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Abstract

The brain of a hibernating mammal withstands physiological

extremes that would result in cerebral damage and death in a

non-hibernating species such as humans. To examine the

possibility that this neuroprotection results from alterations in

cerebral metabolism, we used in vivo 1H NMR spectroscopy at

high field (9.4 T) to measure the concentration of 18 metab-

olites (neurochemical profile) in the brain of 13-lined ground

squirrels (Spermophilus tridecemlineatus) before, during, and

after hibernation. Resolved in vivo 1H NMR spectra were ob-

tained even at low temperature in torpid hibernators (�7�C).

The phosphocreatine-to-creatine ratio was increased during

torpor (+143%) indicating energy storage, and remained in-

creased to a lesser extent during interbout arousal (IBA)

(+83%). The total c-aminobutyric acid concentration was in-

creased during torpor (+135%) and quickly returned to base-

line during IBA. Glutamine (Gln) was decreased ()54%)

during torpor but quickly returned to normal levels during IBA

and after terminal arousal in the spring. Glutamate (Glu) was

also decreased during torpor ()17%), but remained de-

creased during IBA ()20% compared with fall), and returned

to normal level in the spring. Our observation that Glu and Gln

levels are depressed in the brain of hibernators suggests that

the balance between anaplerosis and loss of Glu and Gln

(because of glutamatergic neurotransmission or other mech-

anisms) is altered in hibernation.

Keywords: anaplerosis, brain, glutamate–glutamine cycle,
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The adult human brain is responsible for 20% of the body’s
oxygen consumption despite constituting only 2% of body
weight. In contrast to the high energy demand of the human
brain, torpid hibernators show a reduction in O2 consumption
by as much as 50-fold and a 10-fold reduction in cerebral
blood flow, when compared with a non-hibernating animal
(Frerichs et al. 1995). This considerable decrease in energy
consumption is accompanied by specialized physiological
adaptations including body temperature reduction approach-
ing 0�C and a decrease in heart rate from 300 beats/min to 5–
10 beats/min [reviewed in (Boyer and Barnes 1999; Frerichs
1999; Drew et al. 2001; Zhou et al. 2001; Carey et al.
2003)]. Hibernation is a regulated process involving meta-
bolic depression (Hochachka 1986) that is controlled, in part,
by the differential expression of genes common to all
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mammals (Andrews et al. 1998; Bauer et al. 2001; Buck
et al. 2002; Squire et al. 2003).

The brain of a hibernating mammal is naturally resistant to
the consequences of low blood flow and hypoxia –
conditions which often lead to stroke in humans. Ischemic
stroke is the most common type of stroke seen clinically. It
initiates a complex pathological cascade including altered
energy metabolism, pH and ionic imbalances, excitotoxicity,
inflammation and apoptosis [reviewed by (Dirnagl et al.
1999)]. Uncovering the neurochemical processes involved in
hibernation has the potential to increase greatly our under-
standing of the human response to stresses such as cerebral
ischemia and subsequent reperfusion injury. A deep hiber-
nator, such as a ground squirrel, undergoes metabolic rate
reduction followed by lower body temperature (Heldmaier
and Ruf 1992; Frerichs et al. 1994). Identification of the key
metabolic events leading to this metabolic rate reduction is
critical to understand how brain activity is regulated. It may
also lead to novel neuroprotective strategies in non-hiberna-
ting species such as humans.

Given the profound changes in energy metabolism during
hibernation, we sought to characterize the neurochemical
changes in the 13-lined ground squirrel (Spermophilus
tridecemlineatus) throughout the hibernation season using
proton magnetic resonance spectroscopy (1H MRS). 1H MRS
has been used to measure concentrations of brain metabolites
non-invasively in humans and a variety of animal models.
We have previously shown that a neurochemical profile
consisting of 18 or more metabolites can be measured
reliably in the brain of rats (Pfeuffer et al. 1999; Tkac et al.
2001, 2003) and mice (Tkac et al. 2004) using 1H MRS at
high magnetic field. In the present study, we used this
approach to measure the neurochemical profile of ground
squirrels before the hibernation season (in the fall), during
hibernation [torpor and interbout arousal (IBA)] and after the
hibernation season (in the spring).

Methods

Animals

All animal procedures were performed according to the guidelines

for the care and use of laboratory animals at the University of

Minnesota and were approved by the Institutional Animal Care and

Use Committee. Thirteen-lined ground squirrels (S. tridecemlinea-
tus), were obtained from TLS Research (Bartlett, IL, USA) or live

trapped in Minnesota, and housed at the designated animal facilities

at the University of Minnesota. Squirrels were kept individually in

plastic top-load rodent cages filled with pine shavings. Diet

consisted of standard rodent chow supplemented with black oil

sunflower seeds and water ad libitum. Food availability, room

temperature, and photoperiod were varied artificially to induce

hibernation in captivity (Table 1). Cages and bedding were changed

weekly up until the first week of November when the final

conditions were put into place and all animals hibernated. From

October through arousal in March, the activity state of the squirrel

was monitored using the sawdust technique (Pengelley and Fisher

1961).

