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Introduction

To achieve H-mode the TEXTOR tokamak [1] is operated at weaker than usual toroidal mag-

netic field (Bt = 1.3 T). In both L- and H-mode this leads to quasi periodic bursts of two dis-

tinct types of modes (fishbone and Alfvén), both driven unstable by suprathermal beam ions.

Although this phenomenology is well known from other experiments [2], it had not yet been

documented for the case of TEXTOR. A presentation to this end constitutes the first part of the

present paper. We then discuss observations of interaction between the fishbone and the Alfvén

modes, and their statistical link to ELMs. Finally, we discuss a third type of mode, unrelated

to either the fishbone or the Alfvén modes, which is shown to modulate the amplitude of broad

band turbulence in the pedestal during periods leading to ELM crashes.

Observations of beam-ion driven modes
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Figure 1: Contours (4 dB interval) of

spectral power Ḃp; ∆twin = 0.5 ms.

Figure 1 shows magnetic-probe measurements of the

poloidal field fluctuation (Ḃp(t)) and the corresponding

spectrogram for two consecutive bursts. Such bursts are

only seen for Bt < 1.6 T and start roughly 20 ms after

the neutral beam (1 MW tangential injection of 56 keV

deuterium atoms) is switched on. The magnetic spectra

during bursts are dominated by a down-chirping n = 1

mode, propagating in the ion-diamagnetic drift direc-

tion. All this phenomenology matches that of the ‘fish-

bone’ mode [3], which is driven by suprathermal beam-

ions.

The fishbone is accompanied by several Alfvén

modes with frequencies between 100 and 200 kHz in

the lab frame. These modes are driven by beam ions, which have parallel velocities up to

vb = 2× 106 m/s, compared to a core Alfvén velocity vA = 5× 106 m/s. For these experi-
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Figure 2: Contours of coherence between phase signals from two reflectometer antennas sepa-

rated toroidally by 90◦; features correspond to Alfvénic modes.

ments the sampling rate of the Mirnov coil signals was insufficient to resolve the Alfvén modes,

which have instead been studied using a heterodyne, O-mode reflectometer [4]. This diagnostic

features two equatorial antenna arrays, toroidally separated by 90◦, and one array viewing the

top of the plasma (Fig. 4). The available range of microwave frequencies (28-36 GHz) results in

cut-off layers with r/a > 0.75 in L-mode and r/a > 0.9 in H-mode; the signals were sampled at

1 MHz. During ELMs and L-mode, small-scale density fluctuations strongly scatter the probing

microwave beam, so that the signature even of coherent plasma fluctuations is almost totally

obscured in the spectral power of the phase signals from the reflectometer. However, the Alfvén

(and fishbone) modes are evident as peaks in the spectral coherence between phase signals from

the various antenna pairs. Figure 2 gives an example for an L-mode discharge in which Bt was

ramped down from 1.5-1.3 T on 1.0 < t < 1.6 s, while ne increased from 2.7−4.0×1019 m−3

on 1.0 < t < 3.5 s. As expected for Alfvén modes the mode frequencies scale with B/
√

ne to

within the error bars of the measurements.

The cross-phase spectrum corresponding to Fig. 2 is consistent with the Alfvén modes having

toroidal mode numbers n1 = 4 and n2 = 5, propagating in the ion-diamagnetic drift direction.

Assuming that the frequency difference between the two observed modes is caused solely by

different Doppler shifts we use our tentative estimates of n to calculate the mode frequency

in the plasma frame [5], which is shown in Fig. 2b. The obtained frequency is significantly

lower than what would be expected for a toroidicity induced Alfvén eigenmode (TAE) driven

at q = 1.5 [2]. Future attempts to identify these modes, which might be β -induced Alfvén

eigenmodes (BAE) [6], should take the high value of normalized plasma-β in these experiments

(up to βN ≈ 3) into account.

A large majority of the fishbones coincide with ELM crashes, like the first one in Fig. 1. In
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Figure 3: Bispectral coherence of the reflectometer phase signal, averaged over two different

conditionally constructed ensembles. Dashed lines indicate the principal domain.

this case the fishbone systematically starts to grow in amplitude tens of µs before the ELM is

visible in the Dα signal, so one can speculate that it may actually trigger the ELM crash [3, 7].

However, a minority of the fishbones, like the second one in Fig. 1, clearly do not coincide with

an ELM. Selecting windows of length 0.5 ms around the latter type of fishbones, we constructed

an ensemble of 298 sub-records of a reflectometer phase signal for H-mode discharge 110568.

Fig. 3a shows the bispectral coherence, averaged over this ensemble. The spectral features with

100 < f1 < 200 khz and f2 = 14 kHz indicate the presence of non-linear interaction between

the fishbone and the Alfvén modes [8].

Measurement of turbulence propagation

Between ELMs there are periods of strongly reduced turbulence amplitude, during which the

standard deviation of the reflectometer phase signals drops to below 1 radian. Selecting these

periods, we construct an ensemble of phase signals from poloidally closely spaced reflectometer

antennas (Fig. 4a) and evaluate the cross-spectra. The coherence is low (but significant) and

featureless for f > 200 kHz, up to the Nyquist frequency of 500 kHz. Let ∆θi and ∆Ψi( f )

denote the angular separation of the detection volumes and the cross-phase, respectively, of

antenna combination i. Assuming that the fluctuations obey a single-valued dispersion relation

m( f ) in the lab-frame (i.e. neglecting turbulent broadening), we have m( f ) = ∆Ψi( f )/∆θi,

where m is the poloidal mode number. Figure 4b suggests that broad band fluctuations with

30 < m < 80 propagate poloidally past the reflectometer, at a group velocity of 26 krad/s in the

electron-diamagnetic drift direction.

Turbulence modulation by n = 2 ELM precursor mode

In addition to the fishbone, the spectrogram of Ḃp in Fig. 1 shows an n = 2 feature at 23 kHz

around the time of the ELM crash, which is also visible in the reflectometer phase signals. The
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Figure 4: (a) Poloidal section showing one antenna array. (b) Measured dispersion relation of

broad band density fluctuations.

mode propagates in the electron-diamagnetic drift direction and poloidal harmonics have m = 4

and m = 5, giving it a poloidal propagation velocity of roughly 30 krad/s. Since it is only visible

in periods of duration 0.5 ms leading up to ELM crashes, we label this mode ‘n = 2 ELM

precursor’.

Selecting these 0.5 ms periods before every ELM, we constructed an ensemble of 890 sub-

records of the reflectometer phase signal. Figure 3b shows the corresponding averaged bis-

pectral coherence, which features a conspicuous ridge for f2 = 23 kHz (corresponding to the

n = 2 ELM precursor) and f1 > 200 kHz, corresponding to broad-band density fluctuations.

The biphase (not shown) is constant along this ridge. These observations strongly suggest that

the n = 2 ELM precursor modulates the amplitude of turbulent electron density fluctuations in

the H-mode pedestal, whose poloidal group velocity matches that of the n = 2 mode.
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