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Commonly used RNA folding programs compute the minimum free energy structure of a

sequence under the pseudoknot exclusion constraint. They are based on Zuker’s algorithm

which runs in time Oðn3Þ. Recently, it has been claimed that RNA folding can be achieved in

average time Oðn2Þ using a sparsification technique. A proof of quadratic time complexity was

based on the assumption that computational RNA folding obeys the \polymer-zeta property".
Several variants of sparse RNA folding algorithms were later developed. Here, we present our

own version, which is readily applicable to existing RNA folding programs, as it is extremely

simple and does not require any new data structure. We applied it to the widely used Vienna

RNAfold program, to create sibRNAfold, the first public sparsified version of a standard RNA

folding program. To gain a better understanding of the time complexity of sparsified RNA

folding in general, we carried out a thorough run time analysis with synthetic random

sequences, both in the context of energy minimization and base pairing maximization. Con-

trary to previous claims, the asymptotic time complexity of a sparsified RNA folding algorithm

using standard energy parameters remains Oðn3Þ under a wide variety of conditions. Consis-

tent with our run-time analysis, we found that RNA folding does not obey the \polymer-zeta

property" as claimed previously. Yet, a basic version of a sparsified RNA folding algorithm

provides 15- to 50-fold speed gain. Surprisingly, the same sparsification technique has a

different effect when applied to base pairing optimization. There, its asymptotic running time

complexity appears to be either quadratic or cubic depending on the base composition. The

code used in this work is available at: http://sibRNAfold.sourceforge.net/.

Keywords: RNA folding; polymer-zeta property; sparsification.

1. Introduction

An RNAmolecule is a single-stranded polymer that folds upon itself by forming base

pairs. The ensemble of paired bases is called RNA secondary structure or RNA

folding. As the biological function of an RNA depends on its secondary structure,
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RNA folding programs have many applications and are widely used in RNA

research. An RNA secondary structure can be described as an ensemble of different

loops (hairpins, interior loops, multi-branch loops).1,2 Assuming that the folding

does not contain crossing base pairs (pseudoknots), dynamic programming

algorithms using various scoring functions have been devised for computational

prediction of the optimal structure.2,3 These algorithms, which either maximize

the number of base-pairs or minimize the free energy of the secondary structure,

have time complexity Oðn3Þ, where n is the length of the sequence. Several

computational speed-ups have been proposed in the last decades. In a

theoretical paper,4 Akutsu suggested a rather complex algorithm with time-bound

Oðn3ðlog lognÞ1=2=ðlognÞ1=2Þ. Assuming a discrete scoring scheme, Frid and Gus-

field5 applied the so-called \Four-Russians" technique reducing the time complexity

to Oðn3= lognÞ. However, to our knowledge, these approaches have never been

implemented in an RNA folding program. Sparsification techniques for reducing the

time and space complexity have also been applied to the problem of RNA folding.6�9

Eppstein et al. proposed a sparsified dynamic programming algorithm for speeding-

up the interior loop calculations, when the optimal structure contains no

multi-branch loops.7 Recently, by exploiting the triangular inequality property,

sparsification was applied on the multi-loop computations.8 In this approach, the

multi-loop computations are executed conditionally and the optimal closed sub-

structures are kept in a so called \candidate list" for later use. This work claims that

computational RNA folding obeys the \polymer-zeta property",8 which states that

the probability that a base forms a pair with another base that ismmonomers apart

is b �m�c, where b and c are constants such that c > 1 and b ¼ 1. Consequently, the

study concludes that RNA folding using a sparsified version of the minimum free

energy (MFE) algorithm can be achieved in time Oðn2Þ on average.8 However, this

conclusion was called into question by computer simulations by another group.10

Later, Backofen et al. showed how the space complexity for the base-pairing max-

imization variant of the RNA folding problem could also be improved using spar-

sification.9 The time and space complexity of such an algorithm were expressed in

terms of a sparsity parameter Z that satisfies n � Z � n2 yielding bounds for time

and space of OðnZÞ and OðZÞ, respectively. Sparsification techniques were further

