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1. INTRODUCTION

For the past years video analysis algorithms are attraotiog
research interest and becoming commonly used in variousmeul
dia applications. The increasing accuracy of these alyosten-
courages their use for navigating robots, indexing andcb@ay in
video and image databases. One of the most popular are&efor t
application is video surveillance where video analysioatms
are used for detection, tracking and analysis of peopleatdjpnd
events. Since video analysis algorithms operate over ErgRints

performance accuracy of algorithms exists. The face deteel-
gorithm even shows an increase in the detection accuradgiid
zooming is applied without changing the video bit rate.

The above results encourage us to consider a general system r
source optimization problem in context of different videdapta-
tions and various video analysis algorithms instead of theakbe
minimization problem for the specific algorithm. This prefl is
based on theate—accuracy tradeofsince video adaptations effec-
tively reduce video bit rate and algorithms are evaluatedhieyr
accuracy. The benefit of studying the rate—accuracy trédgsof
twofold. First, it helps in solving the rate minimizatioontaracy
maximization problem. Second, it can give insights on deiel
new video compression algorithms tuned for greater peidoaa
of video analysis algorithms and provide guidelines onding
video analysis algorithms aimed to have higher accuracyher
video with reduced quality.

The obvious way to find the rate—accuracy tradeoff for angwid
analysis algorithm is to run many offline experiments withiva
ous adaptations on input videos. Such an approach, howisver,
not practically feasible because of the large number ofo/ateal-
ysis algorithms. We propose, therefore, to study the effecideo
adaptations on video features used by algorithms instesitingly
measuring the accuracy of every algorithm with respect éseh

of data, such as videos and images, they impose high system re adaptations. We base it on the hypothesis that most of vidab a

quirements on storage and computational resources, riebaod-
width, and power for battery—powered devices. Despite fiis
surprisingly little attention was paid to the resourcesimination
problem accompanying the use of video analysis algorithms.

In this paper we focus on the problem of system resources+edu
tion in automated large—scale distributed video survei#asys-
tems, which use video analysis algorithms for automaticitoon
ing. According to the study by Wet al. [6], suspicious events are
rare in video surveillance. Therefore, most of the time sillance
video is monitored by various video analysis algorithmsead of
human observers. However, existing video compressiormitigts
and video presentation standards are tuned to the humaai sis+
tem. It allows us to take the advantage of different, congherehe
human vision, quality requirements of video analysis atpors.
Therefore, in this work, we study the effect of compressiesjz-
ing, dropping of frames in the video, and other video adaptat
on the accuracy of video analysis algorithms.

Through extensive experiments with face detection andtfack-
ing algorithms we found that these algorithms can sustaigrdfis
cant degradation in the input video quality without decedagheir
accuracy. Therefore, the tradeoff between the video guatitl the
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ysis algorithms rely their video analysis on a closed setidéw
features. For example, the face tracking algorithm is basezblor
histograms of tracked objects. We believe that the numbsudi
video features is relatively small and is almost independem
the diverse collection of video analysis algorithms. Videatures
can be also determined from the video directly. Studyingtieh-
ships between video features and video adaptations heljgsass
timate the rate—accuracy tradeoff for an arbitrary videalysis al-
gorithm. It might even provide guidelines on how to desigreevn
video analysis algorithm with good rate—accuracy charesties.

We propose a formal framework describing the rate—accuracy
tradeoff, which is analogous to utility—based adaptati®hdnd
rate—distortion optimization [3] frameworks. The rateswracy
framework suggests a method for deriving the tradeoff foma p
ticular video analysis algorithm by using the cumulativieetf of
video adaptations on corresponding video features. Weajzee
a distributed prototype video surveillance system showiagtical
benefits of proposed rate—accuracy framework.

In Section 2 we present our experimental results when stgdyi
the rate—accuracy tradeoff of face detection and face itrgcil-
gorithms. In Section 3 we shift the focus to studying the affef
video adaptations on video features used by video analigis a
rithms, and present a preliminary classification of videatdees
for detection and tracking algorithms. Our vision on theufatde-
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velopment of the formal rate—accuracy framework and howave ¢
apply it in our prototype video surveillance system is pnésé in
Section 4. Lastly, we give a brief overview on the relatedkniar
Section 5.

