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Synchronization of Internal Neural Rhythms 

in Multi-Robotic Systems

Steffen Wischmann1,2, Martin Hülse1, Johannes F. Knabe1, Frank Pasemann1

1Fraunhofer Institute for Autonomous Intelligent Systems, Sankt Augustin, Germany
2Bernstein Center for Computational Neuroscience, University of Göttingen, Germany

This paper introduces a method for the coordination of individual action within a group of robots that

have to accomplish a common task, gathering energy in a dynamic environment and transferring this
energy to a nest. Each individual behavioral pattern is driven by an internal neural rhythm generator

exhibiting quasi-periodic oscillations. The paper describes the implementation of this generator, its

influence on the dynamics of artificial recurrent neural networks controlling the robots, and the syn-
chronization of internal rhythms with differing frequencies in a group of situated and embodied robots.

Synchronization is achieved either by environmental stimuli or even by self-organizing processes

solely based on local interactions within a robot population of up to 150 robots. The proposed experi-
mental methodology is used as a bottom-up approach and starting point for answering the question

about the complexity required at the individual level to generate sophisticated behavioral patterns at

the group level.

Keywords recurrent neural networks · neural behavior control · minimally cognitive behavior ·

swarm robotics · behavior coordination

1 Introduction

Using artificial recurrent neural networks (RNNs) for
autonomous robot control has become a common method
in the field of Artificial Life (AL) and Evolutionary
Robotics (ER) (Hülse, Wischmann, & Pasemann, 2004;
Nolfi & Floreano, 2000; Walker, Garrett, & Wilson,
2003; Harvey, Di Paolo, Wood, Quinn, & Tuci, 2005).
Considering a robot and its control architecture as a
dynamical system (DS), questions arise about the cou-
pling to other DSs such as dynamic environments (Beer,
1995) or other robots (Baldassarre, Nolfi, & Parisi, 2003;
Di Paolo, 2000).

We agree with Beer (2003) in that while concrete
dynamical models of cognitive phenomena are still

under construction “one powerful way to improve our
intuitions, clarify the key issues and sharpen the debate
is through a careful study of simpler idealized models
of minimally cognitive behavior, the simplest behavior
that raises issues of genuine cognitive interest”. We
consider minimal cognition as metabolism-independ-
ent sensorimotor behavior and presuppose that cogni-
tive behavior generally results from perception–action
couplings (see van Duijn, Keijzer, & Franken, 2006,
this issue, for a deeper discussion).

Here, we will describe a system of artificial agents
interacting in a shared environment. Within the sys-
tem we find three types of structural coupling (Matu-
rana & Varela, 1992). The first type of coupling refers
to the interactions between the elements, e.g. neurons,
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118 Adaptive Behavior 14(2)

of the artificial nervous system internal to the agent.
Secondly, we have to consider the interaction between
the agent and its environment. Third-order couplings
are characterized by social interaction between indi-
viduals.

We will present an experimental setup where indi-
vidual robots possess evolved basic behaviors which
are heavily coupled to sensory stimuli coming from
the environment (second-order coupling). We will call
these behaviors reactive behaviors. Additionally, we
realize an example of so called “internal robotics” (Parisi,
2004). Therefore, a minimal neural rhythm generator
inherent in the robot’s neural control is introduced
which periodically inhibits certain basic behaviors
(first-order coupling). In this way the robot changes its
behavior depending on the state of its internal rhythm
which is reminiscent of circadian clocks found in bio-
logical systems (Winfree, 2001), such as the day–night
cycle of humans.

Because several robots are acting in the same envi-
ronment we find rather indirect interactions between
robots, for example robots represent moving obstacles
for other robots. In this case, from the individual agent’s
point of view, other agents are seen as perturbations from
the environment as they also can occur from any other
obstacle. But when individuals are able to communi-
cate, more direct interactions become possible. Such
third-order couplings can, for instance, be found in
insects which share locations of food through physi-
cally excreting chemicals (Maturana & Varela, 1992).

