
1

Non-Pareto Optimality of MPTCP: Performance Issues and
a Possible Solution

Ramin Khalili, Nicolas Gast, Miroslav Popovic, Utkarsh Upadhyay, Jean-Yves Le Boudec
EPFL, IC-LCA2, Switzerland

firstname.lastname@epfl.ch

ABSTRACT
MPTCP has been proposed as a mechanism to support trans-
parently multiple connections to the application layer and
is under discussion at the IETF [1]. It can effectively use
the available bandwidth and it improves throughput and fair-
ness, compared to independent TCP flows in many scenar-
ios [2–4]. However we show, by measurements over our
testbed and analytically, that MPTCP still suffers from two
problems: (P1) upgrading some TCP users to MPTCP can
reduce the throughput of others without any benefit to the
upgraded users, which is a symptom of non-Pareto optimal-
ity; (P2) MPTCP users could be excessively aggressive to-
wards TCP users. We attribute these problems to the “Linked
Increases” Algorithm (LIA) of MPTCP [1], and more specif-
ically, to an excessive amount of traffic transmitted over con-
gested paths.

The design of LIA forces a tradeoff between optimal re-
source pooling and responsiveness. Hence, to provide good
responsiveness MPTCP’s current implementation must de-
part from Pareto-optimality. We revisit the problem and show
that it is possible to simultaneously provide these two prop-
erties. We implement the resulting algorithm, called Oppor-
tunistic “Linked Increases” Algorithm (OLIA), in the Linux
kernel and study its performance over our testbed by sim-
ulations and by theoretical analysis. We prove that OLIA
is Pareto-optimal, hence avoids the problems (P1) and (P2).
Our measurements and simulations indicate that MPTCP with
OLIA is as responsive and non-flappy as MPTCP with LIA,
while solving problems (P1) and (P2).

1. INTRODUCTION
The regular TCP uses a window-based congestion-

control mechanism to adjust the transmission rate of
users [5]. It always provides a Pareto-optimal allocation
of resources: it is impossible to increase the throughput
of one user without decreasing the throughput of an-
other or increasing the congestion cost [6]. It also guar-
antees a fair allocation of bandwidth among the users
but favors the connections with lower RTT [7].

Various mechanisms have been used to build a mul-
tipath transport protocol compatible with the regular
TCP. [8–10] propose a family of algorithms inspired

by utility maximization frameworks. These algorithms
tend to use only the best paths available to users and
are optimal in static settings where paths have similar
RTTs. However, in practice, they suffer from several
problems [2–4]. First, they might fail to quickly detect
free capacity as they do not probe paths with high loss
probabilities sufficiently. Second, they exhibit flappi-
ness: when there are multiple good paths available to
a user, the user will randomly flip its traffic between
these paths. This is not desirable, specifically, when
the achieved rate depends on RTTs, as with TCP.

MultiPath TCP (MPTCP) is a concrete proposal for
multipath transport, under discussion at the IETF [1].
Because of the issues just mentioned, its congestion con-
trol part does not follow the algorithms in [8–10]. In-
stead, it follows an ad-hoc design based on the following
goals [1]. (1) Improve throughput: a multipath TCP
user should perform at least as well as a TCP user that
uses the best path available to it. (2) Do no harm: a
multipath TCP user should never take up more capacity
from any of its path than a regular TCP user. And (3)
balance congestion: a multipath TCP algorithm should
balance congestion in the network, subject to meeting
the first two goals. MPTCP compensates for different
RTTs and solves many problems of multipath trans-
port [2,4]: it can effectively use the available bandwidth,
it improves throughput and fairness compared to inde-
pendent regular TCP flows in many scenarios, and it
solves the flappiness problem.

However we show, by measurements over our testbed
and analytically, that MPTCP still suffers from the fol-
lowing problems:

(P1) Upgrading some regular TCP users to MPTCP
can reduce the throughput of other users without any
benefit to the upgraded users. This is a symptom of
non-Pareto optimality,

(P2) MPTCP users could be excessively aggressive to-
wards TCP users.

We attribute these problems to the “Linked Increases”
Algorithm (LIA) of MPTCP [1] and specifically to an
excessive amount of traffic transmitted over congested
paths. These problems indicate that MPTCP fails to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147984654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

fully satisfy its design goals, especially goal (3).
The design of LIA forces a tradeoff between opti-

mal resource pooling and responsiveness, it cannot pro-
vide both in the same time. Hence, to provide good
responsiveness LIA’s current implementation must de-
part from Pareto-optimality, which leads to problems
(P1) and (P2). We revisit the design and show that
it is possible to simultaneously provide both proper-
ties. We introduce OLIA, the“Opportunistic Linked In-
creases” Algorithm, as an alternative to LIA. Based on
utility maximization frameworks, we prove that OLIA
is Pareto-optimal, hence avoids the problems (P1) and
(P2). Furthermore, its construction makes it as respon-
sive and non-flappy as LIA.

OLIA is a window-based congestion control mecha-
nism. Similarly to LIA, it couples the additive increases
and uses unmodified TCP behavior in the case of a loss.
OLIA’s increase part (Eq. (5)) has two terms:

• The first term is an adaptation of the increase term
of Kelly and Voice’s algorithm [8]. This term is essen-
tial to provide Pareto-optimality.

• The second term, which contains parameter αr,
guarantees responsiveness and non-flappiness of OLIA.
By measuring the number of transmitted bits since the
last loss, it reacts to events within the current window
and adapts to changes faster than the first term.

By adapting the window increases as a function of RTTs,
OLIA also compensates for different RTTs.

We implement OLIA in the Linux kernel and study
its performance over our testbed, by simulations and by
theoretical analysis. Using a fluid model of OLIA based
on differential inclusion, we prove that OLIA is Pareto-
optimal (Theorem 3) and satisfies the design goals of
MPTCP (Corollary 2). Our measurements and simu-
lations indicate that MPTCP with OLIA is as respon-
sive and non-flappy as MPTCP with LIA. Moreover, it
solves problems (P1) and (P2).

The paper is structured as follows. In the next sec-
tion, we briefly introduce MPTCP and related work. In
Section 3, we provide a number of examples and scenar-
ios in which MPTCP with LIA exhibits problems (P1)
and (P2). Section 4 introduces OLIA and details its
Linux implementation. In Section 5, we prove that our
algorithm is Pareto-optimal and satisfy the design goals
of MPTCP. In Section 6, we study the performance of
OLIA through measurements and by simulations.

2. MPTCP AND RELATED WORK
Multipath TCP (MPTCP) is a set of extensions to

the regular TCP that allows users to spread their traffic
across potentially disjoint paths [1]. MPTCP discovers
the number of paths available to a user, establishes the
paths, and distributes traffic across these paths through
creation of separate subflows [11,12].

MPTCP’s congestion control algorithm forces a trade-
off between optimal resource pooling and responsive-
ness [3]. The idea behind the algorithm is to transmit

over a path r at a rate proportional to p
−1/ε
r , where pr

is the loss probability over this link and ε ∈ [0, 2] is a de-
sign parameter. The choice ε=0 corresponds to the fully
coupled algorithm of [8–10]: the traffic is sent only other
the best paths, it is Pareto-optimal but is flappy. The
choice ε=2 corresponds to having uncoupled TCP flow
on each path: it is very responsive and non flappy but
does not balance congestion. MPTCP’s implementation
uses ε=1 to provide a compromise between optimal re-
source pooling and responsiveness. This algorithm is
called “Linked Increases” Algorithm (LIA) [1].

Let wr and rttr be the window size and the estimated
round-trip time on path r ∈ Ru. Ru is the set of all
paths available to users u. LIA work as follows:

• For each ACK on subflow r, increase wr by

min

(
maxi∈Ru

wi/rtt
2
i

(
∑

i∈Ru
wi/rtti)2

,
1

wr

)
. (1)

• For each loss on subflow r, decrease wr by wr/2.
LIA increases by at most 1/wr to be not more aggressive
than a regular TCP on any of its paths. When the RTTs
are similar, this minimum can be neglected as the first
term would always be less than 1/wr. In this case, a
fixed point analysis provides a simple loss-throughput
formula for LIA [4]: LIA allocates to a path r a window
wr proportional to the inverse of the loss probability
1/pr and such that the total rate

∑
p∈Ru

wp/rttp equals
the rate that a regular TCP user would get on the best
path, i.e. maxp∈Ru

√
2/pp/rttp. Thus, the window size

for the flow on a path r is given by:

wr =
1

pr
·

maxp∈Ru

√
2/pp/rttp∑

p∈Ru
1/(rttppp)

. (2)

Besides MPTCP and algorithms in [8–10], a few other
algorithms have been proposed to implement multipath
protocols. In [13], an opportunistic multipath sched-
uler measures the path conditions on time scales up to
several seconds. [14] uses a mechanism to detect shared
bottlenecks and to avoid the use of multiple subflows
on the same bottleneck. [15] proposes uncoupled TCP
with a weight depending on the congestion level. These
mechanisms are complex, their robustness is not clear,
and they need explicit information about congestion in
the network. Note that our proposed algorithm, OLIA,
differs from these works as it is implemented, proven to
be Pareto optimal, and relies only on information that
is available to regular TCP. It also differs from [8–10]
as it is not flappy and has a better responsiveness.

3. PERFORMANCE PROBLEMS OF MPTCP
In this section, we investigate the behavior of MPTCP

with LIA in three different scenarios: scenarios A, B,

3

N
1

t
y
p
e
1

u
s
e
r
s

private AP

...

N
2

t
y
p
e
2

u
s
e
r
s

...

shared AP

N2C2

Internet Streaming
server

N1C1

Other
servers

x1

y

x2
N1(x1+x2)

y

(a) Scenario A

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

type2 users

type1 users

type1: analytical
results

type2: analytical
results

type1: optimum with
probing cost

type2: optimum with
probing cost

N
1
/N

2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

C
1
/C

2
 = 0.75

C
1
/C

2
 = 1.0

C
1
/C

2
 = 1.5

(b) Normalized throughput of
users: (x1 + x2)/C1 and y/C2.