Animals were measured by high-field 1H MRS in four different

conditions: active in the fall (n = 7), during torpor in the winter

(n = 7), during IBA in the winter (n = 7), and active in the spring

(n = 7). A total of 10 animals were measured (three females and

seven males), four of which were measured in all four conditions,

and six of which were measured in one, two, or three of the four

conditions. Relevant animal data are summarized in Table 2. For

measurements in torpid hibernators, we ensured that animals were in

deep torpor during the night preceding the study using the sawdust

technique. We also observed torpid animals prior to anesthesia to

check for signs of IBA (increased breathing, shivers). Finally we

measured the temperature of animals right after anesthesia, to make

sure that their body temperature was in the range 4–8�C, similar to

the temperature of animals that remained in the hibernation room.

These steps allowed us to ensure that measurements were done in

torpid hibernators during deep torpor.

For NMR measurements, animals (including torpid hibernators)

were anesthetized using 5% isoflurane (induction) and were placed

in a chamber with a circulating 30% O2/70% N2O mixture and 1.8%

isoflurane for the remainder of the experiment. A heating/cooling

tube was used to maintain body temperature at 37�C (active animals

and aroused hibernators) or 6–8�C (torpid hibernators). The heating/

cooling tube was connected to a circulating fluid bath (water at 70�C
for experiments performed at 37�C and a 1 : 1 mix of water and

ethylene glycol at )6�C for experiments performed at low

temperature) controlled by feedback from a rectal temperature

probe. The circulating fluid flowed via flexible plastic tubing

(10 mm diameter) which ran into the magnet bore and was wrapped

Table 1 Maintenance conditions for squirrels throughout the year

Months of the year

Ambient

temperature

(�C)

Photoperiod

(hours light :

hours dark)

Food

available

Mid-March through September 23 12 : 12 Yes

October 11 12 : 12 Yes

November through mid-March 5 0 : 24 Noa

aWater was available ad libitum.

Table 2 Experimental groups

Group (n = 7 for

each group)

Month

measured

Weight (g)

(mean ± SD)

Body temperature (�C)

(mean ± SD)

Active (fall) September 180 ± 21 37.0 ± 1.0

Torpid hibernatorsa December 153 ± 22 7.3 ± 1.1

Interbout arousal February 140 ± 19 35.1 ± 1.1

Active (spring)b March 133 ± 18 37.0 ± 1.0

aTorpid hibernators were measured �1 month after first entering tor-

por. bSpring animals were measured �1 week after the end of torpor

when they received food and were exposed to a warmer ambient

temperature.
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below and above the animal chamber. The cooling system was

supplemented with BlueIce� (RubberMaid, Atlanta, GA, USA)

placed around the animal chamber for measurements in hibernators.

IBA was induced by placing the animal at room temperature

(�22�C) and waiting for the body temperature to approach 37�C
before induction of anesthesia (typically 1\,h). After spectroscopic

measurements, all animals were monitored until complete arousal

(for torpid hibernators) and recovery from anesthesia.

NMR spectroscopy

Experiments were performed using a 9.4 T/31 cm bore magnet

interfaced to a Varian INOVA console. Gradients (11 cm bore)

reached 300 mT/m in 500 ls. The spectrometer was equipped with

a strong custom-designed second order shims set (Magnex Scien-

tific, Yarnton, Oxfordshire, UK) (Tkac et al. 2004). The proton

transmit/receive surface coil consisted of two loops in quadrature

(14 mm diameter each). Multislice rapid acquisition with relaxation

enhancement images allowed positioning of a 4 · 1.5 · 3 mm3

voxel in the brain cortex for spectroscopy. Localized shimming was

performed using FASTMAP with echo-planar readout (Gruetter and

Tkac 2000). Proton spectra were measured using a stimulated echo

acquisition mode sequence (echo time = 2 ms, repetition

time = 5 s) with variable power radio frequency pulses with

optimized relaxation delays water suppression and outer volume

suppression as previously described (Tkac et al. 1999). A total of

160 scans were acquired for each voxel. Individual free induction

decays were averaged into 10 blocks of 16 scans, then frequency

drift was corrected before these 10 blocks were added together to

obtain a single spectrum. Unsuppressed water signal was used to

eliminate residual eddy currents and served as an internal concen-

tration reference for quantification.