applied to the problem of RNA simultaneous alignment with folding9,11 and to the

problem of RNA�RNA interaction prediction.12 The analyses in the last two papers

were based on the assumption that the \polymer-zeta property" with c > 1 holds for

each of the RNA sequences under consideration. Recently sparsification was also

applied to algorithms for prediction of pseudoknotted RNA structures.13

In this work, we introduce another version of sparsification for RNA folding

algorithms and perform a thorough analysis of the time complexity of sparsified

RNA folding algorithms in general. Although discovered independently, our version

is closely related to the ones introduced in Refs. 8 and 9. However, in our version,

the speed-gain is achieved solely by re-ordering and conditional execution of

elementary arithmetic operations without requiring any additional data structure,
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which makes the implementation of our approach extremely simple. To prove

practicality, we implemented our sparsification approach by modifying the code of

the widely used RNAfold and RNAalifold programs from the Vienna RNA package.

Next, we carried out a thorough run time analysis with real and synthetic RNA

sequences, both in the context of energy minimization and base-pairing max-

imization. To gain a better understanding of the time complexity of sparsified RNA

folding, we varied the base composition, the folding temperature and multi-loop

parameters of the energy function. Our analyses contradict the previous claims that

computational RNA folding obeys the polymer-zeta property with c > 1. The time

complexity of a sparsified RNA folding algorithm with real energy parameters

remains cubic or near cubic under a wide variety of conditions. In contrast, we

observe quadratic time complexity of a sparsified base-pairing maximization

algorithm for sequences with a skewed base composition (high A þ C content).

2. Preliminaries

Minimum free energy RNA folding programs use energy functions that take into

account stabilizing stacking energies for neighboring base-pairs in double-helical

regions and destabilizing energies for loops containing unpaired bases. Some jargon,

taken from Ref. 14, will be introduced to explain the basic form of the energy

function. A secondary structure is represented as a list of non-crossing base pairs

specified by indices to sequence positions. Each base in the sequence can be part of

at most one base-pair. By convention, we order pairs by increasing position num-

bers. Two relations between base-pairs will be introduced: (i) k; l is said to be

\interior" to a base pair i; j if i < k < l < j, (ii) k; l is said to be \immediately

interior" to i; j if there is no base pair p; q such that i < p < k < l < q < j.

Central to the energy function is the concept of a \loop" since the total energy of

a structure can be expressed as the sum over all loop energies. Each base pair in a

structure closes exactly one loop. A loop closed by i; j comprises i; j itself, all base-

pairs which are immediately interior to it and the unpaired regions between these

base-pairs. The mathematical formula used to compute the energy for a loop

depends on the loop type. Loops with zero interior base-pairs are called hairpin

loops. Loops with exactly one immediately interior base-pair k; l are called

\interior"; they comprise three subtypes:

k ¼ iþ 1 and l ¼ j� 1 : stacked base pairs ðno unpaired regionsÞ
k > iþ 1 and l < j� 1 : true interior loop ðunpaired regions on both sidesÞ
all other cases : bulge loop ðunpaired bases on one side onlyÞ

Loops with more than one immediately interior base pair are called multi-branched

or multi-loops. Note further that a secondary structure may also contain unpaired

sequence regions that are not part of any loop. Those are sometimes treated as a

special loop closed by the unpaired ends of the structure.
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The energies for stacked base pairs are tabulated in a 6� 6 table with columns

and rows corresponding to the six canonical base pairs found in RNA. These tables

explicitly list the entropic and enthalpic components for the stacking energies,

which allows for temperature adjustment of the global energy function. The energies

of all other loop types by default depend only on the loop type and the length of the

unpaired sequence segments in the loop. However, the extended thermodynamic

parameter sets used by current programs14 include large tables of sequence-specific

loop energies for short loops. In addition, they contain negative energy values for

stacking interactions between a terminal base-pair of a helical region and adjacent

unpaired bases. Such interactions are referred to as 5 0 and 3 0 dangles.
A basic version of an RNA folding algorithm, which minimizes an energy func-

tion of the above type, uses the following recursion:

W ði; jÞ ¼ min

V ði; jÞ
W ðiþ 1; jÞ
W ði; j� 1Þ
min
i�k<j

fWði; kÞ þW ðkþ 1; jÞg

8>>>>><
>>>>>:

V ði; jÞ ¼ min

Hairpinði; jÞ
min

i<k<l<j
Interiorði; j; k; lÞ þ V ðk; lÞ

Multiði; jÞ þW ðiþ 1; j� 1Þ

8>>><
>>>:

Two values are computed for each subsequence i to j. Vij is the MFE under the

constraint that bases i and j form a base-pair; Wij is the globally MFE. \Hairpin",

\Interior", and \Multi" are functions that return the energy values of the corre-

sponding loops. Note that \Interior" is a heterogeneous function returning energy

values for stacking base pairs, bulge loops, and true interior loops, all based on

different parameter sets. This basic version is compatible with a multi-loop scoring

function that returns a constant positive value a if i; j correspond to a canonical

RNA base pair and infinity otherwise. Current RNA folding programs use more

elaborate mutliloop scoring functions that require computation of additional

auxiliary arrays. Note further that dangling interactions are not explicitly treated

by this recursion.

The time complexity of the above algorithm is in principle Oðn4Þ due to the loop

over all possible interior loops. However, it is common to restrict the evaluation of

this term to loops of a maximal length e.g. k� iþ j� l < 30. This renders the total

time spent on interior loops quadratic. Alternatively, near quadratic solutions for

interior loop evaluation have been described and could be used instead.15 Therefore,

the rate-limiting step which has time complexity Oðn3Þ is the loop over all possible

ways to join two optimal substructures:

min
i�k<j

fWði; kÞ þW ðkþ 1; jÞg
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There are a number of variations to classical MFE folding, most notably prob-

abilistic and covariance-guided folding. Probabilistic folding takes into account the

fact that RNA molecules exist as an ensemble of energetically similar structures.

The McCaskill algorithm converts energy differences into probabilities according to

the Boltzmann equation and computes the sum of the probabilities of all structures

containing a particular base pair.16 The resulting pair probabilities can be displayed

as a dot matrix to assess the confidence of predicted structural elements. Covari-

ance-guided RNA folding exploits information contained in a multiple sequence

alignment and is based on the assumption that pairs of interacting bases vary in a

coordinated fashion such as to preserve base complementarity. Covariance is

expressed as a pseudo-energy that can be added to a thermodynamic energy func-

tion adjusted to multiple alignments.17 Adaptation of the basic RNA folding

algorithm to covariance-guided folding is then straightforward. Additional vari-

ations of the standard secondary structure prediction problem include: (i) the

folding of circular RNAs, (ii) the simultaneous co-folding of two interacting RNA

molecules, and (iii) the search for locally stable substructures in long sequences. All

these functions are implemented in version 1.8.4 of the Vienna RNA secondary

structure package (http://www.tbi.univie.ac.at/RNA/), which we used as a soft-

ware platform to benchmark our algorithmic improvements.

On another note, classical RNA folding algorithms subject to the pseudo-knot

exclusion constraint, face today competition by heuristic algorithms allowing for

pseudo-knots, see for instance Refs. 18 and 19. An introduction of these algorithms

is, however, beyond the scope of this paper.

3. Sparsified RNA Folding

3.1. Our sparsified version of the Nussinov algorithm

The speed-up principle based on sparsification will first be explained in the context

of the Nussinov algorithm,3 which maximizes the number of non-intersecting

canonical base pairs that can be formed by an RNA sequence. After adequate

initializations, this number can be obtained by the following recursion:

F ði; jÞ ¼ maxfF ðiþ 1; j� 1Þ þ �ði; jÞ; max
i�k<j

fF ði; kÞ þ F ðkþ 1; jÞgg

Here F ði; jÞ is the best score (maximal number of bases pairs) for the subsequence i

to j. The function �ði; jÞ returns 1 if the bases at positions i and j can form a

canonical base pair, and 0 otherwise.