0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

N
1
/N

2

L
os

s
pr

ob
ab

ili
tie

s

C
1
/C

2
 = 0.75

C
1
/C

2
 = 1.0

C
1
/C

2
 = 1.5

(c) Loss prob. p2 at the shared AP.

Figure 1: Scenario A: type1 users are all downloading through the same streaming server and have
access to both a private high speed access point and a shared access point. Type2 users have access
only to the shared access point. The performance of MPTCP with LIA obtained by measurement
(points) or numerical analysis (lines) is shown on figures (b) and (c). We observe that it is not
Pareto-optimal, penalizes type2 users, and its performance is far from the theoretical optimum with
probing cost. It also fails to balance the congestion.

and C. Using scenarios A and B, we show that upgrad-
ing some regular TCP users to MPTCP could reduce
the throughput of other users in the network without
any benefit to the upgraded users (problem P1). Sce-
nario C discusses the aggressiveness of MPTCP users
that compete with regular TCP users (problem P2).
Our conclusions are based on analytical results and mea-
surements over a testbed.

3.1 Testbed Setup
To investigate the behavior of the algorithms, testbed

topologies are created representing our scenarios. Server-
client PCs run MPTCP (with LIA or OLIA) enabled
Linux kernels. In all our scenarios laptop PCs are used
as routers. We install “Click Modular Router” soft-
ware [16] to emulate topologies with different charac-
teristics. We emulate links with configurable bandwidth
and delay with RED queuing (drop-tail queuing is also
studied in htsim simulation, see Section 6.2). Motiva-
tion for testbed configuration represented in Figure 2
might be the scenario described in Figure 1(a).

Figure 2: Testbed implementation of scenario
A: router R1 emulates the streaming server and
router R2 the shared AP. Iperf is used to emulate
multiple connections. The red PCs use MPTCP
and the blue PCs use regular TCP.

3.2 Scenario A: MPTCP is not Pareto-optimal
and penalizes regular TCP users

Consider a network with two types of users as shown
in Figure 1(a). There are N1 users of type1, each with
a high-speed private connection, accessing different files
on a media streaming server. The server has an access-
ing rate limit of N1C1 Mbps. These users can acti-
vate a second connection through a shared AP by using
MPTCP. There are also N2 users of type2 in the net-
work that only have connections to the shared AP. They
download their contents from the Internet. The shared
AP has a capacity of N2C2 Mbps.

Let x1 be the rate that a type1 user receives over its
private connection (by symmetry, every user of type1
will receive the same rate x1). Similarly, let x2 (resp.
y) be the rate that a type1 (resp. type2) user receives
over the shared connection. We denote by p1 and p2 the
loss probability at the link connected to the streaming
server and the shared AP, respectively (the loss prob-
abilities at the Internet backbone and the private APs
are negligible).

When type1 users uses only their own private AP,
we have x1=C1, x2=0, and y=C2. In this case the
normalized throughput for both type1 and type2 users
is 1. In the other case, when all type1 users activate
their public connections and use MPTCP with LIA to
balance load between their connections, we have

(a) N1(x1+x2) = N1C1 N1x2 +N2y = N2C2

(b) x1 + x2 = 1
rtt

√
2
p1

x2 = 1
2+p2/p1

1
rtt

√
2
p1

(c) y = 1
rtt

√
2/p2

where (a) are the capacity constraints at the two bottle-
necks, (b) comes from the loss-throughput formula for
LIA (Eq.(2)), and (c) follows the TCP loss-throughput
formula [17]. This system has a unique solution (see Ap-

4

pendix A). Figure 1(b) depicts the normalized through-
put of type1 and type2 users, i.e. (x1 + x2)/C1 and
y/C2. As shown in Appendix A, these values depend
only on the ratios C1/C2 and N1/N2.

A theoretically optimal algorithm will allocate a nor-
malized throughput of 1 to both type1 and type2 users.
However, as the values of the congestion windows are
bounded below by 1 MSS, we should consider that a
minimum probing traffic of 1 MSS per RTT will be
transmitted over a path. Hence, in this paper, we in-
troduce the theoretical optimum with probing cost that
takes into account this minimum probing cost.

We measure the performance of LIA in Scenario A,
using the testbed, as shown in Figure 2. The mea-
surements are taken for N2 = 10 and three values of
N1 = 10, 20, 30. The capacities of R1 and R2 are N1C1

and N2C2 Mbps, where we set C2 = 1Mbps and C1 =
0.75, 1, 1.5 Mbps. All paths have similar RTTs (≈ 150
ms). For each case, we took 5 measurements. The
results are reported on Figure 1(b). Note that in all
cases we present confidence intervals, but in many cases
they are too small to be visible. The loss probability
p1 depends only on C1 and is 0.02, 0.009, 0.004 for
C1 = 0.75, 1, 1.5 Mbps. We also show our analytical
analysis of LIA, as well as theoretical optimum with
probing cost as defined above.

These figures have multiple implications. First, they
show that MPTCP with LIA exhibits problem (P1)
from the introduction: upgrading type1 users to MPTCP
penalizes type2 users without any gain for type1 users.
As the number of type1 users increases, the throughput
of type2 users decreases, but the throughput of type1
users does not change as it is limited by the capacity
of the streaming server. For N1=N2, type2 users see a
decrease of about 30%. When N1=3N2, this decrease
is between 50% to 60%. This is explained by the fact
that LIA does not fully balance congestion, as shown
in Figure 1(c). It excessively increases congestion on
the shared AP (not in compliance with goal 3). We
observe that LIA performs far from how an optimal
algorithm with probing cost would perform. Further-
more, these figures show that the fixed point analysis
predicts accurately the behavior of the algorithm: the
two curves (theoretical and experimental) exhibit the
same trend. As a summary for this section, we conclude
that MPTCP with LIA is not Pareto-optimal and could
penalize TCP users without any benefit for anybody.

3.3 Scenario B: MPTCP is not Pareto-optimal
and can penalize other MPTCP users.

Consider the multi-homing scenario depicted in Fig-
ure 3. We have four Internet Service Providers, ISPs,
X, Y , Z, and T . Y is a local ISP in a small city, which
connects to the Internet through Z. X, Z, and T are
nation-wide service providers and are connected to each

ISP X

ISP Y

ISP Z

ISP T

blue users

red users

x1

x2
y1

y2

Figure 3: Scenario B. Thick lines represent peer-
ing agreements. Blue users are downloading
from servers in ISP Z and Red users from servers
in ISP T . By default, Blue users use multi-
homing and have access to ISPs X and Y . Ini-
tially, Red users have access only to ISP Y but
upgrade to MPTCP and connect to both ISPs
X and Y (by activating dashed connection).

0 0.5 1 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

C
X

/C
T

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Blue users when Red use MPTCP
Red users when Red use MPTCP
Blue users
Red users

(a) Performance of LIA.

0 0.5 1 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

C
X

/C
T

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Blue users when Red are multipath
Red users when Red are multipath
Blue users
Red users

(b) Optimum w. probing cost

Figure 4: Scenario B: analytical results for 15
Blue, 15 Red users and CT =36 Mbps. We show
the normalized throughput (15(x1 + x2)/CT and
15(y1 + y2)/CT) as a function of CX/CT . Dashed
curves: normalized throughput when Red users
connect only to ISPY. Solid curves: the case
when Red users upgrade to multipath. For all
values of CX/CT , the throughput of all users de-
creases when Red users upgrade to MPTCP.

other through high speed links. X provides Internet ser-
vices to users in the city and is a competitor of Y . They
have access capacity limits of CX , CY , CZ , and CT .
Z and T are hosts of different video streaming servers.

There are two types of users: Blue users download con-
tents from a server in Z and Red users download from
a server in ISP T . Blue users use multi-homing and are
connected to both ISPs X and Y to increase their relia-
bility. Red users can connect either only to Y or to both
X and Y . We assume that only ISPs X and T are bot-
tlenecks and denote by pX and pT the loss probabilities.
We assume that all paths have similar RTTs.

We first present a theoretical analysis of the rate that
each user would achieved. There are two possible cases.
When Red users connect only to Y , the analysis is the
same as the one of scenario C, given in Section 3.4.
Here, we analyze the case when Red users upgrade to
MPTCP. The loss throughput formula (Eq.(2)) shows

5

In
te

rn
etN
1

m
u
lt
ip

a
t
h

AP1

N1C1

...

N
2

s
in

g
le

-p
a
t
h

...
AP2

N2C2

Servers

...

x1

y

x2

(a) Scenario C: N1 multipath
users and N2 single-path users
are connected to two APs with
capacities N1C1 and N2C2 Mbps

0 0.5 1 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

C
1
/C

2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

LIA: single−path users
LIA: multipath users
Optimum w. prob.: multipath users
Optimum w. prob.: single−path users

(b) Analytical results: nor-
malized throughput of all
users using LIA (solid) or
optimum with probing cost
(dashed) for N1 = N2.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

multipath users

N
1
/N

2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

single-path users

single-path: optimum
with probing cost

multipath: optimum
with probing cost

C
1
/C

2
 = 1.0

C
1
/C

2
 = 2.0

(c) Normalized throughputs
using LIA, obtained by mea-
surement (points) or analy-
sis (lines).

0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
1
/N

2

L
os

s
pr

ob
ab

ili
tie

s

C
1
/C

2
 = 1.0

C
1
/C

2
 = 2.0

(d) Loss prob. p2 at AP2:
LIA fails to balance the con-
gestion.

Figure 5: Scenario C: MPTCP with LIA excessively penalize TCP users (when C1/C2≥1, for any
fairness criterion, MPTCP users should not impact TCP users). We show the normalized throughputs
((x1+x2)/C1 and y/C2) received by the users, as well as p2. The performance of LIA is far from the
theoretical optimum with probing cost.

that the throughput of the different connections are:
y1 =

1/rtt

2 + pX

pT

√
2

pT

y2 =
pX
pT

y1

,


x1 =

1/rtt

1 + pX/pT

√
max

2

pX
,

2

pT

x2 =
1/rtt

1 + pT /pX

√
max

2

pX
,

2

pT

As shown in Appendix B, this set of equations has
a unique positive solution. A numerical evaluation of
these formulas is depicted in Figure 4(a). Figure 4(b)
shows the theoretical optimum with probing cost for
CT = 36 Mbps and RTT=150 ms (see Appendix B).
The result shows that upgrading Red users to MPTCP
with LIA decreases the performance for everyone. As
an example, when CX/CT ≈ 0.75, by upgrading the
Red users we reduce the throughput of the Blue user
up to 21%. This decreases is around 3% when we use a
Pareto-optimal algorithm (Fig. 4(b)).

