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ABSTRACT
Modern hardware is abundantly parallel and increasingly
heterogeneous. The numerous processing cores have non-
uniform access latencies to the main memory and to the
processor caches, which causes variability in the communica-
tion costs. Unfortunately, database systems mostly assume
that all processing cores are the same and that microarchi-
tecture differences are not significant enough to appear in
critical database execution paths. As we demonstrate in this
paper, however, hardware heterogeneity does appear in the
critical path and conventional database architectures achieve
suboptimal and even worse, unpredictable performance.

We perform a detailed performance analysis of OLTP de-
ployments in servers with multiple cores per CPU (multicore)
and multiple CPUs per server (multisocket). We compare
different database deployment strategies where we vary the
number and size of independent database instances running
on a single server, from a single shared-everything instance
to fine-grained shared-nothing configurations. We quantify
the impact of non-uniform hardware on various deployments
by (a) examining how efficiently each deployment uses the
available hardware resources and (b) measuring the impact
of distributed transactions and skewed requests on different
workloads. Finally, we argue in favor of shared-nothing de-
ployments that are topology- and workload-aware and take
advantage of fast on-chip communication between islands of
cores on the same socket.

1. INTRODUCTION
On-Line Transaction Processing (OLTP) is a multi-billion

dollar industry1 and one of the most important and demand-
ing database applications. Innovations in OLTP continue to
deserve significant attention, advocated by the recent emer-
gence of appliances2, startups3, and research projects (e.g.

1E.g.http://www.gartner.com/DisplayDocument?id=
1044912
2Such as Oracle’s Exadata database machine.
3Such as VoltDB, MongoDB, NuoDB, and others.

[31, 18, 25, 21, 24]). OLTP applications are mission-critical
for many enterprises with little margin for compromising
either performance or scalability. Thus, it is not surpris-
ing that all major OLTP vendors spend significant effort
in developing highly-optimized software releases, often with
platform-specific optimizations.

Over the past decades, OLTP systems benefited greatly
from improvements in the underlying hardware. Innovations
in their software architecture have been plentiful but there
is a clear benefit from processor evolution. Uni-processors
grew predictably faster with time, leading to better OLTP
performance. Around 2005, when processor vendors hit the
frequency-scaling wall, they started obtaining performance
improvements by adding multiple processing cores to the
same CPU chip, forming chip multiprocessors (multicore or
CMP); and building servers with multiple CPU sockets of
multicore processors (SMP of CMP).

Multisockets of multicores are highly parallel and charac-
terized by heterogeneity in the communication costs: sets,
or islands, of processing cores communicate with each other
very efficiently through common on-chip caches, and commu-
nicate less efficiently with others through bandwidth-limited
and higher-latency links. Even though multisocket multicore
machines dominate in modern data-centers, it is unclear how
well software systems and in particular OLTP systems exploit
hardware capabilities.

This paper characterizes the impact of hardware topol-
ogy on the behavior of OLTP systems running on modern
multisocket multicore servers. As recent studies argue and
this paper corroborates, traditional shared-everything OLTP
systems underperform on modern hardware because of (a)
excessive communication between the various threads [5, 14]
and (b) contention among threads [26, 31]. Practitioners
report that even commercial shared-everything systems with
support for non-uniform memory architectures (NUMA) un-
derperform [11, 36]. On the other hand, shared-nothing
deployments [30] face the challenges of (a) higher execution
costs when distributed transactions are required [16, 9, 12,
27], even within a single node, particularly if the communica-
tion occurs between slower links (e.g. across CPU sockets);
and (b) load imbalances due to skew [33].

Many real-life workloads cannot be easily partitioned
across instances or can have significant data and request
skews, which may also change over time. In this paper,
we examine the impact of perfectly partitionable and non-
partitionable workloads, with and without data skew, on
shared-nothing deployments of varying sizes as well as shared-
everything deployments. Our experiments show that per-
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fectly partitionable workloads perform significantly better
on fine-grained shared-nothing configurations but non-parti-
tionable workloads favor coarse-grained configurations, due
to the overhead of distributed transactions. We identify the
overheads as messaging, additional logging, and increased
contention, all of which depend on workload characteristics
such as the percentage of multisite transactions, the number
of sites touched by each transaction, and the amount of
work done within each transaction. Additionally, we find
that skewed accesses cause performance to drop significantly
when using fine-grained shared-nothing configurations; this
effect is less evident on coarser configurations and when using
shared-everything deployments.

To our knowledge, this is the first study that systematically
analyzes the performance of shared-everything and shared-
nothing OLTP configurations of varying size on modern
multisocket multicore machines. The contributions are as
follows:

• We provide experimental evidence of the impact of non-
uniform hardware on the performance of transaction pro-
cessing systems and conclude that high performance soft-
ware has to minimize contention among cores and avoid
frequent communication between distant cores.

• Our experiments show that fine-grained shared-nothing
deployments can achieve more than four times as high
throughput as a shared-everything system when the work-
load is perfectly partitionable. By contrast, when the
workload is not partitionable and/or exhibits skew, shared-
everything achieves twice as high a throughput as shared-
nothing. Therefore, there is no unique optimal deployment
strategy that is independent of the workload.