A major question within the research on self-organ-
izing collective behavior in biological systems is about
how much complexity at the individual level is required
to generate the observed complexity and sophisticated
pattern at the group level (Camazine et al. 2001).
Because even the simplest biological units are rather
complex, a detailed and deep analysis of individual
properties during its interaction within its natural envi-
ronment becomes almost impossible. To make this
problem more tractable one can investigate the indi-
vidual under rather synthetic but well controllable
conditions or build up still understandable theoretical
models. We propose to complement these approaches
by trying to generate similar global phenomena with
artificial agents which at the end have to be embodied
and situated in the real world to meet the demands for
building complete brain–body–environment systems
(Brooks, 1999; Beer, 2003). Such complete systems
are necessary because often individual control mecha-

nisms can be surprisingly simple when the interaction
with the environment is taken into account appropri-
ately (Pfeifer & Scheier 1999). Reduced complexity at
the individual level, concerning morphology, control,
and communication effort, is of great advantage for
robust and efficient behavior coordination in large
robot groups or swarms.

For our experiments we use a robot especially
designed for experiments with large robot groups, for
example it is of low-price and easily replaceable. There-
fore we are challenged by the difficulty of dealing with
two constraints: homogeneity and minimal sensors and
actuators (Quinn, Smith, Mayley, & Husbands, 2003).
Homogeneity can also be found at the control level.
We will use one of the simplest neuron models possible
having only two parameters, bias terms and synaptic
self-weights, and a sigmoid transfer function (Pasemann,
1993). Although the physical setup, the communica-
tion capabilities, and the control elements are mini-
mal, it is possible to generate sophisticated global
behaviors, such as the synchronization of internal neu-
ral rhythms in order to achieve coordination of con-
flicting behaviors in large robot groups, which is
mainly a result of the dynamic interaction between
these single units.

2 Methods

2.1 Neural Model of an Inner Rhythm

Biological systems exhibit periodic behaviors on vari-
ous time scales, and it is known that at least some of
them are controlled by so-called central pattern gener-
ators (CPGs) internal to the nervous system (Kelso,
1995). In the following, we propose a CPG which
consists of two coupled SO(2)-networks (Pasemann,
Hild, & Zahedi, 2003). This model’s frequency can be
adjusted by only one parameter and it is stable even
for very long wavelengths. Standard discrete-time
recurrent neural networks with a sigmoid activation
function (Pasemann, 1993) are used.

2.1.1 Coupled Oscillator Architecture SO(2)-net-
works, described in Pasemann et al. (2003), have weight
matrices based on elements of the special orthogonal
group of the same name. Their weight matrices are
associated with rotations in the plane and are repre-
sented by functions of the rotation angle ϕ. Because of
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the existence of quasi-periodic attractors they generate
sine-shaped waveforms.

Our oscillator, shown in Figure 1 (A), is based on
a coupling of two identical SO(2)-networks. Accord-
ingly, wavelengths depend only on one parameter, as
can be seen from their weight matrix 

, (1)

where ϕ {–π, π}. The strength of coupling and hence
amplitude size are given by e ≠ 0. All bias terms were
set to 0.0 and e to 0.008, and the activation of each
neuron was randomly initialized. This weight matrix
will work for the activation function σ(x) = tanh(x),
but a transformation to a network with the standard
sigmoid activation function σ(x) = (1 + e–x)–1, as will
be used in the following experiments, with equivalent
dynamics, is possible (see Pasemann, 2002).

Setting |ϕ| close to zero can result in very long
wavelengths, for example using a ϕ of 10–8 yields sta-
ble wavelengths of more than three million time steps.
For such wavelengths the size of the amplitude becomes
very small, so amplifying neurons were added down-
stream (H5 and H6 in Figure 1A). Connecting them

with a very strong weight to one of the oscillator neu-
rons results in an (inverse) amplified output within the
saturation domains of the activation function.