Red users
Rate/user

Aggregate
Blue users Red users

Single-path 2.5 1.5 59.8

Multipath 2.0 1.4 52.0

Table 1: Measurement results for scenario B,
showing the effect of upgrading the Red users
from regular TCP to MPTCP with LIA. The
number of Red and Blue users is 15 and all values
are recorded in Mbps. By upgrading Red users
to MPTCP, the throughput drops for all users
and the aggregate throughput falls by 13%.

We emulate this scenario in our testbed in a similar
manner as for Scenario A. The measurement results are
reported in Table 1 for a setting with CX = 27, CT =
36, and CZ = 100, all in Mbps, and where we have 15
Red and 15 Blue users. RTTs are 100ms over all paths.
We observe that when Red users only connect to ISP Y,

the aggregate throughput of users is close to the cut-set
bound, 63 Mbps. However, Blue users get a higher share
of the network bandwidth. Now consider that Red users
upgrade to MPTCP by establishing a second connection
through X (showed by dashed line in Figure 3). Our
results in Table 1 show that Red users do not receive
any higher throughput. However, the average rate of
Blue users drops by 20%, which results in a drop of 13%
in aggregate throughput. This confirms our analytical
observation and shows that MPTCP with LIA is not
Pareto-optimal and could penalize other MPTCP users
without any benefit for anybody.

3.4 Scenario C: MPTCP users could be exces-
sively aggressive towards TCP users.

We consider a scenario with N1 multipath users, N2

single-path users, and two APs with capacities N1C1

andN2C2 Mbps (see Figure 5). Multipath users connect
to both APs and they share AP2 with single-path users.

If the allocation of rates was proportionally fair, mul-
tipath users should use AP2 only if C1<C2 and all
users would receive (N1C1+N2C2)/(N1 + N2). When
C1 > C2, a fair multipath user should not transmit over
AP2. This fair allocation is represented by dashed lines
in Figure 5(b) when we take into account the minimum
probing cost. However, using MPTCP with LIA, mul-
tipath users get a larger share of bandwidth as soon as
C1 ≥ C2/(2+N1/N2). We show this analytically. Let
p1 and p2 be the loss probabilities at APs, x1 and x2 be
rates that a multipath user receives over its paths, and
y be the rate of a single-path user. Assume all RTTs
are the same. When C1/C2 < 1/(2+N1/N2), we have
p1 > p2 and all users receive the same rate: x1+x2 =
y = (C1+C2)/2. When C1/C2 > 1/(2+N1/N2), we
have p1 < p2 and the fixed point formula of LIA gives:

x1 =
p2

p1 + p2

1

rtt

√
2

p1
and x2 =

p1
p1 + p2

1

rtt

√
2

p1
.

6

Moreover, both the APs are bottlenecks and we have
x1 = C1 and x2+y = C2. As shown in Appendix C, this
set of equations has a unique positive solution that only
depends on the ratio N1/N2 and C1/C2. Figure 5(b) re-
ports a numerical evaluation of these fixed point equa-
tions for the case N1 = N2. We observe that LIA is fair
with regular TCP users, as long as C1 < C2/3. How-
ever, as C1 exceeds C2/3, it takes most of the capacity
of AP2 for itself.

We emulate the scenario in our testbed and measure
the performance of MPTCP with LIA. The results are
reported on Figures 5(c) and 5(d) for C2=1Mbps and
C1=1, 2Mbps, with N2=10 and N1=5, 10, 20, 30. Sim-
ilarly as for scenario A, we also present the theoretical
optimum with probing cost in Figure 5(c).

As C1/C2 ≥ 1, multipath users should not use AP2 at
all. However, our results show that, MPTCP users are
disproportionately aggressive and exhibit problem (P2).
Figure 5(d) shows the loss probability at AP2. We ob-
serve that LIA excessively increases congestion on AP2
and is unable to fully balance congestion in the network.
Also, we have p1=0.01, 0.003 if C1=1, 2Mbps. These re-
sults confirm our analytical observation and show that
LIA is overly aggressive towards TCP users.

4. OLIA: THE OPPORTUNISTIC LINKED
INCREASES ALGORITHM

In this section, we introduce OLIA as an alternative
for MPTCP’s LIA. OLIA is a window-based congestion-
control algorithm that couples the increase of conges-
tion windows and uses unmodified TCP behavior in the
case of a loss. The increase part of OLIA has two terms.
The first term is an adaptation of Kelly and Voice’s in-
crease term and provides the Pareto-optimality. The
second term, with α, guarantees responsiveness and non-
flappiness. We first present the algorithm and its Linux
implementation. Then, we illustrate with an example
its operation and its difference with LIA.

4.1 Detailed Description of OLIA
Let Ru be the set of paths available to user u and

let r ∈ Ru be a path. We denote by `1r(t) the num-
ber of bits that have been successfully transmitted by
u over path r between the last two losses seen on r,
and by `2r(t) the number of bits that are successfully
transmitted over r after the last loss. If no losses have
been observed on r, then `1r(t) = 0 and `2r(t) is the to-
tal numbers of bits transmitted on r. Also, let `r(t) =
max{`1r(t), `2r(t)} and let rttr(t) and wr(t) be respec-
tively RTT and the window on r at time t. We define

M(t) =

{
i(t) | i(t) = arg max

p∈Ru

wp(t)

}
(3)

B(t) =

{
j(t) | j(t) = arg max

p∈Ru

`p(t)

rttp(t)2

}
(4)

M(t) is the set of the paths of u with largest window
sizes at time t. B(t) is the set of the paths at time t
that are presumably the best paths for u (1/`r(t) can
be considered as an estimate of packet loss probability
on path r at time t, and the rate that path r can provide
to a TCP user can be estimated by

√
2`r(t)/rttr [17]).

Our algorithm is as follows1:
• For each ACK on path r, increase wr by:

wr/rtt
2
r

(
∑

p∈Ru
wp/rttp)2

+
αr

wr
, (5)

• For each loss on path r, decrease wr by
wr

2
,

αr is calculated as follows:

αr =


1/|Ru|
|B \M|

if r ∈ B \M 6= ∅

−1/|Ru|
|M|

if r ∈M andB \M 6= ∅

0 otherwise.

(6)

where B\M is the set of elements in B but not in M,
∅ is the empty set, and |Ru| is the number of paths
available to u at the time. Note that

∑
r∈Ru

αr=0.
Remark 1. Kelly and Voice’s algorithm is based on

scalable TCP. The first term of Equation (5) is a TCP
compatible version of their algorithm that compensates
also for different RTTs.

Remark 2. We can see from (3), (4), and (6) that if
the presumably best paths have maximum window size,
then αr=0 for any r ∈ Ru. However, if there is any best
path with small window size, i.e. if B\M6=∅, then αr

would be positive if r ∈ B\M, negative if r ∈ M, and
zero otherwise. Hence, OLIA increases windows faster
on the paths that are presumably the best but have
small windows, and slower on the paths with maximum
windows.

4.2 Linux implementation of OLIA
We implemented OLIA in the MPTCP release sup-

ported on the Linux kernel 3.0.0 [18]. Similarly to LIA,
our algorithm only applies to the increase part of the
congestion avoidance phase. The fast retransmit and
fast recovery algorithms, as well as the multiplicative
decrease of the congestion avoidance phase, are the same
as in TCP [5]. We also use a similar slow start algorithm
as in TCP with the modification that we set the ssthresh
(slow start threshold) to be 1 MSS if multiple paths
are established. In the case of a single path flow, we
use similar minimum ssthresh as in TCP (2 MSS). The
purpose of this modification is to avoid transmitting
unnecessary traffic over congested paths when multiple
paths are available to a user. The minimum congestion
windows size is 1 MSS as in TCP. Our implementation
is available online [19].
1To simplify notations, we drop time argument t, however,
note that wr, rttr, `r, M, and B are all functions of time.

7

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
1

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
2

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

time (in sec)

α 1

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

time (in sec)
α 2

(a) MPTCP - OLIA: window size and αr as a function of time.

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
1

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
2

(b) MPTCP - LIA: window size.

Figure 6: Evolution of w and α values for a two
paths flow. Each path is shared with 5 regular
TCP users. OLIA uses both of the paths and
there is no sign of flappiness.

One important part of our implementation is the mea-
surement of `r on a path r. This can be done easily by
using information that is already available to a regular
TCP user. Our algorithm to compute `r is as follows:

• For each ACK on r: `2,r ← `2,r+ (number of bits
that are acknowledged by ACK)

• For each loss on r: `1,r ← `2,r and `2r ← 0

where `r = max{`1,r, `2,r}. `1,r and `2,r are initially
set to zero when the connection is established. To com-
pute a smoothed estimate of rttr, we use the algorithm,
proposed in [20], and implemented in the Linux kernel.

4.3 Illustrative example of OLIA’s behavior
To give more insight into how OLIA performs, we

show the evolution of window sizes and α values for a
two-path flow (Fig. 7). The measurement results on
our testbed are reported in Figures 6 and 8.

We first consider a symmetric case, depicted on Fig-
ure 7(a). As both of the paths are equally good, a mul-

5 TCP flows

5 TCP flows

C

C

(a) Symetric scenario
10 TCP flows

5 TCP flows

C

C

(b) Asymetric scenario

Figure 7: A multipath user sharing two bottle-
necks of same capacity C with single-path users.

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
1

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
2

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

time (in sec)

α 1

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

time (in sec)

α 2

(a) MPTCP - OLIA: window size and αr as a function of time.