Note that the optimal structure for a subsequence i to j is obtained either by a

loop-closing operation (first term) or by joining two optimal substructures (second

term). The latter requires evaluation of all possible ways to split a subsequence into

two. This is the speed-limiting step leading to time complexity Oðn3Þ.
Computation of the F ði; jÞ values for all subsequences is carried out during the

so-called fill-stage of the Nussinov algorithm. Once all these values are known, the
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optimal secondary structure is obtained by a fast trace-back procedure. The algo-

rithmic modifications described here concern only the fill-stage and the trace-back

procedure need not to be changed. A complete version of the fill-stage of the non-

sparsified algorithm is given below:

Initialization : F ð1; 1Þ ¼ 0; for i ¼ 2 to N : fF ði; i� 1Þ ¼ 0; F ði; iÞ ¼ 0g
Iteration : for i ¼ N � 1 to 1 :

for j ¼ iþ 1 to N :

F ði; jÞ ¼ F ðiþ 1; j� 1Þ þ �ði; jÞ
for k ¼ i to j� 1 : fF ði; jÞ ¼ maxfF ði; jÞ;F ði; kÞ þ F ðkþ 1; jÞgg

In this version, the subsequence score matrix F is computed by filling rows from left

to right starting at the bottom. The elements of the matrix F could be computed in

a different order, see for instance the presentation in Ref. 21. What is more

important in this context is that the elementary computations can be carried out

with a different loop-architecture:

Initialization : for i ¼ 1 to N : fF ð1; iÞ ¼ 0g
for i ¼ 2 to N : ffor j ¼ i� 1 to N : fF ði; jÞ ¼ 0gg

Iteration : for i ¼ N � 1 to 1 :

for j ¼ iþ 1 to N :

F ði; jÞ ¼ maxfF ði; jÞ;F ðiþ 1; jÞ;F ðiþ 1; j� 1Þ þ �ði; jÞg
for k ¼ jþ 1 to N : fF ði; kÞ ¼ maxfF ði; kÞ;F ði; jÞ þ F ðjþ 1; kÞgg

Here, the optimal scores for composite structures for a subsequence i to k are

computed \in advance" i.e. before the matrix element F ði; kÞ is reached by the two

outer loops. In fact, immediately after the final value F ði; jÞ has been determined,

the innermost loop already evaluates the scores of the secondary structures that

could be obtained by joining the best structure of subsequence i to j with the best

structure of adjacent subsequence jþ 1 to k. Later, when the algorithm computes

the final value of F ði; kÞ, all composite structure scores for subsequence i to k have

already been evaluated. It is obvious that this new loop configuration leads to the

same matrix F as the original algorithm.

The purpose of this reordering of elementary arithmetic operations is to allow for

conditional execution of the innermost loop. The innermost loop needs be carried

out only if the best score for subsequence i to j can only be obtained by loop-closing.

Otherwise, if F ði; jÞ is equal to the score of a composite structure, there must be an

index l satisfying i � l < j such that

F ði; jÞ ¼ F ði; lÞ þ F ðlþ 1; jÞ:
We further note that for any index k, j < k � N:

F ði; jÞ þ F ðjþ 1; kÞ ¼ F ði; lÞ þ F ðlþ 1; jÞ þ F ðjþ 1; kÞ � F ði; lÞ þ F ðlþ 1; kÞ:
However, the termF ði; lÞ þ F ðlþ 1; kÞwas already evaluatedwhen the two outer loops
reached the matrix element F ði; lÞ. Therefore, computation of F ði; jÞ þ F ðjþ 1; kÞ

S. Dimitrieva & P. Bucher

1241007-6



is obsolete as the resulting value cannot be greater than the current value of F ði; kÞ.
A complete version of the modified Nussinov algorithm with conditional innermost

loop execution is shown below:

Initialization : for i ¼ 1 to N : fF ð1; iÞ ¼ 0g
for i ¼ 2 to N : ffor j ¼ i� 1 to N : fF ði; jÞ ¼ 0gg

Iteration : for i ¼ N � 1 to 1 :

for j ¼ iþ 1 to N :

F ði; jÞ ¼ maxfF ði; jÞ;F ðiþ 1; jÞg
if F ðiþ 1; j� 1Þ þ �ði; jÞ > F ði; jÞ :

F ði; jÞ ¼ F ðiþ 1; j� 1Þ þ �ði; jÞ
for k ¼ jþ 1 to N : fF ði; kÞ ¼ maxfF ði; kÞ;F ði; jÞ þ F ðjþ 1; kÞgg

3.2. Our sparsified version of standard RNA folding algorithm

The algorithmic trick described above is readily applicable to standard RNA folding

algorithms that minimize a realistic energy function under the pseudo-knot exclu-

sion constraint. In this work, we have chosen to use the Vienna RNAfold program as

a realistic test platform. Consequently, we describe the modifications with regard to

the specific algorithm implemented in this program.