2. RATE-ACCURACY TRADEOFF

In this section we experimentally verify the hypothesist tine
bit rate of video, which is monitored exclusively by videcabn
sis algorithms, can be reduced without decreasing accufaaly
gorithms. We conducted a set of experiments that study the ef
fect of reduced video quality, i.e. video bit rate, on theumacy
of two typical video analysis algorithms. We used CAMSHIFT
face tracking algorithm and Viola-Jones face detectioordtigms
implemented in OpenCV library. As a testing dataset we used
MIT/CMU collection of images for face detection, some pants
movies for face tracking and different lab videos for both.olur
experiments we considered three video adaptations tleatafftleo
bit rate: i) Reduction of compression quantizer, i.e. cliegp&NR
video quality; ii) Frames dropping, i.e. changing tempaiideo
quality; iii) Bicubic re-scaling, i.e. changing spatiabeio quality.
For face detection we were changing SNR quality and spaitallq
ity; and for face tracking, SNR quality and temporal qualitthe
temporal quality affects the face detection algorithm ryaas a
filter that reduces false positive. More detailed desaiptf ex-
periments, their implications and practical use of theltegan be
found in [5].

Our experiments show that accuracy of the algorithm carasust
large drops in video qualities which result in significarduetion
of the video bit rate. The typical rate—accuracy curve hashatior
that is similar to the one presented in Figure 1. The curvevshao
sweet spathat represents the quality to which video can be reduced
without affecting the resulting accuracy of an algorithrhislresult
demonstrates that even for quite complicated video arsablgo-
rithms such as face detection and face tracking the vidematst
can be reduced drastically. At the same time the false pegities
not show a noticeable growth when quality is decreased. iexu
periments with the prototype implementation of video siliaece
system we obtained 29 times reduction in bit rate for facedisn
and 16 times reduction for face tracking.

Experiments with Bicubic zooming adaptation show that euen
improvement can be achieved in the accuracy of face deteatio
gorithm if input images are pre-scaled up using Bicubic athm.

It shows that at the expense of slight increase in false igesit
Bicubic zooming gives the face detection algorithm abitityde-
tect more of small faces. Experiments in the lab environrsbotv
that when zooming was applied the face detection algoritbuhdc
detect faces that previously fell under limits of its detdte face
size.
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Figure 1: Accuracy of Face Detection Algorithm vs. JPEG
Compression Quality.

All experiments presented above also show that variousovide
adaptations have distinctive impacts on the rate—accuradgoff.
While Bicubic zooming can even improve the accuracy of faze d
tection despite the unchanged video bit rate, the framepiingp
adaptation affects the accuracy of the algorithm only ixtiy,
helping to reduce the false positive [5]. Other common vigéap-
tations that can be considered include: low or high passgifilie
changes in luminance, drop in DCT coefficients, optical ziogm
etc.

3. VIDEO FEATURES

The straightforward way to find out the rate—accuracy tréideo
for a new video analysis algorithm is to run the set of experita
similar to the one presented in Section 2. However, in géitiezee
can be many different video adaptations affecting the vigledity.

For instance, SNR quality can be reduced by quantizing ttheoyi
dropping DCT coefficients or using different kind of comzies
algorithm like JPEG2000, etc. In the same time the number of
existing and constantly updated video analysis algoritlemery
large. Moreover, video analysis algorithms are not alwaxsla
able for before ahead offline experiments. One way to obtain o
at least estimate the rate—accuracy tradeoff for an arpitideo
analysis algorithm is to categorize algorithms into grotipss, re-
ducing the set size needed to be considered. The space af vide
adaptations can also be reduced to several main categdnes.
noted that both algorithms and adaptations operate on vitieo
fact, the video is a binding point which defines the quintesse

of the relationship between a video analysis algorithm anidi@o
adaptation (see Figure 2).

Therefore, we suggest studying the video content whictctsfe
both sides of the algorithm—adaptation relationship. Wappse
the hypothesis that most of video analysis algorithms depena
closed set of video characteristics and properties thataieideo
features Such features are important for the performance of video
analysis algorithms and are affected by video adaptatiodgfer-
ent ways. For example, the face tracking algorithm relieshen
color histogram for the objects of limited spatial size. Vifa #o
identify the common set of video features that are used bigayp
video analysis algorithms.

In our preliminary studies we try to identify types of videzaf
tures used by arbitrary detection and tracking algorithvide.sug-
gest that video features can have different video progriie.
temporal, spatial, histogram, color, etc. Examples ofwiiatures
can include: sizes of objects, edges, color histogramsspbed of
amoving object, haar features, etc. In this paper we sugjgestre-
liminary classification of temporal and spatial video feetuused
by tracking and detection algorithms.
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Figure 2: The Relationship between Video Analysis Algoritims
and Video Adaptations.