• We demonstrate that a careful assignment of threads to
islands of cores can combine the best features of a broad
range of system configurations, thereby achieving flexibility
in the deployment as well as more predictable and robust
performance. In particular, islands-aware thread assign-
ment can improve the worst-case scenario by a factor of 2
without hurting the best-case performance much.

The rest of the document is structured as follows. Section 2
presents the background and related work, describing the two
main database deployment approaches. Section 3 identifies
recent trends on modern hardware and their implications
on software design. Section 4 discusses the dependence of
database systems performance on hardware topology and
workload characteristics such as percentage of distributed
transactions. Section 5 presents experimental methodology.
Section 6 describes cases favoring fine-grained shared-nothing
configurations, and Section 7 analyzes possible overheads
when deploying shared-nothing configurations. Finally, Sec-
tion 8 summarizes the findings and discusses future work.

2. BACKGROUND AND RELATED WORK
Shared-everything and shared-nothing database designs,

described in the next two sections, are the most widely
used approaches for OLTP deployments. Legacy multisocket
machines, which gained popularity in the 1990s as symmetric
multiprocessing servers, had non-uniform memory access
(NUMA) latencies. This required changes to the database
and operating systems to diminish the impact of NUMA, as
discussed in Section 2.3.

2.1 Shared-everything database deployments
Within a database node, shared-everything is any deploy-

ment where a single database instance manages all the avail-
able resources. As database servers have long been designed
to operate on machines with multiple processors, shared-
everything deployments assume equally fast communication
channels between all processors, since each thread needs to ex-
change data with its peers. Until recently, shared-everything
was the most popular deployment strategy on a single node.
All major commercial database systems adopt it.

OLTP has been studied extensively on shared-everything
databases. For instance, transactions suffer significant stalls
during execution [3, 2, 14]; a result we corroborate in Sec-
tion 6.2. It has also been shown that shared-everything
systems have frequent shared read-write accesses [5, 14],
which are difficult to predict [29]. Modern systems enter
numerous contentious critical sections even when execut-
ing simple transactions, affecting single-thread performance,
requiring frequent inter-core communication, and causing
contention among threads [26, 25, 18]. These characteris-
tics make distributed memories (as those of multisockets),
distributed caches (as those of multicores), and prefetch-
ers ineffective. Recent work suggests a departure from the
traditional transaction-oriented execution model, to adopt
a data-oriented execution model, circumventing the afore-
mentioned properties - and flaws - of traditional shared-
everything OLTP [25, 26].

2.2 Shared-nothing database deployments
Shared-nothing deployments [30], based on fully indepen-

dent (physically partitioned) database instances that collec-
tively process the workload, are an increasingly appealing
design even within single node [31, 21, 28]. This is due to the
scalability limitations of shared-everything systems, which
suffer from contention when concurrent threads attempt to
access shared resources [18, 25, 26].

The main advantage of shared-nothing deployments is
the explicit control over the contention within each physi-
cal database instance. As a result, shared-nothing systems
exhibit high single-thread performance and low contention.
In addition, shared-nothing databases typically make bet-
ter use of the available hardware resources whenever the
workload executes transactions touching data on a single
database instance. Systems such as H-Store [31] and HyPer
[21] apply the shared-nothing design to the extreme, deploy-
ing one single-threaded database instances per CPU core.
This enables simplifications or removal of expensive database
components such as logging and locking.

Shared-nothing systems appear ideal from the hardware
utilization perspective, but they are sensitive to the ability
to partition the workload. Unfortunately, many workloads
are not perfectly partitionable, i.e. it is hardly possible to
allocate data such that every transaction touches a single
instance. Whenever multiple instances must collectively pro-
cess a request, shared-nothing databases require expensive
distributed consensus protocols, such as two-phase commit,
which many argue are inherently non-scalable [16, 9]. Simi-
larly, handling data and access skew is problematic [33].

The overhead of distributed transactions urged system
designers to explore partitioning techniques that reduce the
frequency of distributed transactions [12, 27], and to ex-
plore alternative concurrency control mechanisms, such as
speculative locking [20], multiversioning [6] and optimistic



concurrency control [22, 24], to reduce the overheads when
distributed transactions cannot be avoided. Designers of
large-scale systems have circumvented problems with dis-
tributed transactions by using relaxed consistency models
such as eventual consistency [35]. Eventual consistency elim-
inates the need for synchronous distributed transactions,
but it makes programming transactional applications harder,
with consistency checks left to the application layer.

The emergence of multisocket multicore hardware adds
further complexity to the on-going debate between shared-
everything and shared-nothing OLTP designs. As Section 3
describes, multisocket multicores introduce an additional
level into the memory hierarchy. Communication between
processors is no longer uniform: cores that share caches
communicate differently from cores in the same socket and
other sockets.

2.3 Performance on multisocket multicores
Past work focused on adapting databases for legacy multi-

socket systems. For instance, commercial database systems
provide configuration options to enable NUMA support, but
this setting is optimized for legacy hardware where each
individual CPU is assumed to contain a single core. With
newer multisocket servers, enabling NUMA support might
lead to high CPU usage and degraded performance [11, 36].