Quantification of NMR spectra

Spectra were analyzed using the LCModel software v2.3 (Stephen

Provencher Inc., ON, Canada). LCModel fits the in vivo spectrum as

a linear combination of model spectra from individual metabolites

(Provencher 1993). Because temperature affects chemical-shift

values and therefore the appearance of 1H NMR spectra, two

different basis sets were used for this study: one measured at 37�C
and the other one measured at 5�C. The 37�C basis set has been used

in many studies in our laboratory (Pfeuffer et al. 1999; Tkac et al.
1999, 2001, 2003, 2004) and was extended to include b-hydrox-
ybutyrate (bHB) and ascorbate (Asc), which has recently been

shown to be detectable by 1H NMR (Terpstra et al. 2006).
The 5�C basis set was constructed by measuring 1H spectra at

5�C from individual solutions of the following 20 metabolites: bHB,
Asc, scyllo-inositol, alanine, aspartate, glycerophosphocholine

(GPC), phosphocholine (PCho), creatine (Cr), phosphocreatine

(PCr), c-aminobutyric acid (GABA), glucose (Glc), glutamine

(Gln), glutamate (Glu), glutathione, myo-inositol (myo-Ins), lactate,

N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG),

phosphoethanolamine, and taurine (Tau). Solutions were prepared

at a concentration of 50 mmol/L for each metabolite in phosphate

buffer (pH = 7.1) with 2 mmol/L 2,2-dimethyl-2-silapentane-5-

sulfonate as a chemical-shift reference. 1H MR spectra of individual

metabolites were measured at 5�C under the exact same conditions

as in vivo. Temperature was controlled using a circulating bath of

water/polyethylene glycol (1 : 1) at )6�C and verified using the

chemical shift of water on 1H spectra (at 5�C, water resonates at

5 ppm, compared with 4.65 ppm at 37�C). Consistent scaling

between the 37�C and the 5�C basis sets was verified by LCModel

analysis of fully-relaxed spectra acquired at 37�C and at 5�C from

the same phantom. A spectrum of macromolecules was measured

in vivo at 5�C using inversion–recovery (repetition time 1.3 s,

inversion time 0.36 s) to null the signal from metabolites (Pfeuffer

et al. 1999) and was incorporated in the basis set.

Convergence of the LCModel fit was verified by visual inspection

of residuals. Concentration values with Cramer-Rao lower bounds

higher than 50% were considered unreliable and were not taken into

account in the statistical analysis. A few metabolites (bHB, alanine,
and scyllo) showed Cramer-Rao bounds that were higher than 50%

in most animals, indicating that they were not reliably quantified

under our experimental conditions. Therefore these three metabo-

lites are not reported in our results. Finally, only the sums

NAA + NAAG and GPC + PCho (total choline-containing com-

pounds) are reported due to the high cross-correlation between NAA

and NAAG on one hand and GPC and PCho on the other.

Statistical analysis

Results were analyzed for statistical significance using SPSS software

(SPSS Inc., Chicago, IL, USA). One-way ANOVA was used to detect

significant differences between groups. Post hoc tests were corrected
for multiple comparisons using the correction of Bonferroni. The

threshold for statistical significance was chosen at p = 0.002. All

values are reported as mean ± SD.

Results

In vivomeasurements of small molecules in the brain of active
and hibernating ground squirrels present the challenge of
determining metabolite concentrations over a wide range of
temperatures. In this study well-resolved 1H MR spectra were
obtained in the squirrel brain at temperatures close to freezing
(Fig. 1), thereby demonstrating the feasibility of measuring
highly resolved spectra in the brain in vivo at low temperatures.
Although spectra measured at 7�C were similar in appearance
to spectra obtained at 37�C, several differences could be
readily observed. A decrease in Glu signal was clearly
noticeable at 2.34 ppm during hibernation. Creatine and PCr
methylene resonances (�3.92 ppm) were partially resolved at
9.4 Twith a peak separation between Cr and PCr of�7 Hz at
37�C and�10 Hz at 5�C (Fig. 1, right panel). Comparison of
spectra obtained in the cortex of active animals and hibernating
animals showed a clear change in the PCr/Cr ratio at
�3.92 ppm (Fig. 1, right panel). Relative peak intensities of
Cr and PCr were similar in spectra from active animals (fall
and spring), whereas the PCr resonance was distinctly higher
than the Cr resonance in spectra from hibernators. Changes for
other metabolites such as Gln and GABA were not immedi-
ately as apparent in the 1H spectra because of their lower
concentration and spectral overlap, but could be determined
after deconvolution of the spectra using LCModel.
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Short echo time in vivo spectra in torpid hibernators at
�7�C exhibited a wealth of spectral signatures as shown in
Fig. 2. This illustrates that the information content of spectra
obtained at 7�C was very similar to that obtained at 37�C in
our previous studies. Metabolite concentrations from active
ground squirrel brains measured in the fall (Fig. 3) were
remarkably similar to those seen at 37�C in rats (Pfeuffer
et al. 1999; Tkac et al. 2003). The only exceptions were
myo-Ins, which was approximately twofold higher in active
ground squirrels than rats, and Tau, which was half the
concentration.

