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Abstract Objective: Quantitation of
glutathione (GSH) in the human
brain in vivo using short echo time
1H NMR spectroscopy is
challenging because GSH resonances
are not easily resolved. The main
objective of this study was to validate
such quantitation in a clinically
relevant population using the
resolved GSH resonances provided
by edited spectroscopy. A secondary
objective was to compare several of
the neurochemical concentrations
quantified along with GSH using
LCModel analysis of short echo time
spectra in schizophrenia versus
control. Materials and Methods:
GSH was quantified at 4T from
short echo STEAM spectra and
MEGA-PRESS edited spectra from
identical volumes of interest
(anterior cingulate) in ten volunteers.
Neurochemical profiles were

quantified in nine controls and 13
medicated schizophrenic patients.
Results: GSH concentrations as
quantified using STEAM, 1.6 ±
0.4 µmol/g (mean ± SD, n=10),
were within error of those quantified
using edited spectra, 1.4 ±
0.4 µmol/g, and were not different
(p =0.4). None of the neurochemical
measurements reached sufficient
statistical power to detect differences
smaller than 10% in schizophrenia
versus control. As such, no
differences were observed.
Conclusions: Human brain GSH
concentrations can be quantified in a
clinical setting using short-echo time
STEAM spectra at 4T.
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Introduction

Improvements in proton nuclear magnetic resonance
(1H NMR) sensitivity and resolution attained at higher
magnetic field strength [1,2] have lead to expansion of
the list of neurochemicals that can be quantified in vivo
beyond the typically reported N-acetyl aspartate (NAA),
creatine (Cr), choline (Cho), and sometimes inositol (Ins)
and the sum of glutamate and glutamine (Glx). One addi-
tional neurochemical that can be detected is glutathione
(GSH). Although the small, coupled resonances from glu-
tathione (reduced, GSH) are not resolved from overlap-
ping neurochemical resonances at 4T, they are detected

using deconvolution software such as Linear Combination
Model (LCModel, [3]) to uncover them. Whereas vi-
sual affirmation of accurate quantitation as such is
absent, GSH resonances can be resolved and unam-
biguously assigned in the human brain using edited
1H NMR spectroscopy [4,5]. Fully resolved GSH res-
onances were recently measured using MEGA-PRESS
(MEscher – GArwood-Point RESolved Spectroscopy)
editing, which was highly specific for unequivocal detec-
tion of the cysteine β-CH2 resonance of GSH at
2.95 ppm [5]. Sensitivity of GSH detection as such was
sufficient for measuring the approximated 1.3 µmol/g
concentration, which was in excellent agreement with
other MRS measurements (2–5 mmol/L) [4] as well
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Fig. 1 a Scout sagittal image (GEMS, TR = 50 ms, TE = 4 ms,
256×128 matrix, no averaging, 5 mm slice thickness) and b localizer
transverse image (RARE, TR = 4.0 s, TE = 60 ms, echo train length
= 8, 256×128 matrix, two averages, 2 mm slice thickness, one slice of
seven) illustrating the 2×2×2 cm3 VOI in the anterior cingulate. c and
d Duplicate images for illustration of the 2.3×2.2×3.3 cm3 VOI con-
taining the anterior cingulate

as the lower end of GSH concentrations reported
in human brain via biochemical methods, i.e., 1 [6],
1–3 [7], and 1–10 [8] mM. The main goal of this study was
to validate reliable GSH quantification from short-echo
time stimulated echo acquisition mode (STEAM) spec-
tra against MEGA-PRESS edited spectra in a clinically
relevant setting.