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
1

0 20 40 60 80 100 120
0

10

20

30

time (in sec)

w
2

(b) MPTCP - LIA: window size.

Figure 8: Evolution of w and α for a two paths
flow. The first path is shared with 5 TCP flows
and the second with 10. OLIA uses only the
good path. LIA transmits significant traffic over
the congested path and less over the good.

tipath user should use both of them. Figure 6(a) shows
the evolution of wr and αr as a function of time. We ob-
serve that OLIA simultaneously uses both of the paths,
similarly to LIA (Fig. 6(b)), which is desired behavior.
There is no sign of flappiness as α1 and α2 react quickly
and adjust w1 and w2 accordingly.

We now study the asymmetric scenario of Figure 7(b).
In this case, the second path is shared with 10 TCP
flows and the multipath users should only use the first
path, which is what we observe in Figure 8(a). The
window on the congested path is 1 most of the time
(because of the first increase term). However, due to α,
the window increases from time to time over the con-
gested path whenever the path has the largest inter-loss
distance `r. This increase is brief since losses occur more
frequently on this path. LIA, however, transmits signif-
icant traffic over the congested paths and lower traffic,
compared to OLIA, over the good path (Fig. 8(b)).

5. PARETO-OPTIMALITY OF OLIA
In this section, we prove with a fluid model that

OLIA provides a Pareto-optimal allocation of rates. We
build a fluid model of OLIA using differential inclusions.
We show that this model provides a Pareto-optimal
allocation (Theorem 3) that satisfies the three design
goals suggested by the RFC [1]. Finally, we show that
MPTCP with OLIA is fair with TCP: if all routes of
a user have the same RTT, then OLIA maximizes the
same fairness criteria as the regular TCP (Theorem 4).

8

5.1 Fluid Model of OLIA
We consider a network model similar to [7]. The net-

work is static and composed of a set L of links (or re-
sources). We denote by Ru the set of paths available
to a user u, each path being a set of links. If the route
r is available to user u, we write r ∈ Ru. If a route r
uses a resource `, we write ` ∈ r. Similarly, we refer to
all routes that cross ` as r 3 `.

Let xr(t) ≥ 0 be the rate of traffic transmitted by the
user u on a path r ∈ Ru. We assume that the RTT of
a route r is fixed in time and we denote it by rttr. In
the fluid model, the rate xr is an approximation of the
window size divided by the RTT, i.e. xr = wr/rttr.

Let p`(
∑

`∈r xr) be the loss rate at link `. p` depends
on the capacity of the link, C`, and the total amount
of traffic sent through the link,

∑
`∈r xr. We assume

that p` is an increasing function of the total traffic. To
simplify the notation, we omit the dependence on x and
write only p`. However, note that if x varies with time,
p` will also vary. We assume that the loss probabilities
of links are independent and small; hence, the loss prob-
ability on a route r is pr=1−

∏
`∈r(1−p`) ≈

∑
`∈r p`.

When pr is small, a user u receives acknowledgments
on a route r ∈ Ru at rate xr and increases the window
wr as Equation (5). Losses occur at rate prxr on r, and
the user decreases wr by half whenever it detects a loss.
We consider a fluid approximation of OLIA in which
we replace the stochastic variations of rates by their
expectaion. This leads to the differential equation:

dxr
dt

= x2r

(
1/rtt2r

(
∑

p∈Ru
xp)2

− pr
2

)
+

αr

rtt2r
, (7)

αr depends on the values pp and wp for all paths p ∈ Ru

of users u. It is defined by Equation (6). To compute
αr, we approximate `r by its average: lr = 1/pr.

For a user u, the set of best paths Bu and the set
of paths with maximum window size Mu depend non-
continuously on the probability of loss on each route,
as well as on the various window sizes of the routes of
this user. This implies that the right-hand side of Equa-
tion (7) is not a continuous function of xr. Therefore,
this differential equation is not well defined and could
have no solutions. A natural way to deal with a dif-
ferential equation with a discontinuous right-hand size
is to replace the differential equation (7) by a differen-
tial inclusion dx/dt ∈ F (x) where the discontinuous αr

of (7) is replaced by the convex closure of the possible
values of α in a small neighborhood of x. Differential
inclusions have been proven to be a good approximation
for stochastic system with discontinuous dynamics [21].

We show in Appendix D, that the differential inclu-
sion corresponding to the Equation (7) is:

dxr
dt

= x2r

(
1/rtt2r

(
∑

p∈Ru
xp)2

− pr
2

)
+

ᾱr

rtt2r
(8)

where ᾱ = (ᾱ1 . . . ᾱ|Ru|) is such that:

ᾱr ∈


[α1|Bu|=1, α] if r ∈ Bu \Mu

[−α,−α1|Mu|=1] if r ∈Mu \ Bu
[−α1|Bu|≥2, α1|Mu|≥2] if r ∈Mu ∩ Bu
{0} if r 6∈ Mu ∪ Bu

(9)

with
∑

r∈Ru
ᾱr = 0 and

∑
r∈Bu

ᾱr = a if Bu ∩Mu =
∅. The notation 1|Bu|=1 means that this term is equal
to 1 if |Bu| = 1 and 0 otherwise. For example, when
there is only one best path (i.e. |B| = 1), αr = a for
r ∈ Bu \Mu. If there are two or more best paths (i.e.
|B| 6= 1), then αr ∈ [0, a] for r ∈ Bu \Mu.

Note that there are multiple ᾱ that correspond to def-
inition (9). The differential inclusion might have multi-
ple solutions, but this does not affect our analysis [19].

5.2 Pareto Optimality of OLIA
A fixed point of the congestion control algorithm (8)

is a vector of rates x = (x1 . . . x|R|) such that there ex-
ists ᾱ satisfying (9) and such that, Eq.(8) is equal to
zero for any route r. We say that x is a non-degenerate
allocation of rates if each user transmits with a non-zero
rate on at least one of its paths. In practice, due to re-
establishment routines in traditional TCP, the alloca-
tion of rates will not be degenerate. Hence, in our anal-
ysis, we consider only the non-degenerate fixed points
and analyze their properties.

Theorem 1. Any non degenerate fixed point x of
OLIA congestion control algorithm, given by Eq.(8), has
the following properties:

(i) Only the best paths will be used, i.e. paths r with
maximum

√
2/pr/rttr.

(ii) The total rate obtained by a user u is equal to the
rate that a regular TCP user would receive on the
best path available to u:∑

r∈Ru

xr = max
r∈Ru

1

rtt r

√
2

pr
.

Proof. The proof is given in Appendix E.

This theorem implies the following corollary:

Corollary 2. OLIA satisfies the three design goals
suggested by the RFC [1].

Proof. The proof is given in Appendix F.

The following theorem gives a global optimality prop-
erty of OLIA. For a rate allocation x, we define the total

congestion cost by C(x) =
∑

`

∫∑
r3` xr

0
p`(y)dy.

Theorem 3. Any non-degenerate fixed point x of our
congestion control algorithm (8) is Pareto optimal, i.e.:

• It is impossible to increase the quantity∑
r∈Ru

xr/rtt
2
r for some users without decreasing

it for others or increasing the congestion cost C(x).

9

Proof. The proof is given in Appendix G.

Remark 1. If the probability p` is sharp around
C`, i.e. if p`(y) ≈ 0 when y < C` and p` grows rapidly
when y exceeds C`, then the cost C is a binary function:
it is very small if the capacity constraints

∑
r∈` xr ≤

C` are respected and grows rapidly otherwise. In this
case, Theorem 3 shows that if x is a fixed point of
our algorithm, it is impossible to increase the quantity∑

r∈Ru
xr/rtt

2
r for some users without decreasing it for

others while respecting the capacity constraints.
Remark 2. As pointed out by Kelly [6], as C(x) is

an increasing function of rates, single-path congestion
control mechanisms are always Pareto optimal and the
choice of an allocation of rates is only a matter of fair-
ness. However, if we have multiple paths, it is likely
that an algorithm will lead to a non-Pareto optimal al-
location [6]. Theorem 3 guarantees that this cannot
happen with OLIA. As a consequence, our algorithm
will not exhibit either problem P1 nor P2.

Remark 3. Although the utility function of each
user

∑
r∈Ru

xr/rtt
2
r might appear an ad-hoc utility func-

tion, it reflects the fact that as TCP, OLIA favors paths
with low rtt.

5.3 TCP Compatibility
We show that our algorithm is fair with the regular

TCP under the assumption (A): all the paths belonging
to a user u have the same RTT rttu. Let

V (x) =
∑
u∈U
− 1

rtt2u
∑

r∈Ru
xr
− 1

2

∑
l∈L

∫ ∑
r3l xr

0

p`(x)dx,

where x is the set of all the rates of the users.

Theorem 4. Under the assumption (A), the conges-
tion control algorithm defined by Eq.(8) converges to a
maxima of the utility function V :

lim
t→∞

V (x(t)) = max
x≥0

V (x).

Proof. The proof is given in Appendix H.

This implies that OLIA maximizes the same utility func-
tion as the regular TCP of [22] where we replace the rate
of a connection by the total rate that a user achieves on
all its paths. If the probabilities of losses p` are sharp
around C`, then our algorithm converges to an optimum
of the following global maximization problem:

max
∑
u∈U
− 1

rtt2u
∑

r∈Ru
xr

subject to

{ ∑
r3` xr ≤ C`

xr ≥ 0.

This is analog to the TCP maximization problem.

6. OLIA EVALUATION: MEASUREMENTS
AND SIMULATIONS

In this section, we study the performance of MPTCP
with OLIA through measurements and by simulations.

1 2 3
0

0.2

0.4

0.6

0.8

1
OLIA

LIA

type1 users

type2 users: OLIA

type2 users: LIA

type1: optimum with probing cost

type2: optimum
with probing cost

N
1
/N

2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

C
1
/C

2
 = 0.75

C
1
/C

2
 = 1.0

C
1
/C

2
 = 1.5

Figure 9: Scenario A - Normalized throughput
of type1 and type2 users: we compare perfor-
mance of LIA and OLIA. By using OLIA, type2
users achieve up to 2 times higher rates. OLIA
performs close to the theoretical optimum with
probing cost.