2.1.2 Resetting Oscillations By giving input on one
of the four neurons (H4 in Figure 1 (A)) one can inter-
rupt the CPG’s oscillations. After the input ceases the
CPG will immediately start its oscillations again, thereby
causing a phase shift. Depending on which neuron
receives this reset signal, the amplified output will be
in an “on” or “off” mode while the input is given. The
plot in Figure 1 (B) shows the reaction of the oscilla-
tors after getting a long reset signal starting at time step
7000 and a short one at time step 12000. Both times
the quasi-periodic oscillations will be inhibited at once
and the amplified output switches to “on”. When the
input comes to an end oscillations restart in a stereo-
typical way.

2.2 Experimental Setup

2.2.1 Individual Setup Figure 2 shows a prototype
of the fully autonomous robot Do:Little (A) and its
simulated model (B). For many reasons this small size
(length: 14.5 cm, width: 11.5 cm) robot is a promising
platform for large scale distributed robotic system
experiments since it is both reasonably priced and pro-

Figure 1 Coupled oscillator, (A) architecture with optional amplifying neurons and reset control, (B) neuron outputs of
a coupled oscillator with a wavelength of ca. 2400 time steps.
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vides rich sensoric and motoric equipment. Despite
active infrared, light density, gray scale, energy, and
motor shunt sensors, the striking features of the robot
are the abilities to exchange electric energy with other
robots and to communicate through simple acoustic
signals. To keep the communication effort as minimal
as possible, frequency and amplitude filtering is done
by the physical hardware. Different signals are charac-
terized by different pulse sequences. Hence, the robot
can perceive and produce different “chirp” signals.
Additionally the robot is able to detect the direction of
a perceived signal, which is represented by two sensor
inputs (left and right) for each signal. In conformity
with the physical hardware the simulation is updated
with 10 Hz. We also applied noise to the sensors and
actuators comparable to the noise level of the real
hardware, i.e. 6% for infrared and light sensors, 25%
for the sound-direction detection, 2.5% for the motor
signals (all are normally distributed).

2.2.2 Behavioral Setup Three basic behaviors were
evolved by the so called restrictive expansion technique
(Hülse et al., 2004). Firstly, we evolved a robust obsta-
cle avoidance behavior (OA-module). Secondly, while
keeping the OA-module’s structure fixed a positive
phototropism was additionally evolved (P-module). In
the following this phototropism is considered as for-
aging behavior. Thirdly, in the same way a positive
sound tropism was evolved (S-module) that is consid-
ered as homing behavior. Up to that point we can
combine the same OA-module with either the P- or S-
module resulting in two different robot behaviors. As
a result of combining these modules with our pattern
generator, as shown in Figure 3, an exclusive switch-
ing between foraging and homing behavior can be car-
ried out. The internal rhythm of the pattern generator
does not influence the OA-module because the robot
should avoid collisions at any time. The sensor input

neurons of the P- and S-module project feed forward
to a corresponding hidden neuron layer. Only these
hidden layers have connections to and from the motor
outputs controlling the wheels. As can be seen the
amplifying neurons (H10, H11) of the pattern generator
inhibit the corresponding hidden layer through syn-
apses with very strong negative weights. As a result of
using the standard sigmoid transfer function for this
RNN, the inhibition only proceeds while the output of
an amplifying neuron is one, i.e. in the upper satura-
tion of its transfer function. Additionally, one output
neuron (Sp) allows the robot to communicate its
behavioral state switches. Therefore, this output neu-
ron is excited by one amplifying neuron (H10, see Fig-
ure 3). By setting an appropriate bias and a negative
self connection this neuron integrates the signal of H10

and produces the highest peak when the output of H10

switches from zero to one, i.e. when the robot
switches from foraging to homing behavior. This peak
triggers a sound signal lasting 10 time steps which in
turn can be perceived by nearby robots (range = 1.5
m) through an input neuron (Mic, see Figure 3). This
represents the reset signal for the oscillator as dis-
cussed before (see also Figure 1).

Each individual within a robot population possesses
its “own” oscillator, i.e. the individual inner rhythms
vary in their wavelengths. For each experiment the
oscillator of a single individual is randomly (uniformly
distributed) chosen, the lower wavelength bound was
2250 and the upper bound 2600 time steps, i.e. the
mean wavelength within a population is 2425 ± 175
time steps.