The algorithm used by the RNAfold code is shown in Fig. 1 along with our

modifications allowing for speed-up.We emphasize that this pseudo-code reflects the

Fig. 1. Pseudo-code for the original and modified RNAfold algorithms. The code corresponds to the

algorithm used by RNAfold with option �d0 (no energy benefits for dangling bases). The parts that differ

between the two versions are labeled \original" and \modified."
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source code used in this study, and we are aware of the fact that it differs from earlier

descriptions of the folding algorithm implemented in the Vienna package.20,22

The algorithm shown in Fig. 1 computes two complete arrays: Cði; jÞ is the MFE

of a closed RNA structure of subsequence i to j,Mði; jÞ is the MFE of subsequence i

to j scored as a multi-loop component. The array F contains the MFE for all

subsequences starting at position 1. M2ði; jÞ is the MFE of subsequence i to j scored

as the interior part of a multi-loop, and conditional on the presence of at least two

interior base-pairs (otherwise it will have an infinitely high value). It needs be kept

in memory only temporarily. The computation ofM2 makes sure that the multi-loop

scoring system will be applied to multi-loops only. The pseudo-code shown does not

take into account 5 0 and 3 0 dangles. This corresponds to the option �d0 of the

program RNAfold. The same program offers three additional dangling options. With

�d1, an unpaired base can participate in at most one dangling interaction; with

option �d2, this check is ignored; the �d3 option allows for coaxial stacking of

helices in a multi-loop. The algorithmic treatment of dangles is described in Ref. 14.

The modification described here is compatible with dangling options 0, 1 and 2, and

is implemented for all of these variants.

4. Results

4.1. Empirical time complexity analysis of the sparsified Nussinov

algorithm

The speed gain obtained with the sparsified algorithms obviously depends on the

frequency by which the condition requiring innermost loop execution is fulfilled.

This frequency in turn may depend on the base composition of the sequences to be

folded. Therefore, we carried out tests with sequence sets of increasing length and

increasing content of A þ C. When varying the A þ C content, we kept the fre-

quencies of A equal to the frequencies of C, and likewise the frequencies of G equal to

the frequencies of U. The frequencies of A and C were changed because these two

bases have only one canonical interaction partner and thus are expected to favor less

folded structures.

The results of the running time analysis are shown in Fig. 2(a). The graph shows

the fold-increase in time resulting from doubling the sequence length. For long

sequences, this value should approach 8 for cubic time complexity and 4 for

quadratic. For an unbiased base composition with 50% A þ C, we clearly observe

cubic time complexity. For sequences with an A þ C content of 60% or higher, we

see a trend toward quadratic time complexity. The curves for 56% and 58% A þ C

are less clear but seem to asymptotically approach cubic and quadratic complexity,

respectively. Taken together, our results suggest that the sparsified Nussinov

algorithm has quadratic time complexity only for sequences with biased base

composition. A sharp transition from cubic to quadratic time complexity occurs

near 57% A þ C. This transition is very reminiscent of the phase transition beha-

vior of local alignment scoring systems described in Ref. 23.
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We were wondering whether the time complexity correlates with topological

properties of the optimal structures returned by the Nussinov algorithm. Specifi-

cally, we were looking at the average folding depth of the structures. The folding

depth of an individual base in a structure is defined as the number of nested base

pairs enclosing it. Figure 2(b) shows the average folding depth for different sequence

sets. As a general trend, we observe a sequence length�independent constant

folding depth for base compositions which lead to quadratic time complexity and

monotonous increase in the cubic case. This result can easily be rationalized if we

assume that the length invariant behavior of the average folding depth reflects

concatemeric structures composed of closed substructures not exceeding a certain

limit size. In this case, the optimal structures for subsequences exceeding the limit

size are never closed and hence will not trigger innermost loop execution in the

sparsified Nussinov algorithm.

