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Abstract. This paper presents a new approach to measuring similarity
over massive time-series data. Our approach is built on two principles:
one is to parallelize the large amount computation using a scalable cloud
serving system, called TimeCloud. The another is to benefit from the
filter-and-refinement approach for query processing, such that similarity
computation is efficiently performed over approximated data at the filter
step, and then the following refinement step measures precise similarities
for only a small number of candidates resulted from the filtering. To
this end, we establish a set of firm theoretical backgrounds, as well as
techniques for processing kNN queries. Our experimental results suggest
that the approach proposed is efficient and scalable.
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1 Introduction

As time-series data becomes ubiquitous, the demand for storing and process-
ing massive time-series in the cloud is growing rapidly. To meet this demand,
the LSIR laboratory1 has been developing a storage-and-computing platform
for managing large volumes of time-series in the cloud. TimeCloud is estab-
lished upon a combination of several cloud systems, such as Hadoop [2] and
HBase [3], while gearing various novel approaches towards significantly boost-
ing the performance of large-scale data analysis on distributed time-series. One
of the novel features in TimeCloud is to employ model-based views—which are
database views approximating time-series using well-established models—for ef-
ficient data processing. In this paper, we present one mechanism that lies in the
core of the feature, i.e., similarity measure of distributed time-series managed in
the model-based views.

Measuring a similarity is a fundamental operation in a wide range of applica-
tions that process temporally ordered data, such as stock prices, sensor readings,
trajectories from moving objects, and scientific data. Despite the importance of
similarity measure, computing similar time-series over a large volume of data
still remains as a difficult problem. Although a rich body of previous studies

1 http://lsir.epfl.ch
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have dealt with efficient computation of time-series [4, 1, 5], their proposals
become limited when the data volume grows.

In this paper, we present a very different approach from the existing works.
The key differences are twofold: First, we parallelize the computation using mul-
tiple nodes (servers), taking advantages of the cloud serving systems Hadooop
and HBase. These systems make TimeCloud scale-out, allowing us to deal with
huge volumes of time-series data. Second, we apply the well-known filter-and-
refinement approach [6] for measuring similarities across different nodes. Specif-
ically, we first approximate a given time-series using an either constant or linear
model, and then store the approximated data into a model-based view. Given
multiple model-based views containing approximated time-series data, we then
find a candidate set that potentially satisfies a given query condition, while facil-
itating very efficient processing over the model-based views. For each candidate,
we next measure an accurate similarity using full-precision data to validate the
result.

In order to embody the approach, we establish theoretical foundations that
can serve as the basis in computing distances between approximated time-series
stored in the model-based views. As we deal with two different approximation
models, the computation for similarity measure requires all pairs of different
model-approximated data. Obviously, this needs very firm, non-trivial founda-
tions, which we present in this paper. Furthermore, we offer details for processing
kNN queries while taking the advantage of the filter-and-refinement approach.
The beauty of our approach is to guarantee no false miss at query results, as
the query processing technique is built on the foundations. In our experimen-
tal study, we will analyze the effect of this approach while applying different
parameter settings.

The remainder of the paper is organized as follow: Section 2 offers a set of
definitions, and establishes the theoretical foundations for the kNN query process
presented in Section 3. We then discuss about experimental results in Section 4,
and conclude in Section 5.

2 Similarity Measure over Model-Based Views

2.1 Definition

Definition 1 (Time-Series). A time-series t of length n is a temporally or-
dered sequence t = [t1, . . . , tn] where point in time i is mapped to a d-dimensional
attribute vector ti = (ti1 , . . . , tid) of values tij with j ∈ {1, . . . , d}. A time-series
is called univariate for d = 1 and multivariate for d > 1.

The work relies heavily on transformed models, and the existing system only
converts univariate time-series. Therefore, we only consider the univariate time-
series in the scope of the paper. If a time-series has multiple attributes, we
consider it as multiple univariate time-series. From now on, when mentioning on
time-series, we consider it as univariate time-series unless stated otherwise. In
addition, we only consider time-series with the same interval.
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Definition 2 (Common Points). Two points of two time-series are called
common if they occur at the same time.

Definition 3 (Common Interval). The common interval of two segments or
two time-series is the greatest interval [a, b] such that time a and b belong to
both segments or time series. Two segments limited by the common interval are
called common segments.

With the Definition 3, two time-series may not have common segments if one
time-series starts after another time-series ends. Or, the common segments of
two time-series are time-series themselves if their starting points and end points
are common.

Definition 4 (Euclidean Distance). TheEuclidean distance between two time-
series is also the Euclidean distance of their common segments s = [s1, . . . , sn] and
t = [t1, . . . , tn] of length n, and it is defined as:

Eucl(s, t) =

√
√
√
√

n∑

i=1

(si − ti)2

We can consider a time-series of length n as an n-dimensional point in space.
The value at time ti is mapped into the ith dimension. So, two common points
will be mapped into the same dimension. And when evaluating the Euclidean
distance between two points in the space, we only consider dimensions having
two points of both time-series.