Temporal features can be categorized as following: (i) Hah
tio of the speed to the size of tracked object. It appears & ey
tracking, face tracking using eyes, nose, and corners sf &p-
planes tracking, and some cases of car tracking. (ii) Lo raft
object’s speed to its size. This type is present in silheuetck-
ing, face tracking based on color histogram, and car trackircar
park scenario. Spatial features can be in one of these tyfdes:
Small size. Such features are used in eye tracking, facgmeco
tion, finger prints analysis, and pins and whole positioreckon
in machinery. (ii) Rough features. Used in face detecticsedaon
haar features, briefcase detection, and the identificafiarvehicle
type. (i) Borders and edges. Used in silhouette detechancode
reading, the vehicle type identification, the building stuwe anal-
ysis, and bones detection in X-ray. (iv) Blob features. Used
car park car tracking, face tracking based on color histogend
general foreground object detection.

In our future work we aim to identify the closed set of videa-fe
tures that are used by video analysis algorithms in videwvedlur
lance. This set should include such video features that & m
influential in terms of the rate—accuracy tradeoff. Foransg,
most of object detection algorithms have a limit on the malim
detectable object size. This feature has a strong impbicatn the
rate—accuracy tradeoff of a detection algorithm and iscidfi by
the zooming adaptation.

4. RATE-ACCURACY FRAMEWORK

The main objective of the rate—accuracy framework is to give
general guidelines on how to estimate the rate—accuradgdfefor
an arbitrary video analysis algorithm. To answer this ¢oasive
first replace the video analysis algorithm with its videctfieas as
described in Section 3. Video features can be characteliy elif-
ferent video properties, i.e. temporal, spatial, colar, Each char-
acteristic is affected by only a few video adaptations, f@meple,
the face size is affected by spatial resizing of the framenbtiby
DCT coefficient dropping. This observation demonstrates tie
set of relationships between video adaptations and videares is
practically not very large. Among the remaining featurexgetion
dependencies, some can be described analytically, forgraime
effect of zooming on the face size. Other dependencies candse
lyzed experimentally by varying the degree of adaptatigiiag to
the video with studied feature and measuring changes tedet
ture undergo. However, it is not always clear how to meashee t
adaptation effect on features, for example, how to quaivety
describe changes in color histogram caused by JPEG corpress
of the image. The problem of clearly defining every relatiops
that binds video feature and video adaptation spaces isitiject
of our future work.

Lets assume that we can find a function or heuristic desgibin
the effect of a video adaptation on every video feature ugetid
video analysis algorithm. The problem then is to merge thase
tions into some formula that can be used as an estimationeof th
desired rate—accuracy tradeoff. It can be done by combitiiag
normalized forms of these functions using, for instanceyestin-
ear weighted function with variable weights correspondimglif-
ferent feature—adaptation relationships. The assignofemeights
is not clear as well, but looking at the face detection examy
can notice that SNR affects the detection accuracy onlybéie
sweet spot, while spatial resizing has almost linear antiruaous
impact on the accuracy. The resulted weighted function eaves
as a heuristic estimation on the rate—accuracy tradeo#.practi-
cal benefit of this approach should be verified using sevepidal
video analysis algorithms by comparing obtained estimatigith
actual values of rate—accuracy functions.

To analyze the rate—accuracy framework in practice we thelt
prototype video surveillance system, which currently daes de-
tection and face tracking algorithms. We proposed to usesa di
tributed architecture for video surveillance system cstirgj of
video sources, processing proxies and monitoring statid?r®-
cessing proxies in such system run video analysis algosithihich
filter the video coming from video sources. Therefore, thedie
of the video streamed at a link between a proxy and a video cam-
era can be reduced using the rate—accuracy tradeoff. Ombrén
occurrences of suspicious events it is required to streanfuth
quality video from the video source via proxy to the monitor f
the inspection by the human observer.

5. RELATED WORK

The concept and framework of the rate—accuracy functioimis s
ilar to the conceptual framework based on utility functiescribed
by Changet al.[2]. The notion of rate—distortion is generalized to
human-oriented utility function which describes the iielaghip
between different video—adaptations and different videsmurces
defined as video entities, i.e. frames, pixels, etc. Suckrgdina-
tion allows solving utility optimization problems with cetmained
video bit rate. Authors do not consider how to define the tytili
function when many different adaptations are applied tosttieo.

In our work, the utility function, i.e. accuracy also can leaned
experimentally from a video analysis algorithm. The prablis
that instead of a single human observer we have many viddg-ana
sis algorithms showing different performance accuracyliberent
video adaptations.

Comparing our work with current research in video survaika
systems we noticed that most works aim at developing rolmrst ¢
puter video analysis and classification algorithms [4].@Dthiorks
on video surveillance systems do not pay attention to syistsnes
such as efficiency and scalability proposing centralizedesy ar-
chitectures and assuming the availability of network resesi[1].
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