An alternative approach is taken by the Multimed project,
which views the multisocket multicore system as a cluster of
machines [28]. Multimed uses replication techniques and a
middleware layer to split database instances into those that
process read-only requests and those that process updates.
The authors report higher performance than a single shared-
everything instance. However, Multimed does not explicitly
address NUMA-awareness and the work is motivated by
the fact that the shared-everything system being used has
inherent scalability limitations. In this paper, we use a
scalable open-source shared-everything OLTP system, Shore-
MT [18], which scales nearly linearly with the available cores
on single-socket machines; however, we still observe benefits
with shared-nothing deployments based on Shore-MT.

A comparison of techniques for executing hash joins in
multicore machines [8], corresponding broadly to shared-
everything and shared-nothing configurations of different
sizes, illustrates a case where shared-everything has appealing
characteristics. The operation under study, however, hash
joins, has different characteristics from OLTP.

Exploiting NUMA effects at the operating system level
is an area of active research. Some operating system ker-
nels such as the Mach [1] and exokernels [13], or, more re-
cently, Barrelfish [4], employ the message-passing paradigm.
Message-passing potentially facilitates the development of
NUMA-aware systems since the communication between
threads is done explicitly through messages, which the op-
erating system can schedule in a NUMA-aware way. Other
proposals include the development of schedulers that detect
contention and react in a NUMA-aware manner [7, 32]. None
of these proposals is specific to database systems and likely
require extensive changes to the database engine.

3. HARDWARE HAS ISLANDS
Hardware has long departed from uniprocessors, which had

predictable and uniform performance. Due to thermal and
power limitations, vendors cannot improve the performance

 

Figure 1: Block diagram of a typical machine. Cores
communicate either through a common cache, an
interconnect across socket or main memory.

of processors by clocking them to higher frequency or by us-
ing more advanced techniques such as increased instruction-
width and extended out-of-order execution. Instead, two
approaches are mainly used to increase the processing ca-
pability of a machine. The first is to put together multiple
processor chips that communicate through shared main mem-
ory. For several decades, such multisocket designs provided
the only way to scale performance within a single node and
the majority of OLTP systems have historically used such
hardware. The second approach places multiple process-
ing cores on a single chip, such that each core is capable
of processing concurrently several independent instruction
streams, or hardware contexts. The communication between
cores in these multicore processors happens through on-chip
caches. In recent years, multicore processors have become a
commodity.

Multisocket multicore systems are the predominant con-
figuration for database servers and are expected to remain
popular in the future. Figure 1 shows a simplified block
diagram of a typical machine that has two sockets with quad-
core CPUs.4 Communication between the numerous cores
happens through different mechanisms. For example, cores
in the same socket share a common cache, while cores located
in different sockets communicate via the interconnect (called
QPI for Intel processors). Cores may also communicate
through the main memory if the data is not currently cached.
The result is that the inter-core communication is variable:
communication in multicores is more efficient than in mul-
tisockets, which communicate over a slower, power-hungry,
and often bandwidth-limited interconnect.

Hence, there are two main trends in modern hardware: the
variability in communication latencies and the abundance of
parallelism. In the following two subsections we discuss how
each trend affects the performance of software systems.

3.1 Variable communication latencies
The impact of modern processor memory hierarchies on

the application performance is significant because it causes
variability in access latency and bandwidth, making the
overall software performance unpredictable. Furthermore,
it is difficult to implement synchronization or communica-
tion mechanisms that are globally optimal in different en-
vironments - multicores, multisockets, and multisockets of
multicores.

We illustrate the problem of optimal synchronization mech-
anisms with a simple microbenchmark. Figure 2 plots the

4Adapted from http://software.intel.com/sites/
products/collateral/hpc/vtune/performance analysis
guide.pdf
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Figure 2: Allocating threads and memory in a
topology-aware manner provides the best perfor-
mance and lower variability.

throughput of a program running on a machine that has
8 CPUs with 10 cores each (the “Octo-socket” machine of
Table 2). There are 80 threads in the program, divided into
groups of 10 threads, where each group increments a counter
protected by a lock in a tight loop. There are 8 counters in
total, matching the number of sockets in the machine. We
vary the allocation of the worker threads and plot the total
throughput (million counter increments per second). The
first bar (“Spread” threads) spreads worker threads across
all sockets. The second bar (“Grouped” threads) allocates
all threads in the same socket as the counter. The third
bar leaves the operating system to do the thread alloca-
tion. Allocating threads and memory in a topology-aware
manner results in the best performance and lowest variabil-
ity. Leaving the allocation to the operating system leads to
non-optimal results and higher variability.5

We obtain similar results when running OLTP workloads.
To demonstrate the impact of NUMA latencies on OLTP,
we run TPC-C Payment transactions on a machine that has 4
CPUs with 6 cores each (“Quad-socket” in Table 2). Figure 3
plots the average throughput and standard deviation across
multiple executions on a database with 4 worker threads.
In each configuration we vary the allocation of individual
worker threads to cores. The first configuration (“Spread”)
assigns each thread to a core in a different socket. The sec-
ond configuration (“Group”) assigns all threads to the same
socket. The configuration “Mix” assigns two cores per socket.
In the “OS” configuration, we let the operating system do
the scheduling. This experiment corroborates the previous
observations of Figure 2: the OS does not optimally allocate
work to cores, and a topology-aware configuration achieves
20-30% better performance and less variation. The absolute
difference in performance is much lower than in the case of
counter incrementing because executing a transaction has
significant start-up and finish costs, and during transaction
execution a large fraction of the time is spent on operations
other than accessing data. For instance, studies show that
around 20% of the total instructions executed during OLTP
are data loads or stores (e.g. [3, 14]).

