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SUMMARY

Receptor-regulated cellular signaling often is medi-
ated by formation of transient, heterogeneous pro-
tein complexes of undefined structure. We used
single and two-color photoactivated localization
microscopy to study complexes downstream of
the T cell antigen receptor (TCR) in single-molecule
detail at the plasma membrane of intact T cells. The
kinase ZAP-70 distributed completely with the
TCRz chain and both partially mixed with the adaptor
LAT in activated cells, thus showing localized
activation of LAT by TCR-coupled ZAP-70. In resting
and activated cells, LAT primarily resided in nano-
scale clusters as small as dimers whose formation
depended on protein-protein and protein-lipid inter-
actions. Surprisingly, the adaptor SLP-76 localized
to the periphery of LAT clusters. This nanoscale
structure depended on polymerized actin and its
disruption affected TCR-dependent cell function.
These results extend our understanding of themech-
anism of T cell activation and the formation and
organization of TCR-mediated signaling complexes,
findings also relevant to other receptor systems.

INTRODUCTION

Signaling complexes are heterogeneous, dynamic multimolec-

ular structures that are induced after receptor binding and that

mediate signal transduction. They are nucleated by activated

receptors and membrane-bound scaffold proteins and are often

found in microclusters (Cebecauer et al., 2010; Harding and

Hancock, 2008; Schlessinger, 2000). Using diffraction-limited

light microscopy, studies of T cell activation have demonstrated

that microclusters form at the plasma membrane (PM) of T cells

upon engagement of the antigen-specific receptor (TCR) (Campi

et al., 2005; Yokosuka et al., 2005). These microclusters contain

molecular complexes composed of the TCR, signaling enzymes

such as ZAP-70 and phospholipase C-g1 (PLC-g1), and several

adaptor proteins including LAT, SLP-76, Grb2, and Gads
I

(Bunnell et al., 2002). Similar structures have been seen in B cells

and mast cells after engagement of the immunoreceptors in

these cells (Harwood and Batista, 2010; Wilson et al., 2001).

Although signaling complexes and microclusters have been

studied extensively by various biochemical and imaging tech-

niques, the spatial organization of individual molecules within

signaling complexes or of complexes within microclusters has

not been addressed. Much remains to be learned about com-

plexes and microclusters including, their full size distribution,

their potential heterogeneity, their arrangement in the PM, and

the molecular requirements for their formation. Imaging the

spatial relationship of molecules at the single-molecule level

might resolve these questions. Toward this goal, we studied

TCR interactions with signaling molecules and signaling com-

plexes downstream of the TCR. We found a nanoscale orga-

nization to these interactions and structures with unexpected

properties relevant for understanding T cell activation.
RESULTS

Most LAT Molecules Are Not within Microclusters
We began by studying the organization of LAT at the PM by

diffraction-limited microscopy. Cells stably expressing LAT-

Dronpa (Ando et al., 2004) (Figures S1A and S1B available online)

were dropped and imaged on antibody-coated coverslips

(Bunnell et al., 2003) that either stimulate the TCR (aCD3) or

avoid TCR stimulation (aCD45). Using confocal microscopy,

we found that LAT molecules showed pronounced signaling

microclusters in both Jurkat T cells (Figure 1A, aCD3) and human

peripheral blood T cells (PBTs) upon activation (Figure S1C,

aCD3+aCD28). On control, nonactivating surfaces, there were

fewer cells with LAT clusters as detected by intensity threshold-

ing (Figure 1A, aCD45, Figures S1D and S1F, and see Supple-

mental Information for further details). The extent of spreading

under both conditions was similar (Figures S1E and S1G), but

there was a far lower extent of LAT or phosphorylated proteins

in clusters under nonstimulating conditions (Figure S1H). Impor-

tantly, we note that LATmicroclusters accounted for only a small

part of total LAT molecules at the cell surface as measured

by total fluorescence with either confocal (�24% and �8% for

stimulating and nonstimulating conditions; see Figure S1I) or

total internal reflection (TIRF) microscopy (�20% and 12% for
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Figure 1. LAT Clusters at the PM Are Mainly in Small Nanoclusters

(A) Confocal images of Jurkat E6.1 T cells on aCD3- or aCD45-coated coverslips. Cells were stained for pY (blue) and pLAT (pY191, red) and stably expressed

LAT-Dronpa (green). The scale bar represents 10 mm. Insets show a magnified view of a microcluster.
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stimulating and nonstimulating conditions; see Figure S1J).

These observations emphasize the need to characterize the

role and organization of all of the LAT molecules at the PM

including those that are not in microclusters (Lillemeier et al.,

2010; Lillemeier et al., 2006; Wilson et al., 2001).

LAT Resides in Pre-existing Nanoclusters with a Shift
toward Larger Clusters upon Stimulation
To better characterize PM LAT clustering with single-molecule

resolution, we used photoactivated-localization microscopy

(PALM) imaging to observe individual LAT molecules, tagged

with photoactivatable fluorescent proteins (LAT-Dronpa [Ando

et al., 2004] or LAT-PAmCherry [Subach et al., 2009]). We chose

stimulation conditions that both maximized cell spreading and

the presence of LAT in the narrow optical section detected by

PALM in TIRF mode (Figures S2A and S2B). PALM images

from Jurkat T cells (Figures 1B and 1H) and normal PBTs (Fig-

ure 1E) were analyzed under activating and nonactivating

conditions. Wemeasured the probability density of locating indi-

vidual LAT-PAmCherry molecules with a precision of �20 nm

(Figure S2C). We next analyzed the scale of LAT clustering using

pair-correlation functions (PCFs or g(r); Figures 1C, 1F, and 1I;

Figure S1L; see also ‘‘Analyses’’ in the Supplemental Informa-

tion). In addition, using a cluster analysis algorithm and a careful

choice of the distance threshold for clustering (see ‘‘Analyses’’

and Figures S1M and S1N), we were able to identify individual

LAT clusters in the PM and describe their size distribution in

detail (Figures 1D, 1G, and 1J). We found that LAT was always

significantly preclustered under nonstimulating conditions (i.e.,

aCD45-coated coverslips) as well as activating conditions on

the PM of both Jurkat (Figures 1B–1D and 1H–1J) and PBTs

(Figures 1E–1G). Clustering can be observed in univariate PCF

data (Figures 1C, 1F, and 1I) when the value of g(r) (bold lines)

exceeds the 95% confidence interval due to calculated random

molecular distribution (dashed lines; refer to the Heterogeneous

Poisson null model in ‘‘Analyses’’). PCFs also revealed that

molecules in defined clusters were separated by as little as

20 nm. The majority of LAT molecules resided in very small

nanoclusters containing only two, three, or a few detectable
(B) PALM images of Jurkat T cells expressing LAT-PAmCherry spread on aCD3 or

within apparent microclusters. Color codes (heat map, white is highest) for overlap

of 410 molecules/mm2 on aCD3 and 360 molecules/mm2 on aCD45. Bars – 0.5 m

(C) Pair correlation function (PCF) of LAT-PAmCherry molecules (n = 7 cells for sti

95% confidence levels of a heterogeneous Poisson process; see ‘‘Analyses’’ in

(D) Results of a clustering algorithm to resolve individual clusters and generate cu

nonstimulating conditions. (n = 12 cells for stimulating and 10 cells for nonstim

dashed lines overlap; see Supplemental Information for further details on statisti

(E) PALM images of peripheral blood T cells (PBTs) expressing LAT-PAmCherry sp

nanoscale organization of individual molecules within apparent microclusters

respectively. Scale bars represent 1 mm (left) and 2 mm (right).

