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Abstract
Programming interactive systems by means of the observer
pattern is hard and error-prone yet is still the implementation
standard in many production environments. We show how
to integrate different reactive programming abstractions into
a single framework that help migrate from observer-based
event handling logic to more declarative implementations.
Our central API layer embeds an extensible higher-order
data-flow DSL into our host language. This embedding is
enabled by a continuation passing style transformation.

General Terms Design, Languages

Keywords data-flow language, reactive programming, user
interface programming, Scala

1. Introduction
We are seeing a continuously increasing demand in inter-
active applications, driven by a growing number of non-
expert computer users. In contrast to traditional batch mode
programs, interactive applications require a considerable
amount of engineering to deal with continuous user input
and output. Yet, our programming models for user inter-
faces and other kinds of continuous state interactions have
not changed much. The predominant approach to deal with
state changes in production software is still the observer
pattern [25]. For an answer on whether it is actually worth
bothering we quote an Adobe presentation from 2008 [37]
on the status of current production systems:

• 1/3 of the code in Adobe’s desktop applications is de-
voted to event handling

• 1/2 of the bugs reported during a product cycle exist in
this code

We believe these numbers are bad not only because of the
number of bugs is disproportional. We also believe that event
handling code should account for a smaller fraction and that
the way to achieve this is to provide better event handling
abstractions. To illustrate the concrete problems of the ob-
server pattern, we start with a simple and ubiquitous exam-
ple: mouse dragging. The following example constructs a

path object from mouse movements during a drag operation
and displays it on the screen. For brevity, we use Scala clo-
sures as observers.

var path: Path = null
val moveObserver = { (event: MouseEvent) =>
path.lineTo(event.position)
draw(path)

}
control.addMouseDownObserver { event =>
path = new Path(event.position)
control.addMouseMoveObserver(moveObserver)

}

control.addMouseUpObserver { event =>
control.removeMouseMoveObserver(moveObserver)
path.close()
draw(path)

}

The above example, and as we will argue the observer
pattern as generally defined in [25], encourages one to vio-
late an impressive line-up of important software engineering
principles:

Side-effects Observers promote side-effects on the API
level.

Encapsulation Multiple observers are often needed to sim-
ulate a state machine as in the drag example. The state is
stored in variables (such as path above) that are visible to
all involved observers. For practical reasons, these vari-
ables are often placed in a broader scope were it can be
misused by unrelated code.

Composability Multiple observers, dealing with a single
concern such as a drag operation, form a loose collection
of objects that are installed at different points at different
times. Therefore, we cannot, e.g., easily add or remove
drag behavior.

Resource management An observer’s life-time needs to be
managed explicitly. For performance reasons, we want to
observe mouse move events only during a drag operation.
Therefore, we need to explicitly install and uninstall the
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mouse move observer and we need to remember the sub-
ject (point of installation).

Separation of concerns The observers from our example
not only trace the mouse path but also call a draw-
ing command, or more generally, include two different
concerns in the same code location. It is often prefer-
able to separate the concerns of constructing the path
and displaying it, e.g., as in the model-view-controller
(MVC) [31] pattern.

Data consistency We can achieve a separation of concerns
with a path that itself publishes events when it changes.
Unfortunately, there is no guarantee for data consistency
in the observer pattern. Suppose we create a rectangle
that represents the bounds of our path, i.e., a publisher
that depends on changes in our original path. Also con-
sider an observer listening to changes in both the path and
its bounds in order to draw a framed path. This observer
needs to track explicitly whether the bounds are already
updated and, if not, defer the drawing operation. Other-
wise the user could observe a frame on the screen that has
the wrong size, which is an example of a glitch.

Uniformity Different methods to install different observers
decrease code uniformity.

Abstraction The observer pattern promotes the use of heavy-
weight interfaces. The example relies on a control class
that often defines a much larger interface than a method
to install mouse event observers. Therefore, we cannot
abstract over event sources individually. For instance, we
could let the user abort a drag operation by hitting any
predefined key or use a different pointer device such as a
touch screen or graphics tablet.

Semantic distance The example is hard to understand be-
cause the control flow is inverted which results in much
boilerplate code and increases the semantic distance be-
tween the programmers intention and the actual code.

Mouse dragging is just an example of the more general
set of input gesture recognition. If we further generalize this
to event sequence recognition with (bounded or unbounded)
loops, all the problems we mentioned above still remain.
Many examples in user interface programming are therefore
equally hard to implement with observers, such as selecting
a set of items, stepping through a series of dialogs, editing
and marking text – essentially every operation where the user
goes through a number of steps.

1.1 Contributions and Overview
We present Scala.React, a library of composable, discrete
reactive programming abstractions that provides several API
layers to allow programmers to stepwise migrate from an
observer-based to a reactive data-flow programming model
that eventually addresses all of the issues raised above. Our
contributions are in particular:

• We extend Scala with a typed higher-order reactive pro-
gramming library that allows to combine reactive pro-
gramming both in a functional as well as in impera-
tive style. We show how these abstraction integrate with
Scala’s object system and how the trait concept simplifies
binding observer-based interfaces to our reactive abstrac-
tions.

• We show how to incorporate a synchronous data-flow
language similar to Esterel [6], but extended to a multi-
valued domain and with higher-order features, into our
reactive framework.

• We present an approach based on traits and weak refer-
ences that automatically binds the life-time of observers
to an enclosing object, eliminating a common source of
memory leaks in observer-based and reactive program-
ming.

• We show how to implement our language as a library
in terms of a dependency stack, closures and delimited
continuations. In contrast to previous similar systems, our
implementation is agnostic of any host language feature,
and treats every expression uniformly, no matter whether
built-in or user-defined, including function application,
conditionals, loops, exceptions and custom control flow
operators, without special treatment by a macro system
or explicit lifting.

• We present and analyze performance results of different
implementation approaches in Scala.React and present
the first performance comparison of two related reac-
tive libraries on different, production quality platforms.
In order to obtain meaningful results, we measure per-
formance of reactive implementations relative to corre-
sponding observer-based implementations on the same
platform. We analyze existing functional reactive pro-
grams and propose favorable solutions using alternative
abstractions in Scala.React.

Although our running example is drawn from user inter-
face programming, Scala.React can also be used for a many
other event processing domains, such as financial engineer-
ing, industrial control systems, automatic patient supervi-
sion, RFID tracking or robotics.

2. Event streams: a uniform interface for
composable events

As a first step to simplify event logic we introduce a gen-
eral event interface, addressing the issues of uniformity and
abstraction from above. A third aspect to this is reusability:
by hiding event propagation and observer handling behind a
general interface, clients can easily publish events for their
own data structures. We introduce a class EventSource[A],
which represents generic sources of events of type A. We can
schedule an event source to emit a value at any time. Here
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is how we create an event source of integers and emit two
events:1

val es = new EventSource[Int]
es emit 1; es emit 2

We can print all events from our event source to the console
as follows:

val ob = observe(es) { x => println("Receiving " + x) }

Method observe takes event stream es and a closure that
accepts event values x from es. The resulting observer ob

can be disposed by a single method call to ob.dispose(),
which uninstalls ob from all sources. Unlike in the traditional
observer pattern, there is no need to remember the event
sources explicitly. To put the above together, we can now
create a button control that emits events when somebody
clicks it. We can use an event source of integers with an
event denoting whether the user performed a single click,
or a double click, and so on:

class Button(label: String) {
val clicks: Events[Int] = new EventSource[Int] {
// for each system event call "this emit x"

}
}

Member clicks is publicly an instance of trait Events that
extracts the immutable interface of EventSource, i.e., with-
out an explicit emit method. We can now implement a quit
button as follows:

val quitButton = new Button("quit")
observe(quitButton.clicks) { x => System.exit() }

A consequence from our event streams being first-class val-
ues is that we can abstract over them. Above, we observe
button clicks directly. Instead, we could observe any given
event stream, may it be button clicks, menu selections, or a
stream emitting error conditions. What if, however, we want
to quit on events from multiple sources? Adding the same
observer to all of those streams would lead to duplication:

val quitButton = new Button("quit")
val quitMenu = new MenuItem("quit")
val fatalExceptions = new EventSource[Exception]
observe(quitButton.clicks) { x => System.exit() }
observe(quitMenu.clicks) { x => System.exit() }
observe(fatalExceptions) { x => System.exit() }

Now that we have a first-class event abstraction we can
add composition features in the style of functional reactive
programming (FRP) [14, 20, 45]. In the example above, it
would be better to merge multiple event streams into a single
one and install a single observer. The merge operator in class
Events[A] creates a new event stream that emits all events
from the receiver and the given stream:

def merge[B>:A](that: Events[B]): Events[B]

1 Infix notation a emit b is shorthand for a.emit(b) in Scala and
works for any method.

Propagation in Scala.React acts in turns, i.e., emits all pend-
ing changes before it proceeds to the next turn. It is impossi-
ble to start a turn before the previous one has finished, which
is important to ensure the absence of glitches. Since propa-
gation is also synchronous, we can have event streams emit-
ting values simultaneously. The given merge operator is bi-
ased towards the receiver, i.e., if event streams a and b emit
simultaneously, a merge b emits the event from a. We will
discuss details of our propagation model in more detail be-
low.