Measurements of Glu, Gln, and GABA concentrations in
all four conditions – active in the fall, during torpor, during
IBA, and active in the spring are shown in Fig. 3a. GABA
concentration more than doubled during torpor, increasing
from 0.9 ± 0.3 to 2.1 ± 0.3 lmol/g (+135%, p < 0.0001)
and returned to basal levels during IBA and in the spring.
Glutamine concentration decreased during torpor from
3.7 ± 0.7 to 1.7 ± 0.6 lmol/g during hibernation ()54%,

p < 0.0001) and Glu showed a smaller relative decrease
()17%, p < 0.002), although in absolute concentration the
decrease from 12.6 ± 1.0 to 10.5 ± 1.0 lmol/g was compar-
able with that of Gln. Total Glu + Gln concentration was
decreased by 26% in torpid hibernators compared with active
(fall) animals (p < 0.0001). Interestingly, Gln concentration
quickly returned to pre-torpor levels during IBA
[4.1 ± 0.5 lmol/g, not significant (NS) compared with fall]
whereas Glu remained at a lower level during IBA ()20%
compared with fall, p < 0.0001). Both Glu and Gln levels
returned to their fall levels in the spring.

Measurements of Cr and PCr concentrations are shown in
Fig. 3b. During hibernation, the PCr/Cr ratio more than
doubled from 0.9 ± 0.3 in the fall to 2.3 ± 0.5 during torpor
(+143%, p < 0.0001) because of a 33% increase in PCr
concentration (p < 0.0005) and a 46% decrease in Cr
concentration (p < 0.0001). In contrast, the total concentra-
tion of Cr and PCr (Cr + PCr) remained stable (Fig. 3b).
Both Cr and PCr returned to their fall level in spring, yielding
a PCr/Cr ratio of 1.2 ± 0.2 (NS compared with fall). The
PCr/Cr ratio was somewhat lower during IBA than during
torpor (1.7 ± 0.3 vs. 2.3 ± 0.5, NS) but was still elevated
during IBA compared with active in the fall (+83%,
p < 0.002).

A few additional metabolites showed significant changes
during torpor (Figs 3c and d). Glucose concentration
(Fig. 3c) increased from 2.4 ± 0.8 lmol/g in active animals

Fig. 1 In vivo spectra measured in the cortex of ground squirrels in

the following states: active in the fall, hibernating, interbout arousal

(IBA), and active in the spring. Spectra were obtained from a 18 lL

volume (4 · 1.5 · 3 mm3) and 160 repetitions with repetition

time = 5 s. The image (top inset) shows the cortical brain region used

for spectroscopic measurements. Each spectrum represents the sum

of seven animals and is shown with 4 Hz Lorentzian to Gaussian

resolution enhancement. A decrease in glutamate signal at 2.34 ppm

was clearly observed during hibernation and IBA. In addition, an in-

crease in phosphocreatine (PCr)/creatine (Cr) ratio during hibernation

was visible around 3.92 ppm as shown in the expanded panel (4.1–

3.7 ppm) on the right. Note that the peak height of the Cr + PCr methyl

resonance at 3.03 ppm appeared noticeably smaller in spectra at 7�C
compared with spectra at 37�C. Rather than a change in concentra-

tion, this reflected slight changes in chemical shifts of Cr and PCr

chemical-shifts with temperature, which resulted in an ‘apparent’

linewidth increase for the combined Cr + PCr resonance at 7�C
compared with 37�C, and a corresponding decrease in peak height,

without change in total signal area. Tb, body temperature at the time of

measurement.

Fig. 2 LCModel fit of a proton spectrum from the brain of a hiber-

nating squirrel measured at 7�C. From the top: residuals, in vivo data,

total fit, macromolecules, and contribution of each metabolite to the fit.

Spectra were processed with 1 Hz Lorentzian line broadening for

display.
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in the fall to 3.7 ± 0.7 lmol/g in torpid animals (+51%, NS)
and further increased to 5.3 ± 1.8 lmol/g during IBA
(+115% compared with fall, p < 0.0002). Note the high
standard deviation most likely reflecting a high interanimal
variability in blood Glc content during IBA. Asc concentra-
tion (Fig. 3c) was reduced almost threefold from 2.8 ± 0.4 to
1.0 ± 0.4 lmol/g ()64%, p < 0.00001) during torpor but
returned to basal levels during IBA and in the spring. Myo-
Ins concentration (Fig. 3d) was decreased during torpor
()25%, p < 0.0001) and IBA ()30%, p < 0.0001) compared
with fall, but returned to normal in the spring. All other
measured metabolites (Tau, aspartate, lactate, NAA +
NAAG, phosphoethanolamine, total choline-containing
compounds, and glutathione) did not show major changes
during the course of the study.