(F) The PCF of LAT-PAmCherry molecules (n = 8 cells for stimulating and nonstim

(G) The cluster analyses showing cumulative size-distribution curves (n = 12 cells

clustering of random sets; the two dashed lines overlap; see Supplemental Infor

(H) PALM images of live Jurkat T cells expressing LAT-PAmCherry spread on aCD

for both panels. Scale bars represent 2 mm.

(I) PCF of LAT-PAmCherry molecules (n = 3 cells for stimulating and nonstimulat

(J) Clustering analyses (n = 3 cells for stimulating and nonstimulating conditions).

regarding live-cell imaging with PALM.

(K) Peripheral blood T (PBT) cells expressing LAT-PAmCherry plated onto aCD4

(L) PCFs of LAT-PAmCherry molecules (dashed lines defined as in C).

I

molecules (Figures 1D, 1G, and 1J). Although small nanoclusters

predominated, there was a wide size distribution as indicated

by the cluster size statistics (Figure S1L).

We were struck by the presence of LAT clustering as seen by

confocal (Figure S1D) and PALM imaging (Figures 1B, 1E, and

1H) in cells spread on the coverslip in response to nonactivating

aCD45 antibodies. Therefore, we tested coverslips coated with

antibodies against other surface molecules including CD28,

CD43 or CD18, which also lead to cell adherence and spreading

without activating the TCR (Figure 1K; confocal imaging results

not shown). Regardless of which control antibodies we used or

their effect on cell or microcluster appearance, we found that

LAT was distributed in nanoclusters (Figure 1L). We conclude

that in the basal state LAT is organized in nanoclusters at the

PM in Jurkat and PBT cells.

Upon stimulation with aCD3, we observed an increase in the

extent of LAT clustering (Figures 1C, 1F, and 1I) and a modest

shift toward larger clusters (Figures 1D, 1G, and 1J) in the size

distribution curves, without a change in the overall shape of

the distributions (Figures 1D, 1G, and 1J). These changes were

more pronounced in Jurkat T cells than in PBT cells. Differences

between cell types and cell-to-cell variability in the pattern of

cellular spreading and the extent of protein expression contrib-

uted to the differences in the amount of clustering observed in

our analyses (Figures 1C, 1D, 1F, 1G, 1I, and 1J). A similar size

distribution was determined for LAT clusters at the PM of both

fixed and live cells (Figures 1H–1J and Figure S1K) imaged under

stimulating and non-stimulating conditions. The live cell PALM

result confirms that the nanocluster distribution we observed

was not an artifact of fixation.

Two factors might contribute to the dominance of small

nanoclusters in the size-distribution and PCFs derived from un-

stimulated and stimulated cells. First, most of the LATmolecules

at the PM do not reside in microclusters (Figures S1I and S1J).

Second, large aggregates such as microclusters are broken

down by our analyses into their smallest detectable constituents,

such that a single microcluster viewed by diffraction-limited

microscopy is revealed to be a collection of much smaller

nanoclusters.
spread on aCD45. Insets show nano-scale organization of individual molecules

ping probability density functions of individual molecules, with amaximal value

m and 1 mm, respectively.

mulating and nonstimulating conditions; dashed lines indicate upper and lower

the Supplemental Information for further details).

mulative size distribution curves of the LAT clusters seen under stimulating and

ulating conditions; dashed lines represent clustering of random sets; the two

cal analyses).

read on either aCD3+aCD28- or on aCD45-coated coverslips. Insets show the

. Maximal density values are 740 molecules/mm2 and 490 molecules/mm2,

ulating conditions; dashed lines defined as in C).

for stimulating and n = 10 for nonstimulating conditions; dashed lines represent

mation for further details on statistical analyses).

3- or on aCD45-coated surface. Themaximal density value is 50molecules/mm2

ing conditions; dashed lines defined as in C).

See Supplemental Experimental Procedures and Figure S1K for further details

3-, aCD18-, or aCD28-coated coverslips. Scale bars represent 2 mm.
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Figure 2. Two-Color PALM Captures the Mutual Organization and Interactions of Signaling Molecules at the PM

(A–C) LAT is recruited to early contact areas within lamellae. Two-color PALM images of Jurkat cells expressing LAT-Dronpa (green) and TAC-PAmCherry (red)

under stimulating conditions, showing (A) partial or (B) complete spreading, or (C) cells under nonstimulating conditions showing partial spreading. Right panels
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LAT Clusters Are Recruited to Early Contact Areas
within Lamellae
To further understand the significance of the irregular distribution

of LAT on the coverslip and LAT organization in basal nanoclus-

ters, we conducted two-color PALM imaging of cells expressing

the fluorescent conjugates LAT-Dronpa and a PM marker, TAC-

PAmCherry (Subach et al., 2009) (TAC is CD25, the IL-2 receptor

alpha subunit; see Supplemental Experimental Procedures and

Figures S2D and S2E regarding two-color PALM imaging). In

this experiment, LAT clusters were found at the sites of contact

where PM lamellae containing the randomly distributed TAC-

PAmCherry first touched the stimulating surface (Figure 2A). As

the cells spread over time, more of the PM made contact with

the surface and only LAT clusters were retained with the irregular

lamellar pattern at sites of initial cellular contact (Figure 2B; see

also Figure S2A). An irregular distribution of PM at the coverslip

was also observed with nonstimulating conditions (Figure 2C).

We conclude that these results explain the first-order heteroge-

neity of LAT distribution, which we define as the irregular

distribution of micron-sized LAT clusters at the PM. That is,

LAT microclusters first appear and persist in areas of membrane

contact with the activating surface, resulting in micron-sized

features that reflect these initial contacts. Importantly this exper-

iment also shows that second-order molecular heterogeneity,

the nanoscale organization of LAT microclusters, is not a feature

of all membrane proteins. The PCF of TAC showed that it is

randomly distributed (the TAC PCF curve falls within the 95%

confidence interval of the heterogeneous Poisson null model)

and not clustered within the PM (Figure 2D; for data of unstimu-

lated cells, see Figures S2F and S2G).