3.2 Abundant hardware parallelism
Another major trend is the abundant hardware parallelism

available in modern database servers. Higher hardware paral-

5This observation has been done also by others, e.g. [4], and
is an area of active research.
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Figure 3: Running the TPCC-Payment workload with
all cores on the same socket achieves 20-30% higher
performance than other configurations.

Table 1: Throughput and variability when increas-
ing counters each protected by a lock.

Counter Total Throughput (M/sec) Std. dev.
setup counters (Speedup) (%)
Single 1 18.4 9.33%

Per socket 8 341.7 (18.5x) 0.86%
Per core 80 9527.8 (516.8x) 0.03%

lelism potentially causes additional contention in multisocket
multicore systems, as a higher number of cores compete for
shared data accesses. Table 1 shows the results obtained
on the octo-socket machine when varying the number of
worker threads accessing a set of counters, each protected
by a lock. An exclusive counter per core achieves lower
variability and 18x higher throughput than a counter per
socket, and 517x higher throughput than a single counter
for the entire machine. In both cases, this is a super-linear
speedup. Shared-nothing deployments are better suited to
handle contention, since they provide explicit control by
physically partitioning data, leading to higher performance.

In summary, modern hardware poses new challenges to
software systems. Contention and topology have a significant
impact on performance and predictability of the software.
Predictably fast transaction processing systems have to take
advantage of the hardware islands in the system. They need
to (a) avoid frequent communication between “distant” cores
in the processor topology and (b) keep the contention among
cores low. The next section argues in favor of topology-aware
OLTP deployments that adapt to those hardware islands.

4. ISLANDS: HARDWARE TOPOLOGY-
AND WORKLOAD-AWARE SHARED-
NOTHING OLTP

Traditionally, database systems fall into one of two main
categories: shared-everything or shared-nothing. The distinc-
tion into two strict categories, however, does not capture the
fact that there are many alternative shared-nothing configu-
rations of different sizes, nor how to map each shared-nothing
instance to CPU cores.
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Figure 4: Different shared-nothing configurations on
a four-socket four-core machine.

Figure 4 illustrates three different shared-nothing configu-
rations. The two left-most configurations, labeled “2 Islands”
and “4 Islands”, dedicate different number of cores per in-
stance, but, for the given size, minimize the NUMA effects
as much as possible. Computation within an instance is
done in close cores. The third configuration, ”4 Spread” has
the same size per instance as “4 Islands”; however, it does
not minimize the NUMA effects, as it forces communication
across sockets when it is strictly not needed. The first two
configurations are islands in our terminology, where an island
is a shared-nothing configuration where each shared-nothing
instance is placed in a topology-aware manner. The third
configuration is simply a shared-nothing configuration. As
hardware becomes more parallel and more heterogeneous
the design space over the possible shared-nothing configu-
rations increases, and it is harder to determine the optimal
deployment.

On top of the hardware complexity, we have to consider
that the cost of a transaction in a shared-nothing environment
also depends on whether this transaction is local to a database
instance or distributed. A transaction is local when all the
required data for the transaction is stored in a single database
instance. A transaction is distributed when multiple database
instances need to be contacted and slow distributed consensus
protocols (such as two-phase commit) need to be employed.
Thus, the throughput also heavily depends on the workload,
adding another dimension to the design space and making
the optimal deployment decision nearly “black magic.” 6

An oversimplified estimation of the throughput of a shared-
nothing deployment as a function of the number of distributed
transactions is given by the following. If Tlocal is the perfor-
mance of the shared-nothing system when each instance exe-
cutes only local transactions, and Tdistr is the performance
of a shared-nothing deployment when every transaction re-
quires data from more than one database instances, then the
total throughput T is:

T = (1− p) ∗ Tlocal + p ∗ Tdistr

where p is the fraction of distributed transactions executed.
In a shared-everything configuration all the transactions

are local (pSE = 0). On the other hand, the percentage of
distributed transactions on a shared-nothing system depends
on the partitioning algorithm and the system configuration.
Typically, shared-nothing configurations of larger size execute
fewer distributed transactions, as each database instance
contains more data. That is, a given workload has a set
of transactions that access data in a single logical site, and
transactions that access data in multiple logical sites, which
we call multisite transactions. A single database instance may
hold data for multiple logical sites. In that case, multisite

6Explaining, among other reasons, the high compensation
for skilled database administrators.
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Figure 5: Performance of various deployment config-
urations as the percentage of multisite transactions
increases.

transactions can actually be physically local transactions,
since all the required data reside physically in the same
database instance. Distributed transactions are only required
for multisite transactions whose data reside across different
physical database instances. Assuming the same partitioning
algorithm is used (e.g. [12, 27]), then the more data a
database contains the more likely for a transaction to be
local.