Remarkably, all neurochemical changes observed during
the hibernation season were reversed after animals emerged
from hibernation in spring (Fig. 3). Neurochemical profiles
in fall and spring were virtually identical, with no significant
difference in any of the measured metabolites.

Discussion

This is, to our knowledge, the first report of in vivo 1H MRS
in the brain of a hibernating mammal. Proton NMR spectra
were obtained with high spectral resolution in the brain of
13-lined ground squirrels at low temperature during hiber-
nation. Up to 18 metabolites were simultaneously measured
in the cortex of ground squirrels before, during and after
hibernation as well as during IBA. Comparison of these
neurochemical profiles (Fig. 3) reveals significant changes
for certain key metabolites – particularly those related to
energy metabolism and neurotransmission – and provides
new insights into the cellular events underlying hibernation
and near-complete electrical deactivation.

Neurotransmission: glutamate–glutamine cycle and

anaplerosis

Our most striking observation was that Glu and Gln levels
were significantly affected during hibernation. Both Gln and
Glu concentrations were decreased by 2 mmol/L during

Fig. 3 Changes in neurochemical profile during hibernation and

interbout arousal. (a) Changes in glutamate, glutamine, and c-ami-

nobutyric acid (GABA); (b) changes in creatine and phosphocreatine;

(c) changes in taurine, ascorbate, aspartate, glucose, and lactate; (d)

changes in myoinositol, N-acetylaspartate (NAA), phosphoethanol-

amine, choline, and glutathione. For a given metabolite, two data

points are significantly different if they are not labeled with the same

lower case letter. Note that all metabolites returned to their fall level in

the spring.
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torpor (corresponding to a relative decrease of )54% for Gln
and )17% for Glu) and returned to normal in the spring. In
addition, Gln returned to active levels following IBA,
whereas Glu remained depressed ()20% compared with
fall). These findings can be interpreted in light of the close
functional relationship between neurons and astrocytes
(Schousboe et al. 1993; Bachelard 1998; Cruz and Cerdan
1999; Gruetter 2002).

Brain metabolism is compartmentalized (Van den Berg
et al. 1969; Berl et al. 1970) with most Gln localized in
astrocytes (Ottersen et al. 1992; Storm-Mathisen et al. 1992)
and most Glu localized in neurons (Ottersen et al. 1992;
Chapa et al. 2000). During neurotransmission, astrocytes
take up Glu, convert it to Gln through the astrocytic enzyme
Gln synthetase (Martinez-Hernandez et al. 1977), and send it
back to neurons (Lapidot and Gopher 1994; Hertz 2004)
(Fig. 4). NMR studies have demonstrated that this Glu–Gln
cycle is a major metabolic pathway in the brain (Sibson et al.
1997; Shen et al. 1999; Gruetter 2002; Lebon et al. 2002).

In addition to their role in the uptake of extracellular Glu
and its conversion to Gln, astrocytes constantly supply new
carbon skeletons to neurons to compensate for losses through
diffusion or Glu oxidation (Hertz et al. 1999). This net

synthesis of new carbon skeletons (anaplerosis) occurs
primarily by CO2 fixation through pyruvate carboxylase, an
enzyme located almost exclusively in astrocytes (Shank et al.
1993). It is estimated that 20–40% of all Gln synthesis
corresponds to de novo Gln synthesis through pyruvate
carboxylase (Lapidot and Gopher 1994; Merle et al. 1996;
Aureli et al. 1997; Gamberino et al. 1997; Gruetter et al.
1998b, 2001; Lieth et al. 2001; Sibson et al. 2001; Oz et al.
2004). Recently, Oz et al. showed that pyruvate carboxylase
flux increases with neuronal activity and hypothesized that
anaplerosis is linked to neuronal activity by maintaining Glu
and Gln concentrations (Oz et al. 2004).