In the next section, interactions between the TCR, ZAP-70 and

LAT are extensively studied with two-color PALM and bivariate

analyses. The distribution of these molecules individually can

also be studied as above with univariate statistics (such as

PCFs). The distribution of the TCR has been studied previously

biochemically and by PALM (Lillemeier et al., 2010; Schamel

et al., 2005). In T cells interacting with aCD45 on the coverslip,

we found that the TCRz chain was found in nanoclusters with

a distribution favoring small nanoclusters much like LAT (Fig-

ure S2H). Because the mechanism of activation in our studies

is antibody-induced clustering of the TCR, we cannot comment

on the distribution of the TCR after physiologic activation.

Two-Color PALM Captures the Efficient Interaction
of TCRz and ZAP-70 in Activated T Cells
We used two-color PALM to study the organization of signaling

molecules downstream of the TCR. We began by imaging
show a zoomed image of a region of interest, a single-color rendering of TAC-P

density values (as detailed in Figure 1B) for LAT-Dronpa and TAC-PAmCherry are

and (C) 126 and 59molecules/mm2. Scale bars represent (A) 2 mm, (B) 5 mm, and (C

under stimulating conditions (n = 5 cells; Dashed lines indicate upper and lower 9

and S2G for the related PCFs for nonstimulating conditions.

(E–H) ZAP-70 is well colocalized with TCRz in activated T cells. Two-color PALM im

aCD3- and (F) aCD45-coated coverslips are shown. Insets show zoomed images o

(G) are bivariate correlation curves of TCRz and ZAP-70 for aCD3 (red lines) and

levels of a random labeling (homogeneous mixing) model. As shown in (H), the ex

between activating and nonactivating conditions for multiple cells expressing TC

density values (as detailed in Figure 1B) for TCRz-Dronpa and ZAP-70-PAmChe

molecules/mm2. Scale bars represent 2 mm.

I

TCRz-Dronpa and ZAP-70-PAmCherry. Upon TCR activation,

the protein tyrosine kinase ZAP-70 is recruited to the phosphor-

ylated zeta chains of the TCR (TCRz), becomes activated, and

subsequently phosphorylates multiple tyrosines on LAT and

other protein substrates (Wang et al., 2010). Phosphotyrosines

on LAT then serve as docking sites for multiple adapters and

enzymes (Balagopalan et al., 2010). As expected from previous

imaging and biochemical studies (Bunnell et al., 2002; Wang

et al., 2010), we found that ZAP-70 colocalized with TCRz

upon activation (Figure 2E) and was far less efficiently recruited

to TCRz without TCR activation (Figure 2F). We used bivariate

correlation statistics to test whether the two molecules, TCRz

and ZAP-70, mixed randomly. If they did, the bivariate curve

[g12(r), bold lines in Figure 2G] would fall between the two curves

that define the 95% confidence interval of a random mixing

model (dotted lines in Figure 2G), which serves as a null hypoth-

esis (see ‘‘Analyses’’). Displacement of the curve above the 95%

confidence interval would indicate significant attraction between

the two molecules beyond the random mixing model, whereas

displacement below the 95% confidence interval would suggest

that repulsion or segregation govern the relative positioning of

the two molecules.

For the case of TCRz and ZAP-70, the bivariate analysis

demonstrated complete mixing of the two molecules after TCR

activation (Figure 2G, red lines). This result shows that ZAP-70

is recruited to TCR clusters in a manner independent of TCR

cluster size. In contrast, the cells that engaged the nonactivating

surface revealed little interaction between TCRz and ZAP-70

consistent with the little or absent TCRz phosphorylation found

in unactivated T cells (Figure 2G, green lines). We also note

systematic differences in the absolute height of the bivariate

correlation curves and their 95% confidence intervals between

activated and nonactivated cells. To quantify the significance

of these differences, we plotted the normalized level of bivariate

correlation for multiple individual cells at scales below 60 nm

(essentially, the y axis intercepts of the bold lines in comparison

to the intercepts of the dotted lines shown in Figure 2G). The

results indicate that TCRz and ZAP-70 consistently mix in

a more homogenous way (�100%) under activating conditions

than under nonactivating conditions (far less than 50%,

Figure 2H).

TCRz and LAT Exist in Overlapping Pools that Segregate
More upon T Cell Activation and Serve as Hot Spots
for LAT Activation
The TCR and LAT have been suggested to exist in separate

domains that concatenate upon cell activation without mixing
Amcherry (labeled red) and LAT-dronpa (labeled green). Maximal probability

(A) 270 and 1340 molecules/mm2, respectively; (B) 190 and 10 molecules/mm2;

) 0.5 mm. (D) The PCF of LAT-Dronpa (red line) and TAC-PAmCherry (green line)

5% confidence levels of a heterogeneous Poisson process). See Figures S2F

ages of Jurkat T cells expressing TCRz-Dronpa and ZAP-70-PAmCherry on (E)

f individual TCRz and ZAP-70 clusters (scale bars represent 200 nm). Shown in

aCD45 (green lines). Dashed lines indicate upper and lower 95% confidence

tent of mixing between TCRz and ZAP-70 (as defined in the text) is compared

Rz and ZAP-70 (n = 13 for aCD3, and n = 5 for aCD45). Maximal probability

rry are (E) 1580 and 1630 molecules/mm2, respectively, and (F) 1070 and 1610
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Figure 3. LAT and TCRz Exist in Overlapping Pools, where Nanoscale Domains Could Function as Hot Spots of T Cell Activation

(A and B) Two-color PALM images of a LAT-Dronpa- and TCRz-PAmCherry-expressing Jurkat T cell on (A) aCD3- or (B) aCD45-coated coverslips. Zoomed

images (insets) of individual TCRz and LAT clusters are shown (scale bars represent 100 nm).

(C) Bivariate correlation curves for aCD3 (dashed lines indicate upper and lower 95% confidence levels of a heterogeneous Poisson process).

(D) Bivariate correlation curve for nonactivating conditions (dashed lines defined as in C). Maximal probability density values (as detailed in Figure 1B) for

LAT-Dronpa and TCRz-PAmCherry are (A) 1380 and 1120 molecules/mm2, respectively, and (D) 510 and 400 molecules/mm2. Scale bars represent 2 mm.

(E–H) ZAP-70 is poorly colocalized with LAT. Two-color PALM images of Jurkat T cells expressing LAT-Dronpa and ZAP-70-PAmCherry on (E) aCD3- or (F)

aCD45-coated coverslips are shown. Zoomed images (insets) of individual LAT and ZAP-70 clusters (scale bars represent 200 nm) are shown. Shown in (G) are
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(Lillemeier et al., 2010). We used two-color PALM to image LAT-

Dronpa and TCRz-PAmCherry expressed in Jurkat T cells on

aCD3-coated or on control aCD45-coated coverslips. Two-color

PALM images showed nanoscale domains of both LAT and

TCRz that significantly overlapped under both activating and

nonactivating conditions (Figures 3A and 3B; p < 0.001 for

both conditions due to multiple cells, as depicted in Figure 3H

and as detailed below).

