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Abstract

A three-dimensional (3-D) multiphase-field model has been developed in order to study the formation of a micropore constrained to
grow in a solid network (i.e. pinching effect). The model accounts for the pressure difference due to capillarity between liquid and gas, the
equilibrium condition at triple (solid–liquid–pore) lines, and the partitioning and diffusion of dissolved gases such as hydrogen. From
the predicted 3-D morphology of the pore, entities such as the interfacial shape distribution are plotted and analyzed. It is shown that
the mean curvature of the pore–liquid surface, and thus also the pressure inside the pore, is uniform. The results are then compared with
analytical pinching models. While predicting a similar trend, analytical models tend to underestimate the pore curvature at high solid
fractions. Despite the complex morphology of pores reconstructed using high-resolution X-ray tomography, the present phase-field
results suggest that a simple pinching model based on a spherical tip growing in between remaining liquid channels is a fairly good
approximation.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Shape casting processes offer the great advantage of pro-
ducing complex components in one single production step.
However, they are also limited by the formation of defects
such as microporosity and hot tearing. Microporosity is a
major defect encountered in solidification processes and
considerably decreases the mechanical properties of a cast
part, namely fatigue life, ductility and tensile strength [1].

Micropores are induced by both solidification shrinkage
and gas segregation, which occur concomitantly during the
formation of the solid in the mushy zone. In order to better
characterize and more importantly minimize this defect, a
considerable effort has been dedicated to the modeling of
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pore formation. These models, which range from very sim-
ple criteria functions [2] to sophisticated computational
solutions of conservation and state equations, provide
quantitative information on the effect of the processing
conditions and alloy chemistry on microporosity [3–10].

Among the first models of pore formation, the works of
Walter et al. [11] and Piwonka and Flemings [12] should be
mentioned. These authors assumed a Hagen–Poiseuille lam-
inar flow of the melt in between solid channels to calculate
analytically the pressure drop associated with solidification
shrinkage. Later on, more mature models were proposed
and the effect of dissolved gas species, with the assumption
of very fast diffusion, was successfully accounted for in
shrinkage-driven pressure drop calculations in the mushy
zone [3,4]. While being capable of explaining many phe-
nomena involved in pore formation, these approaches could
not yet explain effects such as the decrease of gas porosity
with an increased cooling rate.
rights reserved.
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Based on their experimental X-ray temperature gradient
stage observations, Lee and Hunt [5,6] concluded that the
pressure drop has a minor effect on pore formation in
Al–Cu alloys with a fairly high copper content (>10
wt.%), i.e. high eutectic fraction. They proposed a pore
growth model based on the finite-rate diffusion of hydro-
gen, a concept that was further developed by Atwood
et al. [7,8] and applied to Al–Si alloys. A more comprehen-
sive model accounting for both finite-rate hydrogen diffu-
sion and limited flow in the mushy zone of aluminum
alloys was proposed recently by Carlson et al. [9].

Common to most advanced models of microporosity
formation at the process scale is the consideration of
average conservation equations for: (i) the evolution of
the solid fraction (microsegregation model and thermal
model); (ii) the interdendritic liquid flow to compensate
solidification shrinkage (Darcy’s equation); (iii) the parti-
tioning and diffusion of gases during solidification; (iv)
the formation of pores by nucleation and growth when
the local gas composition exceeds their temperature- and
pressure-dependent solubility limit. Besides nucleation, this
last step is delicate as the actual pressure in the pore
exceeds that of the liquid due to capillarity. Thus, to close
the problem mathematically, a constitutive model for the
radius of curvature of the pore as a function of its volume
is required [4,10,13,14]. If the pore is assumed to be
spherical, this relationship is straightforward. However,
in reality the growth of micropores is limited by the well-
developed solid network. Due to numerous contacts with
the solid phase, pores take a complex and highly tortuous
shape. Local mean curvatures as high as 0.2 lm�1 have
been measured recently in aluminum alloys by X-ray
tomography [15,16], which indicates that the pressure
difference between the pore and the surrounding liquid
can be as high as 400 kPa. Since the pore is a compressible
phase, this directly affects the pore size and volume frac-
tion. For such situations, a so-called pinching model, i.e.
a mathematical expression relating the radius of curvature
of the pore–liquid interface1 to the volume fraction of solid
gs, microstructural parameters and possibly the volume
fraction of pores, gp, is required.