Given the previous reasoning one could argue that an op-
timal shared-nothing configuration consists of a few coarse-
grained database instances. This would be a naive assump-
tion as it ignores the effects of hardware parallelism and
variable communication costs. For example, if we consider
the contention, then the cost of a (local) transaction of a
coarse-grained shared-nothing configuration Ccoarse is higher
than the cost of a (local) transaction of a very fine-grained
configuration Cfine, because the number of concurrent con-
tenting threads is larger. That is, Tcoarse < Tfine. If we
consider communication latency, then the cost of a topology-
aware islands configuration Cislands of a certain size is lower
than the cost of a topology-unaware shared-nothing configu-
ration Cnaive. That is, Tislands < Tnaive.

As a result, this paper makes the case for OLTP Islands,
which are hardware topology- and workload-aware shared-
nothing deployments. Figure 5 illustrates the expected behav-
ior of Islands, shared-everything, and finer-grained shared-
nothing configurations as the percentage of multisite transac-
tions in the workload increases. Islands exploit the properties
of modern hardware by exploring the sets of cores that com-
municate faster with each other. Islands are shared-nothing
designs, but partially combine the advantages of both shared-
everything and shared-nothing deployments. Similarly to
a shared-everything system, Islands provide robust perfor-
mance even when transactions in the workload vary slightly.
At the same time, performance on well-partitioned work-
loads should be high, due to less contention and avoidance
of higher-latency communication links. Their performance,
however, is not as high as a fine-grained shared-nothing sys-
tem, since each node has more worker threads operating
on the same data. At the other side of the spectrum, the
performance of Islands will not deteriorate as sharply as a
fine-grained shared-nothing under the presence of e.g. skew.

5. EXPERIMENTAL SETUP
In the following sections we perform a thorough evaluation

of the benefits of various deployment strategies under a



Table 2: Description of the machines used.
Machine Description
Quad-socket 4 x Intel Xeon E7530 @ 1.86 GHz

6 cores per CPU
Fully-connected with QPI
64 GB RAM
64 KB L1 and 256 KB L2 cache per core
12 MB L3 shared CPU cache

Octo-socket 8 x Intel Xeon E7-L8867 @ 2.13GHz
10 cores per CPU
Connected using 3 QPI links per CPU
192 GB RAM
64 KB L1 and 256 KB L2 cache per core
30 MB L3 shared CPU cache
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Figure 6: Throughput of message exchanging (in
thousands of messages exchanged per second) for
a set of inter-process communication mechanisms.
Unix domain sockets are the highest performing.

variety of workloads on two modern multisocket multicore
machines, one with four sockets of 6-core CPUs and one with
eight sockets of 10-core CPUs 7.
Hardware and tools. Table 2 describes in detail the hard-
ware used in the experiments. We disable HyperThreading
to reduce variability in the measurements. The operating
system is Red Hat Enterprise Linux 6.2 (kernel 2.6.32). In
the experiment of Section 7.4, we use two 146 GB 10kRPM
SAS 2,5” HDDs in RAID-0.

We use Intel VTune Amplifier XE 2011 to collect ba-
sic micro-architectural and time-breakdown profiling results.
VTune does hardware counter sampling, which is both accu-
rate and light-weight. Our database system is compiled using
GCC 4.4.3 with maximum optimizations. In most experi-
ments, the database size fits in the aggregate buffer pool size.
As such, the only I/O is due to the flushing of log entries.
However, since the disks are not capable of sustaining the
I/O load, we use memory mapped disks for both data and
log files. Overall, we exercise all code paths in the system
and utilize all available hardware contexts.
IPC mechanisms. The performance of any shared-nothing
system heavily depends on the efficiency of its communication
layer. Figure 6 shows the performance in the quad-socket
machine of various inter-process communication (IPC) mech-
anisms using a simple benchmark that exchanges messages
between two processes, which are either located in the same

7For more details see http://www.supermicro.com/
manuals/motherboard/7500/X8OBN-F.pdf

CPU socket or in different sockets. Unix domain sockets
achieve the highest performance and are used throughout
the remaining evaluation.

5.1 Prototype system
In order to evaluate the performance of various shared-

nothing deployments in multisocket multicore hardware, we
implemented a prototype shared-nothing transaction process-
ing system on top of the Shore-MT [18] storage manager.
We opted for Shore-MT as the underlying system since it
provides near linear scalability on single multicores machines.
Shore-MT is the improved version of the SHORE storage
manager, originally developed as an object-relational data
store [10]. Shore-MT is designed to remove scalability bottle-
necks, significantly improving Shore’s original single-thread
performance. Its performance and scalability are at the
highest end of open-source storage managers [18].

Shore-MT is originally a shared-everything system. There-
fore, we extended Shore-MT with the ability to run in shared-
nothing configurations, by implementing a distributed trans-
action coordinator using the standard two-phase commit
protocol.

Shore-MT includes a number of state-of-the-art optimiza-
tions for local transactions, such as speculative lock inheri-
tance [17]. We extended these features for distributed trans-
actions, providing a fair comparison between the execution
of local and distributed transactions.

