry between h, and h, if and only if a, = N(v) e a,, where N(v) = vV. 

Therefore h, and h, are isometric if and only if u = N(v) for some v E U. 
So we have proved: 

PROPOSITION 2.1. The set of isometry classes of unimodular c-hermitian 
forms h: I x Z + A (for Z jixed) is in bijection with, 

UolN u>, 

where N(U) = (uii, u E U}. 
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EXAMPLE 2.2. Let K= a(@) be a quadratic field. Then U, = 
{+I, -I}, so #[U,/N(U)] is 1 or 2. It is easy to check that if D < 0, then 
# [ U,,/N(U)] = 2. For D > 0 both cases are possible. 

We are going to compute the cardinality of U,,/N(U) in two cases: 

PROPOSITION 2.3. Let d = [F : Q]. If every injXte prime of F ramifies in 
K (i.e., K is totally imaginary and F is totally real), then 

#[~oIW)l = zdlQ 

with Q = 1 or 2. 

Proof. Let p be the group of roots of unity in K. If <E p, then r= <-I. 
Indeed, this is clear if i= fl. If c= fl, then r# [ because the fixed field F 
is totally real. Consider a complex embedding of a(<). Then the images of < 
and of [are inverse to each other, therefore f= c-‘. 

Conversely if u E U such that uf = 1, then u E ,u. Indeed, U and U, have 
the same rank by the theorem of Dirichlet [24, 4.4 Theoreme 11. So there 
exists an integer k such that u’( E U,. Therefore (uU)” = uzk = 1, so u E ,u. 
We have: 

We have [U, : Vi] = 2d by the theorem of Dirichlet. 
Let Q = [N(U) : Ui]. We want to show that Q = 1 or 2. We have seen that 

N(U) = 1, therefore Q = [U : ,u . U,,]. 
Let us consider (p: U-+ U, p(u) = z&-l. Then q(U) is contained in ,u. 

Indeed, if v E q(U) then N(v) = 1 and we have seen that this implies v E pu. 
Clearly [cl : rp(u)] . [p(U) :p*] = 2. 
But Q = [q(U) : ,u*], therefore Q = 1 or 2. 

Remark 2.4. Suppose that a non-dyadic finite prime of F ramifies in K. 
Then Q = 1. It suffices to show that p #q(U). We shall prove that 
-1 @ p(U). Indeed, if -1 E q(U), then there exists u E U such that f = -u. 
Then K = F(u). The discriminant of K/F divides the discriminant of u which 
is 4u2. Therefore K/F has no non-dyadic finite ramified primes, which 
contradicts our assumption. 

EXAMPLE 2.5. Let K = ~(I&J, where c, is a primitive mth root of unity. 
Then Q = 1 if m = pk or 2 . pk, p prime, and Q = 2 otherwise (cf. [ 17, 
Chap. 3, Theorem 4. I]). 
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Therefore the number of isometry classes of unimodular s-hermitian forms 
on a given ideal is 

2d if m = pk or 2 . pk, 

2d-1 otherwise, 

where 2d = [K : a]. 

Let r be the number of finite primes, and s the number of infinite primes of 
F which ramify in K. 

PROPOSITION 2.6. Suppose that K has odd class number. Then 

#[U,/N(U)] = 2’+“-’ ifK/F is ramiJied 

= 1 ifK/F is unramified. 

Proof. This proof is based on an idea of P. Schneider, and is inspired by 
a note of K. Iwasawa [12]. 

We have U,/N(U) zH(Z/2Z, U) (cf. [8, p. 108, Theorem 51). Let us 
denote G = Z/22 in order to simplify the notation. 

Let J be the id&e group of K (see e.g. [ 161 for the definition), P the prin- 
cipal ideles and C = J/P the id&e class group. 

Let E be the group of idile units (i.e., E is the kernel of the canonical 
homomorphism of J onto the group of ideals ofK). We have the exact 
sequence 

l-+ PE/P-, J/P+J/PE-, 1. 

JfPE is isomorphic to C,: the ideal class group of K, and PE/P z E/U (cf. 
[ 121, Section 3). 

Therefore we have: 

l-,E/U+C+C,-+ 1. 

We are assuming that the cardinality of C, is odd, therefore 

H’(G, C,) = H’(G, C,) = 1. 

(1) 

By a theorem of Tate, we have H’(G, C) = 1, H*(G, C)Z G (cf. [8, 
p. 178, Theorem 8.3, and p. 180, Theorem 9.1 I). 

The cohomology exact sequence associated to (1) gives 

H’(G, E/U) = 1, H*(G, E/y) g G. 

Let us consider the cohomology exact sequence associated to 
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we have: 

1 -+ H’(G, U) -+ H’(G, E) + G 

-H’(G, U)+H’(G,E)+ 1. 

Let us compute H2(G, E). 

(2) 

Let R be the set of finite primes of F which ramify in K, and let S be the 
set of infinite primes of F which ramify in K. For P, E R U S, let P be the 
prime of K above PO, Let us denote Fp, the completion of F at P,, and K, 
the completion of K at P. If P, E R, let UP, respectively UP the group of units 
in Fp, respectively K,, . 

Let E, be the group of id&e units of F. 
We have 

(see for instance [ 16, IX, Sect. 3, Lemma 4]), and clearly 

# &&,I~~JKP) 1 = 2 if P, E S. 

Therefore we have 

#H’(G, E) = 2’+“. 

If K/F is unramified then r = s = 0, therefore (2) implies #H’(G, U) = 1. 
If K/F is ramified, (2) gives 

1 -+ H2(G, U) -+ H2(G, E) + G. 

But by Hilbert reciprocity 

H2(G, U) -+ H2(G, E) 

cannot be surjective if r # 0 or s # 0. 
Therefore we have 

1 -+H’(G, U)-,H*(G,E)-tG+ 1, 

so #H2(G, U) = 2’+“-‘. 
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Remark 2.7. (1) We have 

#H*(VZ, u) = 2s-, 
#H’(Z/Z U) 

(see [5, Lemma 3.11). Therefore #[U,/N(U)] > 2’-‘. 

(2) Let k, be the number of real embeddings, and 2k, the number of 
imaginary embeddings ofF. Then Dirichlet’s theorem implies that 
#[U&] = 2kl+k * (see, for instance, [24, 4.4 Theoreme 1 I). 

As U,, c N(U), we obtain: 

#[U,/N(U)] < 2kl+kz. 

3. ISOTROPIC FORMS 

The aim of this section is to prove the following: 

PROPOSITION 3.1. Assume that there exists an a E A such that 
1 = a + 6, and that no infinite prime of F ramifies in K. 

Let (L, h) be a unimodular hermitian form, with rank,(L) 2 3. Then 

&h)=(l)1 .*. 1 (l)l (M g) 

where (M, g) = det(L, h) is a rank one form. 

(See Definition 1.9 for the definition of the determinant.) 
It follows immediately from Proposition 3.1 that 

COROLARY 3.2. Let K/F be as in Proposition 3.1. Then unimodular 
hermitian forms of rank >3 are classtjied by rank and determinant. 