We first perform measurements on our testbed to show
that OLIA outperforms LIA in all the scenarios from
Section 3, as an evidence that OLIA solves Problems
(P1) and (P2). Results from this section are in line
with our theoretical analysis from Section 5. We then
study the performance of OLIA in a data center using
htsim simulator [2].

6.1 Performance of OLIA in Scenarios A,B,C
In this section, we study the performance of MPTCP

with OLIA in the scenarios A,B and C described in Sec-
tions 3.2 to 3.4. We show that in practice, OLIA is very
close to theoretical optimum with probing cost. These
results are obtained through measurements over our
testbed, by using our Linux implementation of OLIA.

6.1.1 Scenario A
We showed in Section 3.2 that when the addition of

an extra link does not help (like in Scenario A), us-
ing MPTCP with LIA might reduce the throughput of
competing TCP users. In this section, we show by mea-
surements that MPTCP with OLIA significantly out-
performs MPTCP with LIA and comes close to the the-
oretical optimum with probing cost.

Figures 9 and 10 report measurements obtained on
the testbed shown in Figure 2. Figure 9 depicts the
normalized throughput of type1 and type2 users using
LIA or OLIA. The results show that OLIA performs
close to an optimal multipath algorithm that transmits
the minimum traffic over congested paths (theoretical
optimum with probing cost). OLIA significantly out-

10

0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

N
1
/N

2

L
os

s
pr

ob
ab

ili
tie

s

p2 with LIA

p2 with OLIA

C
1
/C

2
 = 0.75

C
1
/C

2
 = 1.0

C
1
/C

2
 = 1.5

Figure 10: Scenario A - Loss probability p2 at
shared AP: we observe that OLIA significantly
reduce the congestion level at this bottleneck
and improve the congestion balancing. p1 is al-
most the same using LIA or OLIA.

performs LIA: by using OLIA, type2 users achieve up
to rates two times higher than with LIA, with no reduc-
tion for type1 users.

Figure 10 depicts the measured loss probability p2 on
the shared access point. We observe that OLIA balances
congestion much better than LIA. When we use OLIA,
p2 increases only by a factor of 1.3 in the worst case,
whereas with LIA, p2 increases by a factor of 5. p1 is
almost the same using LIA or OLIA.

6.1.2 Scenario B
We now show the performance of OLIA in the sce-

nario B described in Section 3.3. As we shown, OLIA
is Pareto optimal. Hence, taking into account the min-
imum probing cost, we expect only 3% reduction in the
Blue users’ rates and in the aggregate throughput when
we upgrade Red users to OLIA (see Figure 4(b)).

Table 2 presents the measurements for the scenario
described in Section 3.3 using OLIA. We set CX=27,
CT =36, CZ=100, all in Mbps. We have 15 Red and 15
Blue users. We set RTTs to 100 ms over all paths. Our
results show that there is 3.5% decrement in aggregate

Red users
Rate/user

Aggregate
Blue users Red users

Single-path 2.2 1.8 59.3

Multipath 2.2 1.7 57.8

Table 2: Measurement results for scenario B
showing the effect of upgrading the Red users
from regular TCP to MPTCP with OLIA. We
observe a small drop of 3.5% in the aggregate
throughput, which is due to the overhead of
minimum traffic (1/rtt) over the congested path.
Compared to LIA (see Table 1), we see signifi-
cant improvement.

0 1 2 3
0

0.5

1

1.5

single-path

N
1
/N

2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

multipath

LIA

OLIA

OLIA

LIA

single-path: optimum
with probing cost

multipath: optimum
with probing cost

C
1
/C

2
 = 1.0

C
1
/C

2
 = 2.0

Figure 11: Scenario C - Normalized through-
put single-path and multipath users: we com-
pare the performance of LIA and OLIA. We ob-
serve that by using OLIA, type2 users achieve
up to 2 times higher rates. OLIA performs close
to the theoretical optimum with probing cost.

throughput when we update Red users to OLIA, which
is much smaller than the 13% reduction we observed
when we used LIA (see Table 1). This 3.5% reduction in
the aggregate throughput is due to the minimum traffic
transmitted by users over congested paths and cannot
be reduced as it is bounded below by 1/rtt packets/sec.

6.1.3 Scenario C
Finally, we study the performance of MPTCP with

OLIA in scenario C described in Section 3.4. From the-
orems 1 and 4, we can show that using our algorithm,
multipath users will not send any traffic on their paths
crossing AP2. Hence, in theory, OLIA provides a fair
allocation among the users and performs similarly as
shown in Figure 5(b) (dashed lines). Next, we show by
measurements that OLIA is also fair in practice.

Figure 11 depicts the normalized throughput of single-
path and multipath users, as a function of N1/N2 and
for C1/C2=1, 2. We show the results for LIA, OLIA, as
well as for an optimal algorithm with minimum probing
cost. This figure shows that with OLIA multipath users
transmit only one packet per RTT over AP2. Com-
pared to LIA, type2 users receive up to 2 times higher
throughput. Hence, OLIA is less aggressive than LIA
towards regular TCP users.

Figure 12, shows the measured loss probability p2.
The results show again that OLIA balances congestion
in the network and reduces the loss probability in bottle-
necks much better than LIA. In particular, we observe
that by increasing N1 from 0 to 3N2, p2 increases by a
factor of 2 using OLIA, whereas the increase is in order

11

0 0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
1
/N

2

L
os

s
pr

ob
ab

ili
tie

s

p2 with OLIA

p2 with LIA

C
1
/C

2
 = 1.0

C
1
/C

2
 = 2.0

Figure 12: Scenario C - Loss probability p2 at
shared AP: we observe that OLIA significantly
reduce the congestion level at this bottleneck (4
to 6 times lower compared tp LIA). p1 is almost
the same using LIA or OLIA.

of 4 to 6 times when using LIA. p1 is almost the same
using OLIA or LIA.

6.2 Performance of OLIA in Data Center and
Dynamic Scenarios

The three preceding examples shows that by provid-
ing a better congestion balance, MPTCP with OLIA
outperforms the MPTCP with LIA in Scenarios A, B,
and C. In this section, we show that OLIA can fully use
the multiple paths available in a data center, by being
non-flappy and as responsive as LIA.

Our study is based on a series of scenarios in which
MPTCP with LIA has been studied in [2]. Because of
space constraints, we present the results for only two
of the cases where it was shown to be very efficient.
We observe that OLIA performs as well or better than
LIA in these two scenarios. This indicates that it is
not flappy, and has a very good responsiveness. These
results are obtained using htsim simulator used in [2],
provided by Raiciu et al. We implemented OLIA in the
simulator and used the same scenarios as [2].

6.2.1 Static FatTree Topology
We first study exactly the same scenario as in [2],

Section 4.2-Throughput: the network is a FatTree with
128 hosts, 80 eight-port switches, 100Mb/s links. Each
host sends a long-lived flow to another host chosen at
random. Figure 13(a) shows the aggregate through-
put achieved by long-lived TCP and MPTCP (LIA and
OLIA) flows. We show the results for different num-
bers of subflows used. Our results show that OLIA can
successfully exploit the multiple paths that exist in the
network and can use the available capacity. This is a
sign that it is not flappy. Moreover, we also measure the
loss probabilities of links, and we observe that most of
the users have multiple equally good paths. This shows

2 3 4 5 6 7 8
0

20

40

60

80

100

Number of subflows

T
hr

ou
gh

pu
t (

%
 o

f
op

tim
al

)

MPTCP with LIA
MPTCP with OLIA
TCP

(a) Aggregated throughput.

0 50 100
0

20

40

60

80

100

Rank of flows

T
hr

ou
gh

pu
t (

%
 o

f
op

tim
al

)

MPTCP with LIA
MPTCP withOLIA
TCP

(b) Throughput of users.

Figure 13: Performance of OLIA in a FatTree
with many possible parallel paths between users.
It successfully explores the path diversity that
exists in the network and uses the available ca-
pacity (a sign of non-flappiness). LIA performs
similarly, as in this scenario, it can successfully
balance the congestion.

that both LIA and OLIA successfully balance the con-
gestion in this scenario and explains why they exhibit
similar performances (OLIA is slightly better). Regular
TCP shows a poor performance.

Figure 13(b) shows the throughput of individual users
ranked in order of PDF of achieved throughputs, for
LIA and OLIA with 8 subflows per user and with TCP.
We see that both LIA and OLIA provide similar fairness
among users and are more fair than TCP. The reason, as
stated before, is that many paths have similar qualities.

6.2.2 Dynamic Setting with Short Flows
We study the same scenario as the one described in

Section 4.3.4-ShowFlows of [2]. The scenario is a 4:1
oversubscribed FatTree where each host sends to one
other host. One third of the hosts sends a continu-
ous flow using either TCP, MPTCP with LIA (8 sub-
flows) or with OLIA (8 subflows). The remaining hosts
send short flows of size 70Kbyte every 200ms on average
(they generate these flows according to a poisson pro-
cess). They use regular TCP. This is a highly dynamic
setting in which changes occur in order of milliseconds.

Table 3 shows the average completion time for short
flows and the network core usage. Figure 14 shows the

algorithm Short flow finish Network core
time (mean/stdev) utilization

MPTCP - LIA 98± 57 ms 63.2%

MPTCP - OLIA 90± 42 ms 63%

Regular TCP 73± 57 ms 39.3%

Table 3: Performance of OLIA in a highly dy-
namic setting. It uses the available capacity as
efficient as LIA, but decreases the average com-
pletion time of short flows by 10%.

12

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

Short flow completion time (ms)

PD
F

MPTCP with LIA
MPTCP with OLIA
TCP

Figure 14: Completion time of short flows com-
peting with long-lived TCP, MPTCP with LIA,
or MPTCP with OLIA flows in a highly dynamic
setting. OLIA reacts faster to the changes in the
network and is more fair toward short flows.

distribution of short flows completion time. Our results
show that although OLIA uses the available capacity as
efficiently as LIA, the average completion time of short
flows decreases by 10% using OLIA.