5.2 Workload and experimental methodology
In our experiments, we vary the number of instances (i.e.

partitions) of the database system. Each instance runs as
a separate process. In all experiments, the total amount of
input data is kept constant and the data is range-partitioned
across all instances of the system. For every experiment,
with the exception of Section 7.4, we use small dataset with
240,000 rows (∼ 60 MB). We show results using different
database configurations, but we always use the same total
amount of data, processors, and memory resources. Only the
number of instances and the distribution of resources across
instances changes.

We ensure that each database instance is optimally de-
ployed. That is, each database process is bound to the cores
within a single socket (minimizing NUMA effects) when pos-
sible, and its memory is allocated in the nearest memory
bank. As noted in Section 3, allowing the operating system to
schedule processes arbitrarily leads to suboptimal placement
and thread migration, which degrades performance.

The configurations on the graphs are labeled with ”NISL”
where N represents the number of instances. For instance,
8ISL represents the configuration with 8 database instances,
each of which has 1/8th of the total data and uses 3 processor
cores (the machine has 24 cores in total). The number of
instances is varied from 1 (i.e. a shared-everything system)
to 24 (i.e. a fine-grained shared-nothing system). Optimiza-
tions are also applied to particular configurations whenever
possible: e.g. fine-grained shared-nothing allows certain opti-
mizations to be applied. Optimizations used are noted along
the corresponding experimental results.

We run two microbenchmarks. The first consists of read-
only transactions that retrieve N rows. The second consists
of read-write transactions updating N rows. For each mi-
crobenchmark, we run two types of transactions:
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Figure 7: Running the TPC-C benchmark with only
local transactions. Fine-grained shared-nothing is
4.5x faster than shared everything.

• Local transactions, which perform its action (read or
update) on the N rows located in the local partition;

• Multisite transactions, which perform its action (read
or update) on one row located in the local partition while
remaining N − 1 rows are chosen uniformly from the whole
data range. Transactions are distributed if some of the
input rows happen to be located in remote partitions.

6. CASES FAVORING FINE-GRAINED
PARTITIONING

This section presents two cases where fine-grained shared-
nothing configurations outperform coarser-grained shared-
nothing configurations as well as shared-everything.

6.1 Perfectly partitionable workloads
If the workload is perfectly partitionable then fine-grained

shared-nothing provides better performance. An example is
shown on Figure 7, obtained using the quad-socket machine,
which compares the performance of the shared-everything
version of Shore-MT with the fine-grained shared-nothing
version of Shore-MT with 24ISL. Both systems run a modified
version of the TPC-C benchmark [34] Payment transaction,
where all the requests are local and, hence, the workload
is perfectly partitionable on Warehouses. The fine-grained
shared-nothing configuration outperforms shared-everything
by 4.5x, due in large part to contention on the Warehouse
table in the shared-everything case. Experiments with short-
running microbenchmarks in later sections, however, do not
show such a large difference between shared-everything and
shared-nothing. This is because of the larger number of rows
in the table being accessed, which implies lower contention
on a particular row.

6.2 Read-only workloads
Fine-grained shared-nothing configurations are also appro-

priate for read-only workloads. In the following experiment
we run microbenchmark with local transactions that retrieve
10 rows each. We test multiple configurations ranging from
24ISL to 1ISL in the quad-socket machine. The configuration
24ISL is run without locking or latching.

Figure 8 (left) shows that the fine-grained shared-nothing
configurations, whose instances have fewer threads, make bet-
ter utilization of the CPU. Single-threaded instances, apart
from not communicating with other instances, have simpler

execution leading to shorter code paths, which decreases the
number of instruction misses. On the other hand, instances
that span across sockets have a much higher percentage of
stalled cycles (shown in the middle of Figure 8), in part due
to the significant percentage of—expensive—last-level cache
(LLC) misses. Within the same socket, smaller instances
have higher ratio of instructions per cycle due to less sharing
between cores running threads from the same instance, as
shown on the Figure 8 (right).

7. CHALLENGES FOR FINE-GRAINED
PARTITIONING

A significant number of real life workloads cannot be par-
titioned in a way that transactions access a single partition.
Moreover, many workloads contain data and access skews,
which may also change dynamically. Such workloads are
more challenging for systems that use fine-grained parti-
tioning and coarser-grained shared-nothing configurations
provide a robust alternative.

7.1 Cost of distributed transactions
Distributed transactions are known to incur a significant

cost, and this problem has been the subject of previous
research, with e.g. proposals to reduce the overhead of the
distributed transaction coordination [20] or to determine an
initial optimal partitioning strategy [12, 27]. Our experiment,
shown in Figure 9, corroborates these results. We run two
microbenchmarks whose transactions read and update 10
rows respectively on the quad-socket machine. As expected,
the configuration 1ISL (i.e. shared-everything) is not affected
by varying the percentage of multisite transactions. However,
there is a drop in performance of the remaining configurations,
which is more significant in the case of the fine-grained one.
The following experiments further analyze this behavior.

7.1.1 Read-only case: Overhead proportional to the
number of participating instances

Figure 10 (upper left) represents the costs of a local read-
only transaction in various database configurations and as
the number of rows retrieved per transaction increases. The
results are obtained on the quad-socket machine. The 24ISL
configuration runs with a single worker thread per instance,
so locking and latching are disabled, which leads to roughly
40% lower costs than the next best configuration, corrobo-
rating previous results [15].

