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Abstract. Using decentralized control structures for robot control can
offer a lot of advantages, such as less complexity, better fault tolerance
and more flexibility. In this paper the evolution of recurrent artificial
neural networks as centralized and decentralized control architectures
will be demonstrated. Both designs will be analyzed concerning their
structure-function relations and robustness against lesion experiments.
As an application, a gravitationally driven robotic system will be in-
troduced. Its task can be allocated to a cooperative behavior of five
subsystems. A co-evolutionary strategy for generating five autonomous
agents in parallel will be described.

1 Introduction

The Artificial Life (AL) approach to Evolutionary Robotics (ER) provides
promising methods for optimizing a variety of control problems [8,11]. This in-
cludes the optimization of structure and parameters of artificial recurrent neural
networks (RNNs), morphology parameters of robots, or even co-evolution of
many different populations. Within our approach to AL and ER we are using
evolutionary techniques for generating RNNs controlling robot behavior [9]. We
are aiming at artificial systems with so called minimal cognition [2,5]. In this
context we are trying to deal with minimal models of non-linear dynamical con-
trol that can offer a variety of behavioral patterns. To investigate the dynamical
properties of such control structures we study relatively simple artificial systems
to gain deeper insights into the essence of dynamical systems such as RNNs and
robot-environment interactions.

In this paper we will present an example offering investigations of basic
cooperation mechanisms among artificial agents coupled through a common
body. There are many examples, where cooperation within a group of homo-
geneous or heterogeneous agents may have advantages over single agents in solv-
ing complex tasks [3]. One reason is the possibility of task decomposition and
task allocation. To give an example for task allocation, we use the artbot mi-
cro.eve (http://www.sphericalrobots.com). Among other intentions, Julius Popp
designed micro.eve to provide a benchmark system for control architectures
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where a simple body-consciousness emerges. Considering embodiment as a funda-
mental aspect of creating artificial autonomous agents [4,10], the system can be
described as a set of five agents, which are able to act locally and independently.
Hence the agents are connected to a common body, their local actions affect not
only themselves but also the behavior of the common body and consequently also
the behavior of the other agents. They have to cooperate to solve the task, which
is a well known problem in collective robotics [7,12]. For instance, in [1] an exam-
ple of physically linked robots solving a common task is given. Here, the system
seems much simpler. But due to this simplicity it allows detailed analysis of the
underlying control structure. We will show two different kinds of control. First,
we evolve one central RNN which controls all the agents. Second, we evolve a
RNN for each separate agent in co-existing populations, whereas each agent can
sense the action of the other agents only by sensors providing information about
the common bodies’ behavior. There is no explicit communication among the
agents. We will analyze two resulting architectures with respect to performance,
structure-function relations, and robustness.

2 Methods

Figure 1 illustrates the artbot micro.eve as well as its simulated model. The
robot consists of five movable arms, which are connected to a common body.
The center of mass of these arms can be actively translated by a servo motor.
Through a coordinated motion of the five arms the overall center of mass of
the robot can be translated in such a way, that the ring starts to rotate on two
supporting rollers. Here, we defined the task of the system as rotating as fast
and as harmonically as possible.

The control structures have to produce the motor signal for each arm. The
sensory system consists of potentiometers in each motor, a gyroscope located
inside the ring, and five hall sensors equally distributed over the ring. Each hall
sensor is located between two arms, respectively. These hall sensors are binary

Fig. 1. The artbot micro.eve. Left: Hardware, Right: Simulation
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switches emitting a peak if they pass a magnet placed at the bottom of the ring.
We merged all five hall sensor to one sensory input relative to the arm index,
i.e. for each arm the next hall sensor to the right has the index 1. The arm
and hall sensor indices are incremented counterclockwise. The mapping (i, si),
where i denotes the index of the last activated hall sensor and si the according
sensor value, is as follows: (0, 0.0); (1, 1.0); (2, 0.66); (3, 0.33); (4, −1.0); (5, −0.33).
Hence the output of the input neuron, which provides the hall sensor information,
should be zero if no hall sensor is activated at all (i = 0) the use of this discrete
mapping was chosen instead of a monotonic function. Accordingly, within the
decentralized control approach each agent has it its own sight of the hall sensor.
To reduce the amount of input neurons for the centralized control structures
the sight of the first arm is provided as sensory input. The sensor values of the
potentiometers are linearly mapped to the interval [−1.0, 1.0]. The gyroscope
values are transformed to an angular velocity of the ring with a maximum at 0.5
rounds/secs. For the input of the neural network these values are also mapped
to the interval [−1.0, 1.0], where negative values indicate a counterclockwise and
positive values a clockwise rotation.