4.2. Empirical time complexity analysis of the sparsified RNAfold

algorithm

We applied the same speed-up strategy to the RNAfold program from the Vienna

package and created the program sibRNAfold, the first publicly available sparsified

RNA folding program that uses standard energy parameters. The implementation of

our sparsification version turned out to be surprisingly simple. Only a few lines in

(a) (b)

Fig. 2. Sequence base composition dependence of the speed gain and folding depth using the modified

Nussinov algorithm. The modified Nussinov algorithm was applied to sets of 1000 sequences of length

100; 200 . . . ; 3200 with varying base composition. (a) The fold-increase in the number of elementary

operations resulting from doubling the sequence length is plotted against the geometric mean of the

shorter and longer sequence length. The error bars represent the standard error of the ratios calculated

from the standard deviations and means of the number of elementary operations (see formula (1) in the

supplementary material for details) (b) Average folding depth of the optimal structures as defined in the

main text. The error bars represent the standard deviation of the folding depth.
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the function fold had to be changed in order to implement conditional innermost

loop execution. Other modifications were necessary to allow processing of sequences

longer than 32 kb. sibRNAfold produces identical result as Vienna RNAfold but is

more than an order of magnitude faster. It thereby extends the application range of

RNA folding to longer RNA sequences up to 100 kb. Since the input and output

routines were not changed, sibRNAfold is compatible with existing sequence anal-

ysis pipelines using Vienna RNAfold.

To analyze the speed-gain of sibRNAfold versus Vienna RNAfold, we folded real

and random sequences of varying length (Fig. 3). In all tests we verified that the

results returned by both programs were identical. The savings in execution time

ranged from a factor of 15 to 50, with higher benefits recorded for longer sequences.

For instance, the time for folding the HIV genome (9181 bp) went down from

344 s to 19 s. The SARS genomic RNA (29,751 bp) was folded in 6min as compared

to 3 h required for the original version. With sibRNAfold we were even able to fold

the human titin mRNA (101,674 bp) in 3 h, while the estimated time with the

original version is several days. We note that folding such a large mRNA may not

result in a biologically relevant structure for reasons of insufficient precision of the

energy parameters or kinetic inaccessibility of the MFE structure. For such long

sequences, it is more reasonable to apply covariance-guided folding, where this

sparsification principle is also applicable. Nevertheless, the ability to fold such long

sequences in reasonable time is interesting. Note that for a better estimation of the

contribution of the cubic step, we restricted the maximum length of an interior loop

to 10 instead of 30, the default value used by RNAfold.

(a) (b)

Fig. 3. Speed comparison of sibRNAfold versus the Vienna RNAfold program. The values represent the

average over 10 random sequences of the same length. (a) Runtime in s. The standard deviation of all

plotted values is< 2 s and therefore too small to be shown; (b) Number of join operations on a logarithmic

vertical scale. The standard deviations of all plotted values is < 0:05 on a log scale.
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Sparsification is applicable to multiple alignment�based folding. We applied the

same speed-up strategy to the RNAalifold program from the Vienna package, by

changing only a few lines in the function alifold and we observed a speed gain in the

same range (Fig. S1).

To gain an estimate of the time complexity of the sparsified version versus the

original one, we calculated the time fold increase resulting from doubling the

sequence length. As expected, with synthetic sequences of uniform base composition

(50% A þ C) we observed cubic time complexity. Increasing the A þ C content

resulted in a speed gain. However, in contrast to the results obtained with the

sparsified Nussinov algorithm, the time complexity remains cubic independently of

the sequence base composition (Fig. 4).

Next we addressed the questions whether the speed gain depends on the energy

parameters. RNAfold allows for automatic temperature adjustment of the energy

function via a command line option. We thus computed the secondary structures of

random RNA sequences of 50% A þ C content at different temperatures (Fig. S2).

We note that the number of join operations required for MFE computations

decreases with increasing temperature. However, the time complexity again remains

cubic at least up to 70�C.