A recent study reported decreased GSH in cerebro-
spinal fluid in patients with schizophrenia as well as de-
creased brain (52%, p=0.001, frontal cortex) GSH levels
as measured with in vivo edited magnetic resonance spec-
troscopy [9]. GSH and ascorbate are the most concen-
trated non-enzymatic antioxidants in the central nervous
system [10]. Studies suggest that oxidative stress [11] and
altered activity of GSH peroxidase, an important antiox-
idant enzyme [12] may be involved in the pathogenesis of
schizophrenia [9]. Additional metabolites of interest in the
study of schizophrenia, such as glutamate and glutamine
can be quantified concurrently with GSH from short-echo
time STEAM spectra [13]. Since the various GSH con-
centrations present in schizophrenia versus control served
as a good data set for the validation study, and quantify-
ing the neurochemical profile in schizophrenia would con-
tribute to understanding the disease, a secondary goal of
this study was to measure neurochemical concentrations
in medicated schizophrenia versus control.

Methods

Protocol

Test–retest repeatability of the neurochemical profile as quanti-
fied from short echo time STEAM spectra was assessed by mea-
suring the profile from an 8 cm3 volume of interest (VOI) in the
anterior cingulate (Fig. 1a, b) in three volunteers, three consecu-
tive times, on three different days. One neurochemical profile was
disregarded due to atypically high Cramer–Rao lower bounds
(CRLB > 15% for GSH and Gln quantitation), and another set
of three profiles was not completed due to scheduling conflicts.
Among the 20 in the basis set, neurochemicals for which the aver-
age CRLB was 12% or less in the test-retest study were consid-
ered reliable for further investigation. For the next phase of the
study, patients and new controls were presented for spectroscopy
in a blinded fashion. From these subjects: a STEAM spectrum
was acquired from an 8 cm3 VOI in the anterior cingulate cor-
tex (Fig. 1a, b) for comparison of schizophrenia versus control,
an edited spectrum was acquired from a 17 cm3 VOI containing
the anterior cingulate (Fig. 1c, d) for validation against another
STEAM spectrum, which was acquired from the same 17 cm3

VOI. Ten subjects (three patients, seven controls) tolerated the
90 min scan time required for measurement of all three spectra.
Twelve additional subjects (total of 13 patients, nine controls)
tolerated at least 30 min, allowing measurement of one STEAM
spectrum (8cm3). The 8 cm3 VOI was selected in order to local-
ize the neurochemical profile to the anterior cingulate. Based on
previous studies [9], the larger volume of interest was expected to
provide sufficient signal to noise for edited spectroscopy. In order
to match experimental conditions for validation of GSH quanti-
tation, an additional STEAM spectrum was acquired from the
larger volume of interest. The inclusion criteria for each neu-
rochemical concentration measured from STEAM spectra was
a CRLB of 20% or less. The study was unblinded after data
were processed. For comparing GSH concentrations measured
using the two techniques (17 cm3 VOI), statistical significance
was calculated using a two tailed student’s t test for samples
of equal variance. For comparison of neurochemical concen-
trations in schizophrenia versus control (two treatment parallel
design), the smallest difference in means that could have been de-
tected with an 80% probability (two sided 5% significance level)
was calculated based on the sample size (total) and standard
deviation (average) in the patient versus control study for each
neurochemical.

Human subjects

Three normal volunteers (one male, age 20 ± 3, mean ± SD)
gave informed consent for the test–retest portion of the study.
All experiments were conducted according to the procedure ap-
proved by the institutional review board. For the blinded portion
of the study, patients (n = 13, eight male, age 26 ± 5, schizo-
phrenia, 11; schizoaffective disorder, 2) were diagnosed with the
Structured Clinical Interview for DSM-IV Axis I Disorders –
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Fig. 2 In vivo STEAM
spectrum (VOI = 8 cm3, TE =
5 ms, TR = 4.5 s, TM = 42 ms,
NEX = 256) and LCModel fit,
illustrating metabolite
contributions to neurochemical
profile: MM macromolecules,
Gln glutamine, Ins inositol, Glu
glutamate, (P)Cr
(phospho)creatine, NAA(G)
N-acetyl aspartate(glutamate),
GSH glutathione, and (G)PC
(glycerol)phosphorylcholine

Patient Edition (SCID-P [14]). All patients were medicated. Con-
trols (n = 9, four male, age 25 ± 5) were screened for Axis I
disorders with the SCID – Nonpatient Edition (SCID-NP [14]).