Moreover, we also observe in Figure 14 that OLIA de-
creases the completion time of both fast and slow short
flows. With TCP, we have a lower average completion
time for short flows but very low network utilization.
This shows that OLIA has a better responsiveness than
LIA and uses capacity quickly when it is available.

7. CONCLUSION
We have shown that MPTCP with LIA suffers from

performance problems and that an alternative algorithm
like OLIA should be considered. Our theoretical re-
sults show that OLIA is Pareto-optimal and satisfies the
three design goals of the RFC [1]. Moreover, we have
shown through measurements and by simulation that
OLIA is as responsive and non-flappy as LIA, while it
solves identified problems with LIA.

As we discussed in this paper, the minimum probing
traffic (1 MSS per RTT) is a constraining factor. It
can be reduced even further by adjusting the retransmit
timer of TCP. We relegate this issue to the future.

8. REFERENCES
[1] C. Raiciu, M. Handly, and D. Wischik. Coupled

congestion control for multipath transport
protocols. RFC 6356 (Experimental), 2011.

[2] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh,
D. Wischik, and M. Handly. Improving datacenter
performance and robustness with multipath tcp.
ACM Sigcomm, 2011.

[3] D. Wischik, M. Handly, and C. Raiciu. Control of
multipath tcp and optimization of multipath
routing in the internet. NetCOOP, 2009.

[4] D. Wischik, C. Raiciu, A. Greenhalgh, and
M. Handly. Design, implementation and
evaluation of congestion control for multipath tcp.
Usenix NSDI, 2011.

[5] M. Allman, V. Paxon, and E. Blanton. Tcp
congestion control. In RFC 5681, September 2009.

[6] F.P. Kelly. Mathematical modelling of the
internet. Mathematics unlimited-2001 and beyond.

[7] F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate
control for communication networks: shadow
prices, proportional fairness and stability. Journal
of the Operational Research society, 49, 1998.

[8] F. Kelly and T. Voice. Stability of end-to-end
algorithms for joint routing and rate control.
ACM SIGCOMM CCR, 35, 2005.

[9] H. Han, S. Shakkottai, CV Hollot, R. Srikant, and
D. Towsley. Multi-path tcp: a joint congestion
control and routing scheme to exploit path
diversity in the internet. ToN, 14, 2006.

[10] W.H. Wang, M. Palaniswami, and S.H. Low.
Optimal flow control and routing in multi-path
networks. Performance Evaluation, 52, 2003.

[11] A. Ford, C. Raiciu, M. Handley, S. Barre, and
J.Iyengar. Architectural guidelines for multipath
tcp development. RFC 6182 (informational),
2011.

[12] A. Ford, C. Raiciu, M. Handley, and
O. Bonaventure. Tcp extensions for multipath
operation with multiple addresses. IETF Internet
Draft, 2011.

[13] C. Cetinkaya and E.W. Knightly. Opportunistic
traffic scheduling over multiple network paths. In
INFOCOM, 2004.

[14] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson,
and R. Wang. A transport layer approach for
improving end-to-end performance and robustness
using redundant paths. In USENIX, 2004.

[15] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti,
and H. Tokuda. Multipath congestion control for
shared bottleneck. In PFLDNeT workshop, 2009.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F. Kaashoek. The click modular router. ACM
Trans. Comput. Syst., 18, 2000.

[17] V. Misra, W.-B. Gong, and D. Towsley.
Fluid-based analysis of a network of AQM routers
supporting TCP flows with an application to
RED. In SIGCOMM, 2000.

[18] http://mptcp.info.ucl.ac.be/.
[19] R. Khalili, N. Gast, M. Popovic, U. Upadhyay,

and J.-Y. Le Boudec. Non pareto-optimality of
mptcp: Performance issues and a possible
solution. EPFL Technical report. Available at
http: // infoscience. epfl. ch/ record/ 177901 , 2012.

[20] V. Jacobson. Congestion avoidance and control.
In ACM SIGCOMM CCR, volume 18, 1988.

[21] N. Gast and B. Gaujal. Mean field limit of
non-smooth systems and differential inclusions.
ACM SIGMETRICS, 2010.

[22] S. Kunniyur and R. Srikant. End-to-end
congestion control schemes: Utility functions,
random losses and ecn marks. ToN, 11, 2003.

http://mptcp.info.ucl.ac.be/
http://infoscience.epfl.ch/record/177901

13

[23] M. Kunze. Non-smooth dynamical systems.
Number 1744 in Lecture Notes in Mathematics.
Springer Verlag, 2000.

APPENDIX
These appendix are divided in two parts. The first part
(Appendix A to C) focuses on the proofs of the analyt-
ical results for LIA. It contains the fixed point analy-
sis and the computation of the optimal allocation with
probing cost for scenarios A, B and C. The second part
(Appendix D to H) contains the proofs related to the
Pareto optimality of OLIA.

A. FIXED POINT ANALYSIS FOR SCEN. A
In this appendix, we present a fixed point analysis

of the scenarios A of Section 3. For more clarity, we
represent the scenario A in Figure 15.

N
1

t
y
p
e
1

u
s
e
r
s

private AP

...

N
2

t
y
p
e
2

u
s
e
r
s

...

shared AP

N2C2

Internet Streaming
server

N1C1

Other
servers

x1

y

x2
N1(x1+x2)

y

Figure 15: The scenario A of Section 3

Let us denote by p1 and p2 the loss probability for
the streaming server and the shared AP. As we assume
that the private APs are not the bottlenecks, the loss
probabilities at the private APs are negligible. We as-
sume that the RTT are the same over all connections
and equal to rtt. Let x1 be the rate of a type1 user over
the path crosses its private AP and x2 be its through
over the shared AP. Let y be the rate of a type2 user.

The type1 users use MPTCP with LIA on two paths
that have loss probabilities p1 for the path through pri-
vate AP and p1 + p2 for the path through the shared
AP. Thus, the fixed point formula (Eq.(2)) of LIA gives:

x1+x2 = C1 =
1

rtt

√
2

p1
and x2 =

1

2 + p2/p1

1

rtt

√
2

p1

Users of type 2 are using the regular TCP over a link
with probability of loss p2, they get a throughput

y =
1

rtt

√
2/p2.

This comes from the loss-throughput formula for TCP.
As the streaming server and shared AP are the bot-

tlenecks, the capacity constraints give:

N1(x1 + x2) = N1C1 and N1x2 +N2y = N2C2

Let Z :=
√
p1/p2. A direct computation shows that Z

is a root of

Z +
Z2

1 + 2Z2

N1

N2
=
C2

C1
(10)

As Z2/(1 + 2Z2) is an increasing function of Z, this
equation has a unique positive solution. Although this
solution has no simple closed-form solution (it is the
root of a third-order polynomial), it can be easily com-
puted numerically. Hence, It provides a numerical scheme
for computing x1, x2 and y.

Type1 users always receives a rate of C1; hence, their
normalized throughput, (x1 + x2)/C1, is always 1. The
normalized throughput of type2 users, y/C2, is equal to√
p1/p2

√
2/p1 = ZC1, where Z is the unique positive

solution of Equation (10). In particular, this shows that
y/C2 only depends on the ratios C1/C2 and N1/N2.

A.1 Optimal with probing cost for scenario A
In scenario A, the throughput of type1 users is bounded

by the streaming server. Using the shared AP can re-
duce the throughput of type2 users but cannot bring
any gain to type1 users. Thus, an optimal algorithm
should put as low traffic as possible on the second path.

Assuming that the minimum traffic sent over a link
is one packet of size MSS per round trip time, this leads
to the following allocation of rate:

x1 + x2 =
C1

N1
and x2 =

MSS

rtt

y =
C2

N2
− N1

N2

MSS

rtt

This allocation is represented by the solid lines on Fig-
ure 1(b).

B. FIXED POINT ANALYSIS FOR SCEN. B
We present a theoretical analysis of the rate of blue

and red users in scenario B when multipath users use
MPTCP with LIA. We represent scenario B in Fig-
ure 16.

ISP X

ISP Y

ISP Z

ISP T

blue users

red users

x1

x2
y1

y2

Figure 16: The scenario B of Section 3

We assume that the capacity of link Y and link Z
are greater than CX +CT . This ensures that only links
X and T are bottlenecks and we denote by pX and
pT the probabilities of loss over them. If Red users
are only connected to Y , the theoretical analysis is the

14

same as the one of scenario C, and we refer to Section C
for more details. In the case where all paths are acti-
vated, i.e. when Red users upgrade to MPTCP users,
the loss throughput formula (Eq.(2)) for LIA shows that
the throughput of the different connections are:


y1 =

1/rtt

2 + pX

pT

√
2

pT

y2 =
pX
pT

y1

,


x1 =

1/rtt

1 + pX/pT

√
max

2

pX
,

2

pT

x2 =
1/rtt

1 + pT /pX

√
max

2

pX
,

2

pT

When CX/CT < 5/9, we have pX > pT . In that case,
pX/pT is the root of the second order polynomial

2x2 + x(5− 2
CT

CX
) + 2− 3

CT

CX

When CX/CT > 5/9, we have pT > pX . In that case,√
pX/pT is the unique positive root of the fifth order

polynomial:

Z5+Z4+Z3(3− CT

CX
)+Z2(2− CT

CX
)+Z(2− CT

CX
)−2

CT

CX

These equation provide an efficient numerical method to
evaluate the rate sent over the various links and there-
fore evaluate the performance of LIA. Note that he so-
lutions of these equation only depend on CT /CX .

B.1 Optimal with probing cost for scenario B
To simplify the notations, we present the analysis for

N1 = N2 = N , which is the case in the scenarios studied
in Section 3. The analysis is similar when N1 6= N2.

We distinguish two cases: first when red users use the
regular TCP, then when red users uses an optimal mul-
tipath algorithm and activate the dashed connection.

B.1.1 Optimal when red users are single-path (dashed
connections not activated)

Let us first assume that red users are only connected
to ISPY. As ISP Y and Z are not bottlenecks, we have
x1 = CX/N . Moreover, the capacity constraint for ISP
T implies that N(x2 + y2) = CT .