In activated samples (Figure 3C), the bivariate analysis re-

vealed homogeneousmixing of the twomolecules at separations

over �450 nm, but a strong deviation from this model below this

length scale as indicated by the location of the curve below the

zone defined for 95% confidence level of the homogeneous

mixing (random labeling) model. However, under nonactivating

conditions, the bivariate correlation between the molecules

was much closer to homogeneous mixing at all length-scales

(Figure 3D). Comparing the differences between the two condi-

tions for multiple cells, we found that TCRz and LAT tend to

mix in a more homogenous way under nonactivating conditions

over all size ranges and then segregate more from one another

upon activation (Figure 3H).

In light of the partial overlap of molecular distribution between

TCRz and LAT after activation, wewere interested in the localiza-

tion of ZAP-70 relative to LAT to provide information on the

means by which LAT becomes phosphorylated. In contrast to

its complete mixing with TCRz, ZAP-70 showed only a partial

overlap in distribution with LAT molecules upon T cell activation

(Figures 3E, 3G, and 3H) or under nonactivating conditions

(Figures 3E, 3G, and 3H). This distribution was similar to the

partial mixing of LAT with TCRz (Figures 3A and 3C). Because

we failed to detect efficient mixing of ZAP-70 with LAT with acti-

vation, we propose that ZAP-70 phosphorylates LAT when it is

bound to TCRz or in very close proximity to this TCR subunit.

At any point in time there is a limited number of such ‘‘hot spots’’

where activated TCRs interact with and phosphorylate LAT.

Protein-Protein and Protein-Lipid Interactions Are Both
Required for Intact LAT Nanocluster Formation
Themechanisms responsible for the formation of LAT-nucleated

signaling complexes have been studied with controversial

results. Early studies identified LAT as amolecule residing in lipid

rafts (Wilson et al., 2004; Zhang et al., 1998) and aggregation of

lipid rafts has been proposed as a mechanism for generating

activation-induced signaling complexes (Harder, 2004; Zhang

et al., 1998). However, other studies favored the role of an

extended network of protein-protein interactions as the forma-

tion mechanism (Bunnell et al., 2002; Douglass and Vale, 2005;

Houtman et al., 2006). Our discovery of a LAT nanoscale distribu-

tion led us to search for the molecular requirements for LAT

nanoclustering. For this reason, we conducted two-color

PALM imaging of wild-type (WT) LAT-Dronpa with various LAT

constructs conjugated to PAmCherry (Figure 4A). We examined

the clustering of a mutant that is incapable of phosphorylation-
bivariate correlation curves of LAT and ZAP-70 for aCD3 (red lines) and for aCD45

mixing between LAT and TCRz or LAT and ZAP-70 are compared between activa

aCD3, and n = 14 for aCD45; LAT and ZAP-70 – n = 13 for aCD3, and n = 4 for aCD

values (as detailed in Figure 1B) for TCRz-Dronpa and ZAP-70-PAmCherry are (A)

(C) 1500 and 1260 molecules/mm2, and (D) 1400 and 440 molecules/mm2. Scale

I

dependent protein-protein interactions because of the replace-

ment of the four distal tyrosines of LAT with phenylalanines

(Bunnell et al., 2006) (LAT4YF-PAmCherry) and a mutant in

which the absence of two juxtamembrane cysteines blocks

palmitoylation and lipid raft recruitment (Zhang et al., 1998)

(LAT2CA-PAmCherry). In a cell expressing both WTLAT-Dronpa

and WTLAT-PAmCherry, both molecules were incorporated into

nanoclusters (Figure 4B; Figure S3A) with homogeneous mixing

as determined by bivariate analysis, indicating that the two

chimeras reside in the same clusters (Figure 4C, Figure S3D).

In contrast, there was only a slight mixing of WTLAT and LAT4YF

(Figures 4D and 4E; Figure S3D). Moreover, there was no interac-

tion in samples imaged on aCD45-coated coverslips (Figures

S3E and S3F).

Recent studies have shown that LAT palmitoylation is required

for normal transport of LAT to the PM (Hundt et al., 2009).

However, our TIRF-based assay allowed us to image the fraction

of LAT2CA molecules that resided in the membrane. We

observed complete independence (see ‘‘Analyses’’) of WTLAT

and LAT2CA (Figures 4F and 4G; Figure S3D). The univariate

statistics also revealed interesting information. LAT4YF mole-

cules preferred to self-associate rather than mix with WTLAT,

given that they showed residual nanoscale clustering by them-

selves under both stimulating (Figure S3B) and nonstimulating

(Figure S3E) conditions. In contrast, LAT2CA molecules were

randomly located at the PM with no significant self-association

(Figure S3C), suggesting an essential role of the cysteine resi-

dues, perhaps by their ability to become palmitoylated, in the

nucleation of LAT nanoclusters. These results together show

that mutation of LAT at residues required for either protein-

protein interactions or protein-lipid interactions blocked full

integration into intact nanoclusters.

LAT Clusters of All Sizes Can Recruit Signaling
Molecules and Can Be Phosphorylated upon TCR
Stimulation
LAT nanoclusters ranged in size from a few, predominantly, to

hundreds of detected molecules. The question arose whether

signaling occurs only in large LAT aggregates or whether the

entire distribution of LAT nanoclusters is capable of signal

transduction upon TCR stimulation. To this end, we conducted

two-color PALM imaging of LAT clusters and Grb2. Grb2 is

a key adaptor molecule that binds to any of the three LAT distal

phosphotyrosines upon cell activation and in turn recruits mole-

cules such as the guanine nucleotide exchange factor SOS1, re-

sulting in activation of the Ras pathway (Houtman et al., 2006), or

the ubiquitin ligase Cbl, resulting in protein recycling and degra-

dation (Balagopalan et al., 2007). In addition, the Grb2-SOS1

complex has been proposed as a mediator of LAT clustering

(Houtman et al., 2006). PALM images of LAT and Grb2 showed

no colocalization under nonstimulating conditions (Figures 5D

and 5E). Grb2-Dronpa was barely seen at the PM under these

conditions although it was well expressed in the cytosol, as
(green lines). Dashed lines are defined as in (C). As shown in (H), the extent of

ting and nonactivating conditions for multiple cells (LAT and TCRz – n = 19 for

45). See definition of the extent ofmixing in the text. Maximal probability density

1580 and 1630molecules/mm2, respectively, (B) 1070 and 1610molecules/mm2,

bars represent 2 mm.

mmunity 35, 705–720, November 23, 2011 ª2011 Elsevier Inc. 711



A

B

D

F

C

E

G

Figure 4. Protein-Protein and Protein-Lipid Interactions Are Both Required for LAT Intact Nanocluster Formation

A cartoon (A) showing the position of LATmutations and their effect on LAT interactions. The 4YFmutations prevent the binding of adaptor proteins such as Grb2

and the 2CA mutations prevent LAT palmitoylation and recruitment to lipid rafts. Two-color PALM images of activated Jurkat T cells expressing (B) WTLAT-