The costs of multisite read-only transactions (Figure 10,
upper right) show the opposite trend from the local read-
only transactions. In the local case, the costs of a single
transaction rise as the size of an instance grows. In the
multisite case, however, the costs decrease with the size of an
instance. This is due to a decrease in the number of instances
participating in the execution of any single transaction. The
exception is the shared-everything configuration, which has
higher costs due to inter-socket communication, as discussed
in Section 6.

7.1.2 Update case: Additional logging overhead is
significant

The lower left plot of Figure 10 describes the costs of the
update microbenchmark with local transactions only, on the
quad-socket machine. The cost of a transaction increases
with the number of threads in the system, due to contention
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Figure 9: Performance as the number of distributed transactions increases. While shared-everything remains
stable, performance of share-nothing configurations decreases.

on shared data structures. As in the read-only case, the
24ISL configuration runs without locks or latches and hence,
has lower costs.

Multisite shared-nothing transactions (Figure 10, lower
right) are significantly more expensive than their local coun-
terparts. This is due to the overhead associated with dis-
tributed transactions and to the (mandatory) use of locking.
Any configuration that requires distributed transactions is
more expensive than the shared-everything configuration.

7.1.3 Profiling
To characterize the overhead of inter-process communica-

tion costs in relation to the remaining costs of a distributed
transaction, we profile the execution of a set of read-only and
update transactions on the quad-socket machine, using the
4ISL configuration. Figure 11 plots time breakdown for the
lightweight transaction which reads or updates 4 rows. The
messaging overhead is high in the read-only case, although
it has a constant cost per transaction. The relative cost
of communication can be seen by comparing the 0% mul-
tisite (i.e. local transactions only) and the 100% multisite
bars. Although distributed transactions require exchange of
twice as many messages in the update case, this overhead is
comparatively smaller because of additional logging, as well
as increased contention which further increase the cost of a
transaction.

7.2 Increasing hardware parallelism
Hardware parallelism as well as communication variability

will likely continue to increase in future processors. Therefore,

it is important to study the behavior of alternative database
configurations as hardware parallelism and communication
variability grows. In Figure 12, we run the microbenchmark
which reads (left) or updates (right) 10 rows with fixed
percentage of multisite transactions to 20%, while the number
of cores active in the machine is increased gradually. Results
are shown for both the quad-socket and the (more parallel
and variable) octo-socket machine.

The shared-nothing configurations scale linearly, with CG
(coarse-grained shared-nothing) configuration being compet-
itive with the best case across different machines and across
different levels of hardware parallelism. The configuration
labeled SE (shared-everything) does not scale linearly, partic-
ularly on the machine with 8 sockets. In the SE configuration,
there is no locality when accessing the buffer pool, locks, or
latches. To verify the poor locality of SE, we measured the
QPI/IMC ratio, i.e. the ratio of the inter-socket traffic over
memory controller traffic. A higher QPI/IMC ratio means
the system does more inter-socket traffic while reading (i.e.
processing) less data overall: it is less NUMA-friendly. The
QPI/IMC ratio for the experiment with read-only workload
on octo-socket server using all 80 cores is 1.73 for SE, 1.54
for CG, and 1.52 for FG. The FG and CG configurations still
have a relatively high ratio due to multisite transactions but,
unlike SE, these consist of useful work. When restricting all
configurations to local transactions only, we observe a steady
data traffic of 100 Mb/s on the inter-socket links for FG
and CG (similar to the values observed when the system is
idle), while SE exceeds 2000 Mb/s. Clearly, to scale the SE
configuration to a larger number of cores, data locality has
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Figure 10: Cost of local and multisite transactions in read-only and update microbenchmarks. Coarse-grained
shared-nothing has more robust performance compared to fine-grained shared-nothing and shared-everything.
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Figure 11: Time breakdown for a transaction that retrieves (left) or updates (right) 4 rows. The cost of
communication dominates in the cost of distributed transaction in the read-only case, while in the update
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to be increased. Additionally, one of the main reasons for
poor performance of SE configuration is high contention on
locks and latches. Using partitioned shared-everything de-
signs with data-oriented execution can significantly improve
locality of accesses and remove or minimize the overheads
coming from lock and latch managers [25, 26].

7.3 Tolerance to skew
In many real workloads, skews on data and requests, as well

as dynamic changes are the norm rather than the exception.
For example, many workloads seem to follow the popular 80-
20 distribution rule, where the 80% of requests accesses only
the 20% of the data. This subsection describes experiments
with workloads that exhibit skew.

The following microbenchmark reads or updates two rows
chosen with skew over the whole data range. We use Zipfian

distribution, with different skew factors s, shown on the
x-axis of Figure 13. The figures show the throughput for
varying percentages of multisite transactions. We employ
similar optimizations as described in 7.1.1 and 7.1.2.