Spectroscopy and quantitation

Imaging and spectroscopy were performed on a 4 T, 90 cm
bore magnet (Oxford Magnet Technology, Oxford, UK) inter-
faced to a Varian INOVA spectrometer (Varian, Palo Alto, CA)
equipped with gradients capable of switching to 40 mT/m in
400 µs (Sonata, Siemens, Erlangen, Germany) and a transverse
electromagnetic (TEM) volume coil. Subjects were positioned
supine. The protocol for each volunteer began with a scout sag-
ittal image (GEMS, TR = 50 ms, TE = 4 ms, 256×128 matrix,
no averaging, 5 mm slice thickness) followed by localizer multi-
slice transverse images (RARE, TR = 4.0 s, TE = 60 ms, echo
train length = 8, 256×128 matrix, two averages, 2 mm slice thick-
ness, seven slices separated by 0.5 cm) for selection of a volume
of interest in the most anterior portion of the cingulate cor-
tex (Fig. 1). Shimming of all first- and second-order coils was
achieved using FAST(EST)MAP [15], resulting in water line
widths of 6–11 (average 8) Hz in the 8 cm3 VOI. The same shim
settings were used for the 17 cm3 VOI, wherein the average line-
width was 1 Hz larger. Water signal was suppressed by variable
power radiofrequency (RF) pulses with optimized relaxation
delays (VAPOR) [16]. When motion was suspected, imaging and
shimming were repeated as necessary. An image was acquired at
the end of each study to affirm VOI placement. STEAM spec-
troscopy [17] (TE = 5 ms, TR = 4.5 s, TM = 42 ms, NEX = 256)
and quantitation of metabolite concentrations, or the neuro-
chemical profile [18], were performed in both the 8 cm3 VOI and

the 17 cm3 VOI. MEGA-PRESS difference editing and quanti-
tation of the GSH edited spectra were performed as previously
described [5].

Results

To illustrate the challenge encountered in separating GSH
resonances from overlapping resonances, Fig. 2 shows a
STEAM spectrum from an 8 cm3 VOI in a normal volun-
teer as well as neurochemical fits. Note that unlike other
neurochemicals, GSH does not contribute a unique res-
onance, despite statistical affirmation of successful sep-
aration, i.e. CRLB less than 15% [3]. The LCModel fit
is nearly identical to the in vivo spectrum, indicating that
LCModel was successful in modeling the in vivo spectrum
as a linear combination of basis spectra.

In contrast to the overlapping resonances appear-
ing in the STEAM spectrum (Fig. 2), Fig. 3 illus-
trates fully resolved GSH resonances via a represen-
tative MEGA-PRESS difference edited spectrum. Co-
edited NAA (≤2.8 ppm) was well separated from GSH
(≥2.8 ppm). Quantification of GSH using LCModel anal-
ysis of this in vivo spectrum was successful as indicated
by: the low CRLB (14%), the close match between the in
vivo spectrum and the fit, and the noise predominated fit
residual.

Agreement (p > 0.3) between GSH concentrations
quantified by STEAM, 1.6 ± 0.4 µmol/g (mean ± SD,
n=10) versus edited spectroscopy, 1.4 ± 0.4 µmol/g (mean
± SD, n=10) in matched volumes of interest is detailed in
Table 1 and illustrated in Fig. 4. Given the variance of the
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Fig. 3 In vivo MEGA-PRESS spectrum edited for GSH (NEX =
512, TR = 4.5 s, TE = 68 ms, VOI = 17 cm3) and results of LCModel
analysis (fit and residual). NAA co-edits with GSH as expected but
is fully resolved