We say that the newly created event stream depends on
the arguments of the merge operator; together they are part
of a larger dependency graph as we will see shortly. The re-
active framework automatically ensures that events are prop-
erly propagated from the arguments (the dependencies) to
the resulting stream (the dependent). Method merge is para-
metric on the event type of the argument stream. The type
parameter B is bound to be a super type of A, denoted by B>:A.
We can therefore declare trait Events[+A] to be covariant in
its event type, indicated by the plus sign. As a result we can
merge events of unrelated types such as quitButton.clicks

which emits events of type Int and quitMenu.clicks and
fatalExceptions, which emits events of types, say, Unit

and Exception. The compiler simply infers the least upper
bounds of those types, which in this case, is Any, the base
type of all Scala values.

We can now move most of the code into a common
application trait which can be reused by any UI application:

trait UIApp extends Observing {
val quit: Events[Any]
def doQuit() {
/* clean up, display dialog, etc */;
System.exit()

}
observe(quit) { doQuit() }

}

We can ignore the Observing base type for now. Clients can
now easily customize the event source quit and the quit
action doQuit:

object MyApp extends UIApp {
...
val quit = quitButton.clicks merge
quitMenu.clicks merge fatalExceptions

}

Another possibility to adapt an observer based interface
to a uniform event API in Scala.React are selective mix-
ins. Toolkits sometimes factor out interfaces for components
that support a certain set of listeners or use naming con-
ventions instead. Many classes in Java Swing, for instance,
contain a addChangeListener or addActionListener method
per convention. We can factor out a common interface in
Scala.React using Scala’s traits:

trait HasAction { this: HasActionType =>
def getAction(): Action
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def addActionListener(a: ActionListener)
def removeActionListener(a: ActionListener)

val actionPerformed: Events[Action] =
new EventSource[Action] { source =>
this.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent) =
source emit getAction

})
}

}

The above creates a trait HasAction that defines a set of
abstract methods that it expects to be implemented. We can
now take a Java Swing JButton and add an actionPerformed

event stream by writing

class MyButton extends JButton with HasAction
val button = new MyButton
observe(button.actionPerformed) { println("clicked") }

Note that the Scala compiler finds implementations of meth-
ods defined in traits based on their signature. This allows
us to conveniently bind JButton to an event stream because
from the perspective of the compiler, class JButton imple-
ments the abstract methods from trait HasAction even though
Swing does not know about our trait.

In our example, in order to log a reason why the ap-
plication should quit, we need to converge on a common
event type for all involved streams, e.g., String. We can ex-
tract quit messages from each of the merged event streams
with the help of the map combinator which is defined in trait
Events[A]:

def map[B](f: A => B): Events[B]

It returns a stream of results that emits at the same time as the
original stream but each event applied to the given function.
We can now implement quit as follows:

val quit = quitButton.clicks.map(x => "Ok")
merge quitMenu.clicks.map(x => "Ok")
merge fatalExceptions.map(x => x.getMessage)

There are many more useful common FRP combinators in
class Events as we will see later.

3. Reactors: observers without inversion of
control

Since we have a uniform observation mechanism and first-
class events, we can abstract over the events involved in
a drag operation. Therefore, we can define a function that
installs all necessary observers for our drag controller:

def makePath(start: Events[Pos], move: Events[Pos],
end: Events[Pos]): Path = {
val path: Path = new Path()
var moveObserver: Observer = null
observe(start) { pos =>
path.clear()

path.moveTo(pos)
moveObserver = observe(moves) { pos => ... }

}
observe(end) { pos => moveObserver.dispose(); ... }
path

}

Now, we can easily let users perform drag operations
with a different pointer device and start or abort with key
commands. For example:

makePath(pen.down, pen.moves,
pen.up merge escapeKeyDown.map(x => pen.pos.now))

Yet, three important issues remain. The control flow is
still inverted, we have to explicitly dispose the mouse move
observer and have no easy means to dispose the drag behav-
ior as a whole. Ideally, we want to directly encode a state
machine which can be described informally as follows:

1. Start a new path, once the mouse button is pressed

2. Until the mouse is released, log all mouse moves as lines
in the path

3. Once the mouse button is released, close the path

We can turn the above steps into code in a straightforward
way, using Scala.React’s imperative data-flow language and
the concept of reactors. The following reactor implements
our running example without inversion of control.

Reactor.loop { self =>
// step 1
val path = new Path((self await mouseDown).position)
self.loopUntil(mouseUp) { // step 2
val m = self awaitNext mouseMove
path.lineTo(m.position)
draw(path)

}
path.close() // step 3
draw(path)

}

Factory method Reactor.loop creates a new reactor, taking
a function as an argument which accepts the reactor under
construction self as an argument. This self reference gives
the function a handle to a data-flow DSL, from which we
use three operators above. Method await and awaitNext are
defined as

def await[A](e: Events[A]): A
def awaitNext[A](e: Events[A]): A

and suspend the current reactor until the given event stream
e emits a value. Method await return immediately, if the
given stream is currently emitting, whereas awaitNext always
suspends first. Once the stream emits an event e, it evaluates
to e and continues the reactor’s execution.

Another useful operator is pause, returning nothing. It
suspends the current reactor and continues after all pending
messages have been propagated by the reactive framework.
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Now, awaitNext is equivalent to pause followed by await.
More on pause and Scala.React’s turn-based scheduling will
follow below.

In the above example, we first create a new path and then
wait for the next mouse down event to add a line to the path
with the current mouse position. This covers step 1 from our
informal description. Step 2 is covered by the following loop
which uses method

def loopUntil[A](e: Events[A])(body: =>Unit): A

It watches event stream e while iterating over body until es
emits. In Scala, type =>Unit denotes a call-by-name argu-
ment that returns Unit. This is equivalent to a parameterless
closure with more concise syntax. In the example, the loop
continues following the path until the mouse is released. We
drop the result of loopUntil and close the path in step 3.

The imperative data-flow language largely reduces se-
mantic distance and eliminates the need to dispose interme-
diate observers – loopUntil takes care of the latter. Reactors
also give us a single handle to the entire behavior induced
by multiple observers, which allows us to dispose the whole
drag behavior by a single call to Reactor.dispose().

4. Signals: time-varying values
Until now, we have been dealing with problems that we
can naturally model as events such as mouse clicks, but-
ton clicks, menu selections, and exceptions. A large body
of problems in interactive applications, however, deals with
synchronizing data that changes over time. Consider the but-
ton from above, which could have a time-varying label. We
represent time-varying values by instances of trait Signal:

class Button(label: Signal[String])

Trait Signal is the continuous counterpart of trait Events and
contains a mutable subclass:

trait Signal[+A] {
def apply(): A
def now: A

}
class Var[A](init: A) extends Signal[A] {
def update(newValue: A): Unit = ...

}

Class Signal has a covariant type parameter denoting the
type of the values it can hold.

4.1 Signal Expressions
Signals can be composed using signal expressions. We can
build the sum of two integer signals a and b as follows:

val sum = Signal{ a()+b() }
observe(sum) { x => println(x) }

The Signal function invoked on the first line takes an ex-
pression (the signal expression) that continuously evaluates

to the new signal’s value. Signals that are referred by func-
tion call syntax as in a() and b() above are the dependen-
cies of the new signal. In order to create only a momentary
dependency, clients can call method Signal.now. To illus-
trate the difference between now and the function call syntax,
consider the following snippet:

val b0 = b.now
val sum1 = Signal{ a()+b0 }
val sum2 = Signal{ a()+b.now }
val sum3 = Signal{ a()+b() }

All three sum signals depend on a, i.e., they are invali-
dated when a changes. Only the last signal, though, also gets
invalidated by changes in b. In sum2, whenever its expression
is about to be reevaluated, the current value of b is obtained
anew, while b0 in sum1 is b’s value at contraction time.

Signals are primarily used to create variable dependen-
cies as seen above. Clients can build signals of any im-
mutable data structure and safely use any operations not
causing global side-effects inside signal expressions (de-
tails will be covered in Section 7.6). Expressions of the
form e() are rewritten to e.apply() by the Scala compiler
in order to support first-class functions in a uniform way.
Method apply therefore establishes signal dependencies.
Constant signals can be created by using the Val method.
We can create a button with a constant label by writing
new Button(Val("Quit")).

Trait Signal[A] also defines a changes method and trait
Events[A] defines a hold method that can be used to convert
between the two. They are defined as

def changes: Events[A]
def hold(init: A): Signal[A]

Given the mutual conversion between an event stream
and a signal, one might ask why Scala.React supports them
as different concepts. As we will see later, there is in fact
a common base class, which defines a common set of op-
erations. However, there is a practical reason to keep them
separate. As opposed to signals, event streams dispose their
value after a propagation turn and can therefore not support
the Signal.apply interface.