Different pinching models have been proposed. Initial
models assumed that the pore is spherical, with a radius
equal to half the dendritic arms spacing, k2 [10]. The more
elaborate model of Pequet et al. [4] considers different
stages: an initial stage during which the nucleated pore
“escapes” its foreign substrate with a constant radius; a sec-
ond stage where the pore is a growing sphere until, third
stage, it is pinched by the solid and its radius is given by a
function of gs and k2; and finally, a constant radius when
some interdendritic eutectic forms near the end of solidifica-
1 Since pressure differences within a pore and outside the surrounding
liquid are equalized at the speed of sound in each phase, a quasi-static
approximation of the pore–liquid equilibrium implies that the mean
curvature at any point of the gas–liquid interface is uniform at any instant.
tion. Poirier et al. [14] assumed the pores to be constrained
by dendritic arms arranged in a hexagonal network, and
introduced the effect of arms impingement into their model.
Couturier and Rappaz [13] refined this model by assuming
the pore to grow in between a regular arrangement of spher-
ical grains (in three dimensions) or cylindrical dendrite arms
(in two dimensions). The pores grow with an initial spheri-
cal shape, until they come into contact with the solid phase:
their radius of curvature is then assumed to be given by the
largest sphere (three dimensions) or cylinder (two dimen-
sions) that can fit in between the grains, respectively. In
other words, they do not change their topology and are
never growing in between the solid.

A common point between these models is the simplified
pore geometry. However, in reality, the pores have a much
more complex shape. A phase-field (PhF) model, directly
describing the pore morphology as a function of different
parameters such as gas concentration, solid fraction and
capillary forces, was presented in Ref. [17], but it was lim-
ited to two dimensions. In the present contribution, the
model is extended first to three dimensions and validated.
In order to overcome the high computational cost, a paral-
lel computer program in C programming language was
developed. Finally, the model is used to study the pinching
effect in three dimensions and to compare the results with
those of analytical (geometrical) models in order to
improve the latter.

2. Model

A multiphase-field model is used in this study. Three
phase-field variables, /i(x,t), where i = s, l, p is a phase
index, are introduced to show the distribution of the solid,
liquid and pore, respectively, in time and space. These vari-
ables can be understood as local volume fractions and thus
linked together using the constraint /s + /l + /p = 1. One
salient feature of the PhF method is a smooth and contin-
uous variation of /i across the interfaces [18].

In the present contribution, we adopt the multi-PhF
formulation first outlined by Steinbach et al. [19], with
the introduction of a Lagrange multiplier K to account
for the constraint above [20]. More details about the model
can be found in Ref. [17]. Spatial and temporal evolution of
the phase-field variable /i is given by the following partial
differential equation:

_/i ¼
X
k–i
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Here, Dsf is the volumetric entropy of melting, DT is the
undercooling, pp and pl are the pressures in the pore and in
the liquid, respectively, and e2

ik, Mik and Wik are the three
PhF parameters associated with the physical parameters
cik, lik and dik describing the interfacial energy, the mobil-
ity and the interface thickness, respectively, between phases
i and k [18].

The effect of radius of the curvature of the pore is taken
into account through the driving force term, for the liquid/
pore transformation. It is expressed here as the pressure
difference between the pore and the liquid, which can be
justified by solving the steady-state form of Eq. (1) in
spherical coordinates, for a single pore surrounded by
liquid. Doing so, the Laplace pressure condition is
recovered:

pp � pl ¼ 2clpH ð4Þ

where H is the mean curvature of the pore. For a spherical
pore of radius rp, H ¼ r�1

p .
Throughout this paper, for the sake of simplicity, we

will focus on aluminum alloys, where hydrogen is known
to be the gas responsible for pore formation [16]. However,
the model is more general and can be applied to any alloy
system in which a compressible phase forms. A local volu-
metric molar concentration of hydrogen, based on averag-
ing procedure, can be introduced as follows:

hcHi ¼ /sc
H
s þ /lc

H
l þ /pcH

p ð5Þ

where cH
s , cH

l and cH
p are volumetric molar concentrations

of hydrogen in the solid, liquid and gas, respectively.
The equilibrium solubility of hydrogen in the solid, cH

s ,
and liquid, cH

l , can be expressed as a function of pp using
Sievert’s law, while assuming thermodynamical equilibrium
at the interface:

cH
s ¼ Ss

ffiffiffiffiffi
pp

p0

r
cH

l ¼ Sl

ffiffiffiffiffi
pp

p0

r
ð6Þ

where Ss and Sl are Sievert’s constants (in moleH m�3) for
the solid and liquid, respectively, and p0 is the standard
pressure. Combining Eqs. (5) and (6) and using the perfect
gas law gives:

hcHi ¼ ð/lSl þ /sSsÞ
ffiffiffiffiffi
pp

p0

r
þ /p

2pp

RT
ð7Þ

Based on the experimental observations of Lee et al.
[6,8], the finite rate of hydrogen diffusion in the liquid is
assumed to govern the growth kinetics of the pore2. This
has been taken into account in the model through a
hydrogen conservation equation, neglecting any hydrogen
concentration gradient in the gas phase and any hydrogen
transport in the liquid due to convection:
2 It should be noted that, besides solidification shrinkage which is
accounted here through the local pressure pl, the growth of the pore can
also be limited by the viscosity of the fluid. Such is, for example, the case
of bubbles formed during cavitation. This contribution is neglected here
through the quasi-static approximation.
@hcH i
@t
¼ r � ð/sD

