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1. INTRODUCTION
For the past years video analysis algorithms are attractingmore

research interest and becoming commonly used in various multime-
dia applications. The increasing accuracy of these algorithms en-
courages their use for navigating robots, indexing and searching in
video and image databases. One of the most popular areas for their
application is video surveillance where video analysis algorithms
are used for detection, tracking and analysis of people, objects and
events. Since video analysis algorithms operate over largeamounts
of data, such as videos and images, they impose high system re-
quirements on storage and computational resources, network band-
width, and power for battery–powered devices. Despite thisfact,
surprisingly little attention was paid to the resources minimization
problem accompanying the use of video analysis algorithms.

In this paper we focus on the problem of system resources reduc-
tion in automated large–scale distributed video surveillance sys-
tems, which use video analysis algorithms for automatic monitor-
ing. According to the study by Wuet al. [6], suspicious events are
rare in video surveillance. Therefore, most of the time surveillance
video is monitored by various video analysis algorithms instead of
human observers. However, existing video compression algorithms
and video presentation standards are tuned to the human visual sys-
tem. It allows us to take the advantage of different, compared to the
human vision, quality requirements of video analysis algorithms.
Therefore, in this work, we study the effect of compression,resiz-
ing, dropping of frames in the video, and other video adaptations
on the accuracy of video analysis algorithms.

Through extensive experiments with face detection and facetrack-
ing algorithms we found that these algorithms can sustain a signifi-
cant degradation in the input video quality without decrease in their
accuracy. Therefore, the tradeoff between the video quality and the
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performance accuracy of algorithms exists. The face detection al-
gorithm even shows an increase in the detection accuracy if digital
zooming is applied without changing the video bit rate.

The above results encourage us to consider a general system re-
source optimization problem in context of different video adapta-
tions and various video analysis algorithms instead of the bit rate
minimization problem for the specific algorithm. This problem is
based on therate–accuracy tradeoff, since video adaptations effec-
tively reduce video bit rate and algorithms are evaluated bytheir
accuracy. The benefit of studying the rate–accuracy tradeoff is
twofold. First, it helps in solving the rate minimization/accuracy
maximization problem. Second, it can give insights on developing
new video compression algorithms tuned for greater performance
of video analysis algorithms and provide guidelines on building
video analysis algorithms aimed to have higher accuracy forthe
video with reduced quality.

The obvious way to find the rate–accuracy tradeoff for any video
analysis algorithm is to run many offline experiments with vari-
ous adaptations on input videos. Such an approach, however,is
not practically feasible because of the large number of video anal-
ysis algorithms. We propose, therefore, to study the effectof video
adaptations on video features used by algorithms instead ofsimply
measuring the accuracy of every algorithm with respect to these
adaptations. We base it on the hypothesis that most of video anal-
ysis algorithms rely their video analysis on a closed set of video
features. For example, the face tracking algorithm is basedon color
histograms of tracked objects. We believe that the number ofsuch
video features is relatively small and is almost independent from
the diverse collection of video analysis algorithms. Videofeatures
can be also determined from the video directly. Studying relation-
ships between video features and video adaptations helps usto es-
timate the rate–accuracy tradeoff for an arbitrary video analysis al-
gorithm. It might even provide guidelines on how to design a new
video analysis algorithm with good rate–accuracy characteristics.

We propose a formal framework describing the rate–accuracy
tradeoff, which is analogous to utility–based adaptation [2] and
rate–distortion optimization [3] frameworks. The rate–accuracy
framework suggests a method for deriving the tradeoff for a par-
ticular video analysis algorithm by using the cumulative effect of
video adaptations on corresponding video features. We developed
a distributed prototype video surveillance system showingpractical
benefits of proposed rate–accuracy framework.

In Section 2 we present our experimental results when studying
the rate–accuracy tradeoff of face detection and face tracking al-
gorithms. In Section 3 we shift the focus to studying the effect of
video adaptations on video features used by video analysis algo-
rithms, and present a preliminary classification of video features
for detection and tracking algorithms. Our vision on the future de-
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velopment of the formal rate–accuracy framework and how we can
apply it in our prototype video surveillance system is presented in
Section 4. Lastly, we give a brief overview on the related work in
Section 5.