2.2 Model-Based Views

Since the major component of the back end consists of an HBase instance, the
way the data is stored inside HBase becomes of major concern, not only for full
precision data but also for the parameters used for model-based approximations.
Fig. 1 represents in a schematic way how the data is organized in TimeCloud.

Fig. 1. A snapshot of a model-based view
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2.3 Calculating the Euclidean Distance over Models

Full Precision Model vs. Other Models. To determine the Euclidean dis-
tance between a full precision model and an another model, at first, we determine
the common interval between these two time-series. Then, we apply the formula
in Definition 4 to calculate the distance between every common points of two
time-series. Finally, we square root the sum of all square of individual distances
to get the Euclidean distance between these two time-series.

Constant Model vs. Constant Model. At first, we divide constant segments
of two time-series into common segments. Then we calculate the distance of
those common segments and then aggregating them. Since the data does not
change within a common segment, the distance of common segments is equal to
the distance of two common points multiply by the square root of number of
common points in those segments.

When determining the common segments, we know the starting and end time
of those segments, and we also know the interval of those time-series. Therefore,
we can determine the number of common points of those common segments. In
addition, we also know the values of these segments. Hence, we can determine
the distance of these segments without aggregating all individual distances of
common points.

Linear Model vs. Linear or Constant Model. At first, we evaluate the
Euclidean distance of two time-series in linear models. As the implementation
on constant models, we devise a similar algorithm to quickly return the Euclidean
distance between two common linear segments. Assume the formula representing
those segments are y = ax+ b and y = cx+ d. Apply the formula in Definition
4, the square of the Euclidean distance of two common segments s, t with k
common points is:

Eucl2(s, t) =

k∑

i=1

(si − ti)
2 =

k∑

i=1

((axi + b)− (cxi + d))2

= (a− c)

k∑

i=1

x2
i + 2(a− c)(b− d)

k∑

i=1

xi + k(b− d)2 (1)

Let t be the interval of two time-series, so xi+1 = xi + t. We have:

k =
xn − x1

t
+ 1 (2)

k∑

i=1

xi =
k

2
(x1 + xn) =

x1 + xn

2
(
xn − x1

t
+ 1) (3)

k∑

i=1

x2
i =

1

6t
[xn(xn + t)(2xn + t)− x1(x1 − t)(2x1 − t)] (4)
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Replace (4), (3) and (2) into (1), we have:

Eucl2(s, t) =
a− c

6t
[xn(xn + t)(2xn + t)− x1(x1 − t)(2x1 − t)]

+ (a− c)(b− d)(x1 + xn)(
xn − x1

t
+ 1)

+ (b− d)2(
xn − x1

t
+ 1) (5)

Thus, similar to the implementation on constant models, we divide two time
series in linear models into common segments. Then we calculate the square of
the distance of common segments. The formula to determine this value only de-
pends on the starting and end time, the coefficients of segments and the interval
of those time-series.

A time-series in constant model is a special case of the linear model when the
slope is equal to zero. So, we can apply the implementation on two linear models
to calculate the distance of a time-series in linear model and a time-series in
constant model.

2.4 Maximum Error of the Euclidean Distance of Two Time-Series

Definition 5 (Maximum Error Bound of Time-Series). Given a time-
series t = [t1, . . . , tn] and its representation t′ = [t′1, . . . , t

′
n] in its model. The

maximum error bound of t over its model is a value meb(t) such that:

|ti − t′i| ≤ meb(t), ∀i = 0..n

In general, the value of maximum error bound of a time-series over its model
is predefined. Then we construct the model such that it satisfies the formula
in Definition 5 and we try to maximize the number of time-series points in a
segment. With this approach, the number of segments in the model is minimized,
and it is efficient to access and compute.

Definition 6 (Maximum Error Bound of Euclidean Distance). Given
time-series s and t and their representations s′, t′ in their models. The maximum
error bound of the Euclidean distance between s and t over their models is a value
MEB(s, t) such that:

|Eucl(s, t)− Eucl(s′, t′)| ≤ MEB(s, t), ∀s′, t′

From the Definition 6, the estimated distance between two time series differs
from the real distance by an upper bound. Hence, when calculating the Euclidean
distance on models, we do not know exactly the distance between two time-series,
but we can estimate the range in which the distance belongs to.