5. Imperative data-flow reactives
While reactors allow us to address most of the observer
pattern’s issues, we often want to separate the concerns of
constructing a path from drawing it. For this purpose, we
extend our imperative data-flow language to signals and
events. Here is how we build a path signal:

val path: Signal[Path] = Signal.flow(new Path) { self =>
val down = self await mouseDown
self()= self.previous.moveTo(down.position)
self.loopUntil(mouseUp) {
val e = self awaitNext mouseMove
self()= self.previous.lineTo(e.position)

}
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self()= self.previous.close()
}

Method Signal.flow is similar to Reactor.flow. Instead of
creating a reactor, though, its creates a new signal and takes
an initial value. In the example, we create a signal that
starts with an empty path and then proceeds once through
the given data-flow body. Argument self refers to the sig-
nal under construction and is of type SignalFlowOps[Path],
which extends the data flow language of reactors. Compared
to the reactor-based version, we have replaced all path muta-
tions and drawing calls by operations of the form self()= x,
which changes the resulting path signal immediately. We call
method self.previous in order to obtain the previous value
of our path signal and modify its segments. Note that the
DSL exposed by self does not provide a method to obtain
the current value, since we cannot obtain the current value
while in the process of evaluating it. We are using an im-
mutable Path class above. Methods lineTo and close do not
mutate the existing instance, but return a new path instance
which extends or closes the previous one.

5.1 An imperative data-flow language
We have now two variants of an imperative data-flow lan-
guage, one for reactors and one for signals. In order to keep
these languages consistent and extract common functional-
ity, we factor our existing abstractions into a class hierarchy
as follows2.

trait Reactive[+P, +V] {
def valueNow: Option[V]
def pulseNow: Option[P]
def subscribe(dependent: Reactive[Any,Any])
...

}
trait Signal[+A] extends Reactive[A,A]
trait Events[+A] extends Reactive[A,Unit]

Classes Signal and Events share a common base trait
Reactive. We will therefore collectively refer to them as
reactives in the following. We will refer to their data-flow
versions as flow reactives. Trait Reactive declares two type
parameters: one for the type of pulses an instance emits and
one for the values it holds. While pulses vanish after they
were propagated, values persist. For now, we have subclass
Signal which emits its current value as pulses, and therefore
its pulse and value types are identical. Subclass Event only
emits pulses and never holds any value. Its value type is
hence singleton type Unit.

Companion objects3 Events and Signal define methods
flow, which we have seen previously, and loop, which runs
the body repeatedly. Here is how they are defined for signals:

def flow[A](init: A)

2 The class hierarchy we present here is slightly simplified compared to the
actual implementation and focusses on the conceptually interesting aspects.
3 Code in companion objects in Scala are similar to static class members in
Java.

(op: SignalFlowOps[A]=>Unit): Signal[A] =
new FlowSignal(init) { def body = op(this) }

def loop[A](init: A)
(op: SignalFlowOps[A]=>Unit): Signal[A] =

flow(init){ self => while(!isDisposed) op(self) }

We see that the self argument for flow signals is of type
SignalFlowOps which extends a base trait FlowOps, defining
most data flow operations that available for reactives and
reactors. We summarize them in the following.

def pause: Unit

Suspends the current flow reactive and continues its execu-
tion the next propagation turn. As most data flow operators
react to their input instantaneously, this operator is usually
used to break infinite cycles as we will see in later examples.

def halt: Unit

Suspends and disposes the current reactive.

def await[A](input: Reactive[A, Any]): A

Waits for the next message from the given reactive input. It
immediately returns if input is currently emitting.

def awaitNext[A](input: Reactive[A, Any]): A

Equivalent to pause; await(input), i.e., it ignores the current
pulse from input if present.

def par(left: => Unit)(right: => Unit): Unit

It first runs the left then the right branch until they suspend,
finish or call join. If both branches finish, or at least one
branch called join, this method immediately returns. If no
branch called join and at least one branch is not finished yet,
this method suspends until next turn when it will continue
evaluating each branch where it stopped previously. It pro-
ceeds so until both branches are finished or at least one calls
join.

def join: Unit

Halts the execution of the current branch and, if present,
joins the innermost enclosing ‘par‘ expression. Halts the
current branch only if there is no enclosing par expression.

def loopUntil[A](r: Reactive[A, Any])
(body: =>Unit): A

Repeatedly evaluates body until r emits. If the body is sus-
pended and hasn’t finished executing, the continuation of the
body is thrown away. Returns the pulse of r.

def loopEndUntil[A](r: Reactive[A, Any])
(body: =>Unit): A

Similar to loopUntil but returns only after the body has
finished evaluating.

def abortOn[A](input: Reactive[A, Any])
(body: =>Unit)

Similar to loopUntil but evaluates body only once.
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def <<(p: P): Unit

This operator is defined for events only. It emits the given
pulse p, overwriting the current pulse.

def update(v: V): Unit

This operator is defined for signals only. It sets the current
value to v, overwriting the current value. The compiler also
lets us write self()= x instead of self.update(x), as we have
seen above.

5.2 Reactive combinators as imperative data-flow
programs

Given our new imperative data-flow language, clients can
now implement reactive combinators without intimate knowl-
edge about the implementation details of Scala.React and
without reverting to low-level techniques such as observers
and inversion of control. Our data-flow language hides those
details from them. To exercise the expressiveness of our data
flow language, we will show how we can implement the
most important built-in combinators in class Events[A] that
are not trivially implemented in terms of other combinators.
Event though most combinators are implemented differently
for efficiency reasons, notice how we can easily read seman-
tic subtleties from the data flow formulations such as when
a combinator starts acting on its inputs.

The following collect combinator can be used to imple-
ment other combinators:

def collect[B](p: PartialFunction[A, B]) =
Events.loop[B] { self =>
val x = self await outer
if (p isDefinedAt x) self << p(x)
self.pause

}

The resulting event stream emits those events from the origi-
nal stream applied to partial function p for which p is defined.
A PartialFunction can be written as a series of case clauses
as in a pattern match expression. We refer the enclosing
stream as outer. Notice that we use await and not awaitNext,
i.e., the combinator processes events immediately, starting
with the current one from outer if present.

Combinators map and filter can now both be imple-
mented in terms of collect:

def map[B](f: A => B): Events[B] =
collect { case x => f(x) }

def filter(p: A => Boolean): Events[A] =
collect { case x if p(x) => x }

Combinator hold creates a signal that continuously holds
the previous value that the event stream (this) emitted:

def hold(init: A): Signal[A] = Signal.loop(init) { self =>
self << (self await outer)
self.pause

}

Again, by using await, we are potentially dropping the initial
value if outer is currently emitting.

Combinator switch creates a signal that behaves like
given signal before until the receiver stream emits an event.
From that point on, it behaves like given signal after:

def switch[A](before: Signal[A],
after: =>Signal[A]): Signal[A] =

Signal.flow(before.now) { self =>
abortOn(outer) {
self << (self await before)
self.pause

}
val then = after
while(!then.isDisposed) {
self << (self await then)
self.pause

}
}

We continuously emit values from stream before until outer
aborts it. We then evaluate the call-by-name argument after,
denoted by the arrow notation =>Signal[A], and continue to
emit events from that stream.

Combinator take creates a stream that emits the first n

events from this stream and then remains silent.

def take(n: Int) = Events.flow[A] { self =>
var x = 0
while(x < n) {
self << (self await outer)
x += 1
self.pause

}
}

The use of Events.flow ensures that the resulting event
stream does not take part in event propagation anymore,
once it has emitted n events. A drop combinator can be im-
plemented in a similar fashion. Operator scan continuously
applies a binary function op to values from an event stream
and an accumulator and emits the result in a new stream:

def scan[B](init: B)(op: (B,A)=>B): Events[B] = {
var acc = init
Events.loop[B] { self =>
val x = self await outer
acc = op(acc, x)
self << acc
self.pause

}
}

Trait Events[A] contains two flatten combinators, which are
defined for events of events and events of signals. They
return a signal or event that continuously behaves like the
signal or event that is currently held by the outer signal.
They can be implemented for nested events, and similarly
for signals, as follows:

def flatten[B](implicit isEvents: A => Events[B]) = {
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var inner: Events[B] = Events.Never
Events.loop[B] { self =>
val es = loopUntil(outer) {
self << (self await inner)
self.pause

}
inner = isEvents(es)

}
}

It repeatedly waits for values in the current inner stream un-
til the outer stream emits. Once that happens, the new inner
stream is stored and the process starts again. We use the im-
plicit argument as a witness to ensure that flatten can only
be called for which emitted values of type A are indeed of
type Events[B]. Implicits arguments of this kind are auto-
matically supplied by the compiler. The inner stream vari-
able is initialized with Event.Never which creates a stream
that never emits.

The merge combinator can be implemented as follows:

def merge[B >: A](that: Events[B]): Events[B] =
Events.flow[B] { self =>
par {
while(!that.isDiposed) {
self << (self await that)
self.pause

}
} {
while(!outer.isDiposed) {
self << (self await outer)
self.pause

}
}

}

The branches are switched because events from outer take
precedence. Each branch terminates once the corresponding
event stream is disposed. As a result and because of the ab-
sence of a join, the par statement returns as soon as both the
outer the parameter streams have been disposed, disposing
the resulting stream.

6. Routers: imperative event coordination
So far, we have been dealing with abstractions that specify
their dependencies at the point of creation. Whether through
combinator-based composition, signal expressions or flow
reactives, once we create a new reactive, all its dependen-
cies are fully specified by its implementation. In contrast to
observer-based event handling, where clients establish data
flow in different places through side-effects, data flow in re-
active programming is more localized and visible, as argued
in more detail by Courtney in [16]. Even though implemen-
tations are not necessarily functional, e.g., in the context
of flow reactives, dependencies are specified in a functional
way. This is not a necessity, however, for Courtney’s argu-
ment to remain true. We will demonstrate this at the example
of another reactive abstraction in Scala.React, the router.