In this context, our finding that Glu and Gln concentrations
were decreased by about 2 mmol/L each during torpor
reflects a net loss of 4 mmol/L of carbon skeleton that is
being re-synthesized during IBA and in the spring. Such
changes in net amino acid concentration must be regulated by
anaplerotic and cataplerotic pathways. In the brain, pyruvate
carboxylase is the dominant anaplerotic enzyme, and there-
fore changes in net anaplerosis are likely to involve pyruvate
carboxylase. Oz et al. (2004) show that anaplerosis increases
with increased neuronal activity to maintain Gln and Glu
concentrations. The decrease in Gln and Glu in the present
study suggests that the balance between anaplerosis and loss
of Glu and Gln (e.g. because of glutamatergic neurotrans-
mission) is altered during hibernation. In addition, because
synthesis of de novo Gln occurs in astrocytes through
pyruvate carboxylase and Gln is a precursor of Glu, changes
in net anaplerosis are expected to influence Gln levels more
quickly than Glu levels (Fig. 4). This is consistent with our
observation that Glu changes occur less rapidly than Gln
changes, as suggested by the fact that Gln quickly comes
back to normal during IBA whereas Glu levels remain
depressed. Our results also raise the possibility that regulation
of anaplerotic activity may play a role in the dramatic
reduction in metabolism that occurs during hibernation.

Neurotransmission: glutamate, GABA, and excitotoxicity

Glutamate is the main excitatory neurotransmitter and GABA
is the main inhibitory neurotransmitter. The decrease in Glu
and increase in GABA that we observed during torpor
suggest that a coordinated decrease in excitatory Glu and
increase in inhibitory GABA may play a role in protecting
the brain from excitotoxic damage by decreasing energy
consumption associated with synaptic neurotransmission
(Nilsson and Lutz 1993). Indeed, hibernation has been
proposed as a model of neuroprotection (Frerichs 1999;
Drew et al. 2001; Zhou et al. 2001). Excitotoxicity caused
by excess Glu in the extracellular space eventually results in
neuronal death. Glutamate excitotoxicity and dysfunction in
energy metabolism have been implicated in a number of
diseases such as stroke and neurodegenerative disorders
(Beal 1998; Doble 1999). Recently it has been shown that
high extracellular levels of GABA protect cultured neurons

Fig. 4 Intercellular compartmentation, glutamate–glutamine cycle

and anaplerosis during hibernation. Brain is compartmentalized be-

tween neurons and astrocytes. Most glutamate (GLU) is located in

neurons and most glutamine (GLN) is located in astrocytes as indi-

cated with capital letters. During glutamatergic neurotransmission,

glutamate (glu) is taken up by astrocytes, converted into glutamine

(GLN) through glutamine synthetase (GS) and sent back to neurons.

Neuronal glutamine (gln) is then converted back to neurotransmitter

glutamate (GLU). Flux of pyruvate through pyruvate dehydrogenase

(PDH) does not lead to net synthesis of new carbon skeletons be-

cause each molecule entering the TCA cycle through PDH is even-

tually degraded into CO2 and water. Synthesis of new carbon

skeletons occurs through astrocytic enzyme pyruvate carboxylase

(PC). A decrease in PC activity during hibernation would lead to de-

creased concentrations of glutamate and glutamine (gray arrows

pointing down).
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against damage induced by the accumulation of endogenous
extracellular Glu (Velasco and Tapia 2002). The observations
of GABA increases and Glu decreases during hibernation are
not only consistent with our understanding of the activity of
these neurotransmitter systems on arousal states such as sleep
and wakefulness, but is also consistent with conclusions of 2-
deoxyglucose studies in which the entrance to hibernation
was proposed to be mediated by a relative activation of some
brain systems and inhibition of others (Kilduff et al. 1990).
In the current study, the cortical region which was measured
corresponds most closely to the cingulate cortex, which was
among the areas that underwent the greatest reduction in
2-deoxyglucose uptake in that study.

As Tricarboxylic acid cycle (TCA cycle) activity is required
for catabolism of GABA into succinate, the increase in GABA
observed in the present study may be the result of decreased
TCA cycle activity (Nilsson and Lutz 1993). Interestingly a
decrease in GABA has been reported in microdialysis studies
of brain striatum during torpor (Osborne et al. 1999). In
addition, extracellular concentrations of Glu measured by
microdialysis do not differ between hibernating and euthermic
ground squirrels (Zhou et al. 2002). Our findings are not
necessarily contradictory with these studies as microdialysis
measures extracellular concentration, whereas 1H MRS
measures total tissue concentration. It is important to note
that there is not necessarily a direct relationship between total
concentration of neurotransmitters (Glu and GABA), as
measured by NMR, and neurotransmission. There is some
indication, however, that total concentration of GABA, for
example, may be related to increased GABAergic neurotrans-
mission. For example, antiepileptic drugs such as vigabatrin
reduce epileptic discharges, and increase GABA tissue level of
GABA by inhibiting GABA transamination. Therefore, in that
case, there seems to be a relationship between increased total
GABA concentration and increased inhibitory neurotransmis-
sion (Petroff et al. 1996). Alternative methods to measure
neurotransmission include microdialysis. However, because
of the fact that the extracellular levels of Glu and GABA are
very tightly regulated at the synaptic level, it has been
suggested that microdialysis measures the ‘overflow’ of
neurotransmitter rather than neurotransmission per se (Timm-
erman and Westerink 1997). In addition, the relevance of
measuring ‘synaptic’ release in brain during torpor when
action potentials are rare or absent is unclear. Therefore, the
relationship between extracellular concentrations of the neu-
rotransmitters GABA and Glu, as measured by microdialysis,
and neurotransmission is also difficult to determine. Further
progress with microdialysis probes may make it possible to
address this issue in more detail (Drew et al. 2004a).