For our control approach we used discrete-time artificial recurrent neural
networks with standard additive neurons with sigmoidal transfer function σ =
tanh. For generating these controllers we used an evolutionary algorithm that
allows variation of the network’s structure and its parameters at the same time.
A full description of the algorithm and some other applications can be found
elsewhere [6]. Here, to solve the robot’s task we defined the following fitness
function:

F = |ω| ∗ (1 −
∑n

t=0 |ω(t) − ω|
2n

) (1)

where ω is the angular velocity of the ring represented by the output of the
mapped gyroscope sensor value. The left term (|ω|) rewards a high mean ve-
locity and the right term rewards a harmonic rotation. Due to the use of tanh
as transfer function the output of the velocity sensor neuron is in a range be-
tween −1 and +1. Accordingly the range of the fitness value is between 0.0 and
+1.0. Note that we are using an implicit fitness function, i.e. no global knowl-
edge is used. Parameters of the fitness function are solely determined by sensor
information that are accessible by the agent.

To avoid dominance of specialists we evaluated every individual on 20 dif-
ferent randomly (uniformly distributed) generated starting conditions. For this
purpose the ring angle is varied in the full range of 2π, and the angle of each
arm is varied within its complete working range. The resulting fitness value is
the mean fitness of these 20 evaluation cycles. One evaluation cycle lasted 1200
evaluation steps (corresponds to 120 secs real time).

For generating the decentralized control architectures we applied a simple
co-evolutionary strategy. Each arm is controlled by one autonomous RNN. The
sensory input of the RNNs is reduced to one relative hall sensor input, as pre-
viously described, the ring velocity, and the arm’s potentiometer. A single con-
troller has one output neuron controlling the according motor signal. Every agent
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Fig. 2. Evolution of the angular ring velocity with time and their variance for the
decentralized (A) and centralized control structures (B), starting from several initial
conditions.

is evolved in a separate population. The evolutionary process for a single pop-
ulation is the same as for the evolution of the centralized control structure, i.e.
every population has its own selection, reproduction, and variation operators.
In every population the individuals are sorted according to their fitness values,
starting with the highest. The offsprings get no fitness value after selection, they
are appended at the end of the sorted list. For evaluation, one agent of each
population is selected and applied to the arm related to its population, i.e. a
group of five agents, each from a different population, is evaluated together at
the same time. The selection of the group members is rank based related to the
fitness value, i.e. the agents taking the first place in each population are evalu-
ated together, than the agents on the second place and so on. In such a way the
evaluation of i populations needs j evaluation cycles, where j is the number of
individuals within the largest population. The fitness function (equation (1)) re-
gards the performance of a group of agents, which have to cooperate. Therefore
every agent within one group gets the same fitness value, regardless which local
acting network gives the most or even the least contribution to it.

3 Results and Discussion

Figure 3 shows the outcome of the evolutionary process for the centralized and
decentralized control approach. Both control techniques are successful in solving
the given task. The mean fitness F and its variance σ2 for 100 evaluation cycles
with random starting conditions is 0.900 (σ2 = 0.001) for the centralized and
0.884 (σ2 = 0.003) for the decentralized control architecture. After transferring
these RNNs unchanged to the real machine, the observed behavior was qualita-
tively the same, although the evolution of these RNNs was completely done in
simulation with a very simplified motor model, and only roughly approximated
friction and noise. We observe that once the ring started to rotate from a given
starting position, it harmonically rotates for the whole evaluation time, i.e. a
mean fitness of 0.9 indicates that this agent can handle about 90 percent of
different starting conditions. Note, that it is nearly impossible to reach a fitness
value of 1.0 due to the time the agent needs to initiate a rotation. During this
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Fig. 3. RNNs of the centralized (A) and decentralized (B) control architectures. Input
neurons are indicated by white circles and output neurons by grey circles.

initialization the rotation cannot be harmonic. Therefore the first 10 seconds of
an evaluation cycle did not contribute to the fitness value.

Figure 2 illustrates the evolution of the angular ring velocity with time.
The average of 100 runs with random, uniformly distributed, starting condi-
tions (ring angle, arm angles) and the variance are given for both control ar-
chitectures. The centralized RNN as well as the decentralized RNN performs
only counterclockwise rotation and approaches the maximum angular velocity
(|ωmax| = 0.5rounds/sec) in about 10-15 seconds. The decentralized RNN seems
to have a smoother transition to ωmax whereas the centralized RNN needs about
2.5 seconds for initializing a rotation at all but than reaches ωmax slightly faster.