Consider the task of routing mouse clicks through a con-
trol hierarchy in a GUI framework. A mouse click arriving
from the system is usually dispatched to the control closest
to the leafs but still containing the coordinates of the click.
A functional way to model this is to let every control contain
an event stream of mouse events, filtering the system event
stream based on the control’s bounds. However, this makes
dispatching an Θ(n) operation, with n being the number of
controls in the UI, when it could be an O(d) operation, with
d being the maximum depth of the control hierarchy, amor-
tized usually O(log(n)). The problem with the given func-
tional implementation is that every filtered event stream has
only local knowledge, when there is the global knowledge
that there will be precisely one control receiving the mouse
event.

We can simplify this problem to a demultiplexer, i.e.,
routing a single source event to one of n outputs based on
the event value. A domain where demultiplexers are com-
mon are reactive trading systems, where an event stream of
market data is often partitioned and sent to different targets,
depending on the type of security, for example. A functional
reactive demultiplexer implementation would look as fol-
lows:

val source = EventSource[Int]
val outs: Array[Events[Int]] = Array.tabulate(n) { i =>
source filter { x => x == i }

}

This has the aforementioned problem of an Θ(n) running
time. Using a Scala.React router, we can implement it as an
O(1) operation:

val source = EventSource[Int]
val router = new Router {
val outs = Array.tabulate(n) { i => EventSource[Int] }
def react() {
val x = self await source
outs(x) = x
self.pause

}
}

This implementation of a router uses the data flow DSL to
wait for the source to emit and then redirects the value to the
correct output.

Routers are not only a way to implement certain data de-
pendencies more efficiently, they are also useful for pro-
grammers that are more familiar with an imperative pro-
gramming style. As such, they can be considered a bridge
between observer-based programming and a more declara-
tive reactive programming style that establishes dependen-
cies in a functional way.

7. Implementation

Scala.React proceeds in discrete steps, called (propaga-
tion) turns. It is driven by two customizable core compo-
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nents, the propagator and the scheduler. Both together form
a domain which exposes the public API. External updates,
such as a signal assignment, are forwarded to the thread-safe
scheduler interface which schedules a revalidation request
for the next turn. The scheduler is also responsible for ini-
tiating a turn when one or more requests are available. The
precise details of when and how this happens is up to the
respective scheduler implementation.

Once a turn is initiated by the scheduler, the propagator
takes over, collects all requests, and validates all affected re-
actives. When done, it returns control to the scheduler, which
usually performs some cleanup and waits for further incom-
ing requests. This design allows us to hook into existing
frameworks, which can make certain assumptions in which
context client code is run. For example, Java Swing has a sin-
gle thread policy, requiring (almost) all code to be run on a
single event dispatcher thread. This thread continuously con-
sumes messages from a system-wide event queue. We can let
our propagator run on this thread by implementing a domain
as follows:

object SwingDomain extends Domain {
def schedule(op: =>Unit) =
SwingUtilities.invokeLater(new Runnable {
def run() { op }

})
}

All classes from Scala.React that we have discussed so
far are defined inside trait Domain, which is used as a module.
Singleton object SwingDomain is an instance of that module
and implements abstract method schedule which is invoked
by the reactive engine to schedule new cycles and inject
external updates. In this example, it pushes updates to the
Swing event queue.

7.1 Change Propagation
Our change propagation implementation uses a push-based
approach based on a topologically ordered dependency
graph. When a propagation turn starts, the propagator puts
all nodes that have been invalidated since the last turn into a
priority queue which is sorted according to the topological
order, briefly level, of the nodes. The propagator dequeues
the node on the lowest level and validates it, potentially
changing its state and putting its dependent nodes, which
are on greater levels, on the queue. The propagator repeats
this step until the queue is empty, always keeping track of
the current level, which becomes important for level mis-
matches below. For correctly ordered graphs, this process
monotonically proceeds to greater levels, thus ensuring data
consistency, i.e., the absence of glitches. The basics of this
implementation are similar to the one of FrTime and Flapjax,
described in more detail in [13]. Our implementation differs
in two important aspects. First, our implementation, which
in contrast to FrTime or Flapjax, deals with every language
construct uniformly, needs to deal with graphs whose topol-

ogy can change in unpredictable ways. Second, we also sup-
port lazy validation of nodes, which changes the algorithm
from above. We will discuss theses changes in detail below.

7.2 Strict vs Lazy Nodes
The above description of our propagation algorithm is only
true for nodes that are strictly validated when notified of a
change. We call those nodes strict nodes. A strict node can
avoid propagating to its dependents if a change in a depen-
dency does not necessarily result in the strict node to emit.
Examples of such nodes are events created by Events.filter

or signum signal Strict{ if(x() >= 0) 1 else -1 }. A fur-
ther use case for strict nodes are stateful reactives, such
as event streams created by Events.count or Events.scan.
Such a reactive updates its internal state independently of
whether another node is currently interested in it or not.
Therefore, Event.counts creates an event stream that counts
all events from the input stream. If it would validate only
when queried, it would potentially miss some events. We
find such semantics surprising even though some such as the
event library for F# from [38] or EScala [26], implement
stateful reactives this way.

Lazy nodes are notified by their dependencies eagerly,
but validated only when queried. Examples of such nodes
are events created by Events.map or Events.merge. Their se-
mantics would be the same if they were strict nodes, since
they neither accumulate state nor drop events based on their
value, i.e., they do not have to evaluate their current event
strictly. In contrast to strict nodes, lazy nodes can be used
to create subgraphs that are evaluated only on demand. Lazy
nodes take a slightly different path through the propagator
than strict nodes. While a strict node always ends up on
the queue when notified, a lazy node simply sets an internal
bit that indicates that it has been invalidated if not set yet.
The node is not inserted into the queue for strict evaluation,
but always notifies its dependents when it gets invalidated,
which happens at most once per turn. Since they evade the
propagation queue, lazy nodes have a performance advan-
tage over strict nodes as we will see in Section 9. Their dis-
advantage over strict nodes is that they have to notify their
dependents regardless of whether they will actually emit or
not, since they cannot determine their current value until
evaluated. This is not an issue for some event combinators
as mentioned above, but for expression signals, clients can
choose between lazy and strict signals by using either the
Strict {...} or Lazy {...} constructor. Note that we are us-
ing the standard Signal{...} constructor throughout the pa-
per to indicate when details we discuss are independent of
the evaluation strategy. Clients can override it to create lazy
or strict signals per default.

Flow reactives are always strict nodes, since the frame-
work generally needs to assume that they evaluate code with
side-effects in reaction to an event. Consider the data-flow
implementation of Events.take from Section 5.2 for an ex-
ample.
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7.3 Signal Expressions and Opaque Nodes

A signal of the form Signal { a() + b() } creates a graph
node that captures its dependencies inside a closure. In con-
trast to other systems, we neither use an explicit lifting
mechanism that lifts regular functions, such as the + opera-
tor in the example to the signal domain such as in Flapjax or
Fran [19, 33] nor do we use a macro system to perform lift-
ing automatically as in FrTime [13]. These previous imple-
mentations have in common that every language construct,
such as function application, conditional expressions, loops
and exceptions, needs to be treated specially before they can
be used in a reactive system. We use an approach instead,
that is completely agnostic of any language feature, which is
extremely valuable in an evolving language which also sup-
ports user definable control flow operators.

In Scala.React, signals created with a closure as above,
are completely opaque to the framework. It does not know
anything about the signal’s dependency structure in advance.
The same is true for flow reactives or reactors. Such nodes
are flagged as opaque. Nodes that are not opaque are gener-
ally those created using combinators such as map or filter.

When constructing signal Signal { a() + b() }, we are
in fact calling method

def Signal[A](op: =>A): Signal[A]

with argument { a() + b() }. The Scala compiler rewrites
expressions a() and b() to method calls a.apply() and
b.apply(), which becomes important below. The arrow no-
tation =>A makes op a call-by-name argument that evaluates
to values of type A. This means the sum expression gets
converted to a closure and is passed to the Signal method
without evaluating it. This is how we capture signal expres-
sions. The actual evaluation happens in the Signal.apply

method which returns the current value of the signal while
establishing signal dependencies. It maintains a stack of de-
pendent reactives that are used to establish dependencies. A
signal s is either valid or has been invalidated in the current
or a past propagation turn. If s is valid, Signal.apply takes
the topmost reactive from the dependents stack without re-
moving it, adds it to its set of dependents and returns its own
current valid value. If s is invalid, it additionally pushes it-
self onto the dependent stack, evaluates the captured signal
expression, and pops itself from the stack before returning
its current value. This way, signals further downstream will
add s to their dependencies.