2. RATE–ACCURACY TRADEOFF
In this section we experimentally verify the hypothesis that the

bit rate of video, which is monitored exclusively by video analy-
sis algorithms, can be reduced without decreasing accuracyof al-
gorithms. We conducted a set of experiments that study the ef-
fect of reduced video quality, i.e. video bit rate, on the accuracy
of two typical video analysis algorithms. We used CAMSHIFT
face tracking algorithm and Viola-Jones face detection algorithms
implemented in OpenCV library. As a testing dataset we used
MIT/CMU collection of images for face detection, some partsof
movies for face tracking and different lab videos for both. In our
experiments we considered three video adaptations that affect video
bit rate: i) Reduction of compression quantizer, i.e. changing SNR
video quality; ii) Frames dropping, i.e. changing temporalvideo
quality; iii) Bicubic re-scaling, i.e. changing spatial video quality.
For face detection we were changing SNR quality and spatial qual-
ity; and for face tracking, SNR quality and temporal quality. The
temporal quality affects the face detection algorithm mainly as a
filter that reduces false positive. More detailed description of ex-
periments, their implications and practical use of the results can be
found in [5].

Our experiments show that accuracy of the algorithm can sustain
large drops in video qualities which result in significant reduction
of the video bit rate. The typical rate–accuracy curve has a behavior
that is similar to the one presented in Figure 1. The curve shows a
sweet spotthat represents the quality to which video can be reduced
without affecting the resulting accuracy of an algorithm. This result
demonstrates that even for quite complicated video analysis algo-
rithms such as face detection and face tracking the video bitrate
can be reduced drastically. At the same time the false positive does
not show a noticeable growth when quality is decreased. In our ex-
periments with the prototype implementation of video surveillance
system we obtained 29 times reduction in bit rate for face detection
and 16 times reduction for face tracking.

Experiments with Bicubic zooming adaptation show that evenan
improvement can be achieved in the accuracy of face detection al-
gorithm if input images are pre-scaled up using Bicubic algorithm.
It shows that at the expense of slight increase in false positive,
Bicubic zooming gives the face detection algorithm abilityto de-
tect more of small faces. Experiments in the lab environmentshow
that when zooming was applied the face detection algorithm could
detect faces that previously fell under limits of its detectable face
size.
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Figure 1: Accuracy of Face Detection Algorithm vs. JPEG
Compression Quality.

All experiments presented above also show that various video
adaptations have distinctive impacts on the rate–accuracytradeoff.
While Bicubic zooming can even improve the accuracy of face de-
tection despite the unchanged video bit rate, the frame dropping
adaptation affects the accuracy of the algorithm only indirectly,
helping to reduce the false positive [5]. Other common videoadap-
tations that can be considered include: low or high pass filtering,
changes in luminance, drop in DCT coefficients, optical zooming,
etc.

3. VIDEO FEATURES
The straightforward way to find out the rate–accuracy tradeoff

for a new video analysis algorithm is to run the set of experiments
similar to the one presented in Section 2. However, in general there
can be many different video adaptations affecting the videoquality.
For instance, SNR quality can be reduced by quantizing the video,
dropping DCT coefficients or using different kind of compression
algorithm like JPEG2000, etc. In the same time the number of
existing and constantly updated video analysis algorithmsis very
large. Moreover, video analysis algorithms are not always avail-
able for before ahead offline experiments. One way to obtain or
at least estimate the rate–accuracy tradeoff for an arbitrary video
analysis algorithm is to categorize algorithms into groups, thus, re-
ducing the set size needed to be considered. The space of video
adaptations can also be reduced to several main categories.We
noted that both algorithms and adaptations operate on video. In
fact, the video is a binding point which defines the quintessence
of the relationship between a video analysis algorithm and avideo
adaptation (see Figure 2).

Therefore, we suggest studying the video content which affects
both sides of the algorithm–adaptation relationship. We propose
the hypothesis that most of video analysis algorithms depend on a
closed set of video characteristics and properties that we call video
features. Such features are important for the performance of video
analysis algorithms and are affected by video adaptations in differ-
ent ways. For example, the face tracking algorithm relies onthe
color histogram for the objects of limited spatial size. We aim to
identify the common set of video features that are used by typical
video analysis algorithms.

In our preliminary studies we try to identify types of video fea-
tures used by arbitrary detection and tracking algorithms.We sug-
gest that video features can have different video properties, i.e.
temporal, spatial, histogram, color, etc. Examples of video features
can include: sizes of objects, edges, color histograms, thespeed of
a moving object, haar features, etc. In this paper we suggestthe pre-
liminary classification of temporal and spatial video features used
by tracking and detection algorithms.

Video Algorithm Space
Video

Video Adaptation Space

Figure 2: The Relationship between Video Analysis Algorithms
and Video Adaptations.