2.2.3 Environmental Setup For the following experi-
ments an environment as shown in Figure 2 (C) was
used (length: 5 m, width: 5 m). The gray circle in the
bottom right corner represents the nest that emits a
strong periodic sound signal. This signal, which is dif-

Figure 2 The prototype of the Do:Little robot (A), its simulated model (B), and the simulation environment (C).
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ferent from the signal that can be emitted by the robots,
is strong enough to be perceived within the complete
environment. By using the S-module the robot is able
to robustly find a way to the nest while avoiding obsta-
cles (homing behavior). In the left half of the environ-
ment three light sources are randomly distributed. The
P-module enables a robot to recharge its own energy
level by approaching and finally standing in front of a
light source (foraging behavior). A robot’s energy has a
weak leakage with time and a stronger leakage depend-
ing on its motor activity. The overall task of a robot
group is to transfer collected energy to the nest. A single
robot can load a maximum of 1 energy unit. If a robot
enters the nest area its energy is continuously trans-
ferred to the nest, which has its maximum at 50 energy
units. Because the time dependent leakage rate of the
nest is 50 times higher than that of a single robot, its
energy level cannot be maintained by a single robot.
The parameters for the energy in- and out-flow of the
robot and the nest are chosen so that only coordinated,
i.e. synchronized, action of a robot group can yield a
maximization of the nest energy.

The described experimental setup demonstrates
the application of an internal neural rhythm and intro-
duces a method of synchronizing individual rhythms
within a robot group to achieve coordinated action.
The following experiments show how to achieve coor-
dination using environmental stimuli as well as through
solely local interactions even if the individual rhythms
vary slightly in their length. For local communication
we will, furthermore, investigate the effects of percep-
tion range and group size on the synchronization proc-
ess. Finally we briefly compare the main differences
between the synchronization of homogeneous and het-
erogeneous oscillators in very large robot groups.

3 Results

3.1 Synchronization through Environmental 
Stimuli

As a result of disabling the speaker output neuron (Sp,
Figure 3) robots are not able to communicate their
behavioral state switches. Instead we replaced this sig-

Figure 3 Neural network architecture (see text for details).
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nal by a global signal that can be perceived within the
complete environment. In Figure 4 (A) the behavioral
states of 25 robots are plotted with time. From time
step 0 to 25000 no signals are presented and we can
see each robot is switching its behavior according to
its inner rhythm. Each robot is starting in a different
phase because the pattern generator is always ran-
domly initialized. In this time slot the uncoordinated
action of the robots leads to a slight decrease of the
nest energy.

The main reason for this decrease is that the robots
enormously interfere with each other. What generally
happens is that a subgroup of robots are in the foraging
state, i.e. they are leaving the nest to search for energy.
At the same time another subgroup of robots is in the
homing state, i.e. they are returning to the nest. If the
paths of both groups intersect, for instance at a narrow
passage, they obstruct each other. Over time, while con-
tinuously avoiding each other, this conflict will be solved.
But this can take so much time that probably no robot
will accomplish its current task (foraging/homing)
before its inner rhythm again switches its behavior.

To achieve coordination a global acoustic signal is
presented between time step 25000 and 50000. The
signal appears every 2425 time steps (mean wavelength
of the inner rhythms within the population) for 10 time
steps. Each robot can receive this signal and its pattern
generator is reset as described previously. The uncoor-
dinated action very quickly becomes coordinated dur-
ing the time period of signal perception because the

rhythm of each robot is reset at the same time. Now,
the coordinated action of the group leads to a periodic
increase of the nest energy. From time step 50000 the
global signaling is stopped and we can see that each
robot falls back in its own rhythm of foraging and
homing. This leads slowly to a more and more uncoor-
dinated action that in turn leads to a slight decrease of
the nest energy level. Figure 4 (B) shows that this is a
characteristic overall behavior for the described exper-
iment. The mean nest energy level is drawn with time
for 100 runs with randomized initial activations of the
pattern generators and random locations of the three
light sources. We see the result of presenting no signal
in comparison with the signal being presented during
the complete evaluation time, and how the overall
behavior switches between these two results when the
signal is presented only for a certain period of time as
it is described for the sample run above.