For some language expressions, such as conditional oper-
ations, dependencies are dynamic. Consider signal

val s = Signal { if(c()) a() else b() }

Signal s should ideally ever depend only on two signals:
on signal c and also on signal a if c is true, otherwise on
c and b. Therefore, when a node notifies its dependents of a
change, it removes all dependents that are flagged as opaque.
In the example, once a notifies s of a change, it removes s

from its dependent set. If, in the meanwhile, c has changed
to false, s will be added to b but not to a again, since it
does not evaluate a.apply in this case. Note that this is a
slight compromise to the ideal case. If c changes, s is not
automatically removed from a or b, but only next time a or
b change. Dependency tracking for a dynamic opaque node
can hence over-approximate until the next change occurs in
a node that it logically does not depend on anymore. This
approach, however, works with any control flow operation,
either built-in or user-defined. We therefore trade a bit of
redundant computation for the benefits of a single general
implementation.

The technique we describe here is somewhat related to
lowering for FrTime as described by Burchett in [9]. In con-
trast to Burchett’s approach, we use it as our principal com-
position mechanism at runtime and not as an optimization
pass at compile time after all dependencies are known from
a macro-based lifting. Moreover, we keep track of dynamic
dependencies, whereas in [9], a lowered signal depends on
the union of its potential statically known dependencies, i.e.,
the conditional signal from above would depend on a, b and
c at any time. Most importantly, our implementation is gen-
eral, whereas lowering needs to be adapted for all kinds
of language expressions. For example, in contrast to lower-
ing, our approach handles runtime dependencies and higher-
order programming without further adaptation. Consider the
following function, which creates the reactive sum of a run-
time list of integer signals:

def sum(xs: List[Signal[Int]]) = Signal {
xs.foldLeft(0) { (sig, sum) => sig() + sum }

}

This cannot be lowered with the approach from [9] because
the lowering operator needs to know all of the resulting de-
pendencies., which is not possible in the example. The same
is true for virtual methods for which the optimizer cannot
predict the signal they return. Also consider the following
example, dealing with higher-order signals:

class RPoint { val x, y: Signal[Int] }
val p1, p2: Signal[RPoint] = ...
val x = Signal {
if(p1() != null) p1().x() else p2().x()

}

This chooses a coordinate signal from one of two points,
based on a standard null pointer check. If we would need
to evaluate the branches in the example eagerly in order to
determine all of x’s potential dependencies, we would need
to be careful to avoid a null pointer exception.

We find it therefore important to preserve the evaluation
order of different language constructs, such as conditional
evaluation in if expressions or short circuit semantics in
boolean operations. A final consideration is that with our
approach the creation of reactive nodes is transparent to the
programmer, whereas when performed as an optimization,
the number of nodes created is less predictable.
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7.4 The imperative data-flow language
Our data-flow DSL is implemented in terms of Scala’s de-
limited continuations [41]. The core CPS functionality is im-
plemented in trait FlowReactive:

trait FlowReactive[P, V] extends Reactive[P, V] {
private var _continue =
() => reset { body(); doDispose() }

def body()
...

}

A FlowReactive keeps track of its internal program counter
by maintaining a reference to its continuation. Note that syn-
tax () => e defines a closure with zero parameters and body
e. The initial continuation runs method body which contains
a flow reactive’s implementation. While running, the body
is capturing further continuations which are delimited by
the surrounding call to reset from Scala’s continuation sup-
port library. The initial continuation finally performs some
cleanup, such as removing all dependents.

Trait FlowReactive also defines three helper methods,
which are used to implement our data flow operators. Method
shiftAndContinue captures the current continuation, trans-
forms it, essentially inserting code between the current and
the next expression, stores the continuation and then runs it.
Storing it before running it is necessary because of potential
level mismatches, which we will discuss in Section 7.6.

def shiftAndContinue[A](body: (A => Unit) => Unit) =
shift { (k: A => Unit) =>

_continue = () => body(k)
_continue()

}

Method shift, like reset from above, is part of the continu-
ation library in Scala. It captures the current continuation k,
passing it to the supplied function, which in this case stores
and runs a transformed version of k.

Method continueLater captures a given continuation k

and tells the framework to evaluate the current flow reac-
tive in next turn. Evaluating a flow reactive simply means
running the previously stored continuation:

def continueLater(k: =>Unit) = {
_continue = () => k
evalNextTurn(this)

}

Method continueWith runs a given continuation until the
next suspension point and returns the remaining continua-
tion. It stores a given function as a continuation, runs it and
returns the remaining continuation. Note that the continua-
tion itself usually modifies the stored continuation, so the re-
sulting continuation will be different from the supplied func-
tion.

def continueWith(k: => Unit): (()=>Unit) = {

_continue = () => k
_continue()
_continue

}

Our data flow operators are implemented in terms of these
methods. Method pause, which suspends until in the next
turn, simply captures and passes the current continuation to
continueLater:

def pause = shift { (k: Unit => Unit) =>
continueLater { k() }

}

Method halt, which stops the flow reactive entirely, captures
the current continuation, throws it away, and performs some
cleanup, such as removing all dependents:

def halt = shift { (k: Unit => Unit) => doDispose() }

Method await uses shiftAndContinue to insert code that
checks whether its input is emitting and if so, continues
with the value from the input. Otherwise, it (re)subscribes
the flow reactive to the given input and suspends, waiting to
get notified by the input.

def await[B](input: Reactive[B, Any]): B =
shiftAndContinue[B] { k =>
input.ifEmittingElse { p => k(p) }

{ input subscribe this }
}

Method ifEmittingElse {then} {els} runs the then branch
in reaction to an emitted value or the els branch otherwise.
Since a flow reactive is opaque and does not manage its de-
pendencies on its own, it gets unsubscribed when notified by
input. Moreover, as lazy nodes can notify their dependen-
cies even though they might not emit, we have to repeatedly
call subscribe inside the closure passed to shiftAndContinue.
This approach ensures that our flow reactive is always un-
subscribed after await has returned.

More complicated control flow can be implemented in
terms of operators par and join. Method join replaces the
current continuation with a function stored in a separate
variable, which becomes important in the implementation of
par.

var _join = () => ()
def join = shiftAndContinue[Unit] { k => _join() }

Method par repeatedly runs (and resumes in another turn
after being suspended) two branches in succession, until
both are finished evaluating, or returns once a branch calls
join. We introduce a counter variable latch that we use to
take care of these two return condition:

def par(left: => Unit)(right: => Unit): Unit =
shiftAndContinue[Unit] { exitK =>
var latch = 2
val doJoin = { () => latch = 0 }
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def evalBranches(left: => Unit)(right: => Unit) ...

evalBranches { reset { left; latch -= 1 } }
{ reset { right; latch -= 1 } }

}

We capture the continuation after the par statement, called
exitK. We introduce a fresh latch variable that indicates
how many branches have finished. We set the continuation
variable used by join to a closure that sets latch to zero,
indicating that both branches are forced to terminate. We
then wrap both branches in separate reset calls to delimit
the continuation scope in the branches. We also count down
the latch variable at the end of each branch to indicate that
they have finished. Evaluation of the branches is handled by
local function evalBranches, which is defined as follows:

def evalBranches(left: => Unit)(right: => Unit) {
val oldJoin = _join
_join = doJoin
val leftK = continueWith(left)
if (latch > 0) {
val rightK = continueWith(right)
_join = oldJoin
if (latch > 0) {
_continue =
() => evalBranches { leftK() } { rightK() }

} else exitK()
} else exitK()

}

In order to be able to deal with nested par statements, we
first replace the old join closure with the one that captures
the correct latch variable. Then we evaluate the left branch
and if latch indicates that we should continue, we evaluate
the second branch. For each branch, we save the remaining
continuations in leftK and rightK. It is important that wrap
each branch in a reset call above so they are delimited cor-
rectly and don’t capture anything beyond the par statement.
Then we reinstall the old join closure for potential join calls
in a surrounding par statement to work correctly. If the cur-
rent par statement hasn’t terminated yet, we store a continu-
ation that evaluates the rest of the branches. If we encounter
that the par statement should terminate, we call exitK, the
continuation starting after the par statement.

Other high-level data-flow expressions can be written in
terms of the above operators. Loop operator loopEndUntil

that loops until a given reactive emits, but always finishes
the loop body first, can be implemented as follows:

def loopEndUntil[A](r: Reactive[A, Any])
(body: =>Unit): A = {

var done = false
par { await(r); done = true }

{ while (!done) body }
r.getPulse

}

One branch waits for the input to emit and then sets vari-
able done which is used as the loop condition in the second
branch.

Method abortOn is a variation of this, but instead of main-
taining a condition variable, we can use the join operator to
abort the second branch immediately.

def abortOn[A](input: Reactive[A, Any])
(body: =>Unit): Unit =

par { await(input); join }
{ body; join }

Note that the order of branches for both loopEndUntil and
abortOn determine a subtle semantic detail. The given or-
der makes sure that the abortion condition holds in the same
turn in which the input emitted. If the branches were ex-
changed, loopEndUntil might still start the body once more
and abortOn might still run a slice of the loop body in the
same turn in which the input emitted.

Now, we can implement loopUntil either using par di-
rectly, or use abortOn to abort the loop immediately:

def loopUntil[A](r: Reactive[A, Any])
(body: =>Unit): A = {

abortOn(r) { while (true) body }
r.getPulse

}

When validated during a propagation turn, a data-flow re-
active simply runs its current continuation saved in variable
continue, which initially starts executing the whole body of
the reactive.