Dronpa and WTLAT-PAmCherry and (C) their bivariate analyses or Jurkat cells expressing (D and E) WTLAT-Dronpa and 4YF-LAT-PAmCherry or (F and G)

WTLAT-Dronpa and 2CA-LAT-PAmCherry are shown. In each panel, the PALM images show two-color rendering of WTLAT-Dronpa (green), WT- or mutated-

LAT-PAmCherry (red), and a zoomed image in the inset. The univariate PCF curves of the cells are shown in Figures S3A–S3C. Dashed gray lines in (C), (E), and (G)

indicate upper and lower 95% confidence levels of the random labeling model. See ‘‘Analyses’’ for further details. Color codes are shown of PALM images (bright

is highest) for individual probability density functions of single molecules, with maximal values for WTLAT-Dronpa and mutant or WTLAT-PAmCherry of (B) 100

and 100 molecules/mm2, respectively, (D) 180 and 120 molecules/mm2, and (F) 310 and 470 molecules/mm2, respectively. Scale bars represent 5 mm.
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observed by epifluorescence. However, after TCR stimulation

and LAT phosphorylation, LAT and Grb2 showed high colocali-

zation that was homogeneous with LAT cluster size (Figures 5A

and 5B). The extent of mixing between LAT and Grb2 averaged

93% ± 12% (Figure 5I). Because LAT cluster size distribution is

dominated by very small clusters (Figure 5C), we conclude that

LAT phosphorylation and downstream signaling do not require

the formation of large assemblies of LAT molecules.

PLC-g1 Is Highly Colocalized with LAT in Isolated
Clusters
PLC-g1 is another signaling molecule that is recruited to phos-

phorylated LAT upon TCR activation (Braiman et al., 2006;

Sommers et al., 2002). Upon activation, it cleaves phosphoinosi-

tides to products that regulate the elevation of intracellular Ca2+

and activation of critical enzymes such as protein kinase C and

RasGRP. As expected, PALM showed that TCR stimulation led

to the recruitment of PLC-g1 to LAT (Figure 5F), although there

was no colocalization of LAT and PLC-g1 under nonstimulating

conditions (Figure 5G). Closer examination reveals that, in

contrast to Grb2, PLC-g1 was not distributed evenly with LAT,

but was located in isolated clusters, within LAT-rich lamellae

and microclusters (Figure 5F, inset).

LAT and PLC-g1 maintained a high extent of colocalization, as

revealed by the proximity of their bivariate correlation function to

the model of random labeling (Figure 5H). The extent of mixing

between the twomolecules averaged 87%±10%.Nevertheless,

several cells (four out of eight) demonstrated bivariate correlation

curves above the 95% confidence levels of the random-labeling

model (Figure 5I), suggesting that PLC-g1 molecules can prefer-

entially become closer to LAT than expected by the model. On

the other hand, the fact that some cells demonstrate an extent

of mixing significantly below 100% indicates that occasionally

PLC-g1 can be recruited to the PM at sites without LAT or that

its position relative to LAT is also controlled by other molecules.

Nanoscale Organization of SLP-76 Is Revealed
at the Rim of LAT Clusters upon TCR Stimulation
SLP-76 is a cytosolic adaptor protein that is recruited to LAT

phosphotyrosines via binding of the adaptor Gads (Bunnell

et al., 2006). By imaging Jurkat T cells expressing LAT-Dronpa

and SLP-76-PAmCherry with two-color PALM, we found that

SLP-76 was efficiently recruited to the PM and to LAT nanoclus-

ters only upon cell activation (Figures 6A and 6B), but in a pattern

markedly different from either Grb2 or PLC-g1. The bivariate

correlation function of LAT and SLP-76 strongly departed from

the homogeneous mixing model at short distances below

160 nm and agreed with this model only at longer distances (Fig-

ure 6C). Taking a closer look at LAT clusters at this short length-

scale, we found that SLP-76 was enriched at the rims of LAT

clusters (Figures 6D–6F) with an intensity contrast (SLPout/

SLPin)(LATin/LATout) of �16-fold (Figure 6E). Thus, LAT-nucle-

ated clusters exhibit nanoscale organization as defined by the

distinctive localization of SLP-76. Importantly, a similar contrast

was found by two-color PALM imaging of LAT and SLP-76 with

reversed colors, i.e., SLP-76-Dronpa and LAT-PAmCherry (data

not shown). The extent of mixing between the two molecules

averaged at 33% ± 7% (Figure 6F), further showing partial

molecular segregation and indicating that most of the SLP-76
I

molecules lie outside of LAT microclusters. Finally, we used

the clustering algorithm to demonstrate that LAT clusters recruit

SLP-76 with a linear efficiency as a function of LAT cluster size

(Figure 6G). However, we could not determine whether SLP-76

molecules arrange at the periphery of the predominant and

smallest LAT clusters because the number of SLP-76 molecules

that were associated with these clusters was too small. Two-

color PALM imaging of SLP-76 and TCRz showed no mixing of

these two molecules, thus demonstrating that the nanoscale

structure observed between LAT and SLP-76 is specific to

them (Figure S4A). Additionally, by imaging either Grb2-Dronpa

or SLP-76-Dronpa with LAT-2CA-PAmCherry, we found that

LAT-2CA did not mix with these proteins (Figure S4B). Given

that LAT-2CA did not incorporate into intact LAT clusters

(Figures 4F and 4G), this observation shows that phosphoryla-

tion-dependent interactions of LAT require localization within

intact clusters at the PM.

The Nanoscale Organization of SLP-76 Depends on
Actin Polymerization and Facilitates SLP-76 Cluster
Dynamics
SLP-76 links LAT clusters to the process of actin polymerization

via interactions with the effector proteins Nck, Vav-1, and Wasp

(Barda-Saad et al., 2010; Bubeck Wardenburg et al., 1998). To

study the possible relationship between the nanoscale organiza-

tion of SLP-76 and LAT with actin, we disrupted SLP-76 and

actin interactions in two different ways. First, we treated Jurkat

E6.1 cells with Latrunculin A, a drug that inhibits actin polymeri-

zation (Morton et al., 2000). Second, we mutated three tyrosines

on SLP76, namely Y113, 128, and 145, to phenylalanines, thus

blocking both phosphorylation of these sites and binding of

Nck, Vav-1 and the tyrosine kinase Itk (Bunnell et al., 2006).

We observed that in both experiments, SLP-76 failed to organize

at the periphery of LAT clusters (Figures 7A and 7B) and the two

molecules showed a very low extent of mixing (Figures 7C, 7D,

and 7E), although univariate analysis showed that LAT and

SLP-76 could still cluster individually at the PM (Figures S5A

and S5B). Interestingly, treatment with Latrunculin significantly

affected LAT clustering (Figure S5B) but not clustering of

SLP-76 (Figure S5A). Thus, actin polymerization is required for

establishment of the LAT-SLP-76 nanostructure.