3.2 Synchronization through Local 
Interactions

Instead of using a global “leader” signal, as in the pre-
vious experiment, the robots are now able to commu-
nicate their behavioral state switches by emitting a
sound signal (Sp, Figure 3). Despite the short range
(1.5 m) it is the same signal that was used for the glo-
bal synchronization process. If more than one signal is
emitted at the same time within the perception range
of a robot, the robot is able to recognize only the clos-

Figure 4 Synchronization through environmental stimuli. A: Sample run with a partly synchronized group. B: Mean
nest energy of 100 runs with three differently synchronized groups.
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est one. This simplification reflects the behavior of the
physical hardware, as far as it is tested on the first pro-
totype.

Figure 5 shows the behavioral state evolution of
each single robot as well as the evolution of the nest
energy. Communication was allowed only between time
step 25000 and 50000. Again, we can see the phase
shifts of the individual behavioral states at the beginning.
The uncoordinated action of the individuals leads to
a decrease of the nest energy due to the previously
described interference between uncoordinated robots.
From time step 25000 onwards every individual is sig-
naling its switch from foraging to homing behavior
and hence resets the inner rhythm of all perceiving
robots within a range of 1.5 m. This switch mostly occurs
when a robot is close to a light source. Although the
light sources are randomly distributed, the population

becomes very quickly synchronized within about 3000
time steps.

The transition from uncoordinated to coordinated
group action can be seen in the evolution of the nest
energy which now periodically increases as we have
seen in the previous experiment. Once again, this is a
characteristic overall behavior independent of the ini-
tial conditions (not shown).

3.2.1 Effects of Reduced Interaction Radius In order
to determine the limitation of the system with respect
to the perception range of the sound signals we repeated
the aforementioned experiment in simulation with
different perception ranges for the sound signals. In
Figure 6 the relative percentage of robots which are
simultaneously in the foraging state is drawn over time.

Figure 5 Synchronization through local interactions. A sample run of a 25-robot population and the evolution of the
nest energy.

Figure 6 Effects of different sound perception ranges on the synchronization process, shown by the relative proportion
of foraging robots, in a group of 25 individuals. By increasing the perception range the radius where an individual is able
to entrain other robots is increased and consequently the time period until the system becomes synchronized decreases.
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Note that a robot which is not displaying foraging
behavior can only be in the homing state because of
the rigorous switching between these two behaviors.
Perfect synchronization is reached when at any time
every robot in the population is in the same behavioral
state, i.e. every robot switches its state at the same
time (e.g. at the end of the bottom right diagram in
Figure 6).

If the robots are not able to perceive any sound
signal (top left diagram in Figure 6) we can see that
for most of the time there is no coordination within
the population at all, but that after a certain period of
time there seems to be a slight development towards
synchronization (between time step 15000 and 30000).
This results from the differing free run periods of the
robots. After a while a portion of the internal rhythms are
almost completely overlapping. But for the same rea-
son this effect ceases later (between time step 30000
and 40000).

If we now consider the perception range of 1.5 m
(bottom central diagram in Figure 6), at it was used in
the previous experiments, which is approximately the
perception range of the physical robots, we can see
that the system very quickly becomes almost perfectly
coordinated (after about 3000 time steps). If we now
increase the perception range, e.g. to 2.5 m, the system
synchronizes even faster. A decrease of the perception
range entails a longer time period for the system to
become synchronized. This is due to the fact that a
smaller perception range consequently reduces the
interaction radius of an individual and therefore limits
the number of robots which it can entrain simultane-

ously. Although, for the sake of clarity Figure 6 repre-
sents only sample runs, this is an overall characteristic
of the system independent of the initial conditions such
as spatial distribution of the robots and food sources, or
the initialization of the internal rhythms. There is a
lower limit of perception range, which is about 0.3 m ±
0.1 m, where no synchronization is achieved by the
system. This limit is approximately the nearest possi-
ble distance between two robots because of their reac-
tive obstacle avoidance behavior. It is simply impossible
for an individual to receive any sound signal from
nearby robots because as soon as a robot detects other
robots with its infrared sensors, it always tries to keep
a certain distance from them as it does for static obsta-
cles within the environment (second-order coupling).