The corresponding result for skew-hermitian forms is 

PROPOSITION 3.3 (A. Bak and W. Scharlau). Let K/F be as in 
Proposition 3.1. Let (L, h) be a unimodular skew-hermitian form of rank 2m. 
Then 

(L, h) z IH”-’ L IH(Z) 

where I is an A-ideal. 

(See Definition 3.6 for the definition of IH and lH(1).) 
If there exist unimodular skew-hermitian forms of odd rank, then there 

exists a bijection between unimodular hermitian and unimodular skew- 
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hermitian forms of given rank (see Corollary 1.7), therefore we can apply 
Proposition 3.1. 

Remark. (1) The hypothesis 1 = a + c for some (r E A is satisfied for 
the orders A arrizing from the knot-theoretical applications (see Sections 5 
and 6). 

(2) In Section 4 we shall give another proof of Proposition 3.1 using 
the Strong approximation theorem of G. Shimura. The proof we give in 
Section 3 only uses the ordinary strong approximation theorem for ideals, 
and Landherr’s theorem. 

DEFINITION 3.4. Let V be a finite dimensional K-vector space, and let 
h: V x V-1 K be a non-singular hermitian form. Let e, ,..., e, be a basis of I’. 
The discriminant of (V, h) will be the class of det(h(e,, ej)ij) in F’/N,,,.(K’), 
where NKIF(x) = xX. 

Let P be a prime of F. Let Fp be the completion of F at P, and K, = 
Fp 0 K. We shall denote (V, h)p the tensorisation of (V, h) with K,. 

If P is an infinite prime of F which ramifies in K, then Fp = R and 
Kp = 6. We shall denote o, the signature of (V, h)p. 

Let ,O E K’ such that ,LI= -,u. If h: V x V-+ K is a non-singular skew- 
hermitian form, then we define d, up as the discriminant and signatures of the 
hermitian form (V, ,U . h). 

Let B = ,u* E F’. If P is a prime of F, we shall denote ( , )p the Hilbert 
symbol. 

LEMMA 3.5 (Landherr’s Theorem, cf. [ 151). Two nun-singular E- 
hermitian forms h: V x V+ K, g: W x W+ K are isometric if and only if 
they have the same dimension, discriminant and signatures. 

Let P, ,..., P, be the infinite primes of F which ramify in K. There exists a 
non-singular e-hermitian form of dimension n, discriminant d and signatures 
u1 ,..., uS if and only if 

(d, ~9)~~ = (-l)(n-oi)‘2, i = l,..., s. 

Assume that no infinite prime of F ramifies in K. Then there are no 
signatures, and Landherr’s theorem implies that non-singular s-hermitian 
forms are classified by dimension and discriminant. 

Let (V, h) be a non-singular s-hermitian form of dimension n > 3, and of 
discriminant d. Let (W, g) be an s-hermitian form of dimension n - 2 and 
discriminant (-d). 

Then (V, h) is isometric to the orthogonal sum of (W, g) with a hyperbolic 
plane (i.e., a 2-dimensional form given by the matrix (9 A).) 
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Therefore (V, h) represents zero. If h: Z, x L -+ A is an e-hermitian form 
such that (L, h) @ K = (V, h), then clearly (L, h) also represents zero. 

Therefore we shall begin by recalling some definitions and lemmas 
concerning forms which represent zero. 

DEFINITION 3.6. (1) An s-hermitian form h: L x L +A is isotropic if 
there exists an x in L such that h(x,x) = 0. We shall say that x is an 
isotropic vector. 

(2) Let Z be an A-ideal. We shall denote IH(Z) the s-hermitian form 

h: (Ze@f-‘f)X (Ze@F’f)+A 

such that 

h(e, e> = KL f> = 0, 

h(e, f) = 1. 

If Z = A, we shall write IH instead of IH (A). 

(3) An s-hermitian form h: L x L +A is even if there exists a 
sesquilinear form g: L x L -+ A such that h(x, y) = g(x, y) t eg(x, y). 

For instance IH(Z) is even. 

Remark 3.7. If there exists an a E A such that a + E = 1, then every E- 
hermitian form is even. This is clear for E = + 1. For E = -1, note that if 
5 = -u then a = au - (au). 

The following lemma is well-known (see for instance [9]): 

LEMMA 3.8. Let h: L x L + A be an isotropic, even, unimodulur E- 
hermitian form. Let x E L 0 K be an isotropic vector, and let Z = (A E K 
such that A . x E L}. Then IH(Z) is an orthogonal summand of (L, h). 

Proof Let V = L @ K. Set x, = x, I, = Z, and let x2 ,..., x, E V such that 
L=Zx,@ *a. @ Z,,x,, where I, ,..., I, are A-ideals. 

Let Y, Y..,- n y be the dual basis of x, ,..., x,. Let L# = {v E V 1 h(v, L) E A }. 
Then L# = ZZ’y, @ ..a @ f;‘y, (the proof is as in [23,82F]). 

As (L, h) is unimodular, L = L”. Therefore Ix @ IPly, is contained in L. 
Now h(y, , y,) = p + ED for some /3 E A because h is even. 

Let y = y, - px. Then h(y, y) = 0, therefore the restriction of h to 
Ix @ Z- ‘y is isometric to IH(Z). Clearly lH(Z) is unimodular, so it is an 
orthogonal summand of (L, h). 

LEMMA 3.9 (A. Bak and W. Scharlau, [ 1, Lemma 7.21). Zf ZJP1 is a 
product of inert primes and of ideals of the form PP, then lH(Z) and lH(J) are 
isometric. 
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Remark. The isometry relations between hyperbolic forms are 
completely worked out in [ 11, and also in [6], in a more general situation. 

Note that the proof of Lemma 3.9 only uses the strong approximation 
theorem for ideals, (23, 2 1:2 1. 

PROPOSITION 3.10. Let (L, h) be an even, isotropic, unimodular 
hermitian form of rank 3. Then IH is an orthogonal summand of (L, h). 

COROLLARY 3.11. The isometry class of (L, h) is completely determined 
by det(L, h). 

Proof of Proposition 3.10. Let e, be an isotropic vector, and let I = 
(1 E K such that Ae, EL]. By Lemma 3.8 there exists another isotropic 
vector e, such that lH(I) = Ze, @ f-‘e, is an orthogonal summand of (L, h), 
say 

(L, h) z IH(I) I Je, . 

CLAIM. Let P be a prime ideal of odd norm such that p f P. Then IH (IP) 
is an orthogonal summand of (L, h). 

This claim implies the proposition. Indeed, by the strong approximation 
theorem [23,21:2] we may assume that I-’ c A, has odd norm, and that no 
ramified prime divides I- ‘. 

Therefore I- ’ = M . N, where M is a product of prime ideals satisfying the 
hypotheses of the claim, and N is a product of inert primes. Applying the 
claim several times we see that IH(N-‘) is an orthogonal summand of (L, h). 
By Bak-Scharlau (see Lemma 3.9) we have lH(N-‘) g IH, as N is a product 
of inert primes. 

Proof of Claim. If x E K, we shall denote (x) the principal A-ideal which 
is generated by x. 