H
s rcH

s þ /lD
H
l rcH

l Þ ð8Þ

A finite volume method with an explicit time-discretiza-
tion scheme is used to numerically solve Eqs. (1) and (8). At
each time step, the phase distribution is calculated by solv-
ing Eq. (1); then, Eq. (8) is solved to calculate the concen-
tration field. Besides, the calculation of the driving force
terms of Eq. (1) requires solving the second order polyno-
mial expression of Eq. (7) to obtain pp from hcHi. Since
homogenization of the hydrogen concentration inside the
pore is assumed to be infinitely fast (uniform pp), the aver-
age hydrogen concentration inside the pore, �cH

p , is calcu-
lated over all the mesh points of the pore (i.e. for which
/p > 0) and is then applied to all these points.

For the diffusion and phase equations, no flux boundary
conditions are used. Therefore, the number of moles of
hydrogen remains constant in the domain. In the mean-
time, due to the large density difference between the gas
and the condensed phase, the mass is not conserved and
thus the hydrogen content per unit mass (e.g. ccSTP/
100gr,Al) varies over time. The hydrogen content per unit
mass corresponding to a set of simulation conditions can
only be determined once equilibrium has been reached,
and assuming a certain value for the pore number density,
np.

Besides, due to the high computational cost of the three-
dimensional (3-D) PhF calculations, the simulation domain
is much smaller than the volume associated with one pore,
i.e. n�1

p . Calculations were therefore undertaken at rela-
tively large hydrogen contents (or supersaturation) in order
to compensate for this effect. In other words, the calcula-
tion domain is a small window centered on one pore, which
is a particular area of the microstructure where the hydro-
gen content is locally high. This causes another difficulty in
analyzing the effect of hydrogen content and pore growth
kinetics. As the present 3-D model is an extension of the
previously published two-dimensional (2-D) model [17],
the reader is referred to this publication for more details.

It should be pointed out that, in the present calculations,
the repartition of the solid phase was prescribed and fixed
at the beginning of the computation, i.e. the evolution
equation for /s was not solved, in order to isolate and ana-
lyze the pinching effect only.
3. Analysis of pore curvature

Characterization of the pore–liquid interface in three
dimensions requires computing its curvature in order to
better understand the pinching effect. A procedure similar
to that used by Felberbaum et al. [16] for the analysis of
the curvature of pores reconstructed in three dimensions
using X-ray tomography was employed. It is recalled that,
for any surface patch, two principal radii of curvature, rp1

and rp2, can be defined, from which two principal curva-
tures, j1 ¼ r�1

p1 and j2 ¼ r�1
p2 , can be obtained. The local

mean curvature, H, is then given by:



Fig. 1. 3-D volume rendering of a spherical pore made up of voxels (the resolution has been reduced for graphical resons). (a) Threshold representation
for /p P 0.5. (b) The triangular mesh of the fitted surface.

+-
-

+

pore

pore

pore

pore

1 [ m ]-1

2
]

m
[

-1

0.0

0.0

1

2

3

4

Fig. 2. j1–j2 space used to draw the ISD plot P(j1,j2), representing the
probability of having a surface element of the pore interface with the
curvature (j1,j2). The curvature is measured with a unit surface normal
pointing out of the pore.
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H ¼ ðj1 þ j2Þ
2

ð9Þ

For the problem at hand, the pore–solid interface (when
/l = 0) is simply deduced from the prescribed shape of the
solid and thus is known. For the complex pore–liquid inter-
face, such is not the case and thus the iso-surface of the
pore–liquid interface corresponding to /p = /l = 0.5 (i.e.
/s = 0) was extracted from the 3-D reconstruction of the
results. Note that the diffuse triple line characterized by
the region where (/s – 0 and /p – 0 and /l – 0) is not con-
sidered in the present analysis. However, it was checked in
a similar manner as in 2-D PhF simulations that the
Young–Laplace equation is satisfied at such locations
[17]. Then, the surface given by all the mesh points (or vox-
els in X-ray tomography) where /p = /l = 0.5 was
smoothed by triangular elements using the Avizo software
(Avizo is a registered trade mark of Mercury Computer
Systems, Chelmsford, Massachusetts). As can be seen in
Fig. 1, the size of the triangular elements is close to the
mesh size. For each of the triangles composing this surface,
a quadratic surface was then fitted considering a certain
number (nn) of triangular neighbors. Since curvature corre-
sponds to first derivatives of the unit surface normal along
principal curvature directions [21], or second derivatives of
the surface positions, using nearest-neighbor triangles
alone is not accurate enough. On the other hand, large val-
ues of nn increase the calculation time and also result in a
loss of accuracy by excessive smoothing of the surface.
The best tradeoff between accuracy and performance was
achieved with nn = 18, while analyzing the curvature of a
reference sphere. Since the size of the triangles is close to
the mesh size Dx, 18Dx must be compared with the radius
rp of the sphere (rp ffi 200 Dx) and with the thickness wik