(a) (b)

Fig. 4. Dependence of the number of join operations and time-fold increase on sequence composition

(computed with sibRNAfold �d2 option). The mean values and ratios are estimated from sets of 100

random sequences of the same length. (a) Number of join operations on a logarithmic vertical scale. The

standard deviation of all plotted values is < 0:1 and therefore too small to be shown; (b) Fold increase in

the number of elementary operations resulting from doubling the sequence length plotted against the

geometric mean of the shorter and longer sequence length. The error bars represent the standard error of

the ratios calculated from the standard deviations and means of the number of elementary operations (see

formula (1) in the supplementary material for details).
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Since the rate-limiting cubic step concerns multi-loops only, we analyzed in more

details the effect of multi-loop parameters on run time (Table S1, Fig. S3). The

program RNAfold scores multi-loops as follows:

�Gloop ¼ aþ bhþ cn

Here, h is the number of immediately interior base-pairs, n is the number of

unpaired bases in the loop, and a; b; c are the parameters of the energy functions.

The following observations can be made: among the parameter sets that predict

structures with similar free energy, the one with a non-zero value for c leads to

considerably higher execution time. However, the running time of the algorithm

stays cubic independently of the values for the multi-loop parameters.

4.3. The Polymer Zeta Property of RNA folding

The polymer-zeta property makes a statement about the probability that the

terminal bases of a folded RNA are paired. It implies that this probability expo-

nentially decreases to zero with increasing sequence length. More precisely, it ap-

proaches b �m�c, where m is the length of the sequence and b and c are constants

such that c > 1 and b ¼ 1. In a previous work by Wexler et al.,8 the exponent c was

empirically estimated to be 1.47 for optimal RNA secondary structures according to

the energy model of Zuker and Steigler.2 Theoretical analysis presented in the same

paper suggested that a sparsified RNA folding program would indeed have quad-

ratic time complexity if c > 1, and Oðn2 � n1�cðlognÞcÞ if c < 1.

We challenged the hypothesis that computational RNA folding obeys the poly-

mer-zeta property with an exponent greater than one by applying the sparsified

Nussinov and RNAfold algorithms to sets of random RNA sequences with varying

base composition and length, and subsequently counting the fraction of closed

structures. The results of this analysis are presented in Fig. 5 and Table 1. For the

cases where we observed quadratic time complexity, we observe a monotonous

decrease in the fraction of closed structure with increasing sequence length, which is

compatible with the polymer-zeta property. For all other cases, the fraction of

closed structures appears to stabilize at some positive value, which would imply

cubic time complexity. We tried to interpret the curves presented in Fig. 5 in the

light of the polymer zeta function by non-linear least-square fitting (Table 1).

Again, this analysis yielded results compatible with our running time analysis. The

estimates for the exponent c are greater than one only for those cases where we

observed quadratic time complexity. For standard RNA folding and uniform base

composition, the estimated c is very close to zero. In summary, our time complexity

analysis contradicts the claim that computational RNA folding with standard

energy functions obeys the polymer-zeta property with parameter c > 1. However, if

we look carefully at the benchmark results from Ref. 9, we see that our results are in

accordance with the ones published there. In Fig. 12 of Ref. 9, Backofen et al.
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plotted the percentage of multi-loop executions of the sparsified algorithm (relative

to the number of multi-loop executions required by the original algorithm) as a

function of the sequence length. Clearly, for long sequences, this value is stabilizing

at 2% rather than asymptotically approaching zero.9

(a) (b)

Fig. 5. Probability that the optimal folding corresponds to a closed structure as a function of the

sequence size. The folding algorithms were applied to sets of 50,000 sequences with different lengths and

with varying base composition. (a) Results using the modified Nussinov algorithm; (b) Results using

sibRNAfold (modified Vienna RNAfold). The standard deviation of the plotted values is calculated asffiffiffi
k

p
=N, where k is the number of occurrences of closed structures andN is the number of sequences tested.

Table 1. Estimates for the constants b and c from the equation describing the

polymer zeta property for RNA sequences.