Let xi E K such that (x; ‘) n A = P. This is possible by the strong approx- 
imation theorem. 

Let p be a non-zero element of A such that ,C = -p. We have 

with a, /I, y, J&4,. 
As Pz~, we have a#O, y#O. 
Using the strong approximation theorem we may assume that I and J 

relatively prime to P, to (/I), that 1-i CA, JC A and that I and J are 
relatively prime. 
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Let a = h(e,, e3) and set 

x2 = -/?a/2a 

Direct computation shows that x = x’ e’ + x2 e, + e3 is an isotropic vector. 
Let 

I,=KxnL 

then 

= {(x, e, + x2e2 + e3) . m such that 

x,mEI,x,mEf-‘,mEJ} 

I,I-’ E (x;‘)nx;‘I-‘f-‘nJI-‘. 
We have JI-’ CA, therefore 

z,I-I g ((x;l)nA)n (x;‘z-‘J--l nA)nJI-1. 

We have: 

because 

and 

so 

x;‘I-‘i-’ nA c (l/a) I-‘f-’ c Jr’ 

(l/a)/4 = Jjc J 

z-If-1 =I-’ 

I,I-’ zPn (~;~I-‘f-l nA) 

(recall that (x; ‘) n A = P). 
Now, P and x;‘l-‘i-’ nA are relatively prime. To see this, it suff’ces to 

prove that u,(x;‘) < 0. 
We have: 

&.(x;‘) = b2s2 a2g _ p2py ’ 

N,,,(x, ‘) = 4a2 p’a” 

Let P,=PnA,. 

481/14/2-S 



356 EVA BAYER 

We have: v,JN(x; ‘)) = 1, because N&P) = P,. 
As ~,~(iV(x;‘)) = 1, ~,~(a*6* -,~*/?*y*) is odd. 
Therefore ~,~(a*6*) = up0@*~*y2) (note that P, is not ramified, therefore 

u~,(,u*) is even), and 

We have v,,~(P*S*) = v,&a*6* -,u*~*y*) + 1, therefore 

b,(P2) + b,@*) > b&a*) + q)(J2) + 19 

so 
up@*) > b,(a*). 

~,~(a) = 0 by assumption, therefore u,~(x; ‘) < 0. 
Set M = (x;‘Z-If-’ n A). We have just seen that P and M are relatively 

prime, so Z,Z-’ z Pa M. 
Therefore IH(ZPM) is an orthogonal summand of (L, h) (see Lemma 3.8). 

But M is a product of inert primes and of ideals of the form QQ. Therefore, 
by Bak-Scharlau (Lemma 3.9) we have IH(ZPM) g IH(ZP). 

Proof of Corollary 3.11. This follows immediately from Proposition 3.10, 
noting that det(lH) = (-l), and that the determinant of an orthogonal sum is 
the tensor product of the determinants (see Definition 1.9). 

Proof of Proposition 3.1. Let rank,(l) = 3. Consider the lattice (ZV, f) = 
(1) 1 (1) 1 @et& h)). 

By the discussion following Lemma 3.5 (I., h) and (N, f) are both 
isotropic. By Remark 3.7, (L, h) and (N, f) are both even. Clearly 
det(N, f) = det(L, h). Therefore by Corollary 3.11, (L, h) and (ZV, f) are 
isometric. This proves Proposition 3.1 for rank,(l) = 3. 

Suppose rank,(L) > 3. We shall prove that (1) is an orthogonal summand 
of (L, h), and then continue by induction. 

As in the case rank,(L) = 3 we see that (L, h) is isotropic and even. By 
Lemma 3.8 there exists an A-ideal Z such that IH(Z) is an orthogonal 
summand of (L, h). By the strong approximation theorem we may assume 
that no ramified ideal divides 1. By Lemma 3.9, we may assume that if P 
divides Z, then p does not divide I. Then we see that IH(Z) is isometric to the 
hermitian form (ZV, g) = (Ae @I If-IA ee = 1, fl = -1, ef = 0). 

Indeed, let x = e + f. Then {A E K such that Ix E (Ae 0 Zr-‘f)} = 
AnIf-‘=I. 

As (ZV, g) is even, Lemma 3.8 implies that (IV, g) 2 IH(Z). 
Clearly (1) is an orthogonal summand of (N, g). Therefore (1) is an 

orthogonal summand of (L, h). 

Remark 3.12. Note that the last part of the above proof implies that if 
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1 = a + di for some a EA and if E = +l, then IH(Z) z IH(.Z) if and only if 
det(lH(Z)) z det(lH(J)). 

For the proof of Proposition 3.3 we shall need the following remark: 

Remark 3.13. If there exists a E A such that a + d = 1, then no dyadic 
prime of F ramifies in K. Indeed, the minimal polynomial of a over F is 
X2 -X + aa, so the discriminant of a is d = 1 - 4aE. The discriminant of 
K/F divides d, and d has odd norm, therefore no prime of even norm of F 
can ramify in K. 

Proof of Proposition 3.3. Let V = L OK, and let e,,..., e,, be a basis of 
V. Set a = det(h(e;, ej)ij) E F’. Then (a, 8), = +l if P is unramitied or finite 
non-dyadic ramified (see [ 19, Lemma 24.31, or [31, Proposition 61). We 
have no infinite ramified primes, and Remark 3.13 implies that there are no 
dyadic ramified primes. Therefore (a, f?), = +l for every prime P. So 
a E NKIF(K’) by the Hasse cyclic norm theorem, [23,65:23]. 

By Landherr’s theorem (Lemma 3.5) this implies that (V, h) is hyperbolic 
(recall that there are no signatures). Therefore (L, h) is also hyperbolic: 
(L, h) z IH(Z,) I . a. I IH(Z,) (apply Lemma 3.8 several times). Then 121, 
Theorem 7.1) gives the desired result. 

4. INDEFINITE FORMS 

In this section we shall assume that there exists an a E A such that 
a + a = 1. The orders arising from the knot theoretical applications satisfy 
this hypothesis (see Sections 5 and 6). We shall apply results of G. Shimura 
and C. T. C. Wall to this situation. 

We have seen in Section 3 that the hypothesis 1 = a + 6 with a E A 
implies that no dyadic prime of F ramifies in K, and that every s-hermitian 
form h: L x L +A is even (see Remarks 3.7 and 3.13). 

Let P be a prime of F. Let Fp be the completion of F at P, and let K, = 
F, 0 K. We shall use the notation (V, h) for non-singular e-hermitian forms 
h: V X V+ K, where V is a finite dimensional K-vector space. We shall 
denote (V, ZZ)~ the tensorisation of (V, h) with K,. A lattice L in (V, h) will 
be a torsion-free A-module of finite rank such that L aA K = V, and such 
that the restriction of h to L is A-valued and unimodular. 

DEFINITION 4.1. (V, h) is definite if for every infinite prime P of F we 
have: 

(a) P ramifies in K; 

(b) (V, h)p is anisotropic. 