3 of
the diffuse interface (wik ffi 15 Dx).
3 The thickness wik of the interface is defined here as the width along the
gradient of the phase over which the phase /i or /j itself changes from 0.05
to 0.95. With the model used here, wik = 66 dik.
Pores in three dimensions can have a very complex mor-
phology, as shown recently by Felberbaum et al. using X-
ray tomography [16]. Yet, at any instant during growth,
the pore–liquid interface must have a uniform mean curva-
ture in order to have a uniform gas pressure pp. This leaves
nevertheless one degree of freedom, i.e. if pp (or H) is fixed,
once one of the principal curvatures at a given point of this
interface is given, say j1, the other one is known. For such
3-D situations, a useful tool for a detailed analysis of the
pore morphology based on both j1 and j2 is the interfacial
shape distribution (ISD) plot, first introduced by the group
of Voorhees and coworkers for the analysis of coarsening
of dendritic structures [22]. The ISD is a 2-D probability
contour plot, P(j1,j2), which measures the probability of
having a surface patch, i.e. a triangular element in this case,
with its principal curvatures falling in the range (j1 � Dj/2,
j1 + Dj/2) and (j2 � Dj/2, j2 + Dj/2). Note that the areas
of the triangular elements at which the curvatures are



Table 1
Parameters used in the PhF calculations.

Parameter Unit Numerical value Ref.

Mesh size m 5.0 � 10�8

dik m 1.2 � 10�8

pl Pa 105 Pa
T K 1000
lik m3 J�1 s�1 1 � 10�6

Dl m2 s�1 1 � 10�6

Sl molH m�3 0.69
cpl J m�2 0.9 [23]
cps J m�2 1.1 [24]
cls J m�2 0.15 [25]

Fig. 3. Evolutions of the pressure pp and volume Vp of the pore calculated
with the PhF model (solid lines) and compared with the analytical solution
(dashed lines).

4 One could have taken the distance separating the pore–liquid interface
from the edge of the volume, (a–rp), to have a better estimate).
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estimated are taken into account in the statistics. By defini-
tion, the curvatures are selected such that j2 P j1. The dis-
tribution P(j1,j2) is then plotted in a (j1, j2) diagram in
the form of isovalues. By definition, the distribution can
have non-zero values only above the line j2 = j1, and
several regions can be distinguished in Fig. 2. They are
separated by various lines: (1) points on the line j2 = j1

correspond to pore–liquid surface elements having locally
a spherical topology which can be convex (H > 0) or
concave (H < 0); (2) points along the line j1 = 0 (j2 > 0)
correspond to pore elements with a convex cylindrical
topology; (3) along the line j2 = �j1, the pore surface
has a saddle shape with a zero mean curvature; (4) along
the line j2 = 0 (j1 < 0), the pore surface element has also
a cylindrical topology, but concave. In between these lines,
a few morphologies have been illustrated.

4. Results and discussion

4.1. Model validation

In order to validate the model, the simple case of a pore
growing freely into a liquid without a constraint imposed
by the solid is first considered. In this case, the equilibrium
size of the spherical pore can be calculated analytically
once the domain size, initial hydrogen concentration (cH

0 ),
hydrogen solubility, liquid pressure, interfacial energies
and temperature are specified. This is achieved by using
the Laplace–Young equation (Eq. (4)), Sievert’s law (Eq.
(6)), the perfect gas law (pp ¼ 0:5cH

p RT ) and the following
hydrogen mass balance over the computational domain:

V pcH
p þ ðV comp � V pÞcH

l ¼ V compcH
0 ð10Þ

where Vcomp is the volume of the computational domain
and V p ¼ 4=3prp3 is the pore volume.

The PhF calculations were performed in a cubic domain
of edge 2a = 25.6 lm, containing a supersaturated liquid
(cH

0 ¼ 15 molHm�3, note that 1 molH m�3 ¼ 0:5 molH2

m�3). A small spherical pore was set at the center of the
domain and the calculations were performed using the
parameters listed in Table 1.