3.2.2 Synchronization in Larger Groups To demon-
strate that the described synchronization process is
also stable for larger robot groups we repeated the pre-
vious experiment with 150 robots in an enlarged envi-
ronment (length: 10 m, width: 10 m). Figure 7 (A)
shows the development of the individual behavioral
states. Again, individuals were allowed to communi-
cate between time step 25000 and 50000. We obtained
the same synchronizing effect as for the smaller sized
population except that the time period needed to reach
a stable synchronized state, which in this case is ca.
6000 time steps, was about twice as long as for a
group of 25 robots.

Figure 7 (B) shows the result of the same experi-
ment but this time the inner rhythms of every individ-

Figure 7 Behavioral state synchronization of 150 robots with (A) different inner rhythms and (B) identical inner rhythms.
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ual are identical within the population (wavelength =
2425 time steps). We see that the population is almost
perfectly synchronized within 25000 time steps, and,
as could be expected, once the behavioral states are
synchronized, they remain synchronized although the
individuals cannot communicate any more. The rea-
son is quite obvious. Because there is no mechanism
of de-synchronization there is no need for persisting
synchronizing forces once the system is synchronized.

4 Conclusions

In this paper we presented an implementation of a gen-
eral neural pattern generator that can be used for flexi-
ble inner rhythms in autonomous robot control. It is
general in the sense that it can be integrated in any kind
of RNNs using the standard additive neuron type with
discrete-time dynamics. It is flexible because a very
broad range of wavelengths can be utilized by changing
only one parameter, and it is adaptive to external stim-
uli, as in the presented phase resetting behavior. This
resettable neural oscillator was used to realize a periodic
internal drive that determines the activity of intrinsic
behavioral patterns.

In particular, we presented an application addressing
a major issue in the control of distributed robotic systems,
i.e. the coordination of individual behavior (Baldas-
sarre et al., 2003; Ijspeert, Martinoli, Billard, & Gam-
bardella, 2001; Quinn et al., 2003). It was possible to
synchronize behavioral states, which were initially
completely out of phase, through global environmental
signals. Especially, we have shown how to synchronize
large robot groups through self-organizing processes,
i.e. by using only local interactions among individuals.
For several reasons the proposed framework is of inter-
est from an engineering point of view. It has been
shown that the synchronization mechanism is stable
and robust with respect to the group size and the effec-
tive radius of possible robot–robot interactions. Coor-
dination of conflicting behavior can be achieved by
using a minimal physical setup. We argue that espe-
cially the minimal character of the communication which
is required to achieve coordination contributes much
to the robustness and stability of the synchronization
mechanism. A system where robots emit and receive
only simple undirected sound signals is indeed less
error-prone than, for instance, a radio based communi-
cation system, especially if one increases the number

of interacting robots in dynamic or rough environ-
ments.

The control structure, which is also robust against
sensor noise or robot–robot interferences, consists of
simple artificial neurons with only two parameters.
Hence only very low computational power is required.
The modular design of the control structure makes it
easy to replace certain neuro-modules if other basic
behaviors are required. Because of the simplicity and
generality of the sensors and actuators the proposed
architecture should be easily applicable to other robotic
systems. Additionally there may be more possibili-
ties which can be facilitated for behavior control. For
instance, instead of using the internal rhythm for the
rigorous “on-or-off” switching between behavioral
patterns, it should also be possible to realize smooth
transitions. Furthermore the capability of adapting the
internal rhythm smoothly to an external rhythm by
environmental stimuli has not been utilized so far. And
finally, one can also use other neurons of the internal
rhythm generator to coordinate other non-conflicting
behaviors with certain phase shifts.