Energy metabolism: creatine, phosphocreatine, and

glucose

Our findings show that torpor and IBA are accompanied with
changes in energy storage. Most notable is the dramatic

twofold increase in PCr/Cr ratio during torpor. This finding is
in agreement with a previous study showing that PCr was
increased by 53–82% in the brain of hibernating hamsters
(Lust et al. 1989). Such an increase in PCr/Cr ratio is
consistent with a sharply reduced ATP demand in the
hibernating mammalian brain, as expected in an electrically
silent animal, characterized by a flat EEG with occasional
spindles (Walker et al. 1977). Most importantly, the high
PCr/Cr ratio implies that the energy balance is preserved
during torpor, e.g. to preserve ion gradients (Willis 1979;
Hochachka 1986; Drew et al. 2004b). This preservation of
energy balance has long been identified as one of the key
features that allow hibernators to withstand extreme changes
in physiology during what Frerichs called a ‘cellular
coordinated shutdown’ (Frerichs 1999). Interestingly, the
PCr/Cr ratio did not come back to active levels during IBA,
an indication that a return to normal energetic levels may
require several hours.

Glucose concentration in the brain was increased during
IBA, but showed a higher variability during torpor and IBA
than in active animals, as noted in a previous study (Frerichs
et al. 1995). As brain Glc content is strongly affected by
blood Glc (Gruetter et al. 1998a), the increase in brain Glc
levels during IBA may reflect an increase in serum Glc
(Brauch et al. 2005). Alternatively, increased brain Glc may
reflect reduced brain Glc consumption (Choi et al. 2002).

Ascorbate

Ascorbate is a water-soluble antioxidant with well-known
neuroprotective properties and is a potential neuromodulator
(Rice 2000) that has recently been shown to be measurable
by 1H NMR (Terpstra and Gruetter 2004; Terpstra et al.
2006). We observed a sharp decrease in total Asc concen-
tration ()64%) during torpor, with a rapid return to pre-
hibernation levels during IBA and in the spring. Other
studies using HPLC have reported either no decrease or a
slight 15% decrease in total brain Asc during torpor in Arctic
ground squirrels (Drew et al. 1999; Toien et al. 2001). Drew
et al. (1999) show 15–20% less Asc in brain regions of 13-
lined ground squirrels during torpor. Although the euthermic
group in this study consisted of cold adapted animals that did
not hibernate 15–20% lower levels of Asc in hibernating 13-
lined ground squirrels is consistent with results reported in
the present study. Figures 3 and 4 in Drew et al. (1999) are
also consistent with a species difference where Asc tends to
decrease during torpor in 13-lined ground squirrels, but not
Arctic ground squirrels.

Alternatively, tissue used for HPLC measurements may be
affected by faster post-mortem changes in warm euthermic
tissue than in cold hibernating tissue. This emphasizes the
advantage of using non-invasive methods such as 1H MRS or
microdialysis to minimize post-mortem changes.

Previous studies have also shown a three to fourfold
increase in plasma Asc during hibernation and a twofold
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increase in Asc in the cerebrospinal fluid (Drew et al. 1999).
In addition, a rapid decrease in plasma Asc was observed
during IBA which paralleled the increase in O2 consumption
(Toien et al. 2001). These findings suggest that Asc levels
are tightly regulated in the brain and that there are dynamic
changes in both extracellular Asc levels (increase) and total
Asc levels (decrease) during hibernation.

Seasonal versus torpor-specific changes in metabolite

concentrations

The present study evidenced both seasonal changes that were
observed throughout the hibernation season in torpid hiber-
nators and aroused hibernators alike (e.g. Glu concentration)
and changes specific to torpor (e.g. Gln and GABA
concentration). Seasonal changes would refer to changes
that are present throughout the hibernation season. However,
because we measured all aroused hibernators about 1 h after
initiating arousal, we cannot exclude the possibility that some
metabolites concentrations need more than 1 h, perhaps
several hours, to return to their baseline concentration. Such
a return to baseline would not have been detected in our
study. For example, our data show that the PCr/Cr. ratio is
more than doubled during torpor compared with active
animals. During IBA, the PCr/Cr ratio is lower than during
torpor, but still higher during IBA than in active (fall and
spring) animals. A possible interpretation is that the PCr/Cr
ratio goes back relatively slowly to its baseline value during
IBA. The same could hold true for Glu. Addressing this
question would require measuring another group of animal at
a later time point after initiating IBA.