The evolutions of the volume Vp and pressure pp of the
pore calculated with the model are compared with the
analytical solution in Fig. 3. As can be seen, both converge
towards the analytical solution after a short transient state,
the final volume of the pore being �3400 lm3, i.e.
rp = 9.3 lm. This shows the ability of the model to cor-
rectly predict the final state of a pore in equilibrium with
its surrounding liquid. In the present situation, the tran-
sient is dictated by the diffusion of hydrogen alone. Taking
half the edge of the cube, i.e. a = 12.8 lm, the typical
diffusion time of hydrogen in the liquid is given by
(a2/Dl) = 1.6 � 10�4 s, a time scale that is on the order of
the transient time seen in Fig. 3.4 Once complete mixing
of hydrogen is achieved in the liquid, the pore stops
growing.

Two phenomena have been neglected in the present sit-
uation, both related to the movement of the liquid. The
first one is associated with the transport of hydrogen due
to convection, which modifies the solute profile in the
liquid. Indeed, the Péclet number, Pep = (rpvp)/Dl associ-
ated with the radius rp and the velocity vp = drp/dt of the
pore–liquid interface is �2. This shows that advection can-
not be neglected. The second contribution is directly linked
with the dynamic pressure in the liquid, i.e. the viscous
forces needed to push the liquid away, which is propor-
tional to (ll vp/rp). However, this last contribution is only
on the order of 10 Pa, i.e. a value much smaller than the
capillary pressure 2cpl/rp ffi 200 kPa. In actual situation
where the density of pores is typically 10�9 m3, diffusion
(and partitioning) of hydrogen at the scale of a domain
typically 1 mm in size will be the dominant contribution
to the transient anyway.

The distribution of the mean curvature estimated from
the calculated spherical pore is illustrated in Fig. 4. It is
in good agreement with the analytical solution (H =
0.107 lm�1) and the value calculated using the Laplace–
Young equation (Eq. (4)). Fitting a Gaussian distribution
to the distribution gives H = 0.108 lm�1, with a full width
at half maximum FWHM = 0.006 lm�1, a broadening of
�6% of the curvature estimation.
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-3

PHF 3D c =20.0 mol m0
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Pequet et al. [4]

Couturier et al. [13],rp
max
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Fig. 6. Normalized mean radius of curvature of the pore, rp = H�1,
plotted as a function of the volume fraction of solid, calculated with the 3-
D PhF model and the analytical models of [4,13].

Fig. 4. Measured local mean curvature distribution compared with the
analytical solution (vertical dashed line). The inset shows the Gaussian
fitting on the distribution.
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4.2. Comparison with analytical pore pinching models

Conceptually, the present porosity model can be applied
to any complex geometrical situation such as a representa-
tive volume element (RVE) obtained from X-ray micro-
tomography [16]. However, because of the heavy computa-
tion time inherent to the PhF method and also because it is
interesting to compare the present results with analytical
models of pinching [4,13], simple situations are first consid-
ered here.

A simplified solid morphology, similar to the 3-D model
of Couturier et al. [13], was selected. In this configuration,
eight solid grains are placed in a cubic arrangement (inset
in Fig. 5). Different solid fractions were obtained by simply
changing the radius, rs, of the solid grains. During the cal-
culations, rs remains constant, i.e. the evolution of the
grains is neglected. For each solid fraction, a small spheri-
ig. 5. The morphology of a pore, grown at gs = 0.7 and
H
0 ¼ 20 molH m�3. The color of the pore shows the local mean curvature
hich has been calculated on the surface patches. The solid surface in

ontact with the pore is indicated by transparent surface (cadet blue). The

5 Although k2 usually refers to the secondary arm spacing of dendritic
specimens, it is used here to be similar to the notation used by Couturier
F
c
w
c

insert shows the pore surrounded by the eight spherical solid grains.
cal pore is nucleated at the center of the octahedral space.
Since the liquid is initially supersaturated in hydrogen, the
pore grows, initially as a sphere, with a decreasing mean
curvature. Once the pore comes into contact with the solid,
it has to grow in the narrow liquid channels left between
the grains and thus the curvature of the pore–liquid inter-
face increases. It grows until equilibrium is reached, i.e.
until the hydrogen content in the liquid is uniform and cor-
responds to the solubility limit of the final pressure pp

within the pore (Eq. (6)). Such a pore grown at gs = 0.7
(rs = 14.3 lm for a cube edge k2 = 25.6 lm5) and cH

0 ¼
20 molH m�3 is illustrated in Fig. 5. The different color
patches in this figure indicate the local mean curvature.
Areas with negative mean curvature (blue patches) are in
contact with the solid and thus are characterized by a mean
curvature H ps ¼ �r�1

s ¼ �0:07 lm�1. The main area of
interest is the pore–liquid interface where the mean curva-
ture is positive (red patches). This positive curvature is
linked to the pressure difference between the pore and the
liquid through the Laplace–Young equation (Eq. (4)).
Since pp and pl are homogenous, the mean curvature of
the pore–liquid interface is also expected to be constant
over the pore–liquid interface, which is the case here as
shown by the uniform red color. The calculated mean cur-
vature for the pore shown in this figure, H = 0.198 lm�1, is
in good agreement with that obtained from the pressure
difference (pp–pl) extracted from the PhF calculations and
Eq. (4) (H = 0.193 lm�1).