Modified Nussinov algorithm sibRNAfold algorithm

AC content (in %) b c b c

50 0.017 �0.018 0.011 0.055

56 0.033 0.195 0.009 0.051

58 0.072 0.445 0.008 0.055

60 0.109 0.615 0.007 0.047

70 0.428 1.311 0.003 0.031

80 1.377 2.129 0.001 �0.015

90 3.881 3.199 3.1e-05 �0.240

Note: The estimates are based on folding of sets of 50,000 sequences with

different AC content using the modified Nussinov algorithm and sibRNAfold.

They are computed by fitting a nonlinear least-squares model using the R

statistical analysis package, www.r-project.org, (nls function).
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5. Discussion and Conclusions

We have presented our own sparsified version of classical RNA folding algorithms.

We have implemented it by modifying the widely used Vienna RNAfold program, to

create sibRNAfold, a publicly available sparsified RNA folding program using

standard energy parameters. We deliberately opted for modification of existing code

rather than reprogramming to ensure identical results with a trusted implemen-

tation. By an extensive empirical analysis, we have shown that the time complexity

of a sparsified RNA folding algorithm based on energy minimization remains cubic

or near cubic, independently of the energy function used and the base composition of

the RNA sequence. Yet, a basic version of sparsification requiring minimal changes

of existing code provides up to 50-fold speed gain for RNA folding.

Our speed analysis carried out with the modified Nussinov algorithm reveals a

conspicuous phase-transition behavior dependent on the base composition, which is

reflected by both time complexity and folding depth of the optimal structures. This

is a novel finding, perhaps biologically irrelevant but highly interesting from an

algorithmic viewpoint. Note that Backofen et al.9 already noticed that the speed-

gain of a sparsified base-pairing maximization algorithm varies as a function of the

base composition. However, they analyzed this effect only for sequences of length

500 and therefore could not make any inference regarding the impact of the base-

composition on the asymptotic time complexity.

We conclude with a brief comparison of our work with other recently published

improvements of the basic RNA folding algorithm. In doing so, we will challenge

previous claims that RNA folding with a standard energy function can be achieved

in near-quadratic time.

Sparsification strategies based on the same principle like the one described here

were previously described in Refs. 8 and 9. In fact, we use the same condition to

restrict the execution of structure joining operations as in Ref. 8, and therefore the

time complexity should stay the same. In contrast to our approach, in Refs. 8 and 9,

the optimal closed substructures are kept in a candidate list for later use. This has

the principle advantage that the memory requirements are reduced as well.9 On the

other hand, our approach is easier to apply to existing code, as it does not require

introduction of a new data structure and modification of the trace-back procedure.

Sparsification was implemented in a program called CanididateFold,8 which

reportedly computed the optimal secondary structure according to the energy model

of Zuker and Stiegler.2 The run-time of CandidateFold was reported to be quadratic

in sequence length, a speed-gain that we were not able to achieve with our approach.

We could not further investigate the reasons for the discrepancy in time complexity

since CandidateFold is no longer maintained.24 However, we suspect that the reason

for this is that the reported results using CandidateFold were for sequences with

short length (up to 1000 bp). For such sequences, the running time of the algorithm

is more realistically approximated as � � n3 þ � � n2 þ oðn2Þ, where � and � are

constants and n is the sequence length. Assuming that n is small and � >> �, the
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running time of the algorithm will be dominated by the quadratic term. Therefore,

for n below a certain threshold, one can still observe quadratic time complexity even

if the asymptotic time complexity is cubic. Our empirical results on the speed of a

sparsified RNA folding algorithm are realistic in the sense that they were obtained

with a program that computes exactly the same structures as a widely used RNA

folding program. With the default energy parameters and with base sequences that

resemble natural RNAs in terms of base composition, we obtain a significant speed

gain but still cubic time complexity. On the other hand, we observed quadratic time

complexity of the sparsified Nussinov algorithm only for sequences enriched in

A þ C. Moreover, there are indications that the modified RNAfold program runs in

sub-cubic time with modified multi-loop scoring function for sequences with 90%

A þ C. Overall, our results speak against previous claims that a sparsification of an

RNA folding algorithm can bring down its time complexity to near quadratic.

Furthermore, our analysis contradicts the claim that computational RNA folding

obeys the polymer-zeta property with parameter c > 1.
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