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ABSTRACT
Effectively managing the data generated by Large-area Community
driven Sensor Networks (LCSNs) is a new and challenging prob-
lem. One important step for managing and querying such sensor
network data is to create abstractions of the data in the form of
models. These models can then be stored, retrieved, and queried,
as required. In our OpenSense1 project, we advocate an adap-
tive model-cover driven strategy towards effectively managing such
data. Our strategy is designed considering the fundamental princi-
ples of LCSNs.

We describe an adaptive approach, called adaptive k-means, and
report preliminary results on how it compares with the traditional
grid-based approach towards modeling LCSN data. We find that
our approach performs better to model the sensed phenomenon in
spatial and temporal dimensions. Our results are based on two real
datasets.
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1. INTRODUCTION
OpenSense1 is a LCSN whose major scientific objective is to in-

vestigate challenges in efficiently and effectively monitoring envi-
ronmental parameters (e.g., air pollution) using community-driven
sensors, mounted on buses and cars. In this context, our work in-
vestigates different approaches of synthesizing the data generated
by LCSNs. At its core, LCSNs form a dynamic new form of mo-
bile geosensor networks, characterized by uncontrolled or semi-
controlled mobility of vehicles or people, moving over a large geo-
graphical area. For this reason, we treat the underlying sensor net-
work as a disconnected component, which is collecting data using
local policies and principles.

Although, there is significant literature on model-based query
processing, both in-network [1] or in the back-end [3], on mobile
sensor networks, there is a lack of understanding of approaches
to determine high quality and concise models of the phenomenon
from LCSNs. Most prior work [4, 5] implicitly assumes that the
sensors are relatively homogeneously distributed and/or their sens-
ing behavior can be tuned, considering the phenomenon being sensed.

1http://opensense.epfl.ch/
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Unfortunately, this is not true for LCSNs. Hence, it is difficult to
produce a homogeneous, good quality view of the phenomenon.
The community-sensing pattern often leads to spatio-temporal ir-
regularities in sensing. Therefore, a challenging question is: how
do we efficiently create quality-controlled models that cover the
sensed data, spatially and temporally?

Towards this, we propose adaptive strategies that discover spa-
tial areas that can be modeled using single or multiple models. Our
strategies adapt to the changing nature of the sensed phenomenon
by adjusting the geographical granularity of the models to capture
the phenomena with high fidelity. Through user-defined approx-
imation error thresholds, we determine the quality of the models
demanded.
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Figure 1: Architecture of the framework.

We compare our approach with a grid-based model cover strat-
egy called GRIB, where the area under consideration R (refer Fig-
ure 1) is divided into equal size grid cells and a model is estimated
for each grid cell. We find that adaptive approaches are signif-
icantly better with respect to the tradeoff between computational
complexity and model quality, and also towards modeling the tem-
poral evolution of the phenomenon.

2. ADAPTIVE MODELS
Our adaptive modeling approach provides a multi-model abstrac-

tion or a model cover over the raw tuples dumped in the region R
(refer Figure 1). A model cover is a set of models M = {M1, . . . , Mp}
that are respectively responsible for modeling the sub-regions
R1, R2, . . . , Rp of R. The sub-regions, taken together, cover the
entire region R. Specifically, the model cover is responsible for
two tasks: (i) estimate the models M1, M2, . . . , Mp, such that the
approximation error per model and the total number of models (p)
are minimized, and (ii) efficiently maintain the model cover as and
when there are changes to the observed phenomena.

Estimating the Model Cover. For our first task, we present an adap-
tive method, called adaptive k-means or Ad-KMN, that gave us
the best results amongst many candidates we designed [2]. This
method partitions the region R adaptively (i.e., only when and
where it is necessary) and estimates the models M1, M2, . . . , Mp.
The standard k-means algorithm uses the Euclidean distance for
creating the clusters. Instead, in the Ad-KMN method, we use the
model approximation error as an additional clustering criteria.
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We denote the raw tuple as bi = (ti, xi, yi, ri), where ri is the
raw sensed value, and ti and (xi, yi) are time and position corre-
sponding to the sensed value ri. We assume that the model cover
is computed using a window of raw tuples Ws. Ws is a set of raw
tuples bi, whose time ti is in between sH and (s + 1)H , where s
is a positive integer and H is the window length.