Before giving a formula to determine the value of the maximum error bound
of the Euclidean distance between two time-series, we need to prove the following
lemma.
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Lemma 1. Given two time-series s, t and their representations s′, t′ in their
models. Assume the common segments of s and t have n time series points.
Then,

||si − ti| − |s′i − t′i|| ≤ meb(s) +meb(t), ∀i = 1..n

Proof. Based on the Definition 5, ∀i = 1..n, we have:

−meb(s) ≤ si − s′i ≤ meb(s) (6)

−meb(t) ≤ ti − t′i ≤ meb(t) (7)

Without loss of generality, assume si ≥ ti, let (6) - (7):

(si − ti)− (s′i − t′i) ≤ meb(s) +meb(t)

⇒ |si − ti| − |s′i − t′i| ≤ meb(s) +meb(t) (8)

Because of the equality in the role of ti and t′i in Definition 5, we also have:

|s′i − t′i| − |si − ti| ≤ meb(s) +meb(t) (9)

From (8) and (9), we have:

||si − ti| − |s′i − t′i|| ≤ meb(s) +meb(t)

��
Theorem 1 (MEB(s,t)). Given two time-series s, t and their representations
s′, t′ in their models. Assume the common segments of s and t have n time series
points. Then,

MEB(s, t) =
√
n(meb(s) +meb(t))

Proof. Let di = si − ti, d
′
i = s′i − t′i, and m = meb(s) +meb(t)

From the Lemma 1, we have:

n∑

i=1

d′2i ≤
n∑

i=1

(di +m)2

=

n∑

i=1

d2i + 2m

n∑

i=1

di + nm2

Apply the Cauchy-Schwarz inequality (
∑n

i=1 di)
2 ≤ n

∑n
i=1 d

2
i , we have:

n∑

i=1

d′2i ≤
n∑

i=1

d2i + 2m

√
√
√
√n

n∑

i=1

d2i + nm2

=

⎛

⎝

√
√
√
√

n∑

i=1

d2i +
√
nm

⎞

⎠

2

⇒ Eucl(s′, t′) ≤ Eucl(s, t) +
√
n(meb(s) +meb(t)) (10)
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Similarly, we also have:

n∑

i=1

d2i ≤
n∑

i=1

(d′i +m)2

⇒ Eucl(s, t) ≤ Eucl(s′, t′) +
√
n(meb(s) +meb(t)) (11)

From (10) and (11), we have:

|Eucl(s, t)− Eucl(s′, t′)| ≤ √
n(meb(s) +meb(t)) (12)

Apply the Definition 6, we have:

MEB(s, t) =
√
n(meb(s) +meb(t))

��
The equality in (12) occurs when common segments of two time-series are parallel
and d′i = di−m, ∀i = 1..n or d′i = di+m, ∀i = 1..n. This condition may occur in
theory, but it does not exist in our implementation, because we try to minized
the total distance of raw data and its model.

3 KNN Processing

In this section, we introduce our implementation on solving the similarity mea-
sure problem using the filter-and-refinement method. At first, in the filter stage,
we calculate the Euclidean distances of all time-series and the query time-series
on models, we get the approximate distances and their maximum error bounds.
From those values, we build a minimum candidate set which contains the re-
sult set. Then, we apply the refinement stage in which we calculate the true
Euclidean distance between all time series in the candidate set and the query
time-series to return exactly k nearest neighbors of the query time-series.

3.1 The Filter Stage

Given a query time-series q, and a database with n time-series t1, . . . , tn, we aim
to find k time-series from the database that are closest to q. To this end, we first
compute the candidate set which definitely satisfy the given query condition.

Theorem 2. Let t′i and q′ be representations of ti and q in their models respec-
tively. Let d′i be the distance between t′i and q′ with the maximum error ei. Let
ai = d′i − ei and bi = d′i + ei. Without loss of generality, assume b1 ≤ . . . ≤ bn.
The candidate set S = {ti|ai ≤ bk} contains k nearest time-series of q and is
minimal.

Proof. First, we prove that S contains k nearest time-series of q. Take a time-
series tj /∈ S, we need to prove that tj is not one of k nearest neighbors of q.
Since tj /∈ S, we have:

Eucl(tj, q) ≥ aj > bk
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We also have:
Eucl(ti, q) ≤ bi ≤ bk with i ≤ k

Hence:
Eucl(tj, q) > Eucl(ti, q) with i ≤ k

Because the true distance from tj to q is greater than from k other time series,
tj will not belong to the result set.

Now, we prove that the set S is minimal. Let S′ be the candidate set that
contains k nearest time-series of q and is minimal. If S 
= S′, then S\S′ 
= ∅.
Take tj ∈ S\S′.

Consider the following case: Eucl(ti, q) =

{

ai, if i = j

bi, otherwise

Because tj ∈ S ⇒ aj ≤ bk ≤ bi with i ≥ k

⇒ Eucl(tj, q) ≤ Eucl(ti, q) with i ≥ k

⇒ tj is one of k nearest neighbours of q

⇒ S′ does not contain k nearest time-series of q,

contradicts to the assumption

Therefore, S = S′. ��
From Theorem 2, we calculate the Euclidean distance of all time-series and the
query time-series in their models to retrieve the candidate set. This calculation is
much faster than calculating the true distance of all time-series in the database
because the time-series in their models have smaller number of segments.