7.5 Routers
A router ends up as a dependency node in the graph, one
level higher than the maximum of its dependencies. They
are managed the same way as other reactives. A source
reactive such as an EventSource or a Var that is created inside
a router is not on level 0 as usual, but on a level above
the router. Source reactive constructors know where they
are created by using an implicit argument. Method Var, for
instance, actually accepts an additional implicit argument
owner that is automatically passed in by the compiler when
one is in scope. The default argument specifies the domain
object as the owner. Inside a router, however, the router
overwrites the implicit owner with itself, which creates the
correct dependency structure.

7.6 Level Mismatches
Opaque nodes, such as expression signals or flow reactives,
for which the framework does not know the dependency
structure, can access arbitrary dependencies during their
evaluation which can change from turn to turn. We there-
fore need to prepare for an opaque node n to access another
node that is on a higher topological level. Every node that
is read from during n’s evaluation, first checks whether the
current propagation level which is maintained by the prop-
agator is greater than the node’s level. If it is, it proceed
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as usual, otherwise it throws a level mismatch exception
containing a reference to itself, which is caught only in the
main propagation loop. The propagator then hoists n by first
changing its level to a level above the node which threw the
exception, reinserting n into the propagation queue (since
it’s level has changed) for later evaluation in the same turn
and then transitively hoisting all of n’s dependents.

For simple expression signals, this approach can result in
redundant evaluation since a signal is evaluated from the be-
ginning. The following signal can therefore increase counter
i twice when the level of the given signal sig changes:

def countChanges(sig: Signal[Any]) = {
var i = 0
Signal { sig(); i += 1; i }

}

Expression signals should therefore never perform external
side-effects.

For flow reactives, our CPS-based implementation en-
sures that the current continuation is always captured be-
fore a level mismatch can happen. When reevaluated later in
the same turn, they continue at the point where a mismatch
exception was thrown. Therefore, no branch is evaluated
redundantly. Without this important invariant, we wouldn’t
be able to use local variables inside flow reactives. We can
therefore safely rewrite the above signal to

def countChanges(sig: Signal[Any]) = {
var i = 0
Signal.loop(0) { self =>
self awaitNext sig()
i += 1
self()= i

}
}

For reactors, as their purpose is to perform non-local side-
effects, it is important that their evaluation never aborts.
Since reactors cannot have dependents, they can always have
maximum topological level, so this requirement is easily
satisfied.

We could use continuations for signal expressions as well.
When discovering a topological mismatch, instead of abort-
ing and rescheduling the entire evaluation of the signal, we
would reschedule just the continuation of the affected signal
and reuse the result of the computation until the topological
mismatch was discovered, captured in the continuation clo-
sure. Unfortunately, this approach is too heavyweight on a
runtime without native CPS support.

7.7 Avoiding a memory leak potential of observers
Internally, Scala.React’s change notification is implemented
in terms of observers. We do expose them to clients as a
very lightweight way to react to changes as we have seen
in Section 2. Stepping back for a moment, one might be
tempted to implement a foreach method in Events or even

Reactive and use it as follows to print out all changes in
event stream es:

class View[A](es: Events[A]) { events foreach println }

This usually leads to a reference pattern as shown in Fig-
ure 1. The critical reference path that goes from the reactive

Reactive
Object

Observing

Object
Event Observer

Figure 1: Common observer reference pattern.

object to the observing object is often not visible, since ob-
serving objects typically abstract from their precise depen-
dencies. For every observing object we want to dispose be-
fore its dependencies are garbage collected, we would need
to switch to explicit memory management. This constitutes a
common potential for memory leaks in observer-based pro-
gramming [8] and is an instance of the issue of explicit
resource management we identified in the introduction. A
common solution is to break all reference cycles by replac-
ing the strong reference from event to observer by a weak
one as depicted in Figure 2. This only partially solves the

Reactive
Object

Observing

Object
Event Observer

Figure 2: Reference pattern in Scala.react

problem, though. It is now the client’s responsibility to es-
tablish a strong reference from the observing object. Failing
to do so can lead to a premature reclamation of the observer.

We propose a novel implementation based on Scala’s
traits that moves this responsibility into the framework. Any
observing object needs to mix in the following Observing

trait. It is important to note that clients have no other pos-
sibility to create observers so we guarantee that no object
involved is disposed prematurely.

trait Observing {
private val obRefs = new Set[Observer]

abstract class Observer extends react.Observer {
obRefs += this
override def dispose() {
super.dispose()
obRefs -= this

}
}

protected def observe(e: Events[A])(op: A=>Unit) =
e.subscribe(new Observer {
def run() { op(e message this) }

})
}
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Method observe actually creates an observer that automat-
ically adds itself to an observer set of the enclosing object
during constructionMethod dispose is still supported, but
must also remove the observer reference from the enclos-
ing object. Instead of using foreach, we can now write the
following:

class View[A](events: Events[A]) extends Observing {
observe(events) { x => println(x) }

}

An instance of class View can now be automatically collected
by the garbage collector once clients do not hold any ref-
erences to it anymore, independently from the given event
stream and without manually uninstalling its observer.

7.7.1 Weak Forward References
In fact, all forward references, i.e., from nodes to their de-
pendents, are held in weak references. Recreating them in
dynamic graphs was a major source of garbage in previous
implementations of Scala.React. Currently, we ensure that
there is only ever at most a single weak reference object to
any node in the dependency graph. Note that we cannot use
a HashMap for pooling weak references, since a HashMap
creates additional garbage, defeating our goal. Instead, every
node that can have dependencies stores a reference to a weak
reference to itself when needed.

This reduces the number of objects for nodes with mul-
tiple dependencies for static graphs. More importantly, it
largely reduces the garbage created in dynamic graphs with
opaque nodes and also reduces the work that needs to be
done by the weak reference support infrastructure.

8. Further Examples
8.1 Unifying blocking and non-blocking APIs
Some frameworks provide two different APIs for similar
functionality, one blocking and one non-blocking. Usually,
while the blocking interface is a simple blocking function
call, the non-blocking interface relies on callbacks. In Java
Swing, e.g., dialog windows can be modal or modeless.
Modal dialogs block the event dispatcher of the whole ap-
plication, until they are closed. Modeless dialogs process
events concurrently. Converting between modal and mode-
less dialogs during development is a cumbersome task, since
the code dealing with user input has to be changed. Using
our imperative data flow language, this problem can be elim-
inated completely. To open a simple dialog that expects a
positive or negative answer, we can define a common method
ask that expects a self reference as in a flow reactive to ob-
tain a handle to the data flow DSL and a message string. A
blocking implementation simply uses a standard Swing op-
tion pane:

def ask(self: DataflowOps, msg: String) =
JOptionPane.showInputDialog(null, msg,

JOptionPane.YES_NO_OPTION)

whereas the non-blocking version uses a method openDialog

that redirects answers in a modeless Swing dialog to an event
stream:

def ask(self: DataflowOps, msg: String) =
self await openDialog(msg)

def openDialog(msg: String): Events[String] = {
val dialog = new JDialog(null: JFrame, msg)
val es = EventSource[String]
// bind es with Swing listeners
es

}

We can now simply write

Reactor { self =>
val answer = ask(self, "Ready to submit request?")
...

}

and switch between blocking and non-blocking implemen-
tations without changing client code.

8.2 Reactive Painting
We can use the dynamic dependency creation using depen-
dent stacks in contexts other than signal expressions. Con-
sider the task of painting a GUI control whose visual rep-
resentation depends on a number of signals. An example is
the fish eye demo, based on an example from the FrTime
distribution. It paints a grid of dots that change their size de-
pending on their proximity to the mouse pointer. The size
of the grid, as well as the distance between dots if config-
urable, represented by integer signals. The size of each dot
is represented by a two dimensional array of integer signals.
Our Java Swing drawing code simply looks as follows:

def draw(g: Graphics2D) {
val d = dist()
val g = gridSize()
for (x <- 0 until g) {
for (y <- 0 until g) {
val size = sizes(x)(y)
val s = size()
g.fillOval(x * d - s/2, y * d - s/2, s, s)

}
}

}

This draws the grid and automatically establishes dependen-
cies to signals dist, gridSize and each size signal. Note that
the size signal can change when the grid size changes. De-
pendencies are automatically adapted, since we will iterate
over different size signals when grid size change.

Method draw is an implementation of a template method
in a custom Swing component class RCanvas. RCanvas wraps
calls to draw in a call to observeDynamic from trait Observing.
It is a variant of the observe method we have seen, but es-
tablishes dependencies using the dependent stack instead of
specifying them explicitly. A dynamic observer created this
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way works like an expression signal but like all observers are
leaf nodes that never abort, so it safe to call drawing code
when evaluating.