Our study did not include a ‘summer’ group. By
measuring the concentration of brain metabolites in the fall
(just before the start of the hibernation season) and in the
spring (right after the end of the hibernation season), we
ensured that we would detect changes that were specific of
torpor and IBA, as opposed to changes that occur before the
hibernation season. However, there may also be changes
between summer and fall that we were not able to detect
because we did not measure a ‘summer’ group. Indeed, it is
conceivable that animals measured in the fall (just before the
hibernation season) could already have undergone significant
changes in brain metabolite concentrations compared with
summer animals. For example, the high myo-Ins concentra-
tion and the low Tau concentration observed in squirrel brain
compared with rat brain may reflect species-specific differ-
ences, but they may also reflect metabolic adaptations in the
squirrel brain in fall compared with summer. Measurement of
a ‘summer’ group will allow us to address this question in the
future.

Anesthesia

One limitation of our study is the fact that animals were
anesthetized for the duration of MR measurements. Anesthe-
sia is necessary for awake animals to avoid movement and

minimize stress to the animals. Anesthesia also relaxed
muscular tone in torpid hibernators, facilitating installation of
animals in the chamber and positioning of the detection coil
above the head. We chose in this study to anesthetize both
awake animals and torpid hibernators with the same
concentration of isoflurane. We did not evaluate the depth
of anesthesia, raising the possibility that the depth of
anesthesia may have been different in anesthetized active
animals and in anesthetized torpid hibernators because of
their different breathing pattern. However, experiments
performed in rats with either 1% or 2% isoflurane did not
show any substantial changes in the concentration of brain
metabolites. Therefore, we consider it unlikely that the
concentrations changes observed in this study are due to a
differential effect of anesthesia between the different groups
of animals.

Perspectives of 1H MRS for the study of hibernation and

neuroprotection

Hibernation is characterized by a dramatic reduction in blood
flow reminiscent of ischemic stroke in humans (Frerichs
et al. 1994). For this reason, hibernation has generated
tremendous interest in the search of neuroprotective strat-
egies after a stroke. Although many neuroprotective mech-
anisms appear to be specific to torpor (e.g. metabolic
suppression, hypothermia), and although the brain of hiber-
nators is not hypoxic, the brain of hibernators has been
shown to have intrinsic neuroprotective properties (Frerichs
and Hallenbeck 1998). Moreover, hibernators appear to
survive hypoxia and ischemia better than non-hibernators
even when they are in the euthermic state (Drew et al.
2004b; Dave et al. 2006). It has been suggested that this
tolerance to hypoxia during euthermia may help hibernators
tolerate transitions in and out of torpor (Ma et al. 2005). In
spite of differences between hypoxia–ischemia and hiberna-
tion, a better understanding of the mechanisms leading to
hypoxia–ischemia tolerance in hibernators (particularly eu-
thermic hibernators) may provide novel directions for the
treatment of stroke.

Among new potential therapeutic strategies are hibernation-
inducing drugs (Borlongan et al. 2004) and systemic cooling
or selective head cooling methods (Tooley et al. 2003;
Gluckman et al. 2005; Thoresen andWhitelaw 2005; O’Brien
et al. 2006). 1H MRS could be used as a tool to reveal
neurotransmitter and brain metabolite alterations in vivo in
such therapeutic strategies. Previous 31P MRS studies have
demonstrated the usefulness of MRS to monitor changes in
PCr and ATP during hypothermia (Laptook et al. 1995;
Taylor et al. 2002; Litt et al. 2003; O’Brien et al. 2006).

Conclusion

We conclude that the brain of hibernators can be studied non-
invasively using in vivo 1H MRS even at near-freezing body
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temperatures. A range of changes in energy metabolism and
neurotransmission in the cortex of ground squirrels during
hibernation was thereby detected. The increase in PCr/Cr
ratio indicates increased energy storage, and maintenance of
energy balance. Although the link between total neurotrans-
mitter concentrations and neurotransmission is tentative, the
increase in GABA and decrease in Glu suggest that a
coordinated decrease in excitatory neurotransmission and
increase in inhibitory neurotransmission may play a role in
avoiding brain damage during metabolic arrest. The dramatic
decrease in Gln during hibernation and rapid recovery of Gln
during IBA, as well as the smaller and slower changes in
Glu, support the hypothesis that anaplerosis is depressed and
does not compensate for loss of Glu and Gln during
hibernation.
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