3.2 The Refinement Stage

Given a query time-series q, and a candidate set S with m time-series t1, . . . , tm.
Our problem is to find k time-series from S that are closest to q.

Theorem 3. Let t′i and q′ be representations of ti and q in their models respec-
tively. Let d′i be the distance between t′i and q′ with the maximum error ei. Let
ai = d′i − ei and bi = d′i + ei. Without loss of generality, assume a1 ≤ . . . ≤ am.
The set R = {ti|bi ≤ am−k+1} is a subset of the result set.

Proof. Take a time-series tj ∈ S, we need to prove that tj is one of k nearest
time-series of q. We have:

Eucl(tj, q) ≤ bj ≤ ai ≤ Eucl(ti, q) with i ≥ m− k + 1

Therefore, we cannot find k time-series in S such that their distances to q are
strictly smaller than the distance from tj to q. In addition, the set S contains k
nearest time-series of q, so tj is one of k nearest time-series of q. ��
Based on the Theorem 3, at first, we retrieve time-series that definitely belong
to the result set to not waste time to calculate the distances between them and
the query time-series. Then we use the full precision model to calculate the true
distances from the remaining time-series in the candidate set and the query
time-series to determine the result set.
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4 Experiments

All the experiments were executed on 2.4GHz Intel Core2 Quad CPU running
Java implementation on Ubuntu 10.10 and the following parameters are used as
default unless stated otherwise: length of time-series l = 512, number of nearest
neighbors k = 10, error ratio e = 3%, and number of time-series in the database
N = 1, 000.

4.1 Model-Based View Construction

At first, we evaluate the reduction of number of entries of time-series in model-
based views on different error ratios. The result in Fig. 2 presents the total
number of entries of all time-series in the database with respect to their models.
It shows that the linear model always has smaller entries than the constant
model, and of course, the full precision model is always the largest one. With
respect to error ratios, the number of entries on the linear model are 27.55%
with e = 0.55%, up to 5.4% with e = 5% compared to the number of entries
of the full precision model. The corresponding values on the constant model are
50.3% and 9.0% respectively.

Fig. 2. Number of entries in model-base view on different error ratios

4.2 Effect of Maximum Error Ratios

In this experiment, we evaluate the effect of the maximum error ratio on the
query processing time of the similarity measure problem. We evaluate it on three
approaches: (1) running on the full precision model without using improvement
technique, (2) using the filter-and-refinement method on the constant model,
and (3) using the filter-and-refinement method on the linear model.

As depicted in Fig. 3, the linear model is always the fastest model in query pro-
cessing and then is the constant model. When not using optimization technique,
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the response is too long. In addition, the experiment shows that the performance
peaks when the error ratio is 4% for the linear model and 4.55% for the constant
model. The reason is that it takes much time on the filter stage if the error ratio
is too small, and it takes much time on the refinement stage if the error ratio is
too large. Therefore, choosing the appropriate error ratio is crucial to improve
the system performance.

Fig. 3. Effect of the maximum error ratio on the query processing time

4.3 Effect of Number of Nearest Neighbors

In this experiment, we evaluate the effect of the number of nearest neighbors on
the query processing time. Similar to the experiment in Sect. 4.2, we evaluate
on three models and the result is depicted in Fig. 4.

The figure shows that it takes slightly more time to process the query if
we increase the number of nearest neighbors. And this affects both constant and
linear models. This is because when we increase the number of nearest neighbors,
after the filter stage, the candidate set will be larger, and it takes more time in
the refinement stage to calculate the real distance of time-series in the candidate
set.

4.4 Effect of Number of Time-Series

In the last experiments, we evaluate the effect of the number of time-series in
the database on the query processing time. The result depicted in Fig. 5 shows
that the processing time of the converted models decreases when the number
of time-series in the database increase. The reason is that the number of time-
series in the candidate set does not increase linearly as the size of the number
of time-series. Therefore, the refinement stage takes less time when we enlarge
the database.



386 T.-N. Ngo, H. Jeung, and K. Aberer

Fig. 4. Effect of the number of nearest neighbors on the query processing time

Fig. 5. Effect of the number of time-series on the query processing time

5 Conclusion

In the paper, we provide an efficient approach to processing kNN queries based
on model-based similarity measures. To this end, we have established a set of
important theoretical foundations for approximated time-series data processing.
We then presented our query processing mechanisms built on the filter-and-
refinement approach. The experiments showed that our approach runs more than
three times faster than straightforward processing, while facilitating scalability
of the computation using the TimeCloud system.
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