8.3 Calculator
An FRP implementation of a simple calculator is one of the
standard demos that can be found on the Flapjax website4.
The event handling logic of the Flapjax example is non-
trivial, using 16 reactive combinators, and creates as many
reactive nodes, some of which are higher-order. The corre-
sponding event handling code for a calculator in idiomatic
Scala.React is as follows:

val digits: Events[Int] = ...
val ops: Events[Int]
val operators: Array[Double=>Double=>Double] = ...
val display: Signal[Double] = {
var f = { x:Double => x }
Signal.loop(0.0) { self =>
val op = self.loopUntil(ops) {
self()= 10*self.previos + (self await digits)

}
f = operators(op)(self.previos)
self()= f(now)
self.loopUntil(digits) {
f = operators(self awaitNext ops)(self.previos)

}
}

}

Entered digits arrive at stream digits. Binary operators are
stored as curried functions in array ops, with operator inputs
arriving at ops indexing into the array. The display signal
holds the contents of the display. It starts by receiving digits
updating the display until an operator is entered. Then it
stores that operator in an internal function and proceeds
receiving operator inputs until the next digit is received. This
code is equally dense to the Flapjax implementation and less
than half of its size. Its imperative nature directly reflects the
state machine character of this example and creates only a
single reactive node at runtime.

9. Evaluation and Discussion
We will now show further examples and benchmark results.
As it is not very meaningful to compare absolute perfor-
mance across languages and platforms, we show how our
examples perform relative to a baseline implementation in
terms of observers on the same platform. This gives us an
indication – and by no means evidence – how viable in terms
of performance a reactive implementation is compared to an
observer-based one. All measurements were done on a Mac-
bookPro Late 2011, i7 2.4 Ghz, 8GB RAM on Mac OS X
10.7 with Scala 2.9.1 (with optimizations enabled) on Or-
acle’s Java 1.6 update 31. Flapjax examples were run in
Chrome 15.0 with the latest Flapjax version as of April 7th,

4 http://www.flapjax-lang.org/try/index.html?edit=calc.html

2012 from [39], optimized with Google’s closure compiler.
All numbers are steady state performance after a proper
number of warmup iterations. We follow the general guide-
line and measure across multiple invocations of the VM [27].

9.1 Reactive Chains and Fans
This simple benchmark measures the time it takes to prop-
agate a single event along a linear chain and a fan of reac-
tives compared to a very simple observer implementation.
The reactive dependency graphs are depicted in Figure 3.
This test gives an indication of the overhead of the differ-
ent lifting mechanisms and how much time the framework
spends to ensure data consistency. We implement the same
functionality for EScala [26], Scala.React and Flapjax [33].
For the observer implementation, we have implemented a
basic Observable class that stores registered observers in an
array and notifies them when changed. For the linear chain,
one observable always notifies a single other observable. For
the fan, one observable notifies n other observables, which
then notify one other observable each that accumulates the
result. For EScala, which supports first-class events but no
signals, we derive events from a source using the map combi-
nator. We run 4 variants for Scala.React, composing events
with map, which returns a lazy reactive, with collect, which
returns a strict reactive, and finally composing signals us-
ing the Lazy and Strict constructors from Section 7.3. We
run 2 variants for Flapjax, one using events composed with
map and one using behaviors (Flapjax’s time-varying value
abstraction) using Flapjax’s built-in lifting mechanism.

source

observer

source

observers

Figure 3: Dependency graphs for reactive chains and fans.

9.1.1 Results
Results can be found in Figures 4 and 5. We are mostly
interested in relative performance as shown in Figure 5
but include absolute numbers for reference. Naturally, the
observer-based implementation beats every other implemen-
tation on the same platform by quite some margin.

Even though we deal with one more level of indirection in
Scala.React compared to Flapjax or EScala, by using weak
forward references, our implementations compared to the
corresponding implementations in Flapjax and EScala per-
form well. In EScala, the task to ensure data consistency is
fundamentally easier, since it only supports events and no
higher-order combinators, no dynamic graphs and all depen-
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dencies are known in advance. Yet, our general implementa-
tion is slightly faster for event streams.

Performance for signals in Scala.React is worse than us-
ing event combinators due to the use of a dependent stack
and continuous resubscription as discussed in Section 7.3.
Fortunately, the overhead seems negligible for lazy signals.
By contrast, strict signals have a fairly high overhead, we as-
sume due to the fact that they evaluate the paths through the
graph piecewise, instead of in one large call chain initiated
by the installed observers that accumulate the result. We ad-
mit, however, that it is difficult to pin down the exact reason
due to runtime optimizations by the VM.

Our corresponding propagation and lifting mechanisms
perform well when compared to Flapjax. Scala.React is
about factor 3 faster for events chains, and from factor 5
to about factor 7 for signal chains (both in terms of absolute
and relative performance). For fans, Scala.React is relatively
faster by factor 4 to 10.
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Figure 4: Propagation performance of a single event through
a linear chain of 100 nodes (blue/left) or a fan with a fanout
of 100 (red/right) in 1000 events propagated per second.

9.2 Dragging and General Sequencing
We compare the performance of our imperative dataflow
implementation to an alternative implementation using an
FRP-style combinator approach, which can be found in [33].
In Scala.React, an equivalent FRP implementation looks as
follows.

val moves = mouseDown.map { md =>
mouseMove.map { mm => new Drag(mm) }

}
val drops = mouseUp.map { mu => Events.Now(new Drop(mu)) }
val drags = (moves merge drops).flatten

This creates two event streams moves and drops of type
Events[Events[T]] with T being a base type of Drag and Drop.
We then merge the two streams and use our previously de-
fined flatten combinator to switch between them5. Once the
5 In some FRP implementations flatten is called switch
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Figure 5: Relative performance to the respective observer-
based implementation from Figure 4

mouse up event is received, the singleton stream Events.Now,
which emits a single event immediately, shuts down the
mouse move events in the flattened result.

One problem with this FRP dragging implementation is
the repeated creation of inner event streams in the moves

stream. Even though event streams created by the map combi-
nator are lazy in Scala.React, and flatten makes sure that it
only ever reacts to changes in the current inner stream, every
mouse down event nevertheless creates one new dependent
node for the mouseMove stream. Therefore, for every mouse
down event, there will be more work to do, until the garbage
collector decides to collect those dangling dependents. Note
that in contrast to Flapjax, in Scala.React the garbage collec-
tor can indeed collect those dependents because the are only
weakly referenced by mouseMove, as discussed in Section 7.
This problem is actually an amplification of the problem of
explicit resource management with observers that we enu-
merated in the introduction.

In the present case, we can improve, yet not entirely fix
the code by pulling out the instantiation of the inner event
stream:

val inner = mouseMove map { mm => new Drag(mm) }
val moves = mouseDown map { md => inner }
...

Unfortunately, we still have a dependent for all mouse
moves, not only those between pairs of down and up events.
Moreover, in case the inner stream would depend on the
event md from the outer stream, pulling out the inner stream
is not possible without introducing external mutable vari-
ables. For example, if we want drag event coordinates to be
relative to the mouse down coordinates, our code would look
as follows:

var pos0 = 0
val inner = mouseMove map { mm =>
new Drag(pos0 - mm.pos)
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}
val moves = mouseDown map { md =>
pos0 = md.pos
inner

}
...

If we want to stay purely functional, we would have to use a
different set of combinators, potentially writing our own. We
conclude that dealing with event sequences in a functional
reactive way can become complicated. In particular, dealing
with higher order event streams efficiently is an important
issue that programmers need to be aware of.

Our data-flow formulation of the same problem, which is
very similar to our running example and therefore won’t re-
peat here, avoids this problem entirely without using higher
order event streams. Dependents and internal callbacks are
deactivated as soon as possible. Performance issues aside,
we also argue that the source code is easier to understand, at
least for programmers not used to a functional style.

One can discuss how valuable our measurements we
present below are for a dragging example where the event
load is inherently limited. Note, however, that this prob-
lem is just one instance of correlating a sequence of events,
which is common in many other domains with higher event
loads such as RFID tracking, fraud detection, patient moni-
toring or industrial control systems. We mainly focus on the
dragging example because there is an FRP implementation
available that was written by a third party.

9.2.1 Results
Results can be found in Figure 6. They give the relative run-
ning times in relation to a corresponding observer-based im-
plementation on the same platform. One iteration simulates
a mouse down, followed by 10 mouse moves, followed by
1 mouse up event, followed by n mouse move events, with
n varying along the horizontal axis. This means we increase
the number of events that should not be considered for a drag
operation.

The original FRP implementation in Scala.React, repeat-
edly creating new dangling dependents improves over time
in relation to the observer implementation. As the garbage
collector keeps the number of those unnecessary dependents
nearly constant, the absolute running time stays at a nearly
constant low, relatively independent to the event load.

The two fastest implementations are the improved FRP
and flow implementations in Scala.React approaching factor
0.7 for high event loads. For low event loads, the flow im-
plementation is slightly slower because it creates more clo-
sures internally and repeatedly un- and resubscribes depen-
dents. This overhead becomes less apparent for high event
loads, also because the improved FRP implementation still
maintains one unnecessary dependent between mouse up
and down events.

For Flapjax, we only give results for an improved im-
plementation, since the original version creates too many

dangling references that are never disposed due to the lack
of weak references in Javascript. The improved Flapjax
implementation has a much higher overhead compared to
the corresponding observer implementation than the two
Scala.React implementations.

We do not provide results for EScala because it lacks sup-
port for higher-order event streams, imperative dataflow or
similar facilities that would allow us to implement recogniz-
ing event sequences conveniently.

Figure 6: Dragging performance of different implementa-
tions relative to an observer-based implementation on the
same platform.