(V, h) is inde$nite otherwise. 
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DEFINITION 4.2. Let L, M be two lattices in (V, h). We shall say that L 
and M are in the same genus if for every prime P of F there exists an 
automorphism v,, of (I’, /z)~ such that vp(Lp) = Mp. If det(rC/,) = 1, then L 
and A4 are in the same SU-genus. 

LEMMA 4.3 [31, Proposition 61. Let L and M be two lattices in (V, h). 
Then L and M are in the same genus. 

Remark 4.4. For this lemma the hypothesis that no dyadic prime of F 
ramifies in K is essential. When applying results of [31], note that (with our 
hypothesis) for E = +I there are no “bad primes,” and for E = -1 the “bad 
primes” are exactly the finite primes of F which ramify in K (cf. 13 I, 
p. 433-4341). 

LEMMA 4.5. Let (V, h) be indefinite, dim(V) > 2. Let L and N = N, I N, 
be lattices in (V, h) such that rank(N,) > 1. Then N, is an orthogonal 
summand of L. 

Proof: The following argument has been used by L. Gerstein [ 10, p. 412, 
(V)]. By Lemma 4.3, L and N are in the same genus. So or every prime P of 
F there exists an automorphism vp of (V, h)p such that wp(Lp) = Np. Let 
p, = det(y/,), then p, . K = 1. We have /I, = 1 for almost all P. 

Let W= N, @ K, and let g be the restriction of h to W. There exists an 
automorphism #p of ( W, g)p such that det@,) = 8; ‘. 

Let M be the A-lattice in W suchq that 

M, = hV2P) if PPfl, 

=NZP if ppo,= 1 

(cf. [ 23, 8 1: 141, noting that Mp = Nzp for almost all P). 
Then N, I M is in the SU-genus of , therefore by the strong approx- 

imation theorem of Shimura [26, Theorem 5.191, N, I M and L are 
isometric. 

We have seen in Section 1 that if there exist unimodular skew-hermitian 
lattices of odd rank, then the classification of hermitian and skew-hermitian 
lattices is the same. Therefore we shall only consider the cases E = +l and 
E = -1, rank, (~5) even. 

Recall that p E K’ is such that ,U= -p, C?=,U’, and that ( , )p is the 
Hilbert symbol. 

LEMMA 4.6 (19, Lemma 24.31 or [31, Proposition 6)). Let (V, h) be a 
non-singular c-hermitian form of discriminant d. 
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F = +l. (V, h) contains a unimodular lattice if and only tf 

(d, O), = +I 

for every prime P of F which does not ramtijjy in K. 
E = -1, dim(V) = 2m. (V, h) contains a unimodular lattice tf and only tf 

(d, Q = +l for every prime P of F which does not ramify in K, and if 
(4 @)p = C-1, G’ f or every j%ite prime P of F which ramifies in K. 

COROLLARY 4.7. Let L be an indefinite, unimodular lattice in (V, h) and 
let Mbe a unimodular lattice in (W, g). 

Assume that dim( IV) < dim(V), and that (W, g)p is an orthogonal 
summand of (V, h), for every infinite prime P of F which ramifies in K. Then 
M is an orthogonal summand of L. 

Proof. By Landherr’s theorem (W, g) is an orthogonal summand of 
(V, h): (V, h) = (W, g) I (U, f). Lemma 4.6 implies that (U, f) also 
contains a unimodular lattice, say M’. Apply Lemma 4.5 with N, =M, 
N, = M’. Let C, be the subgroup of C, which consists of the ideal classes 
containing ideals Z such that I= I. 

Let g: C, -+ C, be the homomorphism which is induced by the extension 
of ideals. 

PROPOSITION 4.8. (V, h) as in Lemma 4.6, indefinite, dim(V) > 2. The 
number of isometry classes of unimodular lattices in (V, h) is 

(1) #(C&J q-e = +1, 

(2) #(CKMC,>> if 6 = -1. 

Remark. If dim(V) is odd, then Proposition 4.8 follows immediately 
from 126, Theorem 5.24(i)] and from Lemma 4.3. 

Proof of Proposition 4.8. Let L be a unimodular lattice in (V, h). For 
every prime ideal P of F, set E,, = {x E A, such that x2 = 1 }, and let E, be 
the set of det(W), where w: V,, -+ VP is an automorphism of (V, h), such that 
v/(L,) = L,. Clearly E, only depends of the genus of L. As (V, h) contains 
exactly one genus of unimodular lattices (cf. Lemma 4.3), E, depends only 
of (V, h). 

We have E,, = E, if P is unramified (see [26,5.22]). Following [26, 5.221 
we shall say that a ramified prime ideal P is irregular if E,, # E,. We shall 
denote Y the product of the factor groups E,,/E, ‘for all irregular prime 
ideals P. Let x be an element of K such that xf = 1. We shall denote f (x) the 
element of Y whose components are the cosets xE,. Let X be the group of A- 
ideals Z such that Zf= A, and let X,, = {aA, a E K’ such. that aa= 1) c X. 
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(1) Let E = + 1. Then there are no irregular prime ideals. Indeed, let P 
be a finite prime of F which ramifies in K. By Remark 3.13 P is non-dyadic. 
Then (L, /z)~ can be diagonalized (cf. [ 13, Proposition 8.l.a]). Let A, . e be 
an orthogonal summand of (L, h),, and let M be the orthogonal complement 
ofA,* e. Let xEE,,. Then x is a unit of A,. Let us define IJE L, + L, by 
w(e) = xe, and w(m) = m if m E M. Clearly v/ extends to an automorphism 
of (V, h)p, and w(L,) = L,. We have det(y/) = x, so x E E,. This implies 
that E,, = Ep. (Notice that we have used an argument of [31, p. 4331.) 

Therefore [3 1, Proposition 5.27(i) and (iii)] imply that the set of isometry 
classes of unimodular lattices in (V, h) is in bijection with X/X,. 

Let cp: C,/C, -+ X/X0 be the homomorphism which is induced by q(J) = 
.fJ-I. It is easy to check that q~ is an isomorphism. (Note that if II= A, then 
there exists an A-ideal J such that Z = JJ- ‘. This implies that v, is onto.) 

(2) Let E = -1. Let P be a finite prime of F which ramifies in K. Then 
P is irregular. Indeed, by Remark 3.13 P is non-dyadic. Then 13 1, p. 434, 
“bad tame case”] implies that (L, h), is hyperbolic. Let x E E,,. By 
Hilbert’s theorem 90 there exists y E K; such that x = 7~~‘. Then [3 1, 
Theorem 41 implies that x E E, if and only if up(y) = 0 mod 2. Therefore 
E,,/E, E 2122, so P is irregular. 

Let Z = {(aA, f(a)), a E K such that a5 = 1) c X x Y. 
Let P, ,..., P, be the finite primes of F which ramify in K. Notice that 

Z= {(Jy-‘A, ((-l>“‘i(y’)i=~,...,r), YE K’}* 

Now [26, Proposition 5.27(iii)] implies that the set of isometry classes of 
unimodular lattices in (V, h) is in bijection with (X x Y)/Z. 