For each solid fraction, a different calculation was per-
formed and the steady state mean curvature, H, of the
pore–liquid interface was calculated using the (pp–pl) value
extracted at the end of the PhF calculation. These values
were also compared with those deduced from the mean cur-
vature directly calculated from the pore geometry. Per-
et al. for both dendritic and globular specimens.
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Fig. 7. 2-D sketch of the three possible conditions for a pore, constrained
by cylindrical solid particles arranged in a cubic network. Pores 1, 2 and 3
correspond to the maximum, intermediate and minimum possible radius
of curvature of the pore in this condition, respectively.
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forming a series of calculations for different solid fractions,
it is possible to plot the mean radius of curvature rp = H�1

as a function of gs. The PhF results for two different initial
hydrogen concentrations, cH

0 ¼ 15 and 20 molH m�3, are
shown in Fig. 6 with triangle and square symbols, respec-
tively. The radius, rp, has been normalized by the distance
between the grains, k2, and is compared with the analytical
curves of Couturier in 3-D (solid black lines) [13], and
Pequet [4] (short dashed line).

Before making any meaningful comparison between
pinching models, we should first keep in mind that not
all the range of gs, i.e. from 0 to 1, has to be considered
in practice for pore formation. It is usually assumed that
rp cannot change once the alloy reaches the eutectic compo-
sition, which for example occurs between gs = 0.5 and
gs = 0.8 for A356 aluminum alloys [9]. On the other hand,
pores usually do not form (and thus are not pinched) when
gs < 0.4–0.5 if humidity, and thus the hydrogen content, is
controlled. These two values specify the region of interest
for the pinching models.

In Fig. 6, at low solid fractions, i.e. small rs, the final
pore shape is still spherical for both compositions, since
it is not pinched. The pore radius increases only slightly
with gs as a result of the increased partitioning of hydrogen
into the liquid due to an increased solid fraction. At a cer-
tain value of gs, the final pore comes into contact with the
solid, i.e. this occurs when 2(rs + rp) =

p
3k2. This corre-

sponds precisely to the intersection of the points/curve cal-
culated with the PhF model and the curve of Couturier.
For a higher nominal composition cH

0 , this point moves
to lower values of gs. Beyond this critical value, pinching
starts and the pore grows with a reduced mean radius of
curvature rp (or increased mean curvature H) in the liquid
channels left between the grains. At the beginning of pinch-
ing, the PhF results are closer to, but always lower than,
the curve of Couturier et al. [13]. As gs further increases,
the results get closer to the curve of Pequet et al. [4].
Considering now physically the growth of a pore for a
fixed value of rs and k2 (and gs), the maximum radius of
a spherical pore is given by the model of Couturier, i.e.
rmax

p ¼ ð
ffiffiffi
3
p

=2Þk2 � rs (the conversion of rs into gs is
straightforward up to rs = k2/

p
2 and requires a few geo-

metrical calculations above this limit, when the solid grains
impinge on each other). In this model, the radius of curva-
ture of the pore is independent of the pore fraction, or of
the hydrogen composition, cH

o . However, as this composi-
tion increases, the pore can be pushed in between the solid
grains, as shown schematically in Fig. 7 for a 2-D situation.
In other words, for a given value of rs and k2, the model of
Couturier defines a maximum radius of curvature rmax

p , but
a minimum radius of curvature, rmin

p can also be defined: it
corresponds to the smallest space left in between two solid
grains (dashed line in Fig. 6). Indeed, in a previous contri-
bution, we have shown that the radius of curvature of the
pore is bound between two limits that are dictated by the
solid morphology, namely the liquid channel widths [17].
Increasing cH

0 for a given microstructure makes rp increase
up to rmax

p in a first step (spherical pore), then decrease up
to rmin

p (pinching of the pore), the point at which the pore
can suddenly expand into a neighboring space, and goes
back to a value close to rmax

p .
In 3-D, the radius rmin

p is given by the circle that can be
inscribed in between the solid spheres in any face of the

cubic RVE. It is thus given by k2ffiffi
2
p � rs

� �
up to gs = 0.965.

The curve rmin
p (gs) is also shown in Fig. 6 as a lower bound.