9.3 Demultiplexer
Figure 7 shows that the router implementation of a demulti-
plexer has constant speed with respect to the number of out-
puts. The FRP implementations in Scala.React and EScala
are generally slower even for smaller number of outputs. The
EScala implementation runs faster than Scala.React using
filter, since the filtering operation in EScala is lazy whereas
in Scala.React, it is strict. We have discussed the benefits of
a strict filter implementation in Section 7.2.

Figure 7: Demultiplexing a single event to a number of
outputs.
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10. Related Work
Scala.React combines ideas from imperative data-binding
systems, functional reactive programming and synchronous
data-flow languages [29].

Our imperative data-flow language is inspired by syn-
chronous data-flow languages such as Signal [4], Lus-
tre [28], and in particular Esterel [6]. Like Scala.React,
they are glitch-free but unlike our work, they are used to
implement realtime systems and lack features from gen-
eral purpose languages so that they can be compiled to
state machines. They work with built-in types only and
lack higher-order features, which makes them less expres-
sive than Scala.React. Colaço et al. [12] discuss some work
towards a Lustre with higher-order features. Our data flow
language kernel is similar to Esterel’s, but implemented in
terms of continuations in multi-valued domains. See [5] for
an overview of different Esterel kernels.

Imperative data-binding systems such as JavaFX [36]
or Adobe Flex [2] provide a way to bind expressions to
variables. This is similar to programming with signals in
Scala.React. Without a first-class notion of time-varying val-
ues and events, however, those systems often lack important
abstraction mechanisms and need to revert to inversion of
control for complex event logic. Our dependency manage-
ment with dependent stacks is similar to JFace Data Bind-
ing [43] but does not use thread-locals since our turn-based
scheduling makes sure that there is only a single propagation
thread active at a time.

First-class signals and event streams and the combinator-
based component of Scala.React originate from functional
reactive programming (FRP) which goes back to Conal
Elliott’s Fran [20]. Earlier designs suffered from memory
leaks and have since been revised [19]. Scala.React com-
bines ideas from a variety of FRP implementations such
as FrTime, Flapjax and Frappé [14, 15, 33] that differ in
programming interfaces, evaluation models and semantics
details. Our discrete, push-based evaluation model is similar
to FrTime’s [13], also used by Flapjax. Our approach shares
some similarities with FrTime after a lowering optimiza-
tion pass ([9]), as discussed in detail in Section 7.3. Unlike
FrTime or Flapjax, however, Scala.React supports not only
strict but also lazy evaluation of nodes. Some FRP imple-
mentations allow side-effects internally in order to integrate
with existing imperative toolkits. Unlike any FRP system,
Scala.React embraces imperative reactive programming in
its API that allows clients to implement complex event
logic without inversion of control or use of higher-order
abstractions as discussed in Section 9. Unlike all FRP sys-
tem known to us, Scala.React integrates with the full range
of the host language’s features without specific adaptation
through special purpose combinators or compilation. This is
particularly attractive in an evolving and extensible language
such as Scala as elaborated in Section 7.3. Some FRP im-
plementations, such as FrTime, use weak forward references

similar to Scala.React. Our approach to bind the life time of
observers to an observing object, however, is novel to our
knowledge. F# has been extended in [38] with FRP-style
and imperative data-flow programming abstractions. Unlike
Scala.React, this work does not support time varying values
or synchronous semantics. It defines a garbage collection
scheme that is an alternative to our Observing trait approach
and results in stateful reactive combinators such as take,
scan or hold whose semantics vary depending on whether
observers are installed or not.

The Rx.Net framework can lift C# language-level events
to first-class event objects (called IObservables) and pro-
vides FRP-like reactivity as a LINQ library [34, 44]. In con-
trast to FRP or Scala.React, it is not glitch-free.

Ptolemy [40] and EScala [26] support an event notion
through a combination of implicit invocation (II) and aspect-
oriented programming [42]. As opposed to our work, the
original motivation behind II is to decouple system com-
ponents by embracing inversion of control. In contrast to
Scala.React, EScala is a language extension to Scala in-
stead of a library, and blurs the aforementioned distinction
by supporting basic built-in event combinators. Clients can
explicitly trigger events but also use AOP point cuts to trig-
ger events implicitly at different points in the control flow.
Since EScala exclusively support events as reactive abstrac-
tions and all dependencies are static and known at compile-
time, the task to ensure data consistency is fundamentally
easier. It propagates in two phases. It first collects reactions
for every node and then executes them. Moreover, EScala
propagates lazily, i.e., as in F#’s event implementation [38]
stateful combinators have different semantics depending on
whether they are leaf nodes or not.

In contrast to Scala.React, neither Ptolemy or EScala sup-
port signals, imperative data-flow and rely on inversion of
control for more complex event logic. For a deeper compar-
ison of the systems in this research area, we refer to [26]. In
many of the aforementioned OOP systems, such as EScala,
Flapjax and Frappé, forward references are strong, i.e., they
suffer from the problems we mention in Section 7.7.

SuperGlue [32] is a declarative object-oriented compo-
nent language that supports a signal concept similar to that
found in Scala.React. For signal connections, SuperGlue dif-
fers by following a declarative approach closer to constraint
programming as in the Kaleidoscope language family [24].
For example, SuperGlue provides guarded connection rules
and rule overriding which is a simple form of Kaleidoscope’s
constraint hierarchies [7].

Adaptive functional programming (AFP) [1] is an ap-
proach to incremental computation in ML. It is related to
Scala.React as it also captures computation for repeated
reevaluation in a graph. AFP has been ported to Haskell [10]
using monads. Our CPS-based representation of data-flow
programs is related to this effort and other monadic imple-
mentations because any expressible monad has an equivalent
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formulation in continuation passing style [22, 23]. The AFP
dependency graph and propagation algorithms are much
more heavyweight than Scala.React’s being based on time
stamps and a selective replay mechanism.

Our imperative data-flow reactives share certain char-
acteristics with complex event processing (CEP) systems
such as TelegraphCQ [11], SASE [46], Cayuga [18]. These
systems use custom query languages similar to SQL [17]
to recognize event patterns from multiple sources. Queries
can often be stateful, similar to imperative data-flow re-
actives, but are not designed for external side-effects but
to compose complex events out of simpler ones. CEP sys-
tems are usually optimized for large-scale stream processing
while our implementation is targeted towards general pur-
pose event systems. EventJava [21] is a CEP system that ex-
tends Java with an event notion and declarative expressions
for event correlation. EventJava’s events are special meth-
ods that are either called directly or based on their enclosing
type, i.e., the programming model is fundamentally different
from Scala.React and embraces a certain degree of inversion
of control. It further differs from our work in that it requires
its own compiler and is stream-oriented and asynchronous.
There are many more similar CEP or publish/subscribe sys-
tems that we cannot mention due to space reasons. They
are usually implemented as a language extension and favor
a certain programming paradigm and reactive abstraction,
while Scala.React provides a wider range of abstractions that
support reactive programming in multiple paradigms.

Our imperative data-flow reactives (and reactors) share
certain similarities with actors [3, 30]. Actors run concur-
rently and communicate with each other through messages.
In contrast to our reactors and reactives, actors are asyn-
chronous. State transitions and data availability are synchro-
nized among reactives, whereas actors behave as indepen-
dent units of control, i.e., there is no notion of simultane-
ity and order of message arrival across actors is unspecified
(apart from a notion of fairness). Actors communicate with
each other directly, whereas reactives broadcast to a dynamic
set of dependents.

11. Conclusion
We have demonstrated a new method backed by a set of
library abstractions that allows transitioning from classical
event handling with observers to reactive programming ab-
stractions. The key idea is to integrate basic event handling
with observers, function reactive programming and an em-
bedded higher-order data flow language into a single frame-
work. Programmers can choose between abstractions that
suit their need. When a more declarative solution is not obvi-
ous or less efficient, they can always revert to lower-level ob-
servers or imperative abstractions such as routers. Different
aspects of our system address different software engineering
principles we identified in the introduction:

Uniformity/Abstraction First-class polymorphic events and
signals, generalized to reactives, offer lightweight, reusable
and uniform interfaces. Low-level observers, reactors and
flow reactives work the same way, regardless of the pre-
cise representation of their dependencies.

Side-effects/Encapsulation Reactors and flow reactives en-
capsulate complex event logic such as in the dragging ex-
ample without exposing external state.

Resource management Observer life-times are automati-
cally restricted by the Observing trait. Our data-flow lan-
guage ensures that internal observers are disposed when
no longer needed.

Composability Reactives can be composed with signal ex-
pressions, functional combinators or imperative data-
flow. That way we can obtain a handle to an entity repre-
senting a single feature instead of multiple loosely cou-
pled objects.

Separation of concerns Uniform reactives make it straight-
forward to create signals and events of existing im-
mutable data-structures and factor the interaction with
external APIs into observers or reactors.

Consistency Scala.React’s synchronous propagation model
ensures that no reactive can ever see inconsistent reac-
tive data, regardless of the number or shape of reactive
dependencies.

Semantic distance The semantic distance is vastly reduced
by avoiding inversion of control even for complex event
logic.

Scala.React and code examples from above can be down-
loaded from http://lamp.epfl.ch/~imaier.
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