Temporal features can be categorized as following: (i) Highra-
tio of the speed to the size of tracked object. It appears in eye
tracking, face tracking using eyes, nose, and corners of lips, air-
planes tracking, and some cases of car tracking. (ii) Low ratio of
object’s speed to its size. This type is present in silhouette track-
ing, face tracking based on color histogram, and car tracking in car
park scenario. Spatial features can be in one of these types:(i)
Small size. Such features are used in eye tracking, face recogni-
tion, finger prints analysis, and pins and whole position detection
in machinery. (ii) Rough features. Used in face detection based on
haar features, briefcase detection, and the identificationof a vehicle
type. (iii) Borders and edges. Used in silhouette detection, barcode
reading, the vehicle type identification, the building structure anal-
ysis, and bones detection in X-ray. (iv) Blob features. Usedin
car park car tracking, face tracking based on color histogram, and
general foreground object detection.

In our future work we aim to identify the closed set of video fea-
tures that are used by video analysis algorithms in video surveil-
lance. This set should include such video features that are most
influential in terms of the rate–accuracy tradeoff. For instance,
most of object detection algorithms have a limit on the minimal
detectable object size. This feature has a strong implication on the
rate–accuracy tradeoff of a detection algorithm and is affected by
the zooming adaptation.

4. RATE–ACCURACY FRAMEWORK
The main objective of the rate–accuracy framework is to give

general guidelines on how to estimate the rate–accuracy tradeoff for
an arbitrary video analysis algorithm. To answer this question we
first replace the video analysis algorithm with its video features as
described in Section 3. Video features can be characterizedby dif-
ferent video properties, i.e. temporal, spatial, color, etc. Each char-
acteristic is affected by only a few video adaptations, for example,
the face size is affected by spatial resizing of the frame butnot by
DCT coefficient dropping. This observation demonstrates that the
set of relationships between video adaptations and video features is
practically not very large. Among the remaining feature–adaptation
dependencies, some can be described analytically, for example the
effect of zooming on the face size. Other dependencies can beana-
lyzed experimentally by varying the degree of adaptation applied to
the video with studied feature and measuring changes that the fea-
ture undergo. However, it is not always clear how to measure the
adaptation effect on features, for example, how to quantitatively
describe changes in color histogram caused by JPEG compression
of the image. The problem of clearly defining every relationship
that binds video feature and video adaptation spaces is the subject
of our future work.

Lets assume that we can find a function or heuristic describing
the effect of a video adaptation on every video feature used by the
video analysis algorithm. The problem then is to merge thesefunc-
tions into some formula that can be used as an estimation of the
desired rate–accuracy tradeoff. It can be done by combiningthe
normalized forms of these functions using, for instance, some lin-
ear weighted function with variable weights correspondingto dif-
ferent feature–adaptation relationships. The assignmentof weights
is not clear as well, but looking at the face detection example we
can notice that SNR affects the detection accuracy only below the
sweet spot, while spatial resizing has almost linear and continuous
impact on the accuracy. The resulted weighted function can serve
as a heuristic estimation on the rate–accuracy tradeoff. The practi-
cal benefit of this approach should be verified using several typical
video analysis algorithms by comparing obtained estimations with
actual values of rate–accuracy functions.

To analyze the rate–accuracy framework in practice we builtthe
prototype video surveillance system, which currently usesface de-
tection and face tracking algorithms. We proposed to use a dis-
tributed architecture for video surveillance system consisting of
video sources, processing proxies and monitoring stations. Pro-
cessing proxies in such system run video analysis algorithms which
filter the video coming from video sources. Therefore, the bit rate
of the video streamed at a link between a proxy and a video cam-
era can be reduced using the rate–accuracy tradeoff. Only inrare
occurrences of suspicious events it is required to stream the full
quality video from the video source via proxy to the monitor for
the inspection by the human observer.

5. RELATED WORK
The concept and framework of the rate–accuracy function is sim-

ilar to the conceptual framework based on utility function described
by Changet al. [2]. The notion of rate–distortion is generalized to
human–oriented utility function which describes the relationship
between different video–adaptations and different video resources
defined as video entities, i.e. frames, pixels, etc. Such generaliza-
tion allows solving utility optimization problems with constrained
video bit rate. Authors do not consider how to define the utility
function when many different adaptations are applied to thevideo.
In our work, the utility function, i.e. accuracy also can be obtained
experimentally from a video analysis algorithm. The problem is
that instead of a single human observer we have many video analy-
sis algorithms showing different performance accuracy fordifferent
video adaptations.

Comparing our work with current research in video surveillance
systems we noticed that most works aim at developing robust com-
puter video analysis and classification algorithms [4]. Other works
on video surveillance systems do not pay attention to systemissues
such as efficiency and scalability proposing centralized system ar-
chitectures and assuming the availability of network resources [1].
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