Table 1 GSH Concentrations

Method Mean SD

STEAM 1.6 0.4
MEGA-PRESS 1.4 0.4

GSH concentrations (µmol/g) quantified using STEAM and
MEGA-PRESS edited spectra (17 cm3 VOI) for validation, n=
10, p =0.4

data relative to measurement error, the range of GSH con-
centrations encountered was not sufficient for establish-
ing correlation between the two measurement techniques
(Pearson r =0.5, Spearman’s rho = 0.3). Nevertheless, er-
ror bars indicating twice the Cramer–Rao lower bound,
the 95% confidence interval for separating concentrations
measured using LCModel [19] intersected the unity line
for 9 of 10 subjects. For the tenth subject, the error bar
missed by only 0.02 µmol/g, which becomes 0.0 µmol/g
when reported with the appropriate number of significant
figures. No significant difference was detected (paired t-
test, p =0.2, t =−1.3) between GSH concentration mea-
sured using STEAM versus MEGA-PRESS editing in the
ten individuals.

The results of the study designed to measure the test-
retest repeatability of the entire neurochemical profile
(8 cm3 VOI) are illustrated in Table 2 and Fig. 5. These
data illustrate the variation in neurochemical concentra-
tions measured in the control group, providing a basis for
estimating the smallest difference that can be detected in
patients versus controls. Repeatability and CRLB agreed
with those reported in a similar study [20].

Finally, the results of comparing the neurochemical
profile quantified in Schizophrenia versus control are sum-
marized in Table 3, along with the smallest difference that
would have been observed with an 80% probability. None

Fig. 4 GSH concentrations measured using short echo time STEAM
versus MEGA-PRESS edited 1H MRS in identical volumes of inter-
est, VOI = 17cm3. Closed symbols represent controls whereas open
symbols represent patients. Error bars represent ± 2 * CRLB, or the
95% confidence interval for measuring difference in measured values
using LCModel. The unity line representing agreement is drawn for
reference

Fig. 5 Test–retest repeatability results, VOI = 8 cm3. Neurochemical
concentrations determined in three people (1–3) on 3 days (A–C),
repeated three times each day. Error bars represent ±CRLB and are
not shown where they fall within the dimension of the symbol. Sum-
mary statistics are provided in Table 2

of the following neurochemical concentrations: N-acetyl
aspartate(glutamate), (phospho)creatine, glutamate, glu-
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Table 2 Test retest

Metabolite Mean SD Average CRLB (%)

NAA(G) 10.1 0.7 3
(P)Cr 9.1 0.4 3
Glu 10.5 0.6 4
Gln 3.2 0.5 11
GSH 1.6 0.2 12
Ins 7.4 0.4 5
(G)PC 2.3 0.3 5
MM 1.9 0.1 3

Neurochemical concentrations (µmol/g) measured in test-retest
portion of study (8 cm3 VOI), n=23

tamine, GSH, inositol, (glycerol)phosphorylcholine and
macromolecules were measured with enough statistical
power (p≥0.2) to detect differences smaller that 10%. As
such, no differences were observed in schizophrenia ver-
sus control. No significant differences or trends (p>0.05)
for gender were observed.

Discussion

In order to test our ability to separate GSH resonances
from overlapping resonances in short echo time STEAM
spectra and therefore quantify GSH concentration cor-
rectly, we compared STEAM measured GSH concen-
trations with those measured using edited spectroscopy,
where spectral overlap is not a concern. Given that in our
former studies, GSH quantification via edited spectros-
copy produced concentrations in good agreement with the
preexisting literature [5], and that the concentrations de-
tected using STEAM versus editing agreed within mea-
surement error, our data show that GSH concentrations

Table 3 Schizophrenia versus control

Metabolite Cntrl. mean Cntrl. SD Pt. mean Pt. SD p Min. �

NAA(G) 10.1 0.8 10.1 1.0 1.0 1.3
(P)Cr 8.5 0.7 8.7 0.7 0.7 0.9
Glu 10.0 0.7 10.2 0.9 0.5 1.1
Gln 3.1 0.7 3.1 0.8 1.0 1.1
GSH 1.6 0.2 1.5 0.3 0.4 0.4
Ins 7.4 0.8 7.9 0.8 0.2 1.0
(G)PC 2.3 0.1 2.3 0.3 0.6 0.4
MM 1.9 0.1 1.9 0.2 0.7 0.3

Neurochemical concentrations and standard deviations (µmol/g) measured in 13 patients (Pt.) and nine controls (Cntrl.) in 8 cm3

VOI. For patients, n=13 except for Gln (n=12) and GSH (n=11), where points with CRLB > 20% were removed. Similarly, n=9
for controls except for Gln (n=8). Summary statistics include the minimum change in means that would have been detected with
a probability of 80% (Min. �)

were neither over- nor under-quantified using STEAM
spectroscopy.