Our experiments were inspired by a well known
biological example, the flashing among fireflies during
mating (Camazine et al., 2001). Although our model of
internal oscillators differs from models of the biologi-
cal ones, there are some similar principles. Each indi-
vidual oscillator has a free run period (firefly: 965 ±
90 ms, Do:Little robot: 2425 ± 175 time steps) which can
be influenced by external stimuli presented by neigh-
boring individuals leading to a phase reset. This signal
strongly correlates to a certain period of time within
the oscillation (firefly: begin of the rising excitation
phase; Do:Little robot: switch from foraging to hom-
ing behavior). Strogatz and Stewart (1993) pointed out
that “the behavior of communities of oscillators whose
members have differing frequencies depends on the
strength of the coupling among them.” Further work will
investigate the effects of weakening the direct, third-
order, coupling among the individuals, e.g. by introduc-
ing uncertainties during sound perception and trans-
mission. In the presented experiments the coupling
was strong enough to always achieve synchrony, i.e.
every perceived signal provoked a phase reset.

Because of the great difference in the details of the
nervous systems and individual physiology our exper-
iments may not help us in understanding the actual
detailed physical mechanisms of biological systems
which exhibit self-organized collective behavior, such
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as the synchronized flashing of fireflies. But we have
to consider that these creatures have to struggle with
much more than just achieving synchronized flashing.
Whilst our experimental bottom-up approach ultimately
aims at the artificial generation of comparable self-
organizing phenomena, it already provides a starting
point for investigating not only the minimal individual
requirements necessary to bring on collective behavior
coordination, but also to test the behavior of such a
system for stability when disturbances are introduced.
Our proposed setup is a complete brain–body–envi-
ronment system and we have shown that only minimal
communication efforts are needed, and also that the
sophisticated global behavioral pattern emerges mainly
from the interaction or coupling of simple units on the
individual neural level as well as on the robot–robot
and robot–environment level.

References

Baldassarre, G., Nolfi, S., & Parisi, D. (2003). Evolving mobile
robots able to display collective behaviors. Artificial Life,
9(3), 255–267.

Beer, R. D. (1995). A dynamical systems perspective on agent-
environment interaction. Artificial Intelligence, 72(1–2),
173–215.

Beer, R. D. (2003). The dynamics of active categorical percep-
tion in an evolved model agent. Adaptive Behavior, 11(4),
209–243.

Brooks, R. A. (1999). Cambrian intelligence: The early history
of the new AI. Cambridge: MIT Press.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J.,
Theraulaz, G., & Bonabeau, E. (2001). Self-organization
in Biological Systems. Princeton: University Press.

Di Paolo, E. A. (2000). Behavioral coordination, structural con-
gruence and entrainment in a simulation of acoustically
coupled agents. Adaptive Behavior, 8(1), 25–46.

Harvey, I., Di Paolo, E. A., Wood, R., Quinn, M., & Tuci, E.
(2005). Evolutionary robotics: A new scientific tool for
studying cognition. Artificial Life, 11(1–2), 79–98.

Hülse, M., Wischmann, S., & Pasemann, F. (2004). Structure
and function of evolved neuro-controllers for autonomous
robots. Connection Science, 16(4), 249–266.

Ijspeert, A. J., Martinoli, A., Billard, A., & Gambardella, L. M.
(2001). Collaboration through the exploitation of local
interactions in autonomous collective robotics: The stick
pulling experiment. Autonomous Robots, 11(2), 149–171.

Kelso, J. A. S. (1995). Dynamic patterns: The self-organization
of brain and behavior. Cambridge, MA: MIT Press.

Maturana, H. R., & Varela, F. J. (1992). The Tree of Knowl-
edge: The biological roots of human understanding. (rev.
edition) Boston: Shambhala.

Nolfi, S., & Floreano, D. (2000). Evolutionary Robotics: The
Biology, Intelligence, and Technology of Self-Organizing
Machines. Cambridge: MIT Press.

Parisi, D. (2004). Internal robotics. Connection Science, 16(4),
325–338.

Pasemann, F. (1993). Dynamics of a single model neuron. Inter-
national Journal of Bifurcation and Chaos, 2, 271–278.