An example of the Ad-KMN method on toy data is shown in
Figure 2. Assume that before executing the Ad-KMN method,
we compute two centroids μ1 and μ2 by executing the standard
k-means algorithm using the positions (xi, yi) found in the raw
values of the window Ws (refer Figure 2(a)). We, then, (a) parti-
tion the raw values in Ws, such that R1 and R2 contain raw values
that are nearest to μ1 and μ2 respectively, and (b) for the raw val-
ues in R1 and R2 we estimate linear regression models M1 and M2

and compute the approximation error 2.
Next, we check whether the approximation error is within a user-

defined threshold τn. If, for instance, the error in both the regions
R1 and R2 is greater than τn, then we introduce an additional clus-
ter centroid for each region R1 and R2 and re-estimate the four
centroids μ1, μ2, μ3, and μ4 using the standard k-means algorithm
(refer Figure 2(b)). This procedure is continued until all regions
meet the approximation error threshold τn.
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Figure 2: Example on toy data: (a) initial regions, and (b) two
new regions R3 and R4 added after an Ad-KMN iteration.

Efficiently Maintaining the Model Cover. Furthermore, we are in-
terested in maintaining the model cover as new windows of raw
tuples are streamed into the system. Given several windows of raw
tuples Ws, where s = (1, 2, . . . , S), we are interested in continu-
ously maintaining the model cover, while reducing the number of
additional computations required for its maintenance.

We start by estimating the cluster centroids μ1, μ2, . . . , μp over a
training window WD of size D � H using the Ad-KMN method.
The Ad-KMN method returns the regions Rα and models Mα,
where α = (1, . . . , p). Now, assume that the first window of raw
values W1 is available. W1 is first partitioned according to the clus-
ter centers μα, such that W α

1 contains the raw tuples nearest to μα.
Next, if the approximation error obtained using the raw values in
the partition W α

1 is greater than a user-defined model retain thresh-
old τr , then we invalidate the model Mα and re-estimate it from
scratch. We perform a similar test for all the other W α

1 . We use
flops3 to measure the re-estimation cost of the model cover.

3. PRELIMINARY EXPERIMENTS
We demonstrate results obtained using our Ad-KMN method

on two real datasets collected from large geographical areas. The
opensense dataset contains 110k raw tuples measuring the Ozone
(O3) concentration in Zurich, Switzerland over a period of seven
weeks, through bus-mounted sensors. The safecast4 dataset con-
tains 970k raw tuples of radiation values collected by the commu-
nity in Eastern Japan after the Fukushima Daiichi nuclear disaster.

Error Analysis. Figure 3 shows the approximation error as a func-
tion of the number of regions p, where τn is set to 1% and H is

2approximation error is the average percentage error compared to
the normal range of ri in the environment (pollutant specific).
3A flop represents either an addition or a multiplication of two
floating point numbers.
4http://blog.safecast.org/
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Figure 3: Comparing model cover estimation methods.

6 hours. Linear regression models are fitted to the data in each
grid cell for GRIB (or Rα for Ad-KMN). For both the approaches
the approximation error decreases with increase in the number of
regions. The decrement rate, however, is faster for Ad-KMN, lead-
ing to better quality models at lesser number of regions p. Notably,
for safecast the Ad-KMN method delivers 12.5 times less error as
compared to the GRIB method for p = 1000.

Analyzing Temporal Validity of Ad-KMN and GRIB. We choose
τr as 1%, a training window WD of length 6 hours and 88 testing
windows Ws of length 30 minutes. WD and Ws are consecutive
in time. Figure 4 shows the cumulative number of flops required to
maintain the model cover on opensense for different p. Although
per-operation cost of the Ad-KMN method is higher, the Ad-KMN
method requires a factor of 2.7 less number of flops, when amor-
tized over time. Notice, the Ad-KMN method requires zero flops
for the first 34 windows as opposed to the 1874 flops required by
the GRIB method. This empirically demonstrates the regions pro-
duced by the Ad-KMN method are valid for a longer time.
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Figure 4: Comparing temporal validity of the model cover.

4. CONCLUSIONS
In this poster, we demonstrated that adaptive model cover esti-

mation methods, namely Ad-KMN, exhibit promising performance
gains in terms of accuracy and efficiency as compared to the grid-
based methods for modeling data obtained from LCSNs. Future
work will focus on efficient storage and query processing using
adaptive model covers.
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