In the following we will discuss the dynamics of the RNNs and their effect
on the robot behavior. Focusing on the motor neurons, we can determine two
main mechanisms controlling two behavioral states: (1) Oscillations to initialize
the rotation, and (2) Strong impact of the hall sensor to maintain the rotation.

Looking at figure 3 and 4, we find one neuron with a period-2 oscillation
in both control structures. For the centralized control this is N12, and for the
decentralized control N4 of module 4. The period-2 oscillation is due to a over-
critical negative self-connection and persists for all the time (see figure 4). The
strong impact of the hall sensor within the other modules of the decentralized
control can be seen in figure 3. For the centralized RNN N9 and N11 are mainly
controlled by the hall sensor input, N8 receives its strongest input from N11, and
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Fig. 4. Motor signals, hall sensor and ring velocity input of the decentralized (left) and
centralized (right) control structures. The according neurons can be found in figure 3.

N10 gets a strong input from N3 which is directly influenced by the output of
N8. In figure 4 we can see the correlation between the hall sensor input and the
signal of all these motor neurons.
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What does this mean for the behavior of the robot? At the beginning the
hall sensor is inactive, hence the signal of the according input neuron is zero.
Referring to figure 4, most of the motor neuron signals stay around an out-
put value according to their bias terms or the input of other neurons. There-
fore the overall center of mass of the ring is translated once and thus, the ring
may rotate a little. Depending on the starting condition this rotation may be
enough to activate a hall sensor, if this is near the magnet (see figure 1). If
the hall sensor stays inactive, the rotation will stop because most of the motor
signals depends on this input and the according arms will not move at all. In
this case the period-2 oscillating motor neurons will move the ring very slowly
until the hall sensor is activated. Than the rotation starts and is maintained
as it can be seen from figure 4. For most of the time we observe two pairs of
output neurons producing opposed signals. This means that two arms trans-
lating their masses to the center of the ring, and at the same time two other
arms translate their masses to the ring periphery. This action maintains the
ring rotation. In the decentralized control modules the two pairs get negative
feedback from their hall sensory input, in contrast to the centralized control,
where we find positive and negative feedback leading to the opposed move-
ments. In the decentralized control, the opposed movement is based on the fact
that each module has its own, relative, sight of the hall sensor as described
in section 2, whereas the centralized control has only one sight of the hall
sensor.

What is the advantage that one neuron is oscillating all the time? We can find
a good reason, if we perturb the system, i.e. manually stop the ring rotation.
Hence, most of the motor neurons are mainly influenced by the hall sensory
input, as we saw before, most of the arms will stay at their positions when the
ring stops because the hall sensor stays active at its last value. If we than release
the ring, a slow movement can be observed, due to the still oscillating motor
neuron, until the hall sensor changes its value, and that gives rise to a change
in the other motor signals until the ring rotates harmonically again.

There is another interesting fact in the presented control structures. We saw
that there are not as many interesting dynamical features as one could expect
by using RNNs, which is possibly due to the simplicity of the task. On the one
hand we have a period-2 oscillator and on the other hand the behavior of the
others neurons seems to depend more or less directly on one sensor input. But
for instance, if we look at the motor neuron of module 1 in the decentralized
control architecture, we see, while the hall sensor is still inactive, the occurrence
of an oscillation (see figure 4) which is not provided by the structure of the
RNN. This oscillation is based on the input neuron which provides information
about the position of the arm, which is controlled by the motor neuron. At the
beginning the arm moves to a certain position according to the bias term, but
than the motor neuron gets a strong negative feedback from the position sensor
leading to an opposed movement and so on. Here we have a negative feedback
loop through the environment that is depressed when the hall sensor becomes
active due to the much stronger connection from this input neuron.
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Table 1. Mean performance and its variance of the lesion experiments

Lesion Centralized Control Decentralized Control
F σ2 F σ2

none 0.900 0.001 0.884 0.003
Motor 1 0.005 0.000 0.740 0.121
Motor 2 0.702 0.120 0.776 0.018
Motor 3 0.739 0.060 0.671 0.085
Motor 4 0.006 0.000 0.572 0.185
Motor 5 0.579 0.140 0.753 0.082