Pasemann, F. (2002). Complex dynamics and the structure of
small neural networks. Network: Computation in Neural
Systems, 13(2), 195–216.

Pasemann, F., Hild, M., & Zahedi, K. (2003). SO(2)-networks
as neural oscillators. In J. Mira & J. R. Alvarez (Eds.),
Computational Methods in Neural Modeling, Proceedings
IWANN 2003, LNCS 2686 (pp. 144–151). Berlin: Springer.

Pfeifer, R., & Scheier, C. (1999). Understanding Intelligence.
Cambridge: MIT Press.

Quinn, M., Smith, L., Mayley, G., & Husbands, P. (2003).
Evolving controllers for a homogeneous system of physi-
cal robots: Structured cooperation with minimal sensors.
Philosophical Transactions of the Royal Society of Lon-
don, Series A: Mathematical, Physical and Engineering
Sciences, 361, 2321–2344.

Strogatz, S. H., & Stewart, I. (1993). Coupled oscillators and bio-
logical synchronization. Scientific American, 269(6), 102–
109.

van Duijn, M., Keijzer, F., & Franken, D. (2006). Principles of
minimal cognition. Adaptive Behavior, 14(1), 157–170.

Walker, J., Garrett, S., & Wilson, M. (2003). Evolving control-
lers for real robots: A survey of the literature. Adaptive
Behavior, 11(3), 179–203.

Winfree, A. T. (2001). The Geometry of Biological Time. New
York: Springer-Verlag, 2nd edition.

 at EPFL Scientific information and libraries on April 20, 2012adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


Wischmann et al. Synchronization of Internal Neural Rhythms 127

About the Authors

Steffen Wischmann studied technical biology and bionics and received his M.Sc. in biol-
ogy from the Saarland University, Germany in 2003. To complete his Ph.D. he has since
been working in the Intelligent Dynamics Department at the Fraunhofer Insitute for Auton-
omous Intelligent Systems and in the Berstein Center for Computational Neuroscience at
the University of Göttingen, Germany. His main research interests include the self-organ-
ization and emergence of collective behavior and social interaction, behavior-based
robotics, and the dynamical system approach to cognition.

Martin Hülse obtained his M.Sc. in computer science from the Friedrich-Schiller Univer-
sity of Jena, Germany. He is currently a research assistant at the Fraunhofer Institute for
Autonomous Intelligent Systems. His research interests include evolutionary robotics,
neuro-dynamics, and applications of nonlinear and adaptive control to complex systems.
Address: FhI AIS, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany. 
E-mail: martin.huelse@ais.fraunhofer.de 

Johannes F. Knabe is currently a Ph.D. student in the School of Computer Science at
the University of Hertfordshire, UK. He received his B.Sc. in cognitive science from the
University of Osnabrück, Germany. His research interests are in constructive biology,
evolutionary computation and adaptive systems. Address: Adaptive Systems Research
Group, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom. 
E-mail: j.f.knabe@herts.ac.uk 

Frank Pasemann studied physics and mathematics at the Universities of Marburg and
Würzburg, and at the International Center for Theoretical Physics (ICTP), Trieste. He
obtained his Diploma, Dr.rer.nat., and Habilitation in theoretical physics. He is an Apl.Prof.
for theoretical physics at the Technical University of Clausthal, and Hon.Prof. at the Insti-
tute of Cognitive Science, University of Osnabrück. He headed research groups at the
Research Centre Jülich, the Max-Planck-Institute for Mathematics in the Sciences, the
University of Jena, and at the Fraunhofer Institute for Autonomous Intelligent Systems.
His research interests include dynamics of recurrent neural networks, cognitive systems
as complex systems, and evolutionary robotics. Address: FhI AIS, Schloss Birlinghoven,
D-53754 Sankt Augustin, Germany. E-mail: frank.pasemann@ais.fraunhofer.de

 at EPFL Scientific information and libraries on April 20, 2012adb.sagepub.comDownloaded from 

http://adb.sagepub.com/