Assuming that x2 ≥ MSS/rtt, there are two cases:

• When CX ≤ CT−NMSS/rtt, a fair allocation will
allocate the same rate, i.e. (CX+CT)/(2N), to all
users .

• When CX > CT − NMSS/rtt, blue users will get
more than red users. Thus, blue users should only
transmit the minimal traffic x2 = MSS/rtt over the
second link.

This shows that using an optimal algorithm with prob-
ing, each blue user will get a rate x1 + x2 and each red

user will get a rate y2, where:

x1 + x2 = max

(
CX

N
+

MSS

rtt
,
CT + CX

2N

)
(11)

y2 = min

(
CT

N
− MSS

rtt
,
CX + CT

2N

)
. (12)

B.1.2 Optimal when red users are multipath (dashed
connections activated)

As y1 and y2 share the same bottleneck, ISP T , the
Red users should only transmit the minimum traffic over
the dashed path, i.e. y1 = MSS/rtt. Similarly to sce-
nario A, if the Red users transmit over the dashed path
they will penalize the other users without any benefit for
themselves. This implies that x1 = CX/N −MSS/rtt.
Also, the capacity constraints for ISP T gives N(x2 +
y1 + y2) = CT . Therefore, we have: N(x1 + x2 + y1 +
y2) = CT + CX −NMSS/rtt.

As x2 ≥ MSS/rtt, a fair allocation should allocate x2
such that:

• if CX ≤ CT −NMSS/rtt, we should have x1+x2 =
y1 + y2 = (CT + CX −NMSS/rtt)/(2N)

• if CX ≥ CT −NMSS/rtt, Blue users should trans-
mit the minimal traffic x2 = MSS/rtt over their
second link.

Thus, using this optimal algorithm with probing cost,
each Blue user will get a rate x1 +y2 and each Red user
will get a rate y1 + y2 where

x1+x2 = max

(
CX

N
,
CT + CX

2N
− MSS

2rtt

)
(13)

y1+y2 = min

(
CT

N
− MSS

rtt
,
CX+CT

2N
− MSS

2rtt

)
(14)

Compared to Equations (11) and (12), the rates ob-
tained by (13) and (14) are strictly smaller. The agre-
gate throughput of all users decreases by NMSS/rtt.

B.1.3 Illustrations for two values of RTT
Figure 17 depicts the throughput reduction when up-

grading Red users to multipath for an optimal algorithm
with probing cost. The values are shown for CX = 27
Mbps, CT = 36 Mbps and N1 = N2 = 15 users. The
values of the MSS is 1500 Bytes. Since the minimal
probing traffic sent over a link is MSS/rtt, a lower value
of the RTT means a higher reduction of throughput.

When N1 = N2 = N , the total rate of users de-
creases by NMSS/rtt. If we take the values of our test-
bet (MSS = 1500B, a RTT of 100ms, CX = 27 Mbps,
CT = 36 Mbps and N1 = N2 = 15), this corresponds to
2.8% of reduction of the agregate throughput. This is
much lower than the 13% reduction caused by MPTCP
with LIA (Table 1) but comparable with the 3.5% re-
duction caused by OLIA (Table 2).

15

0 0.5 1 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

C
X

/C
T

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Blue users when Red are multipath
Red users when Red are multipath
Blue users
Red users

(a) RTT=100ms

0 0.5 1 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

C
X

/C
T

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Blue users when Red are multipath
Red users when Red are multipath
Blue users
Red users

(b) RTT=25ms

Figure 17: Illustration of the optimal allocation
with probing for scenario B for two values of the
RTT. We set CT = 36 Mbps and N1=N2=15 users.

C. FIXED POINT ANALYSIS FOR SCEN. C
Let us assume that multipath users use LIA to bal-

ance their traffic over the two paths of scenario C. We
represent scenario C in Figure 18.

In
te

rn
etN
1

m
u
lt
ip

a
t
h

AP1

N1C1

...

N
2

s
in

g
le

-p
a
t
h

...
AP2

N2C2

Servers

...

x1

y

x2

Figure 18: The scenario C of Section 3

Let p1 and p2 be the packet loss probability at access
points, x1 and x2 be rates that a multipath user receives
over its connections, and y be the rate of a single-path
user. Assume that all RTT are rtt.

When C1/C2 < 1/(2 + N1/N2), we have p1 > p2
and all users receive the same rate: x1 + x2 = y =
(C1 + C2)/2. The normalized throughputs of users are
y/C2 = (1+C1/C2)/2 and (x1+x2)/C1 = (1+C2/C1)/2

When C1/C2 > 1/(2 +N1/N2), we have p1 < p2 and
the fixed point formula of LIA (Eq.(2)) is:

x1 =
p2

p1 + p2

1

rtt

√
2

p1

x2 =
p1

p1 + p2

1

rtt

√
2

p1
=
p1
p2
x1.

Moreover, both links are bottlenecks and we have x1 =
C1 and x2 + y = C2. Let Z := p1/p2. Using that the
TCP loss throughput formula, y =

√
2/p2, the quantity

Z is the unique positive root of:

Z3 +
N1

N2
Z2 + Z − C2

C1
.

Hence, the normalized throughputs of multipath users
are (x1 +x2)/C1 = 1 +Z. The single path users receive

a rate of y/C2 = 1 − C1

C2
Z. Again, this quantity only

depends on the ratio N1/N2 and C1/C2. Moreover, it
provides an efficient way to evaluate numerically the
performance of LIA.

C.1 Optimal with probing cost for scenario C
The analysis is similar to what we proposed in Section

B.1.2.

D. CONSTRUCTION OF THE DIFFEREN-
TIAL INCLUSION

D.1 Brief introduction on differential inclusions
In this section, we briefly recall some definitions and

results about differential inclusions and their relation to
stochastic systems that have discontinuous drifts.

A set valued function F : Rd → S(Rd) is a function
that associates to each vector x ∈ Rd a set of vectors
F (x) ⊂ Rd. We say that a function x : [0, T]→ Rd is a
solution of the differential inclusion dx/dt ∈ F (x) on the
interval [0, T] if there exists a function f : [0, T] → Rd

such that

∀t ∈ [0, T] : x(t) = x(0)+

∫ t

0

f(s)ds with f(t) ∈ F (t).

In particular, this implies that x is differentiable for
almost every t and its derivative x′ satisfies x′(t) ∈
F (x(t)).

In general, a differential inclusion may have multiple
solutions and verifying that it has only one solution can
be difficult. Nevertheless, proving the existence of so-
lutions is easier. In particular, if for all x, F (x) 6= ∅ is
compact and convex and the graph of F , the set of all
{(x, y) with x ∈ Rd and y ∈ F (x)}, is a closed set, then
the differential inclusion dx/dt ∈ F (x) has at least one
solution on some interval [0, T] [23].

Differential inclusion provide a natural way to repre-
sent differential equation with discontinuous right-hand
side. Let f : Rd → Rd be a single-valued function. If
f is Lipschitz continuous, then the differential equation
dx/dt = f(x) has a unique solution. However, when f is
not continuous, it often has no solutions. Following [21],
we define the set-valued function F corresponding to f :

F (x) =
⋂
ε→0

convex closure {f(x) : ‖x− w‖ ≤ ε} .

This definition guarantees that F (x) is non-empty, com-
pact, convex and that the graph of F is closed. There-
fore, it shows that dx/dt ∈ F (x) has at least one so-
lution. Moreover, it has been shown in [21] that the
solution of differential inclusions are a good approxima-
tion of the stochastic systems with discontinuous drift,
such as Eq.(7).

For example, let f(x) = −1 for x > 0 and 1 for x ≤ 0.
The set-valued F corresponding to f is F (x) = {−1}

16

if x > 0, F (x) = {1} for x < 0 and F (0) = [−1, 1].
While the differential equation dx/dt = f(x) has no
solution starting in 0, the differential inclusion has a
unique solution starting in 0.

D.2 Computation of Equation (9)

In this section, we show how to obtain the conditions
on α given by Eq.(9) and how to compute the differen-
tial inclusion (8) from the differential equation (7).

The only non-continuous part of the ODE (7) is due
to αr. The set-valued function ᾱ corresponding to α is

ᾱ(w) =
⋂
ε→0

convex closure {α(x) : ‖x− w‖ ≤ ε} .

The computation of ᾱ can be done by a careful in-
spection of Figure 19. For a route r, the set ᾱr cor-
responds to the convex closure of the values that αr

can take when all the points (wr, pr/rttr) move in a
small neighborhood. We detail the computation for a
link r ∈ Bu \Mu. The other cases (r ∈ Mu \ Bu and
r ∈Mu ∩ Bu and r 6∈ Mu ∪ Bu) are similar.

Let r be a route in Bu \Mu. Let us first assume that
there are two or more best paths (e.g. this is the case
for the route r4 of Figure 19), then if all points move
in a small neighborhood (represented by the dotted cir-
cles around nodes on Figure 19), then there are some
situations for which this route will be the only route in
Bu \ Mu 6= ∅ and αr will be equal to a in that case.
In other situations, the only best route can be route r1
and in that case αr = 0. Since this route cannot be-
come a route with maximum window size, αr can take
any value in [0, a].

On the other hand, if there is only one best paths and
if r ∈ Bu \Mu, then r is the best path. (this would be
the case for the route r4 on Figure 19 if the node r1 did
not exist). In that case, r will always be in Bu \ Mu

and αr = a.
This shows the first line of Equation (9): for r ∈

Bu \Mu:

αr ∈ [0, a] if |Bu| 6= 1 and αr = a otherwise.

We omit the proofs of the other cases of Eq.(9) since
they are very similar.

E. PROOF OF THEOREM 1
Let x be a non-degenerate fixed point of our algo-

rithm. Recall that a fixed point of the congestion con-
trol algorithm (8) is a rate allocation vector x such that
there exists αr satisfying Eq.(9) such that the quantity
dxr/dt defined by Eq. (8) is null.