Let 

be the homomorphism which is induced by 

p(J) = (Jj-‘, ((-l)“‘i’“‘)i=l,....r) cXX ‘* 

Then rp is an isomorphism. It is clear that q is well defined and onto. If 
v(J) E Z, then J?’ = (jjy-‘)A, and upi T upi mod 2, i = I ,..., r. 
Therefore J is isomorphic to I = y . J, we have I = Z, and v,(l) is even for 
every ramified prime P. Therefore Z = l,,A for some A,-ideal I,. 

PROPOSITION 4.9. E = +l. Let (V, h) as in Lemma 4.6, dim(v) = 1. The 
number of isometry classes of unimodular lattices in (V, h) is #(C,/C,). 

Proo$ ( W, g) = (1) I (- 1) I (V, h) is indefinite. 
Let L be a lattice in (IV, g), and let M’ be a lattice in (V, h). Then 

(1) 1 (-1) I M’ is a lattice in (IV, g). 
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LEMMA 4.5. With N, = (1) I (-l), N, = M’ implies that L is isometric 
to (1) I (-1) I M, where M is some lattice in (V, h). 

Therefore M+ (1) 1 (-1) 1 M induces a surjective map from the set of 
isometry classes of lattices in (V, h) onto the set of isometry classes of 
lattices in (W, g). 

IfL,=(l)i(-l).LM,isisometricto 

L,=(l)1 (-l)lM, 

then 

M, = -det(L,) 2 -det(L,) = M, 

therefore this map is injective. Proposition 4.8 now gives the desired result. 

COROLLARY 4.10. E = +l. Two indefmite, unimodular lattices are 
isometric if and only if they have the same rank, signatures and isometric 
determinants. 

Proof. Let (I’, h) = (1). By Proposition 4.9, there are k = #(C,/C,) 
isometry classes of lattices in (V, h). Let L, ,..., L, be a complete set of 
representatives. 

Let us consider two indefinite lattices which have the same rank, deter- 
minant and signatures. By Landherr’s theorem (Lemma 3.5) we may assume 
that these lattices, say M and N, are lattices in the same hermitian form 
(W, g). We can assume that dim,(I+‘) 2 2, otherwise the statement is 
obvious. 

Let Mi = A4 ma Li, i = l,..., k, with M, = M. The Mts are lattices in 
(W, g), and det(Mi) is not isometric to det(MJ if i # j. 

We know by Proposition 4.8 that there are exactly k isometry classes of 
lattices in (W, g), so every lattice in (W, g) is isometric to one of the Mi’s. 

Therefore N is isometric to one of the Mi’s. But N cannot be isometric to 
Mi with if 1, because det(N) is not isometric to det(M,) if i# 1. Therefore 
N and M are isometric. 

Relation between the Invariants 

There exists a rank n unimodular lattice with determinant (L, h) and 
signatures u, ,..., cr, if and only if 

(d, 19)~~ = (-l)(n-oi)‘2 

for the infinite primes Pi of F which ramify in K, where d is the discriminant 
of (V, h) = (L, h) @ K. 

Proof: The necessity of this condition follows from Lemma 3.5. 
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Conversely, let (IV, g) be an n-dimensional hermitian form with 
discriminant d and signatures u,,..., crS (this form exists by Lemma 3.5). 
There are k = #(C,/C,) isometry classes of unimodular lattices in (W, g) by 
Proposition 4.8. These lattices have non-isometric determinants. These deter- 
minants are lattices in (V, h), and Proposition 4.9 implies that (I’, h) 
contains exactly k isometry classes of lattices, so one of the determinants 
must be (L, h). 

PROPOSITION 4.11. E = +l. Let (L, h) be an indefinite, unimodular 
lattice. Then 

(1) (L, h) is isometric to an orthogonal sum of lattices of rank 1 and 2. 

(2) If at least one finite prime of F ramifies in K, then (L, h) can be 
diagonalized. 

(3) If no inJinite prime of F ramifies in K, then 

(L,h)r(l)l .*.l(l)l(Mg) 

where rank(M) = 1. 

Proof. Let (V, h) = (L, h) @ K. 

(I) If P is an infinite prime of F which ramifies in K, we have 
(V, Wp = hp> 1 (ezp) 1 - 1 (en,> with eip = f 1. We may assume that 
dim(V) > 3, therefore we can relabel the eip’s in such a way that 
elp . ezp = +l. Repeat this procedure at each infinite ramified prime. There 
exists a 2-dimensional form (W, g) with discriminant 1 and such that 

W dp = (e,,> 1 (e2p) 

for every infinite ramified prime P (see Lemma 3.5). By Lemma 4.6 (W, g) 
contains a unimodular lattice M. Apply Corollary 4.7, and then continue 
inductively. 

(2) Let P, ,..., P, be the infinite primes of F which ramify in K. Let 
ei = *l such that (ei) is an orthogonal summand of (V, h)Pi. Let Q be a 
finite prime of F which ramifies in K, and let d E F’ such that (d, O)pi = ei, 
i = l,..., s, (4 @), = e, ,..., e,, and that (d, e), = +l if P is a prime of F 
different of P, ,..., P, and Q (such a d E F’ exists by [23, Theorem 71: 191). 
Let (W, g) be a l-dimensional hermitian form with discriminant d. (W, g) 
contains a unimodular lattice by Lemma 4.6. Apply Corollary 4.7 and 
continue inductively. 

(3) In this case Corollary 4.7 implies that any unimodular lattice of 
rank <n is an orthogonal summand of (L, h). In particular this is true for 
(1) 1 **- l(1). 
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Remark. (1) L. Gerstein has proved that every indefinite, not 
necessarily unimodular, hermitian lattice is isometric to an orthogonal sum 
of lattices of rank at most 4 (cf. [lo]). 

(2) If the conditions of (2) or (3) are not satisfied, it is easy to show 
that there exist rank 2 lattices which cannot be diagonalized. 

PROPOSITION 4.12. E = -1. Let (L, h) be an indefinite unimodular lattice 
of rank 2m. 

(1) (L, h) is isometric to an orthogonal sum of lattices of rank at 
most 4. 

(2) Let Q, ,..., Q, be the finite primes of F which ramifv in K. If 
niEl,,.,,. (-1, B)o, = +l, then (L, h) is isometric to an orthogonal sum of 
lattices of rank 2. 

(3) If no infinite prime of F ramifies in K, then 

(L, h) z IH I . . . 1 IH I lH(Z) 

for some A-ideal I (see Definition 3.6 for the definition of IH and IH(I)). 

Proof: Let (V,h)=(L,h)@K. 

(1) If P is an infinite prime of F which ramifies in K, let (V,,ah),, = 
(e,,) 1 . . . 1 (e,,,), where eiP = fl (p = -p). We can assume that 
dim(V) > 4. Let us relabel the eiP’s in such a way that elP . e,,, . 
e3p . edp = + 1. Repeat this for every infinite ramified prime. Let ( W, g’) be a 
hermitian form of dimension 4, discriminant 1, such that 

(WY g’lp = (e,,> 1 (eZp> 1 (e3p) 1 (e4p>y 

if P is an infinite ramified prime (this is possible by Lemma 3.5). Let 
g =p . g’. We have 1 = (1, S), = (-1,s); = 1, therefore (W, g) contains a 
unimodular lattice (see Lemma 4.6). Corollary 4.7 implies that this lattice is 
an orthogonal summand of (L, h). Finish the proof by induction. 