As can be seen, the PhF results show that once the
spherical pore comes into contact with the upper curve
rmax

p given by Couturier’s model, its radius of curvature
decreases and finally reaches the curve rmin

p when it passes
the middle of the channel between four solid grains. Con-
sidering a distribution of liquid channel widths in a casting,
it sounds reasonable to define a mean value
rmean

p ¼ ðrmin
p þ rmax

p Þ=2 for a pinching effect that could be
used in macroscopic porosity models.
4.3. Pore morphology analysis

ISD plots corresponding to the pore presented in Fig. 5
are plotted in Fig. 8a, taking into account its entire inter-
face, and in Fig. 8b for its interface in contact with the
liquid only. Both figures exhibit a set of points aligned
along a diagonal line ðj1 þ j2Þ ¼ cst, in the area where
the mean curvature of the pore is positive. Extracting the
pressure difference (pp–pl) from the PhF results to calculate
the mean curvature of the interface (H = 0.193 lm�1, Eq.
(4)) gives the black dashed line shown in Fig. 8b. As can
be seen, this line matches very well the principal curvature
values (j1, j2) calculated at various points of the pore–
liquid interface. The maximum density of these points in
Fig. 8b furthermore corresponds to the nearly spherical
“tip” of the pore located in between four grains, close to
the faces of the RVE, for which j1 = j2 (see Fig. 4). But
the points in the ISD plot also extend toward the line
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Fig. 8. ISD plots corresponding to the pore presented in Fig. 5, taking into account the entire pore interface (a), and the interface with liquid only (b). The
empty circle represents the curvature corresponding to a pore surface in contact with the spherical solid phase, while the black square indicates the average
mean curvature measured on the pore–liquid interface. The triangle, black sphere and the star indicate the curvature given by the rmean

p line and 3-D and 2-
D model of Couturier, respectively.
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Fig. 9. (a) Morphology of a pore grown at cH
0 ¼ 10:5 molH m�3, in

between cylindrical solid arms having a radius rs = 12.8 lm and corre-
sponding to gs = 0.79 in the RVE (domain size k2 = 25.6 lm). The color of
the pore shows the local mean curvature which has been measured on the
surface patches. The solid surface in contact with the pore is indicated by
transparent surface (cadet blue). (b) Corresponding ISD plot of the pore–
liquid interface only.
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j1 = 0, i.e. j2 = 2H, which corresponds to the cylindrical-
type shape of the pore located in between two grains (see
Fig. 5). The fact that all the surface elements of the
pore–liquid interface are along this line (j1 + j2) = 2H =
0.386 ensures that the pressure within the pore is indeed
uniform. The mean values ((�j1; �j2) averaged over the entire
pore–liquid interface are shown with a black square.

The predictions of the 2-D and 3-D models of Couturier
[13] are also presented in Fig. 8b with a black star and cir-
cle, respectively. The PhF model predicts a higher mean
curvature value compared to these models, in agreement
with the previous discussion related to rmax

p (prediction of
Couturier), rmin

p and rmean
p . It is to be noted that Felberbaum

et al. [15] also measured a higher mean pore curvature in
Al–Cu alloys, compared to the model of Ref. [13].

In Fig. 8a, another set of points can be seen at negative
values of j1, more specifically at j1 = �0.07 lm�1 and for
�0.07 lm�1 < j2. These points correspond to the pore–
solid interface. Since the pore adopts the shape of the
spherical grains, we can expect that j1 = j2 = �r�1

s =
�0.07 lm�1. This is shown with an open circle, which
clearly surrounds the maximum of the ISD plot in this
region of Fig. 8a. Another feature of Fig. 8a is the transi-
tion area between this region of the ISD plot and the pre-
vious one associated with the pore–liquid interface. This is
due to the fact that the pore surface has been reconstructed
using the iso-values /p ¼ 0:5. This value corresponds to the
middle of a two-phase interface, but this is no longer the
case at regions where all three phases coexist. Indeed, at
the center of the diffuse triple line where the mechanical
equilibrium condition between solid, liquid and pore
should hold, one has /p ¼ 1=3. Finally, these ISD plots
also contain a noise contribution as the curvature is a sec-
ond derivative of the calculated interfaces.

Based on X-ray microtomography observations of Fel-
berbaum et al. [16], pores have a high density of cylindrical
surface patches, near the j1 = 0 line, in dendritic speci-
mens. To reproduce such morphology, the situation shown
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in Fig. 9 is considered. In this case, four cylindrical and
parallel dendrite arms of spacing k2 are set up in the
RVE, while a pore is nucleated in the middle of one of
its faces. The shape of the equilibrium pore with
cH

0 ¼ 10:5 molH m�3 is shown in Fig. 9a, with a color indi-
cating again the local mean curvature. In the ISD plot cor-
responding to the pore–liquid interface only (in Fig. 9b), a
higher density of points close to the j1 = 0 line can be
observed. This reflects the cylindrical-type shape of the
pore seen in Fig. 9a. The other points of the pore–liquid
interface are spread along a line (j1 + j2) = 2H = cte,
which is expected from the uniform pressure condition
imposed for the pore (Eq. (4)). The “tip” of the pore has
a spherical shape and corresponds to points in the ISD plot
at the intersection of this line with the diagonal j1 = j2.
Note that the second principal curvature j2 = 2H of the
cylindrical surface patch of the pore is twice the equal prin-
cipal curvatures of the spherical tip.