Abrogating SLP-76 cluster dynamics and, in particular,

blocking SLP-76 internalization or decreasing its persistence in

clusters has been correlated with impaired TCR-dependent

cell function, including defects in TCR induced Ca2+ flux, CD69

upregulation, and nuclear factor of activated T cells (NF-AT)

activation (Barr et al., 2006; Bunnell et al., 2006). To study the

functional role of the nanoscale organization of SLP-76 and

LAT, we tracked SLP-76-3YF clusters at the PM of cells and

compared their dynamics to the dynamics of WTSLP-76 clusters

by confocal microscopy. By imaging SLP-76-3YF-YFP together

with immunofluorescence staining for pSLP-76 on Y145, we also

found thatWTSLP-76 and the SLP-76-3YFmutant colocalized to

the same clusters (Figure 7F). Strikingly, clusters containing the

SLP-76-3YF mutant were less mobile and less persistent than

clusters with only WTSLP-76 clusters (Figures 7G and 7H and

Movies S1 and S2). Using univariate analysis, we found a small

increase in clustering of SLP-76-3YF compared to WTSLP-76

(Figure S5C) and an insignificant decrease in LAT clustering
mmunity 35, 705–720, November 23, 2011 ª2011 Elsevier Inc. 713



0

50

100

150

0

2

4

6

0 250 500 750 1000

0.75

1.25

1.75

2.25

0 250 500 750 1000

A

D

g 12
(r

)

r [nm]

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

0.8

0.9

1

1 10 100 1000

B

C

E

αCD3

αCD45

Grb2-Dronpa (green)
LAT-PAmCherry (red)

Grb2-Dronpa (green)
LAT-PAmCherry (red)

Number of molecules in cluster

g 12
(r

)

r [nm]

g12 (αCD3)

Random labeling

g12 (αCD45)

Random labeling

LAT-PAmCherry  (αCD3)

random 

2

r [nm]

g 12
(r

)

F

H

G

0

10

20

0 200 400 600 800 1000

g12 (αCD3)
Random labeling

αCD3

E
xt

en
t o

f m
ix

in
g 

[%
]

I

αCD3

LAT-Dronpa (green) 
PLCγ-PAmCherry (red)

αCD45

LAT-Dronpa (green) 
PLCγ

PLCγ

-PAmCherry (red)

LAT-PAmCherry
Grb2-Dronpa

LAT-Dronpa
-PAmCherry

Red

Green

Red

Green

Red

Green

Red

Green

Figure 5. LATClusters of All Sizes CanRecruit Grb2 upon TCRStimulation,Whereas PLC-g1 IsMost Efficiently Recruited in IsolatedClusters

(A) PALM of Jurkat cells expressing Grb2-Dronpa and WTLAT-PAmCherry on aCD3-coated coverslips.

(B) Bivariate PCFs indicate colocalization of Grb2 and LAT on aCD3-coated coverslips (in black; random labelingmodel in gray, upper and lower confidence levels

of 95%).

(C) Cumulative size distribution of LAT clusters under stimulating conditions (n = 7 cells, as detailed in Figure 1).

(D) PALM of Jurkat cells expressing Grb2-Dronpa and WTLAT-PAmCherry on aCD45-coated coverslips.
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(Figure S5D). These data indicate that the SLP-76-3YF mutant

has a dominant-negative effect and could abrogate both the

intact nanostructure of LAT and SLP-76, as well as the dynamics

of the clusters in spite of the presence of WTSLP-76 in these

clusters. Thus, in combination with previous studies (Barr

et al., 2006; Bunnell et al., 2006), our results strongly suggest

that LAT-SLP-76 nanostructure is required for intact TCR-

dependent cellular function.

DISCUSSION

UsingPALM imaging of Jurkat cells, PBTs, and live and fixed cells

together with extensive spatial analyses, we observed a contin-

uous size distribution of LAT in nanoclusters. Most nanoclusters

were composed of a few molecules each and accounted for

the majority of LAT molecules at the PM, either within or outside

microclusters. Thus, we set out to study the formation mecha-

nism, role in signaling, and organization of upstream and down-

streammoleculesof thepreviouslyunidentifiedLATnanoclusters.

Two-color PALM imaging and bivariate correlation analyses

enabled us to resolve complex nanoscale relationships between

several different proteins. We found that LAT is clustered within

lamellae or membrane folds that first engage the activating

surface of the coverslip. Indeed, previous scanning electron

micrograph (SEM) images of the interface between T cells and

antigen-presenting cells (APCs) have captured similar protru-

sions that mediate early contact between the cells (Gomez

et al., 2007). This complexity of contact morphology gives rise

to apparent first-order clustering, which has not been previously

appreciated (Lillemeier et al., 2010; Lillemeier et al., 2006; Wilson

et al., 2001). The clustering of LAT and other proteins of interest

discussed throughout this study is thus considered a second-

order clustering mechanism observed at the sites of first cellular

contact with the activating surface.

We further defined the role of critical LAT amino acids that

control protein-protein interactions and protein-lipid interactions

in the formation of LAT nanoclusters. Recent studies have

emphasized the role of protein-protein interactions in LAT clus-

tering, leaving the transport of LAT to the cell surface as the

sole function of protein-lipid interactions (Hundt et al., 2009).

We show here the complementary role of both protein-protein

and protein-lipid interactions in the sorting of LAT into intact

LAT clusters at the PM. As expected, mutations that block

cluster formation also block interactions of downstream

signaling molecules. We propose that the full-size distribution

of LAT is dependent on intact nanocluster assembly given that

the mutations we studied also fail to form microclusters (Bunnell

et al., 2006; Hundt et al., 2009). Finally, the self-association of

LAT4YF mutants or of TCRz suggests the ability of different

molecules to sort into separate nanoclusters in the PM.
(E) Bivariate PCF between LAT and Grb2 on aCD45-coated coverslips (dashed g

(F–I) PALM analysis of Jurkat cells expressing LAT-Dronpa and PLC-g1-PAmCh

(H) Bivariate PCFs indicate colocalization of PLC-g1 and LAT on aCD3-coated c

(I) The extent of mixing between of LAT-PAmCherry and Grb2 Dronpa or PLC-g1 a

and PLCg1-PAmCherry). Maximal probability density values (as detailed in Figure

respectively, and (D) 540 and 860 molecules/mm2. Scale bars represent (A) 0.5 m

for LAT-Dronpa and PLC-g1-PAmCherry are (F) 730 and 290 molecules/mm2, res

and (G) 5 mm.
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Previous studies of TCR and LAT distribution with PALM and

electron microscopy (EM) have suggested that TCR and LAT

form domains (‘‘protein islands’’) at the PM with larger sizes

than the smallest nanoclusters reported here (Lillemeier et al.,

2010; Lillemeier et al., 2006; Wilson et al., 2001). This interpreta-

tion is not supported by our results. We note differences in how

signal intensity was used to threshold and thus exclude mole-

cules in these other studies. The choice of statistical techniques

also resulted in differences in scoring signaling clusters. Addi-

tionally, we believe that consideration of the heterogeneity of

membrane contact with the coverslip has consequences for

the analysis. These important differences are further elaborated

in the ‘‘Analyses’’ of the Supplemental Experimental Procedures.