(2) For every infinite prime P of F which ramifies in K, let 

(v,~h) = (e,,> 1 e-e 1 (eZmP), 

eip = fl. We may assume that elp . elp = +l, because dim(V) > 2. Let 
d E F’ such that (d, B)c, = (-1, 0), = 1 for all other primes P of F. Such a 
d E F’ exists by [23, Theorem 71:19]. Let (W, g) be a 2-dimensional 
skewhermitian form with discriminant d and such that 

VK iud = (e,,> 1 (e,,> 
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(cf. Lemma 3.5). (IV, g) contains a unimodular lattice by Lemma 4.6. Apply 
Corollary 4.7 and continue inductively. 

(3) As there are no signatures, Corollary 4.7 implies that (L, h) E 
IH J- . . . I IH i (M, g), with rank(M) = 2. It remains to prove that (M, g) is 
hyperbolic. By Lemma 3.8 it suffices to prove that (IV, g) is hyperbolic, 
where W = M @ K. By Lemma 4.6 the discriminant of (W, g) is - 1. 
Therefore Landherr’s theorem implies that (W, g) is hyperbolic. 

Remark. If the conditions of (2) or (3) are not satisfied then it is easy to 
prove that there exist indecomposable skew-hermitian lattices of rank 4. 

PROPOSITION 4.13 (C. T. C. Wall). Let (L, h) and (L’, h’) be indefinite, 
unimodular E-hermitian forms such that there exists a unimodular E- 
hermitian form (M, g) with 

CL, h) 1 CM, g) g (L’, h’) 1 (M g); 

then (L, h) z (L’, h’). 

Proof. If rank(L) > 3, this is [31, Theorem lo]. The proof is the same if 
rank(L) = 2. It suffices to check that Corollary of Theorem 7 is still true if 
rank(L) = 2. Let P be a finite prime of F which ramifies in K. Then P is non- 
dyadic by Remark 3.13. If, (N, f) is a unimodular (- 1)-hermitian lattice, 
then (N, f), is hyperbolic by [ 3 1, p. 434, bad tame case]. Therefore we can 
apply Theorem 4 if E = -1. If E = + 1, there is nothing to prove as there are 
no bad primes. The statement is obvious if rank(L) = 1 (take determinants). 

5. ISOMETRIC STRUCTURES 

An isometric structure will be a triple (L, S, z) where L is a free Z-module 
of finite rank, S: L x L -+ Z is a Z-bilinear, e-symmetric form (e = f 1) such 
that det(S) = f 1, and z: L + L is an endomorphism such that S(zu, v) = 
S(u, (1 - z)u) for u, z, E L. 

Two isometric structures (L, , S, , I,) and (L,, S,, z2) are isomorphic if 
there exists an isomorphism F: L, + L, such that S,(F(u), F(v)) = S,(u, U) 
for u, v E L, and such that Fz, = z,F, 

Let v, be the minimal polynomial of z. We shall assume that rp is 
irreducible. 

Set K = Q[X]/(p), A = Z [X]/(q) = Z [a], where a is a root of cp. 
Note that (-l)deg m rp( 1 -X) = (o(X) [27, p. 131. Therefore K has a non- 

trivial CR-involution which sends a to E = 1 - a. 
We shall show that the classification of e-symmetric (e = f 1) isometric 

structures with minimal polynomial rp is equivalent to the classification of A- 
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valued unimodular (-e)-hermitian forms on torsion free A-modules of finite 
rank. 

Let (L, S, z) be an isometric structure. Setting a . u = z(u) provides L with 
an A-module structure. It is a torsion free A-module of rank 

rank,(L) 
degree@) * 

There exists a unique e-hermitian form 

g:LxL+A* 

where A* = {x E K such that Tr,,,(xA) c Z }, given by the formula 

Tr,,,(g(xu, u)) = SW, u> 

(cf. [3, Sect. 1 I). 

for U, u E L, x E K. 

g is unimodular; i.e., ad(g): L -+ Hom,(L, A*), ad(g)(u) = g( , u) is an 
isomorphism. 

Conversely, any pair consisting of a torsion free A-module L and a 
unimodular e-hermitian form g: L x L -+ A* determines a unique isometric 
structure. It is easy to check that this correspondence sends isomorphic 
isometric structures to isometric e-hermitian forms and conversely. 

One can eliminate the inconvenient of dealing with forms taking values in 
A* using the following lemma: 

LEMMA 5.1. There exists a y u A, y= -y, such that 

y.A*=A. 

Proof. We have A = L [a], therefore A* = (l/(o’(ar))A (cf. [ 16, III, 
Sect. 1, Corollary of Proposition 21). Let y = o’(a). It remains to check that 
F= -y. 

Let 2d = degree(p) = [K : a]. (The involution is non-trivia1 therefore 
[K : Q] must be even.) 

Let s: K + Q, s(‘j7f!!;’ xia’) =xZd-i as in [30]. It is easy to check that 
s(f) = -s(x). 

The proof of Proposition 2 [ 16, III, Sect. l] shows that 

s(x) = Tr,&-Ix). 

We have 

Tr,,&-‘x) = Tr,,o(y-‘Y) = s(X) = s(F) = -s(x) 

= Tr,,,(-y - ix) for all x E K, 
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therefore 
-- I Y -1 =--Y 9 so y=--y. 

Let h = y . g. Then h: L x L + A is a unimodular, (-e)-hermitian form. 
Assume that A = L [a] is the whole ring of integers of K. Then the results of 
Sections 1-4 can be used to classify isometric structures with minimal 
polynomial ~1 (note that E = -e). 

EXAMPLE 5.2. Let n(x) = (1 - x)‘~ o( l/( 1 - x)), where 2d = degree(o). 
Then I E Z[x]. We have 

l(x) = 1 + (1 - x) f(x) 

therefore, J.( 1) = 1. 

with S(x) E Z [xl; 

It is easy to check that A(x) = xZdA(x- ‘). Let t = 1 - o -I. Then A(r) = 0. 
We have Z= rr’. 

If ~(0) = f 1, then the leading coefficient of I is f 1. Then we have 

A = z [xll(rp) = z [xll(n>. 
Notice that p(x) = xzdJ( 1 - x-l). 

Assume that 1= A,,, is the mth cyclotomic polynomial. Then A is 
integrally closed (see for instance [ 16, IV, Sect. 1, Theorem 41). 

The condition 1,(l) = 1 is satisfied if and only if m is not a prime power 
(see [ 18, p. 2061). 

The number of isomorphism classes of skew-symmetric isometric 
structures with characteristic polynomial v, is then 

hp. 2d if m= 2 - pk, 

h . 2d-’ - otherwise, 

where h- = h,/h, (cf. Corollary 1.3 and Example 2.5). 