It is interesting that we can detect similar control principles in two different
designs of control. But then one can ask, what is the advantage of one method
over the other. First, we can see decentralization leads to less complexity in the
structure of the single RNNs (figure 3). And second, due to the autonomy of
the single control modules, there is no explicit communication between the de-
centralized control units, as we discussed it for the centralized RNN, which may
lead to more robustness. To demonstrate the second point lesion experiments
were done with the two introduced results of the different control designs. Both
architectures were tested on 100 random, uniformly distributed, starting condi-
tions. Each run lasted 1200 evaluation steps, i.e. 2 minutes in real time. Here,
lesion means the fixation of one motor neurons output to zero value during the
whole evaluation time. This could be considered as the simulation of a motor
breakdown of the real hardware. Table 1 gives the mean performance, calculated
with the fitness function (equation 1), and its variance for all lesion experiments
performed on both control architectures.

Considering the centralized control structure, lesions of motor 1 and 4 have
the strongest impact. The agent can handle no starting condition. If we look
at the structure (figure 3 (A)) of the RNN, we can see that setting the output
of N8 to zero leads to zero output of N3 as well, which consequently has a
strong impact on N10. Setting the output of N11 to zero will also have a strong
influence on N8 due to the strong connection between these two neurons. We
can see, the fixation of one output neuron also affects the dynamics of other
output neurons. On the contrary, the decentralized control structures have no
inter-connections between the output neurons, which is reflected in the results
of the lesion experiments. In the worst case it still can handle about 57 % of the
starting conditions. The worst case is the lesion at the oscillating neuron (module
4). Interestingly, lesion of the oscillating output neuron N12 of the centralized
control structure leads to a similar performance. That the system is still able
to handle about half of the different starting conditions in this case is due to
the initialization process described earlier in this section. For lesion of motor 2
and 3 at the centralized control structure, where the according motor neurons
have no or only a small influence on other neurons, we observe a performance
comparable to the decentralized one.

It is important to note that the described perturbations were not part of the
boundary conditions during the evolutionary process. If these perturbations were
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included, we would expect a more robust behavior of the centralized control as
well. But one should be aware of that it could be highly difficult to pre-estimate
every possible kind of perturbations in real systems. In the presented example the
robustness against motor breakdowns is an innate property of the decentralized
control approach.

4 Conclusions

In this paper we demonstrated the evolution of a centralized and decentralized
control architecture for the gravitationally driven artbot micro.eve. Both were
able to successfully solve the given task. We could show that minimal structures
arise out of the evolutionary process without any prior assumptions about the
structure of the RNNs. By analyzing the structure-function relations, we identi-
fied similar control principles in both designs, mainly based on two mechanisms,
periodic oscillations, mainly responsible for a robust initialization and robustness
against perturbations, and a strong coupling of the hall sensory input, mainly
responsible for maintaining the ring movement. We found that this strong cou-
pling is also determined by inter-connections between the output neurons in the
centralized RNN. Because for the decentralized control no communication was
allowed, this mechanism was determined by direct connections to this sensor in-
put. Due to this fact we could show that the autonomy of the subsystems of the
decentralized control approach leads to more robustness against motor break-
downs. We saw that the action of one agent indirectly influences the action of the
other agents. We think, it should be possible to handcraft a centralized control
structure containing similar autonomous subsystems. But we argue that it is hard
to expect such a result from an evolutionary process if no specific assumptions
about the structure and parameters of RNNs are made. By identifying the main
properties of the control structure one could manually transfer the properties
of decentralization, such as autonomous substructures, to centralized control ar-
chitectures. Another step would be to evolve homogeneous decentralized control
structures, where it should be more obvious that their properties are applicable
to a centralized control exhibiting more robustness to lesion experiments.

We saw that decentralization gives rise to less complexity, concerning the
structure of the RNNs, and more fault tolerance in the presented example. We
are not claiming that these principles could be generalized for all kinds of de-
centralized control problems. But as it is known, these issues are crucial points
for many of other examples concerning decentralized control as well [13].

Even though the presented results do not directly lead to general solutions
of problems in AL and ER, they provide a simple model of minimal cognition
for an unconventional machine. Due to the few system parameters it provides a
platform for studying first steps in neural control of autonomous robots, basic
cooperation mechanisms, and robot-environment interactions. Furthermore, we
showed how to apply the same evolutionary algorithm to the development of
centralized and decentralized control architectures. We introduced a simple co-
evolutionary strategy, for which the evaluation time does not increase with the
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number of populations. We are aware of the fact that evolution of competitive
behavior may require a more complex evaluation strategy, but to solve simple
cooperative tasks the presented strategy is sufficiently good.
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