Proof of (i). We prove (i) by contradiction.
Let us consider a user u and assume that there exists

a route r 6∈ Bu such that xr > 0. Since x is a fixed

wr

prrtt2r

•
r1

•
r2

•
r3

•r4

•r5

•r6

max window size

best paths

small neighborhood

Figure 19: State of the routes of a user that has
6 routes at a given time. Each route is repre-
sented by a point •, its x-coordinate being the
ratio prrtt2r of a link (the inverse of its hypothet-
ical rate for a single regular TCP flow) and its
y-coordinate being its window size. The dot-
ted circles around each node represent a small
neighborhood of the points. In this example, the
routes r1, r2, r3 are routes with maximum win-
dow size: r1, r2, r3 ∈ Mu while the routes r1, r4
are best routes: r1, r4 ∈ Bu. Finally, we have
r5, r6 6∈ Bu ∪Mu.

point, for every route r, we have:

dxr
dt

= x2r

(
1/rtt2r

(
∑

p∈Ru
xp)2

− pr
2

)
+

ᾱr

rtt2r
= 0. (15)

By definition of ᾱ, and since r 6∈ Bu, we have ᾱr ≤ 0.
As x satisfies Eq. (15), this implies that

1

(
∑

p∈Ru
xp)2

− rtt2r
pr
2
≥ 0 for r. (16)

We show that Eq. (16) leads to a contradiction. For any
path p ∈ Ru, the equation dxp/dt contains two terms,
denoted term A and term B in the next equation:

0 =
dxp
dt

= x2p

(
1/rtt2p

(
∑

s∈Ru
xs)2

− pp
2

)
︸ ︷︷ ︸

term A

+ ᾱp︸ ︷︷ ︸
term B

. (17)

Because of (16), the term A is non-negative for any path
p such that rtt2ppp ≤ rtt2rpr which is in particular the
case for all best-paths. Moreover, by definition of ᾱ, αp

is non-negative for a best-path.
Now, if there exists p ∈ Bu ∩Mu 6= ∅, we necessarily

have xp 6= 0 which means that the term A is strictly
positive and therefore dxp/dt > 0. If Bu ∩ Mu = ∅,
then there exists p ∈ Bu such that αp > 0 which implies
that term B is strictly positive and thus dxp/dt > 0. In
both cases, we have dxp/dt > 0 which contradicts that
dxp/dt = 0.

This shows that Eq.(16) leads to a contradiction which
means that x 6∈ Bu is not possible.

Proof of (ii). Because of (i), for all routes r 6∈ Bu,
we have xr = 0. This means that for all routes r 6∈ Bu,
we have r 6∈ Mu and ᾱr = 0. The best paths are the

17

set of paths p with minimum pprtt2p. Therefore, the
term A of Eq. (17) is of the same sign for all best paths.
This implies that the term ᾱp is of the same sign for all
p. Since

∑
p∈u ᾱp =

∑
p∈Bu

ᾱp = 0, this implies that
ᾱp = 0 for all paths p ∈ Ru.

This implies that the fixed point x satisfies

xr = 0 or
∑
p∈Ru

xp =
1

rttr

√
2

pr
. (18)

By assumption, x is non-degenerate, which means that
there exists a route r ∈ Ru such that xr 6= 0. Because
of (i), r is a necessarily a best path. Therefore, we have∑

p∈Ru

xp =
1

rttr

√
2

pr
= max

p

1

rttp

√
2

pp
.

This concludes the proof of (ii).

F. PROOF OF COROLLARY 2
Point (i) of Theorem 1 implies that OLIA improves

the throughput compared to regular TCP in the sense
that the total rate that OLIA gets (

∑
r∈Ru

xr) is the
same as the rate that a regular TCP would get on its
best link (maxr∈Ru

√
2/pr/rttr).

Moreover, as OLIA only uses its best paths, the rate
sent over a path r 6∈ Bu is equal to 0 and the rate sent
over a path r ∈ Bu is xr ≤

∑
i∈Ru

xi = maxi∈Ru

√
2/pi/rtti =√

2/pr/rttr. This shows that OLIA does not transmit
more than regular TCP on any of its paths. Thus, it
satisfies the goal 2. Finally, since OLIA only uses its
best path, it does perfect congestion balancing and sat-
isfies goal 3.

G. PROOF OF PARETO-OPTIMALITY (THM.3)
Let x∗ be a fixed point of the algorithm and define

the utility function V ∗(x) as∑
u∈users

− 1

τ2u
∑

r∈Ru

xr

rtt2r

− 1

2

∑
`∈links

∫ ∑
r∈` xr

0

p`(x)dx,

where τu is defined by: τu = (
∑

r∈Ru
x∗r)/(

∑
r∈Ru

x∗r/rtt
2
r).

The function V ∗ is a non-positive function. Moreover,
using that p`(x) is increasing, it goes to −∞ when x→
∞. Therefore, it has a maximum, attained for a finite x.
By concavity of V ∗, a necessary and sufficient condition
for a point x to be a maximizer of U is that for every
route r:

∂V ∗

∂xr
(x) ≤ 0 and

∂V ∗

∂xr
(x) = 0 or xr = 0.

By definition of V ∗, this is means that for every r:

1

τ2u

1/rtt2r
(
∑

r∈Ru
xr/rtt

2
r)2
− pr

2
≤ 0, (19)

1

τ2u

1/rtt2r
(
∑

r∈Ru
xr/rtt

2
r)2
− pr

2
= 0 or xr = 0. (20)

The definition of τu and the fact that x∗ satisfies point
(i) of Theorem 1 implies (19). The fact that x∗ satisfies
(18) implies (20).

This shows that x∗ is a maximum of the function V ∗.
Since V ∗(x) is an increasing function of

∑
r∈Ru

xr/rtt
2
r

and a decreasing function of the congestion cost C(x),
it is impossible to increasing

∑
r∈Ru

xr/rtt
2
r for some

users without decreasing it for others or increasing the
cost.

H. PROOF OF TCP-COMPATIBILITY (THM.4)
Theorem 4 assumes that all the paths belonging to

user u have the same round trip time rttu. Recall that
V is:

V (x) =
∑
u∈U
− 1

rtt2u
∑

r∈Ru
xr
− 1

2

∑
l∈L

∫ ∑
r∈l xr

0

p`(x)dx.

By construction of F , there exists at least one solution
of the differential inclusion given by Eq.(8) (see D.1).
Let x be one of these solutions. In fact there could be
multiple solutions. In that case, x denote any of them.
Then, there exists a function ᾱ(t) = (ᾱ1(t) . . . ᾱ|R|(t))
satisfying Eq.(9) for all t and such that

dxr
dt

= x2r

(
1/rtt2r

(
∑

p∈Ru
xp)2

− pr
2

)
+
ᾱr(t)

rtt2r
.

Let us compute the derivative of the utility V (x(t))
with respect to time when running the algorithm:

d

dt
V =

∑
u∈U

∑
r∈Ru

∂V

∂xr

dxr
dt

=
∑
u∈U

∑
r∈Ru

x2r

(
1

rtt2u(
∑

p∈Ru
xp)2

− pr
2

)2

(21)

+
∑
u∈U

∑
r∈Ru

(
1

rtt2u(
∑

p∈u xp)2
−pr

2

)
ᾱr

rtt2u
(22)

By definition of ᾱ, we have
∑

r∈Ru
αr = 0. Moreover,

when all rtt are equal, the best paths are the paths with
minimal probability loss and αr ≤ 0 for such paths.
Thus:∑
r∈Ru

αrpr =
∑
r∈Bu

αrpr +
∑
r 6∈Bu

αrpr ≤
∑
r

αrpmin = 0.

These two properties together show that the term (22)
is non-negative. Since (21) is also non-negative, this
shows that dV (x(t))/dt ≥ 0 for all t. Thus, the function
V is non decreasing. Since V is non-positive, this shows
that limt→∞ dV (x(t))/dt = 0.

Let x∗ be a limit point of x(t), which exists since x(t)
remains in a compact set. Since limt→∞ dV (x(t))/dt =
0, this implies that (21) and (22) are equal to 0 for this

18

x∗. In particular, this implies that for all r ∈ Ru:

1

rtt2p(
∑

p∈Ru
x∗p)2

=
pr
2

or (xr = 0 and αr = 0).

This shows that x∗ is a fixed point of the algorithm.
When the RTT of all paths of a user u are equal to
rttu, the quantity τu defined in the proof of Theorem 3
is equal to rtt2u. Thus, the function V ∗ of the proof
of Theorem 3 is equal to V . In particular, V ∗ does not
depend on x∗. Since x∗ is a fixed point of the algorithm,
this implies that x∗ is a maximizer of V .

	Introduction
	MPTCP and related work
	Performance problems of MPTCP
	Testbed Setup
	Scenario A: MPTCP is not Pareto-optimal and penalizes regular TCP users
	Scenario B: MPTCP is not Pareto-optimal and can penalize other MPTCP users.
	Scenario C: MPTCP users could be excessively aggressive towards TCP users.

	OLIA: The Opportunistic Linked Increases Algorithm
	Detailed Description of OLIA
	Linux implementation of OLIA
	Illustrative example of OLIA's behavior

	Pareto-optimality of OLIA
	Fluid Model of OLIA
	Pareto Optimality of OLIA
	TCP Compatibility

	OLIA evaluation: measurements and simulations
	Performance of OLIA in Scenarios A,B,C
	Scenario A
	Scenario B
	Scenario C

	Performance of OLIA in Data Center and Dynamic Scenarios
	Static FatTree Topology
	Dynamic Setting with Short Flows

	Conclusion
	References
	Fixed point analysis for scen. A
	Optimal with probing cost for scenario A

	Fixed point analysis for scen. B
	Optimal with probing cost for scenario B
	Optimal when red users are single-path (dashed connections not activated)
	Optimal when red users are multipath (dashed connections activated)
	Illustrations for two values of RTT

	Fixed point analysis for scen. C
	Optimal with probing cost for scenario C

	Construction of the differential inclusion
	Brief introduction on differential inclusions
	Computation of Equation (9)

	Proof of Theorem 1
	Proof of Corollary 2
	Proof of Pareto-optimality (Thm.3)
	Proof of TCP-compatibility (Thm.4)