For the value of h- see the tables in [ 111 or [ 25 1. 
If e = +l we must check the condition of Proposition 1.6 (recall that 

symmetric isometric structures correspond to skew-hermitian forms!) 
The different A of K/F is (t-Q . A (cf. [ 16, III, Sect. 1, Corollary of 

Proposition 21). 
Then N,,,(t - r-‘) = n(l) . A(-1) must be a square. If m = pk, we have 

1,(l) = 1, A,(-1) = p: therefore we have no symmetric isometric structures 
with characteristic polynomial v, in this case. If m # 2 . pk, pk, then n,(l) = 
n/J-1>= 1. so t-r-’ is a unit, A = A, therefore the condition of 
Proposition 1.6 is satisfied. The number of isomorphism classes of symmetric 
isometric structures with characteristic polynomial o is then h- - 2dP ‘. 
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Note that if we have two polynomials qpo and (pi such that 
(1 - x)*~o A,( l/( 1 - x)) = n,(x), (1 - x)*~I q,( l/( 1 - x)) = n,(x), where A, 
and I,, are cyclotomic polynomials such that m/n is not a prime power, then 
the resultant R(rp,, p,) = fl (see [27, Proposition 3.41). 

Let h(q) be the number of isomorphism classes of isometric structures 
with characteristic polynomial cp. 

Then [27, Theorem 3.21 implies that h(rp, . (D*) = h(p,). h(oz). We can 
then compute h(rp, . cp2) using the above formulas. 

Remark 5.3. Let K = Q[x]/(rp) = Q(cr), and let F be the fixed field of 
the Q-involution of K which sends a to 1 - a. 

Let (D = ny= I gi with gi E R [xl, irreducible. Then the number of infinite 
primes of F which ramify in K is equal to the number of gts such that 
degree( gi) = 2 and gi( 1 - x) = gi(x). 

6. APPLICATIONS TO KNOT THEORY 

Let Z2q-1 c S2q+ ’ be a simple (2q - I)-knot, q > 3. Let M2q c S2qt r be a 
Seifert surface of C2q-‘. and let 

B: Hq(M2q, Z)/torsion x Hq(M2q, Z)/torsion + Z 

be the associated Seifert form (cf. [20] for the definitions). 
We shall say that M2q is minimal if M2q is (q - I)-connected and if 

det(B) # 0. Such a Seifert surface exists by [21] and 128, p. 4851. 
Hq(M2q, Z) is then a torsion-free L-module of finite rank. Let e = (-l)q, and 
S = B + eB’. Then det(S) = f 1. Let z = S-‘B. Then (Hq(M2q, Z), S, z) is 
an isometric structure (see Section 5). It is easy to check that isomorphic 
Seifert forms correspond to isomorphic isometric structures and conversely. 

Therefore we have: 

(1) The isotopy classes of minimal Seifert surfaces correspond 
biunivoquely to the isomorphism classes of isometric structures (see Levine 
l201). 

det(B) is an invariant of the isotopy class of Czq-‘. Assume that det(B) is 
a prime number, or f 1. Then .Zzqpl has, up to isotopy, only one minimal 
Seifert surface (see [ 29, Corollary 4.71). 

Therefore (1) also gives the classification of simple (2q - 1)-knots in this 
case. This is for instance the case for simple fibred knots (det(B) = f 1). 

Let (D be the minimal polynomial and 4 the characteristic polynomial of z. 
cp and 4 are invariants of the isotopy class of Z2q-‘. Note that d(0) = 
fdet(B). 4 is related to the Alexander polynomial A of Z*“-‘. 



368 EVA BAYER 

We have: 

q%(x) = (-e)D xzDA( 1 - x-i), 

where 20 = degree(d). 
Assume that 9 is irreducible, and that A = H [x]/(q) is integrally closed. 

Then 4 = rp”. 
Using (l), and Section 5, we can then apply the results of Sections l-4 to 

the classification of minimal Seifert surfaces, and also of simple (2q - 1) 
knots if 4(O) is a prime or f 1. 

For instance Section 1 implies the following: 
Let e = -1 (i.e., q is odd). For each positive integer n, the number of 

isomorphism classes of A-modules of rank n which can be realized as 
Hq(i142q, Z) for a minimal Seifert surface M2q is 

Wh, if K/F is ramified, 

%A if K/F is unramified, 

where K = Q[x]/(p) = Q(a), and F is the fixed field of the Q-involution given 
by a= 1 -a. 

This follows from Corollary 1.3. For the A-module structure of these 
modules see Proposition 1.2. The corresponding result for e = +l is more 
complicated: see Section 1. 

Section 2 concerns the classification of minimal Seifert surfaces with a 
given irreducible Alexander polynomial. Here we shall only write down the 
results for the quadratic and the cyclotomic case. 

EXAMPLE 6.1. Let (p(x) =x2 -x + a, irreducible, such that 1 - 4a is 
square free. Let d(x) = (-e)(ax’ - (2~ - 1)x + a). 

If e = -1, the number of isotopy classes of minimal Seifert surfaces of 
Alexander polynomial A is 

2 . h, if 1-4~ <0 
and if 1 - 4u > 0, and the fundamental 
unit has norm +l, 

4 if 1 - 4u > 0 and the fundamental 
unit has norm -1. 

If e = +l, then this number is zero. Indeed, the condition of 
Proposition 1.6 implies that 1 - 4u = fx* with x E Z. 

If a is a prime or f 1, then this also gives the number of isotopy classes of 
simple (2q - I)-knots with Alexander polynomial A. 

For the value of h, see [4]. 
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EXAMPLE 6.2. Let I, be a cyclotomic polynomial with m = 2 . pk or m 
composite. Let 2d = degree&). 

For e = -1, the number of isotopy classes of minimal Seifert surfaces (or 
of simple libred (2q - I)-knots) with Alexander polynomial ;I, is 

h- .2d ifm=2. pk, 

h- . 2d-I if m is composite, 

where h _ = h,/h, . 
For e = $1, this number is 

0 ifm=2. pk, 

h . 2d-’ - if m is composite, 

(cf. Example 5.2). 
For the value of h- see the tables in [ 111 or [25]. 
For n > 1 we have: 

PROPOSITION 6.3. Let p be such that no inj?niteprime of F ramifies in K 
(see Remark 5.3 for the equivalent condition on 9). Let .Ezq-‘, Z:q-’ be 
simple (2q - 1)-knots with minimal polynomial rp. 

Let I@’ be the characteristic polynomial of Z2q-’ and @” the characteristic 
polynomial of 2Tiq-‘. 

Assume that m ( n. Then there eists a simple (2q - I)-knot Ciq-’ such 
that 

where - denotes “isotopic” and + denotes connected sum (cf. Corollary 4.7). 

This proposition is true without assuming that the determinant of the 
Seifert form is prime or kl. To see this, recall that isomorphic isometric 
structures correspond to isotopic knots (see [20]). 

Proposition 6.3 can be used to obtain counterexamples of unique 
factorisation of higher-dimensional knots (see [2] for explicit counterex- 
amples). 

Assume that rp is such that at least one infinite prime of F does not ramifv 
in K (see Remark 5.3 for the equivalent condition on rp). 