Comparing now the present situation of Fig. 9 with the
model of Couturier for cylindrical dendrite arms, the max-
imum radius that can fit in between these arms is given by

rmax
p ¼ k2ffiffi

2
p � rs

� �
[13]. However, as the pore can penetrate

slightly in between these arms (Fig. 9a), the radius of cur-
vature j�1

2 of these cylindrical surface patches of the pore
is smaller than rmax

p , as was the case for the previous situa-
tion (Fig. 5). Nevertheless, the nearly spherical tip of the
pore is almost given by the maximum sphere that can be
inscribed between these arms, and so for this part of the
pore one has: j1 ¼ j2 ffi ðrmax

p Þ
�1. In summary, the 2-D

model of Couturier for a dendritic specimen can be reason-
ably used, but with the mean curvature given by
H ¼ ðrmax

p Þ
�1 in Eq. (4) and not 1

2
ðrmax

p Þ
�1.

In any case, pores growing at high solid fraction will try
to follow a path of maximum liquid space, i.e. minimal
pore–liquid curvature. Even in a dendritic specimen, such
spaces are found near the tips of the dendrites, and not
near their roots. For example, in a specimen exhibiting a
columnar structure, secondary dendrite arm tips are in a
configuration close to that shown in Fig. 5, and not to that
of Fig. 9. Therefore, the pinching model with a rmean

p value,
equal to ðrmax

p þ rmin
p Þ=2, might actually describe better a

dendritic specimen than the curvature of a pore growing
in between cylindrical arms (Fig. 9). Yet, Felberbaum
et al. [15] found an ISD plot that is essentially cylindrical
in nature (i.e. j1 ¼ 0; j2 > 0), while the PhF simulation
of Fig. 5 shows a majority of spherical pore–liquid inter-
face patches. However, it should be kept in mind that the
X-ray micro-tomography measurements were made on
fully solidified specimens and that all the points measured
correspond to the final pore–solid interface. A long pore
growing at fairly high solid fraction as a succession of
pockets between dendrite tips will exhibit a very small
pore–liquid interface, i.e. only a very small fraction of the
positively curved pore–solid interface measured in Ref.
[16] might actually correspond to the pore–liquid interface
calculated here. This clearly shows that in situ, high-resolu-
tion X-ray micro-tomography measurements need to be
done in the future to actually observe the pinching effect
during solidification.
5. Conclusion

A 3-D PhF model, which is capable of describing the
complex morphology of pores growing in between a pre-
existing solid phase, has been developed. The model
accounts for partitioning and diffusion of hydrogen, capil-
lary forces at different interfaces and Laplace–Young’s
condition. The results show that the presence of the solid
affects the pore morphology, which then influences its
internal pressure, and thus its total volume. After validat-
ing the model for a free spherical pore growing in the
liquid, two situations were considered, namely two pores
growing in between globular grains and in between cylin-
drical dendrite arms.

The PhF results were compared with two analytical
models of Couturier et al. [13], which describe the pinching
effect for similar geometries. For a pore growing between
globular grains, it was found that the pore remains spher-
ical up to the value rmax

p (k2, gs) given by Couturier’s rela-
tionship. Then, its radius of curvature decreases as it is
forced to penetrate in between the grains up to a minimal
radius rmin

p (k2, gs) which was derived analytically. If the
pore can pass this maximum curvature, it can then grow
in a neighbor void and increase again its radius. As there
is also a distribution of grain sizes in a real microstructure,
we propose then to use a radius rmean

p for predicting the cur-
vature overpressure (Eq. (4)) in macroscopic porosity
calculations.

In the present model, the growth kinetics of the pore is
supposed to be governed by gas diffusion only. At
present, diffusion in the solid is neglected due to its low
solubility, but at high solid fraction, this cannot be
neglected any more [9,26]. On the other hand, if the
growth rate of the pore is high, pushing away the liquid,
i.e. viscous term contributions, cannot be neglected either.
Finally, although X-ray tomography characterization of
as-solidified alloys has shed light on the curvature and
complex morphology of pores, in situ measurements dur-
ing solidification should be made to further validate the
present PhF results. Thanks to the advances in ultra-fast
tomography techniques and the development of furnaces
that can fit X-ray beam lines [26], this should be possible
in the near future.
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