We conclude that, in several ways, the previous analysesmade it

difficult to recognize the dominance of very small clusters

(namely dimers, trimers, etc.) over the cluster size distributions

while overestimating the importance of considerably larger clus-

ters. Other studies (Purbhoo et al., 2010; Williamson et al., 2011)

focus on the presence of LAT in large vesicular structures, but we

note that the timing of activation in these studies (10 min) is far

longer than in ours. We focused on the basal state of molecules

and their initial changes within seconds to a few minutes of

activation, when phosphorylation of LAT and its binding partners

peak.

Analysis of the PM distribution of the TCR with biochemical

and EM techniques has shown a range of size distribution

down to the nanoscale much as we now see with LAT and as

we confirm for the TCRz chain under nonstimulating conditions

(Schamel et al., 2005). The relationship of immunuoreceptor

(TCR and FcRε) clusters to LAT clusters has been studied exten-

sively with immuno-EM (Lillemeier et al., 2010; Lillemeier et al.,

2006; Wilson et al., 2001). In contrast to our observation about

the TCR and LAT, these studies showed that before cell activa-

tion, LAT and the two immunoreceptors exist in segregated

domains that come together upon cell activation without mixing.

However, multiple concerns have been raised regarding the

interpretation of immuno-EM results in molecular clustering

(D’Amico and Skarmoutsou, 2008). These concerns include the

possibility of false clustering of nano-gold particles due to the

attachment of multiple primary or secondary antibodies to

single-target molecules, the steric hindrance by one type of

nano-gold label on another in experiments that use multiple im-

muno-gold labels, and alterations of molecular distributions and

PM structure due to procedures of sample preparation such as

fixation with glutaraldehyde, sample drying, and membrane

ripping. PALM microscopy of intact cells has been suggested

as a way to overcome these caveats.

Using two-color PALM, we also observed separate pools of

LAT and TCR. However, in contrast to previous studies, we iden-

tified mixed pools of LAT and TCR molecules prior to and then
ray lines defined as in B).

erry spread on (F) aCD3- or (G) aCD45-coated coverslips.

overslips (in black; dashed gray lines defined as in B).

nd LAT (n = 5 for LAT-PAmCherry and Grb2-Dronpa, and n = 8 for LAT-Dronpa

1B) for Grb2-Dronpa and LAT-PAmCherry are (A) 640 and 260 molecules/mm2,

m and (D) 2 mm. Maximal probability density values (as detailed in Figure 1B)

pectively, and (G) 370 and 120 molecules/mm2. Scale bars represent (F) 2 mm
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Figure 6. Nanoscale Organization of SLP-76 Is Revealed at the Rim of LAT Clusters upon TCR Stimulation

(A–C) Two-color PALM images of a LAT-Dronpa and SLP-76-PAmCherry expressing Jurkat T cells on (A) aCD3- (B) aCD45-coated coverslips and (C) bivariate

correlation curve (dashed gray lines indicate 95% confidence levels of a random labeling model).

(D) Zoomed images of individual LAT clusters showing preferential organization of SLP-76 at the rims of LAT clusters. Scale bars represent 200 nm.

(E) The top shows the ratio of LAT and SLP-76 brightness in the rim versus inner part of the cluster, as identified by image processing (n = 10 clusters). The

bottom shows density ratios of LAT and SLP-76 as calculated by dividing the brightness measurements with the matching areas of the rim and inner part of

the cluster (n = 10 clusters). Error bars represent standard errors.

(F) The extent of mixing between LAT and SLP-76 (n = 10 cells).
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after cell activation. Importantly, these areas of overlap and

mixture have functional significance, given that they are likely

to be the most efficient locations for the phosphorylation of

LAT by activated ZAP-70. We further addressed this finding by

imaging ZAP-70 with either TCRz or LAT. Indeed, TCRz and

ZAP-70 showed very high colocalization consistent with the

binding of ZAP-70 to phosphorylated TCRz. LAT and ZAP-70,

in contrast, were in spatially separated pools with partial mixing

similar to the spatial separation of TCRz and LAT. Thus we

suggest that these areas in which LAT overlaps with TCRz and

activated ZAP-70 act as critical ‘‘hot spots’’ for LAT phosphory-

lation by ZAP-70 bound to TCRz or in near proximity to it. These

sites may very well change dynamically with time and might also

serve as the location where protein binding to LAT occurs. They

thus may be the sites of signal relay and amplification. It should

be mentioned that in our imaging assay LAT can freely diffuse at

the PM of T cells and ZAP-70 can freely diffuse in the cytosol and

bind or detach from TCRz (Douglass and Vale, 2005; Sloan-Lan-

caster et al., 1998). TCRz could be potentially mobile with partial

independence from the rest of the TCR chains (Ono et al., 1995),

although the CD3 chains of the TCR molecules at the PM are

immobilized on the aCD3-coated coverslip. Thus, our findings

regarding the nanoscale organization of TCRz, ZAP-70, and

LAT relative to each other directly relate to physiologic function.

We further showed that LAT nanoclusters were viable for

signaling by demonstrating that the downstream adaptor Grb2

mixed with LAT in a homogeneous manner. Given that the distri-

bution of LAT is dominated by clusters as small as dimers and

trimers, Grb2 must associate with the very smallest of nanoclus-

ters upon T cell activation. This conclusion contrasts with

previous studies that emphasized the role of large microcluster

formation for efficient LAT signaling (Lillemeier et al., 2010). If

LAT becomes activated at ‘‘hot spots’’ proximal to TCR clusters,

one might wonder how activated LAT (marked here by Grb2

recruitment) homogeneously distributes between LAT clusters.

An obvious explanation is that the high mobility of LAT, which

has been shown at the PM of both nonactivated and activated

T cells (Douglass and Vale, 2005), leads to the rapid exchange

of LAT molecules between clusters of all sizes. The enzyme

PLC-g1, whose activity downstream of LAT is crucial to T cell

activation, is also efficiently incorporated into LAT clusters.

However, PLC-g1 seemed to get recruited into isolated clusters

without mixing with all of the LAT-rich domains at the PM. The

reason for this preferential clustering might relate to the cooper-

ative binding of PLC-g1 to LAT with molecules such as SLP-76

and Gads (Braiman et al., 2006; Houtman et al., 2006); however,

a detailed account of PLC-g1 organization awaits further study.

Surprisingly, using two-color PALM imaging we found a nano-

scale organization of SLP-76 at the rim of LAT microclusters. To

our knowledge, this is the first observation of multimolecular

nanoscale organization in signaling complexes. Previous studies

have suggested a role of the cytoskeleton in the organization of

signaling molecules at the PM (Harwood and Batista, 2011).