In this case we also have a similar (but weaker) result to Proposition 6.3: 
see Corollary 4.7. Further, we have: 

PROPOSITION 6.4: q odd (e = -1). Let Zzq-’ be a simple (2q - 1)-knot 
with minimal polynomial 9. Then 
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(1) Xzq-’ - Zfq-’ + ... + Z$‘, where the Cfq-’ are simple knots 
with characteristic polynomial ~1 or q2. 

(2) If at least one finite prime of F ram$es in K, then 

Jy24-‘-z24-1 1 + . . . +x2-’ 

such that the characteristic polynomial of Zfqp’ is u, for i = l,..., n (see 
Proposition 4.11). 

The analogue of Proposition 6.4 for q even (e = +l) follows from 
Proposition 4.12. 

Remark 6.5. Propositions 6.3 and 6.4 are also true if we replace “simple 
knot” by “minimal Seifert surface.” 

PROPOSITION 6.6. Let MZq, Miq and Miq be minimal Seifert surfaces 
with minimal polynomial cp, and assume that Mfq + M2q - Miq + M2q. Then 
M:q - Mzq (cf. Proposition 4.13). 

Note that this is also true for simple fibred knots. 
One can also use the results of Section 4 to compute class numbers. We 

shall illustrate this with some examples. 

EXAMPLE 6.7. Let q(x) =x2 -x + a irreducible, such that 1 -4a is 
square free. Assume that 1 - 4a < 0. Let e = -1 (q odd). Then for every 
positive integer n, the number of isotopy classes of minimal Seifert surfaces 
with minimal polynomial a, and characteristic polynomial q” is 

2 . h, if the norm of the fundamental unit is + 1, 

4 if the norm of the fundamental unit is - 1 

(cf. Example 6.1 and Proposition 4.11.3). 
If e = +l then the characteristic polynomial must be of the form q2”’ (see 

Example 6.1). We have: 
For every positive integer m, the number of isotopy classes of minimal 

Seifert surfaces with minimal polynomial (D and characteristic polynomial 
q2m is h, (cf. Proposition 4.8.2). 

For instance if a = -1, p(x) =x2 -x - 1, then h, = 1 and the norm of 
the fundamental unit is -1 (see the tables in [4]). Therefore the class number 
is 1 both for e=-1 and e=+l. 

EXAMPLE 6.8. LetJ.(x)=x4-5x3+9x2-5x+1,~(x)=x4~(1-x-l). 
1 and are irreducible (1 is irreducible mod 2). 

q odd. For every positive integer n there exist exactly two isotopy classes 
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of simple libred (2q - 1)-knots with minimal polynomial a, and Alexander 
polynomial 1”. 

q even. Then the Alexander polynomial must be of the form AZ”‘, because 
A(-1) is not a square (see [22, Theorem l(d)] or Proposition 1.6). 

For every positive integer m there exists exactly one isotopy classes of 
simple tibred (2q - 1)-knots with minimal polynomial a, and Alexander 
polynomial IZm. 

Indeed, A = Z[x]/(o) = Z [x]/(A). Then A is integrally closed (see 
[ 19, p. 951). The fixed field of the involution is F = Q(G). Therefore K 
and F are both totally imaginary, so no infinite prime of F ramifies in K. We 
have h, = 1 (apply [ 16, V, Sect. 4, Theorem 4)). The different A of K/F is 
(T - ?-‘)A, where t is a root of A. 

But NK,o(t - 5-l) = n(l) . n(+l) = 21, therefore exactly two finite primes 
of F ramify in K. Proposition 2.6 implies #[U,/N(U)] = 2 (in fact one can 
check that -1 4 N(U), so { + 1, -1 } is a set of representatives of U,/N(U)). 

For e = - 1 (q odd) apply Proposition 4.11.3, Proposition 2.1 and 
Corollary 1.3 (one can also apply Proposition 4.8). For e = fl (q even), 
apply Proposition 4.8. 

EXAMPLE 6.9. Let 1(x) =x4 +x3 - 3x2 +x + 1, o(x) = x4A(1 -x-I). 
Then 2 and a, are irreducible, because 1 is irreducible mod 2. 

q odd. The number of isotopy classes of simple tibred (2q - 1)-knots 
with minimal polynomial (D and Alexander polynomial 1” is n + 1. 

q even. Then the Alexander polynomial must be of the form A”” because 
A(-1) is not a square. 

The number of isotopy classes of simple tibred (2q - 1)knots with 
minimal polynomial a, and Alexander polynomial AZrn is m if m is odd, and 
m + 1 if m is even. 

Indeed, we see that A = Z]x]/(o) = Z[x]/(n) is integrally closed 
[ 19, p. 951. 

The fixed field of the involution is F = Q(m). It is straightforward to 
check that A has two real and two imaginary roots, therefore exactly one 
infinite prime of F ramifies in K. We have h, = 1. Inded, [ 16, V, Sect. 4, 
Theorem 41 implies that every ideal class contains an ideal of norm at 
most 4. But there are no ideals of norm 2 or 4 because A is irreducible mod 2. 
It remains to check that the prime ideals of norm 3 are principal. The 
different A of K/F is (r - r- ‘)A, where t is a root of I, and we have 
NK,o(t-5-‘)=l(l)l(-l)=-3. So A=P, with N&P)=3. Let PO== 
P n A ,, , then P,A = P2. The discriminant of F is 2 1, therefore 3A, = Pi. So 

48117412-6 



372 EVA BAYER 

we have 3A = P4. This implies that P is the only A-ideal of norm 3. But P is 
principal, as P = (r - r-‘)A. So we have proved that h, = 1. 

Let e = -1 (q odd). We shall apply Proposition 4.8 with E = - e = +l. 
Let us determine the number of isometry classes of nonsingular hermitian 

forms h: V x V+ K, dim(v) = n, which contain a unimodular lattice. The 
number of possible signatures is n + 1. Let d be the discriminant of (V, h). 
We must have (d, 8), = +1 for P unramilied (see Lemma 4.6), and (d, 8), 
for P infinite is determined by the choice of the signature. Exactly one finite 
prime P, of F ramifies in K. 

Therefore (d, B)po is also determined by Hilbert reciprocity. e = +l 
(q even). Let (V, h) be a non-singular skew-hermitian form containing a 
unimodular lattice, dim(V) = 2m. Let d be the discriminant of (V, h). By 
Lemma 4.6 we have (d, 19)~ = + 1 if P is unramified, and (d, 6’)po= (-1, @pm0 

for the unique finite ramified prime P,. We have N,,,(P,) = 3, therefore 
(-1, B),0 = -1 (cf. [27, Claim, p. 401). If m is odd we have (d, B)po= -1. So 
by Hilbert reciprocity we have (d, t9), = -1 for the unique infinite ramified 
prime P. So we have exactly m possible signatures. If M is even, then 
(d, B)p0 = (-1, e)p”, = +l, so (d, B),0 = t 1 for the infinite ramified prime P. 
So there are m t 1 possible signatures. Apply Proposition 4.8. 
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