Skew has a dramatic effect on the performance of the dif-
ferent configurations. For shared-everything, heavily skewed
workloads result in a significant performance drop due to in-
creased contention. This effect is apparent particularly in the
update case. When requests are not strongly skewed, shared-
everything achieves fairly high performance in the update
microbenchmark, mainly due to optimized logging, which
significantly improves the performance of short read-write
transactions [19]. In coarser-grained islands, the increased
load due to skewed accesses is naturally distributed among
all worker threads in the affected instance. With fine-grained
instances, which have a single worker thread, the additional
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Figure 13: Performance of read-only (top) and update (bottom) workloads with skewed accesses. As skew
increases, shared-everything suffers from increased contention, while fine-grained shared-nothing suffers from
a highly-loaded instance that slows others. Coarse-grained shared-nothing configuration cope better with a
highly loaded instances, due to multiple internal threads.

load cannot be divided and the most loaded instance be-
comes a bottleneck. Furthermore, as the skew increases to
the point where all remote requests go to a single instance,
the throughput of other instances also drops as they cannot
complete transactions involving the overloaded instance.

Overall, coarse-grained shared-nothing configurations ex-
hibit good performance in the presence of skew, as they suffer
less from increased contention and are more resistant to load

imbalances.

7.4 Increasing database size
Although main memory sizes in modern servers continue

to grow, there are many workloads that are not main memory
resident and rely on disk-resident data. To evaluate various
database configurations on growing dataset sizes, we gradu-
ally increase the number of rows in the dataset from 240,000
to 120,000,000 (i.e. from 60 MB to 33 GB). Contrary to
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Figure 14: Performance of the various configurations on workloads, as we gradually increase the database
size from almost cache-resident to I/O-resident.

previous experiments, we placed the database on two hard
disks configured as a RAID stripe. We use a 12 GB buffer
pool, so that smaller datasets completely fit in the buffer
pool. In the shared-nothing configurations, the buffer pool
is proportionally partitioned among instances, e.g. in the
4ISL case each instance has 3 GB buffer pool. We run read
and update microbenchmarks with two rows accessed and
0% and 20% multisite transactions.

In Figure 14, we plot the performance of the read-only
microbenchmark on the left-hand side and the update mi-
crobenchmark on the right-hand side as the number of rows in
the database grows. For the smaller dataset, shared-nothing
configurations exhibit very good performance as a significant
part of the dataset fits in processor last-level caches. Since
the instances do not span multiple sockets, there is no inter-
socket traffic for cache coherence. As data sizes increase,
the performance of shared-nothing configurations decrease
steadily, since smaller portions of the data fit in the caches.
Finally, when the dataset becomes larger than the buffer
pool, the performance drops sharply due to disk I/O. These
effect are less pronounced when the percentage of multisite
transaction is higher, since the longer latency data accesses
are overlapped with the communication.

8. CONCLUSIONS AND FUTURE WORK
Modern multisocket multicore servers are characterized by

abundant hardware parallelism and variable communication
latencies. This non-uniformity has an important impact on
OLTP databases and neither traditional shared-everything
configurations, nor newer shared-nothing designs, are an op-
timal choice for every class of OLTP workloads on modern
hardware. In fact, our experiments show that no single opti-
mal configuration exists: the ideal configuration is dependent
on the hardware topology and workload, but the performance
and variability between alternative configurations can be very
significant, encouraging a careful choice. There is, however,
a common observation across all experiments: the topol-
ogy of modern servers favors a configuration we call
Islands, which groups together cores that communicate
quicker, minimizing access latencies and variability.

We show that OLTP Islands provide robust perfor-
mance under a variety of scenarios. Islands, being
topology and workload-aware, provide some of the perfor-
mance gains of shared-nothing databases while being more

robust to changes in the workload than shared-nothing. Their
performance under heavy skews and multisite transactions
also suffers, but overall, Islands are robust under the presence
of moderate skews and multisite transactions.

The challenge, then, is to determine the ideal island, out
of the many possible islands. A straightforward choice is
to use CPU sockets as a rule-of-thumb island. Islands
group hardware cores that communicate faster, which is
easily achieved by dimensioning and placing islands to match
hardware sockets.

As for previous approaches, our experiments corroborate
previous results in that shared-everything OLTP pro-
vides stable but non-optimal performance. Shared-
everything databases are robust to skew and/or updates in
their workloads. However, their performance is not optimal
and in many cases, significantly worse than the ideal config-
uration. In addition, shared-everything OLTP is likely
to suffer more on future hardware. As the hardware
parallelism continues to increase, it becomes increasingly im-
portant to make shared-everything databases NUMA-aware.
Also, extreme shared-nothing OLTP is fast but sensi-
tive to the workload. Extreme shared-nothing databases,
as advocated by systems such as H-Store, provide nearly
optimal performance if the workload is perfectly partition-
able. Shared-nothing databases, however, are sensitive to
skew and multisite transactions, particularly in the presence
of updates.

Future work will focus on determining the ideal size of each
island automatically for the given hardware and workload.
Moreover, in clustered databases, shared-cache shared-disk
designs [23] allow database instances to share buffer pools,
avoiding accesses to the shared-disk. Studying the perfor-
mance of shared-disk deployments within a single multisocket
multicore node is also part of our future plans. Scaling-out
OLTP across multiple machines is an orthogonal problem,
but the islands concept is likely to be applicable.
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