Indeed, we further showed that the nanoscale organization of
(G) SLP-76molecules were associated with LAT clusters using the clustering algor

of SLP-76 molecules in LAT clusters is plotted as a function of LAT cluster size

molecules to LAT clusters as a function of LAT cluster size. Maximal probability de

are (A) 310 and 310 molecules/mm2, respectively, and (D) 320 and 310 molecule

I

LAT and SLP-76 depended on polymerized actin because the

organization was disrupted by perturbations that affected the

link between SLP-76 and actin. Finally, we showed that abro-

gating nanoscale organization of LAT and SLP-76 correlated

with impaired mobility of SLP-76 microclusters at the cell

surface. On the basis of these findings and previous work (Barr

et al., 2006; Bunnell et al., 2006), we conclude that the nanoscale

organization of LAT and SLP-76 is required for intact TCR-

dependent cell functions. We predict that other signaling

systems at the PM are organized in nanoclusters and expect

that further super-resolution studies will lead to important

insights into the structure and function of these critical signaling

aggregates.

To conclude, using state-of-the art imaging techniques, we

were able to show that LAT resides in nanoclusters at the PM

under non-stimulating conditions and observe a modest growth

in cluster size upon cell stimulation.We also showed unexpected

results regarding the formation mechanism, functional role, and

structure of the newly identified LAT nanoclusters. Some of

these observations include: (1) the distribution of the TCR and

LAT at the PM demonstrating mixing in the basal state with

a decrease in mixing after T cell activation, (2) the distribution

of ZAP-70 compared to that of TCRz and LAT, suggesting that

the sites of partial mixing of the latter two molecules are where

ZAP-70 phosphorylates LAT, (3) the complementary role of

protein-protein and protein-lipid interactions in LAT nanocluster

formation, (4) the ability of LAT nanoclusters, as small as dimers,

to signal without large-scale aggregation, (5) the colocalization

of PLC-g1 with LAT in isolated clusters, (6) the localization of

SLP-76 to the periphery of clusters indicating that these nano-

clusters have structure, and (7) the dependence of this structure

on actin and the relationship of LAT-SLP-76 nanostructure to

cluster dynamics. Our observations show the complexity of

organization of signaling complexes and the mechanisms that

shape their arrangement at the PM at the level of single mole-

cules. These findings greatly extend our understanding of signal

transduction at the PM. In addition, these observations can serve

as a model for many signaling processes that occur at the PM

and other cellular compartments.

EXPERIMENTAL PROCEDURES

Sample Preparation

Fluorescent conjugates of proteins of interest and the photoactivatable pro-

teins Dronpa or PAmCherry were created by the replacement of previously

tagged constructs by digestion and ligation of new inserts. DNA was intro-

duced into E6.1 Jurkat T cells or PBTs, isolated from healthy donors (Barda-

Saad et al., 2005), using the LONZA nucleofector shuttle system. Transiently

transfected cells were sorted for positive expression of PAmCherry or Dronpa

chimeras and imaged within 24 hr (PBTs) or 48–72 hr (Jurkats) from transfec-

tion or used for establishing stable cell lines (Jurkats). Sorting was performed

by the NCI flow cytometry core facility.

The preparation of coverslips for imaging spread cells followed a previously

described technique (Bunnell et al., 2003) and as further described in the

Supplemental Information. In brief, sorted cells were dropped on glass

coverslips coated with 0.01% poly-L-lysine (Sigma) and either stimulatory or
ithm (see ‘‘Analyses’’ and Figures S1M and S1N for further details). The number

(in copy number). A linear fit indicates linear efficiency of recruiting SLP-76

nsity values (as detailed in Figure 1B) for LAT-Dronpa and SLP-76-PAmCherry

s/mm2. Scale bars represent 2 mm. Error bars represent standard errors.
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Figure 7. Nanoscale Organization of SLP-76 Depends on Actin and Facilitates Regulation of SLP-76 Clusters

(A and B) Two-color PALM images of (A) a LAT-Dronpa and SLP-76-PAmCherry-expressing Jurkat T cells treatedwith 300nM Latrunculin A and (B) a LAT-Dronpa

and SLP-76-3YF-PAmCherry-expressing Jurkat T cells. Cells were imaged on aCD3-coated coverslips.

(C and D) The bivariate correlation curves related to cells in (A) and (B) in cells treated with (C) latrunculin A or (D) between LAT and the SLP76-3YFmutant (dashed

gray lines indicate 95% confidence level of a random labeling model).

(E) The extent ofmixing derived from imagingmultiple cells as in panel A (n = 8) and panel B (n = 10) and cells expressing LAT-Dronpa and SLP-76-PAmCherry (n = 5).

(F, G, and H) Jurkat T cells, transiently expressing SLP-76-YFP or SLP-76-3YF-YFP, were imaged by confocal microscopy as they spread on aCD3-coated

coverslips.

(F) Confocal images of fixed cells expressing SLP-76-YFP or SLP-76-3YF-YFP and stained with aphosphoSLP-76(Y145).

(G) Images are shown summing all frames from maximal intensity projection (MIP) movies (see related Movie S1 and Movie S2). These images describe SLP-76

cluster movement across the plasma membrane for SLP-76 or SLP-76-3YF.
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nonstimulatory antibodies at a concentration of 10 mg/ml (unless specified

otherwise). Cells were resuspended in imaging buffer and dropped onto the

coated coverslips, incubated at 37�C for the specific spreading time (typically

3 min), and fixed with 2.4% PFA for 30 min at 37�C.

Imaging

Confocal images were taken with a 510 LSCM confocal microscope using

a 633, 1.4 NA objective (Zeiss). PALM imaging was performed on a previously

described homemade TIRF microscope (Betzig et al., 2006) and on a second

system based on a TIRF microscope (Nikon). For live-cell PALM imaging, the

setup was modified for the delivery of high excitation power (316 times the

power flux used for fixed cell imaging) and fast readout (at 800 frame/s), as

described in the Supplemental Information. PALM images were analyzed

with a previously described algorithm to identify peaks and group them into

functions that reflect the positions of single molecules (Betzig et al., 2006).

The acquisition sequence typically consisted of 5–10 min of PALM image

acquisition in a single channel or 15–20 min in two channels, or 5 min at

800 frame/s for live-cell PALM imaging. Custom algorithms were then applied

so that the position map of the identified molecules was further studied, as

detailed in the Supplemental Information.

To image molecules with two-color PALM, we created chimeric constructs

of molecules with Dronpa or PAmCherry. We made use of the �50-fold differ-

ence in activation intensities between Dronpa and PAmCherry to image them

sequentially. We first activated Dronpa with �0.3 mW of 405 nm illumination.

After the Dronpa population was completely bleached, we switched detection

channels and activated PAmCherry with up to 10mWof 405 nm light. Fiduciary

markers (0.1 mm gold particles or TetraSpec microspheres; Invitrogen) and

affine transformations were used for registering images taken in the two

channels.

Further information regarding materials, methods, and algorithms can be

found in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, Supplemental Experimental

Procedures, and two movies and can be found with this article online at

doi:10.1016/j.immuni.2011.10.004.
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