Glutathione quantitation via STEAM spectra utilized
all four undistorted GSH resonances, each appearing at
the correct offset and in correct proportion. Components
of spectral quality that contributed to accurate GSH
quantitation in this study include: high signal to noise,
high chemical shift resolution, minimal water contribu-
tion, absence of out-of phase contributions, and flat base-
line.

Whereas differing transverse relaxation rates (T2) have
negligible influence at the short echo time used for
STEAM spectroscopy, quantification of GSH at the long
echo time used for edited spectroscopy depends upon rel-
ative relaxation rates. T2 were expected to have a negligible
effect on quantitation relative to the precision achieved in
this study and the large concentration changes reported
in schizophrenia [9]. For example, if the T2 of NAA were
120 ms, a 30% error (the SD of the edited GSH concentra-
tions) in GSH via MEGA-PRESS quantitation would re-
sult from a GSH T2 in the large range of 74–225 ms. A long
repetition time (TR = 4.5 s) was used in order to minimize
the influence of longitudinal relaxation (T1) on quantita-
tion. GSH levels are reportedly more than 50 times higher
than levels of the oxidized form [21,22], GSSG in normal
white matter where GSH is predominant [10]. Therefore,
resonance intensity was assigned to reduced GSH.

While this study did not achieve sufficient power to de-
tect neurochemical differences smaller than 10% in schizo-
phrenia versus control, it did achieve sufficient power for
comparison with other studies. The previous finding of a
52% smaller GSH concentration in the medial prefrontal
cortex of patients with schizophrenia [9] was not mea-
sured in our study of the anterior cingulate. Although the
previously measured changes in the medial prefrontal cor-
tex may have been region specific and not reflected in the
anterior cingulate, the constancy of GSH measured in our
study in which all patients were medicated may suggest
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a normalizing effect of medication, since the patients in
the study by Do et al. [9] varied from medicated to drug
naïve. Brain GSH content has also been shown to change
in human PD [23] (37–89% decreases) and developing rat
cortex [10] (60% increase). Several studies of schizophre-
nia have reported the following decreases in NAA content,
most of which would have been sizable enough for detec-
tion in our study: 31% (p = 0.005) in prefrontal cortex
[9], 12% (p = 0.005) in frontal lobe [24], 17% (p < 0.05)
[25] and 56% (p < 0.001) [26] in dorsolateral prefrontal
cortex (DPFC). Of these, the one that showed the great-
est decrease in NAA [26] was the only one that corrected
for varying gray matter content, which has been shown
to improve ability to detect changes [27]. Since cortical
atrophy has been measured in schizophrenia [12], cor-
rection for neuron and water content could increase our
ability to measure changes. Techniques that have been
proposed for such correction include brain tissue seg-
mentation, external referencing, and assessment of water

compartmentalization via measurement of water signal at
multiple echo times [28]. Our study did not achieve enough
power to detect the previously reported 15% increase in
glutamine (p =0.03) [13] in schizophrenia versus control.
Although our study did not affirm the findings of a recent
study [26] in which large decreases in Cr (60%, p <0.001)
and Cho (54%, p < 0.001) in the DPFC were reported,
it did agree with prior studies in which no changes in Cr
(left anterior cingulate, [13]) or Cho (left anterior cingulate
[13], frontal lobe [24], DPFC [25]) were observed. Similar
to GSH in the medial prefrontal cortex versus the ante-
rior cingulate, the changes measured in the DPFC may
not have been reflected in the anterior cingulate.
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